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Classical sudden model for vibrational and rotational excitations in ion-molecule collisions
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We develop a classical model of an ideally sudden character for vibrational and rotational excitations in
collisions of an atom~or an ion! with a diatomic molecule at energies as high as 10–102 eV. The energy-loss
spectra with vibrotational levels left unresolved are analytically expressed with a repulsive intermolecular
potential in ahard potentiallimit ~i.e., a vanishing range of force!. It turns out to be an extension of thehard
shellmodel for a rigid-rotor molecule developed by Becket al. two decades ago. For a homonuclear molecule,
the hard potential model generally derives spectra with double peaks at both edges, one nearly elastic and
another deeply inelastic. They are analogous to rotational rainbows though their positions are affected by
vibrational excitation. Classical trajectory calculations with a finite-range model potential are carried out for
collision systems of H11N2 and Li11N2, and systematically compared with the model. It is found that the
effect of vibrational excitation manifests itself the way the model predicts. It is also demonstrated that the
spectra are virtually reduced to the hard potential model when the vibrational period is artificially taken much
longer than a collision time, while reduced to the hard shell model when much shorter.
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I. INTRODUCTION

Certain aspects of vibrational and rotational excitations
collisions of an atom~or an ion! with a diatomic molecule
are dominated by a short-range repulsive intermolec
force @1–5#. Since the force rangel is much shorter than a
molecular size@6#, the molecule looks as a hard-wall ellip
soid, on which an instantaneous torque would excite h
rotational statesj @1 nonperturbatively. On this basis, a cla
sical hard shell ~or rigid shell) model was developed b
Beck et al. @7# two decades ago. Because of its simplici
the model and its variations have been widely applied
collisions at hyperthermal energies such as 1021–1 eV
~equivalent velocities ofv;1023 a.u.! @8–19#. They reveal
universal emergence of a gross peak structure calledrota-
tional rainbowin the j distributions at large scattering angle
@3–5#. The hard shell model is valid when a collision
suddenwith respect to rotational motion@10,15#, i.e., when
the collision timet;l/v with velocity v is much shorter
than a rotational period while longer than a vibrational p
riod. In fact, vibrationally elastic scatterings are dominan
observed, and occasionally low discrete vibrational tran
tions are also noticeable@20#. The rotational rainbow struc
ture appears in thej distribution for respective vibrationa
levelsn.

Some experiments have been done, however, at m
higher energies such as 10–102 eV ~equivalent velocities of
v;1022 a.u.!, where the energy-loss spectra have been m
sured in electronically elastic scatterings, leaving individ
vibrotational levels (n, j ) unresolved@21–23#. Among them,
collisions of Li11N2 have been investigated over a wid
range of the center-of-mass energies asE54 –17 eV@20,21#
and E560–300 eV @22#. Throughout these energies, th
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energy-loss spectra persistently exhibit two widely spa
maxima, i.e., one broad nearly elastic peak and one br
deeply inelastic peak. Although emergence of the doub
peak structures is consistent with rotational rainbow, no s
tematic interpretation has been given all through the ob
vations. In particular, effects of vibrational excitation see
still unclear, though some analyses have been carried
with classical trajectory calculations@20,21# and with more
sophisticated semiclassical calculations@24,25#.

In such energies, the collision could be sudden even w
respect to vibrational motion, substantially exciting high v
brationaln@1, as well as high rotationalj @1, states. The
higher the energy increases, the more clearly the sud
character should appear, because the repulsive force p
more dominantly, and also because even a small frac
~say, ;10%) of available energy (}v2) well exceeds a
quantum perturbation energy (}t21}v) according to Mas-
sey’s criterion. Thus arise questions whether and how
sudden character with respect toboth vibrational and rota-
tional motions actually manifests itself in the energy-lo
spectra.

In the present paper, we develop a model of an idea
sudden character to elucidate the problem above. The mo
called hard potential model, is formulated in classical me
chanics by taking a limitl→0 of vanishing range of force
which permits us to derive an analytic expression for ener
loss spectra. This treatment turns out to be a natural ex
sion of thehard shell model@7,11#, incorporating the free-
doms of vibrational and rotational motions in a unifie
manner. We apply the model to a homonuclear molecule,
predict spectra with double peaks at both edges, whose
sitions are affected by vibrational excitation. We also ca
out classical trajectory~CT! calculations with a finite-range
model potential for H11N2 and Li11N2 collisions. The
spectra obtained are systematically compared with
model, and examined for emergence of double peaks a
with their dependences on the scattering angle and the
©2004 The American Physical Society16-1
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A. ICHIMURA AND M. NAKAMURA PHYSICAL REVIEW A 69, 022716 ~2004!
duced mass. Manifestations of the sudden character are
demonstrated by artificially modifying the vibrational perio

In the following section, we formulate the hard potent
model and analytically express the energy-loss spectra
Sec. III, an overall spectral profile is generally derived fo
homonuclear molecule. In Sec. IV, the CT calculations
carried out and systematically compared with the mod
Concluding remarks are given in Sec. V.

II. FORMULATION OF THE HARD POTENTIAL MODEL

We consider collisions of an atom~or ion! A with a di-
atomic moleculeBC. The Hamiltonian in the center-of-mas
frame reads

H~p,P,r,R!5
p2

2m
1

P2

2M
1U~R!1V~r,R!, ~1!

where the relative coordinates and their conjugate mom
are denoted byr andp betweenA andBC, and byR andP
betweenB andC, their reduced masses beingm andM. Elec-
tronically adiabatic interaction is given by a sum of the
termolecular and intramolecular potentialsV(r,R) andU(R).
The molecule is assumed to be initially neither vibrating n
rotating (Pi50) at an equilibrium distanceReq where
]U/]R50. Thus, the initial conditions are specified by thr
vectors: incident velocityv, impact parameterb satisfying
b•v50, and initial orientationâ of the molecular axis.

If all the trajectories are solved, any scalar observablej in
the final state can be expressed as a function of initial v
ables asj5j* (v,b,â). Hence, a cross section differentiate
over j is given as

sj5E dsd„j2j* ~v,b,â!…, ~2!

with a cross-section element

ds5
1

4p
d2v̂ d2b, ~3!

when molecules are randomly oriented. In this form,
cross section is obtained for, and independent of, a fixedâ.

A. Impulse in the hard potential limit

For a trajectory of large deflection, momentum transfe
dominantly given in a narrow region close to the equipot
tial surfaceSE at an energyE5mv2/2. In this region, we
introduce local curvilinear coordinatess, s1, ands2 for in-
termolecular positionr in a body-fixed frame;s represents a
path length from the surfaceSE along the force field
2]V/]r , while s1 ands2 span the surface~see Fig. 1!. Thus,
expanding ln(V/E) over s arounds50 up to the first-order
term, we obtain

V~r,R!.E expS 2
s

l D , ~4!

with a range parameterl(s1 ,s2 ,R).
02271
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We take the limitl→0 of hard potential. The force de
rived from Eq. ~4! is exerted only whens.0 and s
5O(l), so that the differential ofs/l is estimated as
ld(s/l)5ds2(s/l)dl.ds, wheredl.O(l) though still
ds.O(1). Hence, an instantaneous but finite impulse is o
tained in a form of (dp,dP).c(]s/]r,]s/]R)s50, where a
proportional constantc is determined without actually solv
ing trajectories but by using the energy conservation~see
Ref. @26#!, i.e.,

S dp

dPD 522F mv•~]s/]r!

11~m/M !~]s/]R!2 S ]s/]r

]s/]RD G
s50

, ~5!

with two vectors]s/]r and]s/]R on the surfaceSE . In the
impulse ~5!, the intramolecular force2]U/]R is ignored
because it vanishes as far as the initial distanceR5Req is
retained, and also because the collision is instantaneous~see
Ref. @27#!.

We suppose that three-dimensional intermolecular m
mentumpf5mv1dp is measured in the final state to dete
mine the scaled energy-losse512pf

2/(2mE) and the scat-

tering angle cosu5pf̂•v̂. They are expressed through Eq.~5!
as

e5
4q

~11q!2
cos2a, ~6!

cosu5
q2cos 2a

A11q222q cos 2a
, ~7!

with two nondimensional scalar functions defined on the s
faceSE ,

q~s1 ,s2!5
m

M F ]s

]RG
s50

2

, ~8!

cosa~s1 ,s2!52v̂•
]s

]r U
s50

, ~9!

where a contact point (s1 ,s2) is uniquely determined by ini-
tial conditions of the trajectory. The functiona in Eq. ~9!

FIG. 1. Curvilinear coordinatess, s1, and s2, referring to the
equipotential surfaceSE .
6-2
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representszenith angleof incidence, varying in a range o
0<a<p/2. The functionq (>0) in Eq. ~8! representsin-
elasticity of the surfaceSE . If q50, it behaves as a fixed
hard wall, on which only elastic reflection occurs ase50
and u5p22a. Combining Eqs.~6! and ~7!, we obtain a
relation

q~s1 ,s2!5
e

~A12e2cosu!21sin2u
[q* ~e;cosu!.

~10!

As far as the range ofq(s1 ,s2) is within 0<q<1, this equa-
tion gives one-to-one correspondence between energy loe
and inelasticityq ~see Fig. 2!, hence solved as

FIG. 2. The functionq* (e;cosu) defined in Eq.~10!. The solid
line represents the functions withu5p, while the dashed lines with
u5p/6, p/3, p/2, 2p/3, and 5p/6, where the longer the dash, th
smaller theu.
a

02271
s

e5
2q

~11q!2
@11qsin2u2cosuA12q2sin2u#

[e* ~q;cosu!. ~11!

B. Integrals over inelasticity q on the surface

In the hard potential limit, since the integral elementd2b
is converted to an area elementdS on a convex surface
SE , the cross-section element~3! is reduced to ds
5(1/2)cosa sinadadS. Hence, any cross section~2! is ex-
pressed as

sj5E
0

1

dq
dS

dq
Fj~q!, ~12!

with

Fj~q!5S dS

dqD 21E dsd„j2j* ~v,b,â!…d„q2q~s1 ,s2!…,

wheredS/dq represents a weight factor over inelasticityq,
independent of observablej. Differential cross section is
given by settingj5cosu in Eq. ~12! as

ds

dV
5

1

16pE0

`

dq
dS

dqF11q2~cos2u2sin2u!

A12q2sin2u
12q cosuG

3q„qmax* ~u!2q…, ~13!

where q(x)50 for x,0 and q(x)51 for x.0, while
qmax* (u)51 for p/2<u<p and qmax* (u)51/sinu for 0<u
,p/2. Double-differential cross section is expressed by s
ting j5e ^ cosu in Eq. ~12! as

ds

de dV
5

A12e

16pe Fq~11q!2
dS

dqG
q5q* (e;cosu)

. ~14!

This is proportional to the weight factordS/dq itself at q
5q* (e;cosu) in Eq. ~10!.

The domain of energy-loss in Eq.~14! is given from the
range @qmin ,qmax# of inelasticity q(s1 ,s2) through
e* (q;cosu) in Eq. ~11!. When convoluted with a finite reso
lution De, the energy-loss spectrum~14! is transformed into
K ds

de dV L
De

5E
0

1

de*
ds

de* dV
I De~e* 2e!5E

0

1

dq
dS

dqF ~11q!2~12e* !I De~e* 2e!

16pu~11q!A12e* 2q cosuu
G

e* 5e* (q;cosu)

, ~15!
where I De denotes an instrumental function normalized
*de* I De(e* 2e)51. The expression~15! still satisfies the
form of Eq.~12!. Whenqmax!1, Eq.~15! combined with Eq.
~11! is reduced to
s K ds

de dV L
De

.
1

16pE0

1

dq
dS

dq
I De„2q~12cosu!2e….

~16!
6-3
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A. ICHIMURA AND M. NAKAMURA PHYSICAL REVIEW A 69, 022716 ~2004!
This form indicates that spectra at different angles are sc
with a factor of 12cosu, which is known for the peak posi
tion of a rotational rainbow@3#. Equation~16! exhibits the
scaling when vibrational excitation is also taken into cons
eration.

C. Representation with orientation angleg

The equipotential surfaceSE is conveniently represente
by a solutionr 5r S(x,R) of E5V(r ,x,R) with three scalar
variablesr, x5 r̂•R̂, andR. Sincex represents the orientatio
angle (g5cos21x) at a contact position (s1 ,s2), the integral
~12! over q is transformed into

sj5E
21

1

dx
dS

dx
Fj„q~x!…. ~17!

The integrand includes two functions ofx, dS/dx andq(x).
They are expressed as

dS

dx
52pReq

2 u~x!Au2~x!1~12x2!u82~x!, ~18!

q~x!5
m

M
u2~x!

v2~x!1~12x2!u82~x!

u2~x!1~12x2!u82~x!
, ~19!

with u(x)5r S(x,Req)/Req and v(x)5@]r S(x,R)/]R#R5Req
,

using geometrical relations given in the Appendix. Hence,
the single- and double-differential cross sections~13!–~16!,
convoluted and unconvoluted, are analytically expresse
the form of Eqs.~17!–~19!.

In particular, the unconvoluted energy-loss spectrum~14!
is rewritten as

ds

dedV
5

A12e

32p~12cosuA12e!

3(
k

FdS

dx
@11q~x!#3Udq

dxU
21G

x5xk(q* )

, ~20!

where q* 5q* (e,cosu) is given by Eq.~10!, and xk(q* )
denotes a solution ofq(x)5q* with k (51,2, . . . ) labeling
its branches. Note that summation over the branchesk is
taken in Eq.~20!, whereas automatically incorporated in E
~15! for convoluted spectrum. Among three factors in t
brackets of Eq.~20!, dS/dx and 11q(x) are regular and of
small variation, whereasudq/dxu21 may be singular. Thus
the spectral profile is primarily given by a factorudq/dxu21;
spectral features are induced by extrema of the inelast
function q(x). If q(x) takes a local minimum or maximum
at x5xR , the spectrum has an integrable singularity atq
5qR[q(xR) as

Udq

dxU
x5xk(q)

21

}
1

Aq2qR

. ~21!

This singularity originates from an average over molecu
orientations and gives rise to a peak feature in convolu
02271
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spectrum, hence analogous to therotational rainbow. The
rainbow of Eq.~21! refers, however, to the energy-loss spe
trum with vibrotational states left unresolved, while th
genuine rotational rainbow to the angular momentumj dis-
tribution in vibrationally elastic scatterings. In addition to
rainbow, the spectrum has astep feature at q5q(61)
[q61 as

Udq

dxU
x5xk(q)

21

}q„7q8~61!~q2q61!…, ~22!

due to a contribution from the neighborhood of bounda
points x561. If uq8(61)u!1, however, the contribution
aroundq.q61 makes a peak, hence actually undistinguis
able from a rainbow in convoluted spectra.

Inelasticity ~19! is decomposed into rotational and vibr
tional contributions asq5qrot1qvib , where

qrot~x![
m

M F R̂3
]s

]RG
s50

2

5q~x!
~12x2!u82~x!

~12x2!u82~x!1v2~x!
,

~23!

qvib~x![
m

M F R̂•
]s

]RG
s50

2

5q~x!
v2~x!

~12x2!u82~x!1v2~x!
.

~24!

Correspondingly, energy-loss is given by a sum of rotatio
and vibrational parts just after the collision ase
5e rot1evib , where e rot5(R̂3dP)2/(2ME) and evib

5(R̂•dP)2/(2ME). They are written ase rot5@qrot /q#e and
evib5@qvib /q#e, irrespective of the scattering angleu. Equa-
tions ~23! and ~24! indicate thatqrot and qvib are, respec-
tively, generated by partial derivatives]r S/]x}u8(x) and
]r S/]R5v(x), relating to static and vibration-induced de
formations of the surfaceSE . Thus, while the model applie
to a vibrotator molecule withq5qvib1qrot , it is reduced to a
rigid-rotor molecule by settingq5qrot with dS/dx left unal-
tered, i.e., by settingv(x)50 with u(x) left unaltered in
Eqs. ~17!–~19!; the hard potential model turns out to be
natural extension of the hard shell model~see Ref.@28#!. We
note, however, that the rotational energy-losse rot for a vibro-
tator does not coincide with that for a rigid-rotor because
nonlinearity ofe with q @see Eq.~11!#.

A remark is added that the impulse given by Eq.~5! is
shown to satisfy exactly the angular-momentum conserva
r3dp1R3dP50, along with the energy conservation. Th
is an advantage of the present classical model.

III. SPECTRAL PROFILE FOR HOMONUCLEAR
MOLECULE

As indicated in the preceding section, the energy-lo
spectrum is primarily characterized by inelasticity functi
q(x). In this section, we analyze extremum structures
q(x) to show that the hard potential model generally give
certain spectral profile for a homonuclear diatomic molecu
the spectrum has widely spaced double peaks, one ne
elastic and another deeply inelastic. Although evident fo
6-4
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CLASSICAL SUDDEN MODEL FOR VIBRATIONAL AND . . . PHYSICAL REVIEW A69, 022716 ~2004!
rigid-rotor molecule, the emergence of double peaks is
obvious when vibrational excitation is taken into account

The inelasticity functionq(x) is algebraically given in Eq.
~19! by three quantitiesu(x), u8(x), and v(x). Among
them,u(x) is calculated from a potentialV(r ,x,R) by solv-
ing an equationE5V(r ,x,R) with r 5u(x)Req and R
5Req. Then, u8(x) and v(x) are obtained fromu(x)
through partial derivativesu8(x)52@]V/]x#/@R]V/]r # and
v(x)52@]V/]R#/@]V/]r # at r 5u(x)Req andR5Req. The
derivatives ofq(x) may be also calculated in algebra b
using higher partial derivatives ofV(r ,x,R). For a potential,
the pairwise Born-Mayer form is conveniently assumed,

V~r ,x,R!5VAB~r2!1VAC~r1!, ~25!

where r65Ar 26xrR1R2/4 and VAB(r)5VAC(r)
5V0exp(2r/l0). For this form, the equipotential surfaceSE
is characterized by two nondimensional parametersV0 /E
~normalized potential strength! and l0 /Req ~normalized po-
tential range!, or equivalently by the normalized major an
minor semiaxes of the surface,ai[u(61) and a'[u(0)
~see Ref.@29#!. As an illustration, the surfaces are plotted
Fig. 3 using the parameters asl0 /Req50.25 with V0 /E
5103, 102, and 10. It is seen in the figure that, as t
strength decreases, the surface is shrinked in size and
formed in shape; it becomes slightly concave near the m
axis atV0 /E510.

The hard potential model is expected to be valid when
force range is as short as

exp~2Req/l0![h!1, ~26!

and in addition when the surfaceSE obtained is convex, i.e.

a'
2 .

ln h

32
@ ln h2A~ ln h!2116#. ~27!

Under such conditions, the spectrum behaves as illustrate
Fig. 4. In three panels are, respectively, plotted inelasti
functionq(x), spectral profile factorudq/dxu21, and its con-
volution ^udq/dxu21&Dq with a finite resolutionDq. The

FIG. 3. Equipotential surfaces generated by an intermolec
potential in the form of Eq.~25! with a normalized range o
l0 /Req50.25 at three normalized strengthsV0 /E5103, 102, and
101. The two closed circles indicate the equilibrium nuclear po
tions separating with a distanceReq in the molecule.
02271
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horizontal axes are taken in common to be the variableq;
structures of energy-loss spectra are readily related to th
of q(x). We note here that approximatelye}q as far asq
!1 @see Eq.~11!#.

As seen in the upper panel, the inelasticityq(x) takes a
minimum atx50 and maxima at boundary pointsx561 as

qmin5q~0!5
m

16Ma'
2

, ~28!

qmax5q~61!5
m

4M S 12h

11h D 2

. ~29!

ar

-

FIG. 4. The inelasticity functionsq(x) ~upper panels!, and the
spectral profile factorudq/dxu21 when unconvoluted~middle pan-
els! and convoluted~lower panels!. In the upper panels are show
the netq(x) ~solid lines! together with the separate contribution
qrot(x) ~dashed lines! andqvib(x) ~dot-dash lines!. In the middle and
lower panels are plotted the spectra given by the netq(x) ~solid
lines! and those only byqrot(x) ~dashed lines!. The inelasticity
functions are calculated using potential parameters ofl0 /Req

50.25 andV0 /E5102 with a reduced-mass ratio ofm/M50.8.
The convoluted spectra in the lower panel are obtained wit
Gaussian instrumental function of a width~FWHM! Dq
50.2Aln 2m/(4M).
6-5
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A. ICHIMURA AND M. NAKAMURA PHYSICAL REVIEW A 69, 022716 ~2004!
In this panel are also plotted the rotationalqrot(x) and
vibrational qvib(x) contributions. They exhibit out-of-phas
oscillations with x. The qrot(x) has maxima aroundx.
60.6 and vanishing minima atx50 andx561, while the
qvib(x) has vanishing minima aroundx.60.5 and maxima
at x50 and x561. In contrast to respectiveqrot(x) and
qvib(x), however, the netq(x) increases withuxu in all the
domain of21<x<1. This behavior is generally confirme
because@d2q/dx2#x50.0 and6@dq/dx#x561.0; both re-
lations are shown to be valid when Eqs.~26! and ~27! are
satisfied.

Corresponding to the behaviors ofq(x), the unconvoluted
spectrum takes a profile as shown in the middle panel.
hard shell model (q5qrot) gives two branches; one has
step atq50 @see Eq.~22!# and a rainbow at a maximum o
qrot @see Eq.~21!#, and another has two rainbows at bo
edges~see Ref.@30#!. The step structure in the former branc
is veiled by the rainbow in the latter branch. On the oth
hand, the hard potential model (q5qrot1qvib) has a single
curve accompanied by two distinct rises at both edges of
spectrum. The structure atqmin is a rainbow divergence
@q8(0)50#. The structure atqmax exactly makes a step
(q8(61)Þ0), but it tends to a rainbow ash→0 @see Eq.
~26!# becauseq8(61)5O(h ln h).

After convolution, however, the two models give simil
spectral profiles as seen in the lower panel; the spectra
widely spaced double peaks atq.qmin and qmax, irrespec-
tive of a rainbow@see Eq.~21!# or a step@see Eq.~22!#
before convolution. The effect of vibrational excitation man
fests itself in a shift of peak positions towards largerq, with
peak heights left almost unaltered. The hard potential mo
derives a spectral domain in larger energy-losses than
hard shell model. The minimum positionqmin increases with
decreasing minor axisa' @see Eq.~28!#. The maximum po-
sition qmax is determined almost exclusively by a reduce
mass ratiom/M @see Eqs.~26! and ~29!#.

IV. COMPARISON WITH CLASSICAL TRAJECTORY
CALCULATIONS

As formulated in Sec. II, the hard potential model is giv
in the limit l→0 of a vanishing range of force, though it
not realistic in principle. In this section, we calculate clas
cal trajectories with a realistic potential of finitel, and sys-
tematically compare them with the model. We demonstr
how the model works and how the effects of finitel mani-
fest themselves in the energy-loss spectra.

The coupled Newton equations of motion are deriv
from the Hamiltonian of Eq.~1! for a vibrotator molecule,
and numerically solved with the Verlet’s algorithm@31#. This
procedure is also applied for a rigid-rotor molecule using
method of Lagrange multiplier@32#. Cross sections are ob
tained on the basis of Eqs.~2! and ~3! from a plenty
(;105) of trajectories with initial conditions assumed belo
Eq. ~1!. We investigate single- and double-differential cro
sections. Analysis of the former supports that of the latte

The calculations are carried out for collision systems
H11N2 and of 7Li11N2. For the two systems, we assum
common effective interaction and set a common center
02271
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mass energy asE51 ~atomic units are used in this section!;
a difference only comes from the reduced massm (m/M
50.14 for H11N2 andm/M50.80 for 7Li11N2). Interac-
tion potentials are taken to be the same that Gierzet al. @21#
used for the analysis of measured spectra in7Li11N2 col-
lisions atE50.62. The intermolecular potential is given
the pairwise form of Eq.~25! with parameters ofV051.3
3102, l050.50, andReq52.1. The intramolecular potentia
is given in the Morse form asU(r )5U0$exp@22(R
2Req)/b0#22 exp@2(R2Req)/b0#% with U050.36 andb0
50.70.

A. Single-differential cross section

Results of the vibrotator CT calculation are shown in F
5 for the angular distributionds/dV and compared with the
hard potential model.

As seen in the figure, the model gives almost linear
pendence on cosu. According to Eq.~13!, they are written as
ds/dV.(a2/4)@112^q&cosu#, with an effective radiusa
and a mean inelasticitŷq& over the equipotential surfac
SE . The radius is determined so as to reproduce the t
area ofSE as*dS54pa2, and calculated to bea53.0 in the
present case. Angular dependence comes, through^q&, from
excitations of molecular internal freedoms. The slope is
preciable in Li11N2, whereas negligible in H11N2, be-
cause inelasticityq is proportional to mass ratiom/M @see
Eq. ~8!#.

FIG. 5. Differential cross sectionsds/dV at E51 a.u. for col-
lision systems of H11N2 ~the lower panel! and 7Li11N2 ~the
upper panel!. Plotted are the results of the vibrotator CT calcu
tions ~thin solid lines! and of the hard potential model~thick solid
lines!, together with scatterings by a diffuse potentialVsph(r )
~dashed lines! and by a rigid sphere~dotted lines!.
6-6
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CLASSICAL SUDDEN MODEL FOR VIBRATIONAL AND . . . PHYSICAL REVIEW A69, 022716 ~2004!
On the other hand, the CT calculation exhibits nonline
dependence on cosu, which diverges as cosu→1. In back-
ward angles (cosu,0), however, it shows moderate agre
ment with the model, better in Li11N2 than in H11N2. The
angular distributions are also compared in the figure w
those given by a spherical potentialVsph(r )5E exp@2(r
2a)/l# with a diffuseness ofl50.50, the same value as i
the pairwise intermolecular potential taken above. Th
show good accordance with the result of CT calculation,
cept at backward angles for Li11N2. This observation indi-
cates that the nonlinear dependence primarily stems f
distortion of trajectories due to a diffuse potential, whi
virtually masks internal excitation in H11N2. Thus, the two
effects are discernible; for a given energyE, trajectory dis-
tortion is independent of the reduced massm, while internal
excitation crucially depends onm.

We note that internal excitation itself may be perturbed
trajectory distortion during a collision. To make a guess,
show in Fig. 6 the deflection functionu ~of the impact pa-
rameterb) and the distancer ca of closest approach using th
diffuse potentialVsph(r ) above. Correlating to each other, th
u and r ca are seen to deviate from behaviors of the rig
sphere conspicuously at forward angles. Unless cosu.0.5,
however, the deflection function is reasonably reproduced
the rigid sphere. In addition, the distancer ca is close to the
radiusa in such a degree asur ca2au,l!a. On this basis,
we expect the hard potential model to be valid for scatter
angles larger than about 60°.

FIG. 6. The deflection function~the upper panel! and the dis-
tance r ca of the closest approach~the lower panel! at E51 a.u.
generated by a spherical potentialVsph(r )5E exp@2(r2a)/l# with
a53.0. They are plotted whenl50.5 ~dashed lines! and whenl
50 ~solid lines!. The deflection function is represented as imp
parameterb vs cosu, while the closest approach asd5(r ca2a)/l
vs cosu.
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B. Double-differential cross section

Energy-loss spectrads/(de dV) are calculated at three
scattering angles of cosu520.5, 0, and 0.5, and shown i
Figs. 7 and 8, respectively, for Li11N2 and for H11N2. For
convenience of comparison among different anglesu and
different mass ratiosm/M ~i.e., the two systems!, the energy-
loss is scaled in the figures by a variabley such that

e5
m

M

12cosu

2
y. ~30!

At each angle in each system are compared four meth
i.e., the rigid-rotor CT calculation, and the vibrotator C

t

FIG. 7. The scaled energy-loss spectraf (y) @see Eq.~30!# at
three scattering angles of cosu520.5, 0, and 0.5 for a mass ratio o
m/M50.14 ~corresponding to H11N2). Results of four methods
are plotted: the hard shell model~thick dashed lines!, the hard po-
tential model~thick solid lines!, the rigid-rotor CT calculation~thin
dashed lines!, and the vibrotator CT calculation~thin solid lines!.
6-7
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A. ICHIMURA AND M. NAKAMURA PHYSICAL REVIEW A 69, 022716 ~2004!
calculation, the hard shell model, and the hard poten
model. In the CT calculations, the trajectories are ‘‘boxe
with acceptance widths ofDy50.05 andDcosu50.1. In the
models, the spectra are calculated using Eqs.~15!, ~18!, and
~19!, and convoluted with a Gaussian instrumental funct
of a width @full width of half maximum ~FWHM!# of Dy
50.2Aln 2. The spectra shown are, respectively, normaliz
in the four methods, as* f (y)dy51 where f (y)
}ds/(de dV).

1. Predictions of the hard potential model
and the hard shell model

Throughout Figs. 7 and 8, both the models give spec
profiles with widely spaced double peaks. The spectra sh
are almost identical at different angles and mass ratios w
scaled by the variabley; its domain is almost restricted a
0,y,1. In fact, Eqs.~8!, ~16!, and~30! indicate a scaling

FIG. 8. The same as Fig. 7 except that the mass ratio is take
be m/M50.80 ~corresponding to Li11N2).
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relation withy if q!1 all over the equipotential surfaceSE .
When such is the case, the variabley is determined only by
the surfaceSE as y.u]s/]Ru2 in hard potential model@see

Eq. ~8!#, or asy.uR̂3(]s/]R)u2 in the hard shell model@see
Eq. ~23!#. The difference iny between the two models i
caused by vibrational excitation. The double peaks sho
are thereby shifted in parallel towards larger energy-los
by about 0.2 in variabley, while the peak heights are little
altered. In particular, the nearly elastic peak emerges ay
.0 in the hard shell model, while aty.0.2 in the hard
potential model.

Small variation with angles and systems is seen, howe
in a position of the deeply inelastic peak. The hard poten
model derives the peak for H11N2 at y50.84–0.87, while
for Li11N2 at smallery as 0.63–0.76 slightly increasin
with cosu. Similarly, the hard shell model derives the peak
y50.63–0.65 for H11N2, while at y50.50–0.58 for Li1

1N2. These dependences indicate a departure from thy
scaling with increasingm/M and 12cosu as a nonlinear
effect with inelasticityq @see Eq.~11!#.

2. Comparison of rigid-rotor CT calculation
with the hard shell model

Throughout Figs. 7 and 8, the rigid-rotor CT calculatio
derives a gross profile of double peaks; overall spectra
low the hard shell model fairly well. This observation
associated with the sudden character of rotational excitat
Its criterion is given by a phase changev rott!1 with rota-
tional angular frequencyv rot in collision time t, while the
hard shell model represents the sudden limitv rott→0 be-
causet}l→0. The change is estimated@15# to be v rott
.(m/M )(l0 /Req)(ai2a')50.015 in H11N2, and 0.10 in
Li11N2. Hence, although the latter is less perfect, both s
tems are considered to be sudden.

For the peak positions, however, small but systematic
partures from the model are found. At backward ang
(cosu520.5 and 0!, the deeply inelastic peak is appreciab
shifted towards smallery in Li11N2, in contrast to H1

1N2. This behavior is explainable as due to imperfect su
denness mentioned above; the sudden limit accounts fo
upper bound of the energy-loss. At a forward angle (cou
50.5), the double peaks are considerably shifted in para
towards largery. This behavior is common in the two sys
tems, hence interpreted as coming from trajectory distort
by a diffuse potential as shown in Fig. 6. The deeply inelas

TABLE I. Vibrational suddennessvvibt and corresponding pa
rameterb of the Morse potential employed for the vibrotator C
calculation in Figs. 9 and 10.

vvibt b for H11N2 b for Li11N2

Case~a! 0.12 1.69 4.07
Case~b! 0.30 0.70 (5b0) 1.69
Case~c! 0.73 0.29 0.70 (5b0)
Case~d! 1.78 0.12 0.29

to
6-8
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CLASSICAL SUDDEN MODEL FOR VIBRATIONAL AND . . . PHYSICAL REVIEW A69, 022716 ~2004!
peak could be contributed from those trajectories wh
would be deflected into larger angles by a hard potential.
nearly elastic peak may be contributed from an exten
region of interaction.

FIG. 9. The scaled energy-loss spectraf (y) @see Eq.~30!# at a
scattering angle of cosu521 for a mass ratio ofm/M50.14 ~cor-
responding to H11N2). Results of four methods are plotted in th
same way as in Fig. 7. In four panels~a!–~d!, the vibrational period
is, respectively, modified according to cases~a!–~d! in Table I. The
vibrotator CT calculation depends on them, though the other th
methods give common spectra among the four panels.
02271
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3. Analyses of vibrotator CT calculation with the models

Throughout Figs. 7 and 8, the vibrotator CT calculati
derives an overall profile of double peaks. The spectral
main is shifted towards largery with cosu, which is associ-
ated primarily with trajectory distortion by a diffuse pote
tial. These behaviors are analogous to those found abov
the rigid-rotor CT calculation. However, the double peaks
located at larger energy-losses, reflecting the effect of vib
tional excitation.

At backward angles (cosu520.5 and 0!, the vibrational
effect is found to be considerably larger in H11N2 than in

e

FIG. 10. The same as Fig. 9 except that the mass ratio is ta
to bem/M50.80 ~corresponding to Li11N2).
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A. ICHIMURA AND M. NAKAMURA PHYSICAL REVIEW A 69, 022716 ~2004!
Li11N2. The deeply inelastic peak is nearly reproduced
the hard potential model in H11N2, while rather by the hard
shell model in Li11N2. These observations are associa
with the sudden character of vibrational excitation. Its cri
rion is given by a phase changevvibt!1 with vibrational
angular frequencyvvib in collision time t. The change is
estimated to bevvibt.(2l0 /b0)AU0 /EAm/M50.30 for
H11N2, and 0.73 for Li11N2. Hence, larger vibrationa
excitation found in the former system is explainable as be
suddeness due to smaller massm.

To further elucidate the sudden character, we make
calculations by artificially modifying the Morse potential a
b0→b. With this procedure, we can adjust vibrational su
denness, while conserving rotational suddenness along
the equipotential surfaceSE . Four different cases~a!–~d! are
considered according to Table I. The realistic valueb0 is
included in ~b! for H11N2, and in ~c! for Li11N2. The
condition ofvvibt!1 is duly satisfied in~a!, but no more in
~d!. Thus, comparison among the four cases resolves the
gree of vibrational suddenness when rotational excitatio
almost sudden.

The results at cosu51 are shown in Figs. 9 and 10, re
spectively, for H11N2 and Li11N2. In H11N2, the peak
shift between vibrotator and rigid-rotor CT calculations
largest in case~a!, decreasing withvvibt, and negligible in
case~d!. In case~a!, the overall spectrum is well reproduce
by the hard potential model, which represents the sud
limit for both rotational and vibrational excitations,v rott
→0 andvvibt→0, becauset}l→0. In case~d!, the vibro-
tator spectrum is reduced to the rigid-rotor one, hence w
reproduced by the hard shell model; vibrational motion
virtually adiabatic and hardly excited. The parallel behavi
are also found in Li11N2, though the effect of imperfec
rotational suddenness is appreciable.

V. CONCLUDING REMARKS

In the present paper, we have developed the hard pote
model for collisions of an atom~or an ion! with a diatomic
molecule by taking the limit of a vanishing range of forc
The model has an ideally sudden character for both vib
tional and rotational excitations, in the same way as the h
shell model for purely rotational excitation@9#. The energy-
loss spectrum is described by the inelasticity functionq(x)
defined on the equipotential surface, which turns out to be
d
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extension of the hard shell model developed by Becket al.
@7,11#. For a homonuclear molecule, an overall spectral p
file with double peaks is derived, almost independent of
scattering angle and the reduced mass. The effect of vi
tional excitation manifests itself in a shift of the peak po
tions ~by 20–30 %!.

The CT calculations using a finite-range model poten
have been carried out for collisions of H11N2 and of Li1

1N2 at E51 a.u. The calculations have confirmed the effe
of vibrational excitation the way the model predicts. It is al
demonstrated that the spectra are virtually reduced to
hard potential model when the vibrational period is art
cially taken much longer than a collision time, while reduc
to the hard shell model when much shorter.

Thus, the hard potential model serves as a standard
revealing systematic effects of vibrational excitation in t
energy-loss spectra. Analyses of experimental spectra
this model will be promising.
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APPENDIX: REPRESENTATION OF VECTORS
­SÕ­R AND ­SÕ­R

The solutionr 5r S(x,R) of E5V(r ,x,R) is also a solu-
tion of 05s(r ,x,R), thus satisfying ]r S/]x52@(]s/
]x)/(]s/]r )#s50 and ]r S/]R52@(]s/]R)/(]s/]r )#s50.
Hence, by noting that]s/]r 5 r̂•n̂ with normal vector n̂
5]s/]r, we can write

]s

]r U
s50

5 r̂•n̂S r̂1
A12x2

r S~x,R!

]r S

]x
t̂D

R5Req

,

]s

]RU
s50

5 r̂•n̂S 2
]r S

]R
R̂1

A12x2

R

]r S

]x
T̂D

R5Req

,

with two unit vectors t̂[(xr̂2R̂)/A12x2 and T̂[(xR̂
2 r̂)/A12x2, where t̂• r̂50 andT̂•R̂50.
@1# A.S. Dickinson and D. Richards, Adv. At. Mol. Phys.18, 165
~1982!.

@2# M. Faubel, Adv. At. Mol. Phys.19, 345 ~1983!.
@3# R. Schinke and J. M. Bowman, inMolecular Collision Dynam-

ics, edited by J. M. Bowman~Springer, Berlin, 1983!, Chap. 3.
@4# H.J. Korsch and A. Ernesti, J. Phys. B25, 3565~1992!.
@5# J. P. Toennies, inSemiclassical Descriptions of Atomic an

Nuclear Collisions, edited by J. Bang and J. de Boer~Elsevier
Science, Amsterdam, 1985!, p. 29.

@6# E. A. Mason and E. W. McDaniel,Transport Properties of Ions
in Gases~Wiley, New York, 1988!, Chap. 7.
@7# D. Beck, U. Ross, and W. Schepper, Z. Phys. A293, 107

~1979!; 299, 97 ~1981!.
@8# U. Ross, W. Schepper, and D. Beck, Chem. Phys.61, 95

~1981!; U. Rosset al., Z. Phys. A320, 25 ~1985!; D. Beck, in
Physics of Electronic and Atomic Collisions, edited by S. Datz
~North-Holland, Amsterdam, 1982!, p. 331.

@9# U. Buck, Comments At. Mol. Phys.17, 143 ~1986!; U. Buck
et al., J. Chem. Phys.82, 202 ~1985!.

@10# D. Beck, Chem. Phys.126, 19 ~1988!.
6-10



l-

ys

C

ra

ys
,

xe

l

he
he

a
the

ch
tial

nt

ur-

CLASSICAL SUDDEN MODEL FOR VIBRATIONAL AND . . . PHYSICAL REVIEW A69, 022716 ~2004!
@11# M. Velegrakis and D. Beck, J. Chem. Phys.94, 7981~1991!.
@12# S. Bosanac, Phys. Rev. A22, 2617~1980!; 26, 282~1982!; 26,

816 ~1982!; S. Bosanac and U. Buck, Chem. Phys. Lett.81,
315 ~1981!.

@13# M.H. Alexander and P.J. Dagdigian, J. Chem. Phys.73, 1233
~1980!.

@14# J.A. Serri, R.M. Bilotta, and D.E. Pritchard, J. Chem. Phys.77,
2940 ~1982!.

@15# M. Nakamura, J. Phys. Soc. Jpn.56, 3145~1987!.
@16# A.J. McCaffery, Z.T. Alwahabi, M.A. Osborne, and C.J. Wil

iams, J. Chem. Phys.98, 4586~1993!; A.J. McCaffery and R.J.
Marsh, J. Phys. B34, R131~2001!.

@17# A.J. Marks, J. Chem. Soc., Faraday Trans.90, 2857~1994!.
@18# P.M. Agrawal, S. Tilwanker, and N.K. Dabkara, J. Chem. Ph

108, 4854~1998!.
@19# H. Kohguchi and T. Suzuki, Annu. Rep. Prog. Chem., Sect.

Phys. Chem.98, 421 ~2002!.
@20# R. Boettner, U. Ross, and J.P. Toennies, J. Chem. Phys.65, 733

~1976!.
@21# U. Gierz, J.P. Toennies, and M. Wilde, Chem. Phys.2, 115

~1984!.
@22# S. Kita, H. Tanuma, I. Kusunoki, Y. Sato, and N. Shimaku

Phys. Rev. A42, 367 ~1990!.
@23# T. Hasegawa, S. Kita, M. Izawa, and H. Inouye, J. Phys. B18,

3775~1985!; M. Nakamura, S. Kita, and T. Hasegawa, J. Ph
Soc. Jpn.56, 3161 ~1987!; H. Tanuma, S. Kita, I. Kusunoki
and N. Shimakura, Phys. Rev. A38, 5053~1988!.

@24# E. Vilallonga and D.A. Micha, J. Chem. Phys.84, 3162
~1986!; 86, 750 ~1987!; 86, 760 ~1987!.

@25# R.D. Sharma, P.M. Bakshi, and J.M. Sindoni, Phys. Rev. A43,
189 ~1991!; H. Dothe and R.D. Sharma, J. Chem. Phys.98,
4567 ~1993!.

@26# This result may be interpreted as elastic reflection from a fi
02271
.

:

,

.

d

hard wall in a six-dimensionalspace. If we take canonica

variables aspW [(p¢,Am/MP¢ ) and rW[(r¢,AM /mR¢ ), the present

Hamiltonian reads asH(pW ,rW)5pW 2/(2m)1V(rW), whereV(rW)

51` for s(rW),0 and 50 for s(rW).0 in the limit of l

→0. Hence, the six-dimensional impulse is given by twice t
projection of incident momentum onto the normal vector to t

hard wall surface@s(rW)50#. This leads to Eq.~6!.
@27# In general, the impulse~6! can be exerted more than once in

collision. For such not being the case, we assume that
shape of the equipotential surfaceSE is convex. Even then,
multiple impulses are still possible because the potentialU(R)
affects intramolecular motion after the first impulse, whi
may happen to lead to a configuration where the hard poten
~5! works again. However, this is improbable if the incide
atomA is much lighter than the constituent atomsB andC of
the molecule.

@28# In fact, Eq.~23! is shown to be equivalent to a function ‘‘B’’
introduced in Ref.@11#, with which Beck @7,11# derived the
hard shell model by considering the force normal to the s
face.

@29# They are expressed asai5(l0 /Req)ln@(2V0 /E)cosh(Req/
l0/2)# anda'5A@(l0 /Req)ln(2V0 /E)#221/4.

@30# In usual terminology, ‘‘rotational rainbow’’ only refers to a
divergence at the maximum ofq, but not atq50. The latter
divergence is absorbed in the Jacobiand j /de}1/Ae, between
the energy-losse and the angular momentumj in the hard shell
model, so that thej distribution ds/(d j dV) is finite at j
50.

@31# L. Verlet, Phys. Rev.159, 98 ~1967!.
@32# R.A. La Budde and R.B. Bernstein, J. Chem. Phys.55, 5499

~1971!; H. Goldstein,Classical Mechanics~Addison-Wesley,
Reading, MA, 1950!, Chap. 2.
6-11


