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Classical sudden model for vibrational and rotational excitations in ion-molecule collisions
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We develop a classical model of an ideally sudden character for vibrational and rotational excitations in
collisions of an atorfor an ion with a diatomic molecule at energies as high as 1G-eM) The energy-loss
spectra with vibrotational levels left unresolved are analytically expressed with a repulsive intermolecular
potential in ahard potentiallimit (i.e., a vanishing range of forgdt turns out to be an extension of thard
shellmodel for a rigid-rotor molecule developed by Bestkal. two decades ago. For a homonuclear molecule,
the hard potential model generally derives spectra with double peaks at both edges, one nearly elastic and
another deeply inelastic. They are analogous to rotational rainbows though their positions are affected by
vibrational excitation. Classical trajectory calculations with a finite-range model potential are carried out for
collision systems of Fi+N, and Li* +N,, and systematically compared with the model. It is found that the
effect of vibrational excitation manifests itself the way the model predicts. It is also demonstrated that the
spectra are virtually reduced to the hard potential model when the vibrational period is artificially taken much
longer than a collision time, while reduced to the hard shell model when much shorter.
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I. INTRODUCTION energy-loss spectra persistently exhibit two widely spaced
maxima, i.e., one broad nearly elastic peak and one broad
Certain aspects of vibrational and rotational excitations indeeply inelastic peak. Although emergence of the double-
collisions of an atonfor an ion with a diatomic molecule peak structures is consistent with rotational rainbow, no sys-
are dominated by a short-range repulsive intermoleculatematic interpretation has been given all through the obser-
force[1-5]. Since the force rangk is much shorter than a vations. In particular, effects of vibrational excitation seem
molecular sizg6], the molecule looks as a hard-wall ellip- still unclear, though some analyses have been carried out
soid, on which an instantaneous torque would excite higlwith classical trajectory calculatiorif0,21 and with more
rotational stateg>1 nonperturbatively. On this basis, a clas- sophisticated semiclassical calculatig@d,25.
sical hard shell (or rigid shell) model was developed by In such energies, the collision could be sudden even with
Beck et al. [7] two decades ago. Because of its simplicity, respect to vibrational motion, substantially exciting high vi-
the model and its variations have been widely applied tdorationaln>1, as well as high rotationgk> 1, states. The
collisions at hyperthermal energies such as t0l eV  higher the energy increases, the more clearly the sudden
(equivalent velocities of ~10"2 a.u) [8—19]. They reveal character should appear, because the repulsive force plays
universal emergence of a gross peak structure catiet  more dominantly, and also because even a small fraction
tional rainbowin thej distributions at large scattering angles (say, ~10%) of available energy«v?) well exceeds a
[3-5]. The hard shell model is valid when a collision is quantum perturbation energy- ¢ *<v) according to Mas-
suddenwith respect to rotational motiofiL0,15, i.e., when sey’s criterion. Thus arise questions whether and how the
the collision timer~\/v with velocity v is much shorter sudden character with respect ltoth vibrational and rota-
than a rotational period while longer than a vibrational pe-tional motions actually manifests itself in the energy-loss
riod. In fact, vibrationally elastic scatterings are dominantlyspectra.
observed, and occasionally low discrete vibrational transi- In the present paper, we develop a model of an ideally
tions are also noticeabl@0]. The rotational rainbow struc- sudden character to elucidate the problem above. The model,
ture appears in the distribution for respective vibrational called hard potential modelis formulated in classical me-
levelsn. chanics by taking a limih—0 of vanishing range of force,
Some experiments have been done, however, at muolthich permits us to derive an analytic expression for energy-
higher energies such as 10-218V (equivalent velocities of loss spectra. This treatment turns out to be a natural exten-
v~10"2 a.u), where the energy-loss spectra have been measion of thehard shell mode[7,11], incorporating the free-
sured in electronically elastic scatterings, leaving individualdoms of vibrational and rotational motions in a unified
vibrotational levels §,j) unresolved21-23. Among them, manner. We apply the model to a homonuclear molecule, and
collisions of Li*+N, have been investigated over a wide predict spectra with double peaks at both edges, whose po-
range of the center-of-mass energie€as4—17 eV[20,21]  sitions are affected by vibrational excitation. We also carry
and E=60-300 eV [22]. Throughout these energies, the out classical trajectoryCT) calculations with a finite-range
model potential for H+N, and Li*+N, collisions. The
spectra obtained are systematically compared with the
*Email address: ichimura@pub.isas.ac.jp model, and examined for emergence of double peaks along
TEmail address: mooming@phys.ge.cst.nihon-u.ac.jp with their dependences on the scattering angle and the re-
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duced mass. Manifestations of the sudden character are also
demonstrated by artificially modifying the vibrational period.

In the following section, we formulate the hard potential
model and analytically express the energy-loss spectra. In
Sec. Ill, an overall spectral profile is generally derived for a
homonuclear molecule. In Sec. 1V, the CT calculations are
carried out and systematically compared with the model.
Concluding remarks are given in Sec. V.

II. FORMULATION OF THE HARD POTENTIAL MODEL

We consider collisions of an atoffor ion) A with a di- SE
atomic moleculdB C. The Hamiltonian in the center-of-mass
frame reads FIG. 1. Curvilinear coordinates, s;, ands,, referring to the

equipotential surfacég .
2 P2

H(p,P,r,R)=Zp—+—+U(R)+V(r,R), (1)

m 2M We take the limit\ —0 of hard potential. The force de-

rived from Eq. (4) is exerted only whens>0 and s
where the relative coordinates and their conjugate momenta O(\), so that the differential ofs/\ is estimated as
are denoted by andp betweenA andBC, and byRandP  \d(s/\)=ds—(s/\)d\=ds, whered\=O(\) though still
betweerB andC, their reduced masses beingandM. Elec-  ds=0(1). Hence, an instantaneous but finite impulse is ob-
tronically adiabatic interaction is given by a sum of the in-tained in a form of p, 5P)=c(ds/dr,ds/IR)s_,, Where a
termolecular and intramolecular potentigl§,R) andU(R).  proportional constant is determined without actually solv-
The molecule is assumed to be Inltla”y neither Vibrating nOI’ing trajectories but by using the energy conservatisee
rotating (P,=0) at an equilibrium distanceR., where Ref.[26]), i.e.,
dU/IR=0. Thus, the initial conditions are specified by three
vectors: incident velocity, impact parameteb satisfying ( 5p)

. (5

b-v=0, and initial orientatiora of the molecular axis. SP
If all the trajectories are solved, any scalar observgbte

the final state can be expressed as a function of initial varl o wwo vectorsds/dr andds/aR on the surfacese . In the

ables asg=¢*(v,b,a). Hence, a cross section differentiated impyise (5), the intramolecular force- 9U/dR is ignored

mu - (9s/dr) ( aslar
1+(m/M)(dslaR)? \ IslIR

s=

over ¢ is given as because it vanishes as far as the initial distaReeR.q is
retained, and also because the collision is instantan@aes
o= J dod(é—&*(v,b,a), (2)  Ref.[27)).
We suppose that three-dimensional intermolecular mo-

mentump;=mo + 8p is measured in the final state to deter-

with a cross-section element : 2
mine the scaled energy-logs=1—pf/(2mE) and the scat-

1 .. i =0 D
do=—d% d%b, 3) tering angle co$=p;-v. They are expressed through E§)
41 as
when molecules are randomly oriented. In this form, the 4q
cross section is obtained for, and independent of, a faed €= (1+q)2C°32“’ ®)
A. Impulse in the hard potential limit q— oS 2x
For a trajectory of large deflection, momentum transfer is cosf= @)

; Ol ) . +q%— '
dominantly given in a narrow region close to the equipoten- V1+q°-2qcos

R o 2 f : . . . . .
tial surfaceSg at an energye=muv /2. In this region, we \ith two nondimensional scalar functions defined on the sur-
introduce local curvilinear coordinatess s;, ands, for in- face Sg

termolecular positiom in a body-fixed frames represents a
2

path length from the surfac&z along the force field m/ ds
— oVl ar, while s; ands, span the surfacesee Fig. 1 Thus, a(s1.82)= 1 |2m| (8
expanding InY/E) over s arounds=0 up to the first-order s=0
term, we obtain P
cosa(s;,s))=—v-—| 9
s ar|
V(rR)=E exp( - X) , (4) s=0
where a contact pointsg,s,) is uniquely determined by ini-

with a range parametex(s;,s,,R). tial conditions of the trajectory. The functiom in Eq. (9)
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FIG. 2. The functiomg* (€;cos6) defined in Eq(10). The solid
line represents the functions with= 7r, while the dashed lines with
0=ml6, w3, w2, 2w/3, and 57/6, where the longer the dash, the
smaller thed.

representzenith angleof incidence, varying in a range of
O<a=<m/2. The functiong (=0) in Eq. (8) representsn-
elasticity of the surfaceSg. If q=0, it behaves as a fixed
hard wall, on which only elastic reflection occurs as-0
and 6= 7—2a. Combining Egs.(6) and (7), we obtain a
relation

€

(V1—€e—cos6)?+sirnt

=qg*(€;cosb).

(10

q(s1,S) =

As far as the range af(s;,s,) is within 0O<q=<1, this equa-
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2
€= a [1+qgsin?6—cosfy1—g’sirt6]
(1+a)?
=¢€*(q;cosb). (11

B. Integrals over inelasticity g on the surface

In the hard potential limit, since the integral elemeRb
is converted to an area elemeti§ on a convex surface
Sg, the cross-section elemenf3) is reduced todo
=(1/2)cosa sinadadS Hence, any cross sectid) is ex-
pressed as

1 dS
o= fodqd_ng(Q), (12

with
ds| ! .
Fg(Q):<d_q) fd05(§—f*(v,b,a))5(q—Q(Sl,Sz)),

wheredSdq represents a weight factor over inelasticity
independent of observablé Differential cross section is
given by settingé=cosé in Eq. (12) as

do 1 foc ds 1+q2(co§9—sin20)+2 ;
- = JE— Ccos
d0 " 167)o “Yda| T I—qZeire a

X ﬁ(qaax( ‘9) - Q),

where 3(x)=0 for x<0 and 9(x)=1 for x>0, while
Omad0)=1 for wl2<6<m and q},(6)=1/sind for 0<¥0

(13

< /2. Double-differential cross section is expressed by set-

ting é=€e® coshin Eq. (12) as

do 3 Vl—¢€ 1 2dS 14
ded0 ~ 16me | 9T D7Gg (14
g=q* (&;cosb)

This is proportional to the weight factaS/dq itself at q
=q* (€;cos6) in Eq. (10).

The domain of energy-loss in E¢l4) is given from the
range [Qmin.Omax Of Inelasticity q(s;,s,) through

tion gives one-to-one correspondence between energylosse* (q;cosé) in Eq. (11). When convoluted with a finite reso-

and inelasticityq (see Fig. 2, hence solved as

do
de*dQ

do B
dedQ AE_

1
J de*
0

wherel,, denotes an instrumental function normalized as

fde*l,(e* —€)=1. The expressiolil5) still satisfies the
form of Eq.(12). Wheng,»<1, Eq.(15) combined with Eq.
(11) is reduced to

1
IAE(G*_G):f dq
0

lution A€, the energy-loss spectru(t4) is transformed into

dS| (1+q)%(1-€*)l (e —e) (15)
dq 16W|(1+q)m_q COSG| e*:g*(Q:cosﬁ)’
|
do 1 1d dSI - ,
dedQ/, 167 Jo 94 2(29(1—cos) —e).
(16)
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This form indicates that spectra at different angles are scalespectrum, hence analogous to tte#ational rainbow The
with a factor of 1-cos#, which is known for the peak posi- rainbow of Eq.(21) refers, however, to the energy-loss spec-
tion of a rotational rainbow3]. Equation(16) exhibits the trum with vibrotational states left unresolved, while the
scaling when vibrational excitation is also taken into consid-genuine rotational rainbow to the angular momenfudis-
eration. tribution in vibrationally elastic scatterings. In addition to a
rainbow, the spectrum has step feature atq=q(=*=1)

C. Representation with orientation angley =(+y as

The equipotential surfac§g is conveniently represented dg !
by a solutionr =rg(x,R) of E=V(r,x,R) with three scalar o
variablesr, x=r-R, andR. Sincex represents the orientation
angle (y=cos x) at a contact positions;,s,), the integral
(12) overq is transformed into

«HFq' (£1)(q—q=1)), (22

x=x(q)

due to a contribution from the neighborhood of boundary
points x=*+1. If |q'(+1)|<1, however, the contribution

1 ds aroundg=0-4, makes a peak, hence actually undistinguish-
o’§=f dxd— F«(q(x)). (17) able from a rainbow in convoluted spectra.

-1 X Inelasticity (19) is decomposed into rotational and vibra-

The integrand includes two functions xfdS/dx andq(x). tional contributions as| = dro* dvip, Where

They are expressed as

Bl m B 9s? 400 (1—x%)u’"?(x)

ot X) = 1 -5 =q(X ; ,

j_fthéqum W20+ (1—xDu'd(x), (18 ML Rl 7 (1=xPu 2(x)+v2(x)(23)
_m o, w0+ (1=xP)uA(x) | EE[A_ﬁ_Z _ v2(X)

=MD a0 WM R q(X)(1—x2>u'2<><)+v2<x>('z4)

with u(X) =rg(X,Reg)/Req and v (x) =[drg(X,R)/IR]r= Req ) o )
using geometrical relations given in the Appendix. Hence, alporresponqmgly, energy-lloss is given by a sum .Of rotational
and vibrational parts just after the collision as

the single- and double-differential cross secti¢h3)—(16), . )
convoluted and unconvoluted, are analytically expressed iff €rott €vio,  Where €= (RX6P)*/(ZME) and ey

the form of Eqgs.(17)—(19). =(R- 6P)%/(2ME). They are written ag,,=[q,,:/q]€ and
In particular, the unconvoluted energy-loss spectfad) €vib=[0vib/q]e€, irrespective of the scattering angle Equa-
is rewritten as tions (23) and (24) indicate thatq,,; and q,;, are, respec-
tively, generated by partial derivative® g/dxecu’(x) and
do _ Vi—e arsldIR=wv(x), relating to static and vibration-induced de-
dedQ 32m(1—cosfy1—e) formations of the surfac&g . Thus, while the model applies

to a vibrotator molecule witly= gy, + o1, It is reduced to a
rigid-rotor molecule by setting=q,,; with dS'dx left unal-
tered, i.e., by setting(x)=0 with u(x) left unaltered in
Egs. (17)—(19); the hard potential model turns out to be a
where q* = q* (e,cos6) is given by Eq.(10), and x(q*) natural extension of the harq shell modste Ref[28])_. We
denotes a solution af(x)=g* with k (=1,2, . . . )labeling note, however, that the rotational energy-leggfor a vibro-

its branches. Note that summation over the brandhés tator does not coincide with that for a rigid-rotor because of
taken in Eq.(20), whereas automatically incorporated in Eq. Nonlinearity ofe with q [see Eq(11)].

(15) for convoluted spectrum. Among three factors in the A remark is added that the impulse given by Ef) is
brackets of Eq(20), dS/dx and 1+q(x) are regular and of shown to satisfy exactly the angular-momentum conservation

small variation, whereaidg/dx|~* may be singular. Thus, rx op+RX 6P=0, along with the energy conservation. This
the spectral profile is primarily given by a factatg/dx| ~2; is an advantage of the present classical model.
spectral features are induced by extrema of the inelasticity

-1
., (20

X=xy(*)

dq
dx

ds ,
L1 +a00]

3

function q(x). If g(x) takes a local minimum or maximum ll. SPECTRAL PROFILE FOR HOMONUCLEAR

at x=xg, the spectrum has an integrable singularitygat MOLECULE

=0r=0(xr) as As indicated in the preceding section, the energy-loss
dg 1 1 spectrum is primarily characterized by inelasticity function

o« ) (21) a(x). In this section, we analyze extremum structures in
X x=x () VAR g(x) to show that the hard potential model generally gives a
certain spectral profile for a homonuclear diatomic molecule;
This singularity originates from an average over moleculathe spectrum has widely spaced double peaks, one nearly
orientations and gives rise to a peak feature in convolute@lastic and another deeply inelastic. Although evident for a

022716-4



CLASSICAL SUDDEN MODEL FOR VIBRATIONAL AND.. ..

FIG. 3. Equipotential surfaces generated by an intermolecular

potential in the form of Eq.(25 with a normalized range of
Mo/Req=0.25 at three normalized strengthig/E=10°, 1¢?, and

10'. The two closed circles indicate the equilibrium nuclear posi-

tions separating with a distanég in the molecule.

rigid-rotor molecule, the emergence of double peaks is not

obvious when vibrational excitation is taken into account.
The inelasticity functiorg(x) is algebraically given in Eq.
(19) by three quantitiesu(x), u’(x), and v(x). Among
them, u(x) is calculated from a potentidl(r,x,R) by solv-
ing an equationE=V(r,x,R) with r=u(x)Req and R
=Req. Then, u’(x) and v(x) are obtained fromu(x)
through partial derivatives’ (x) = —[ dV/dx]/[RaV/adr ] and
v(X)=—[dVIdR]/[dVIdr] atr =u(X)ReqandR=Rqq. The

derivatives ofq(x) may be also calculated in algebra by

using higher partial derivatives &f(r,x,R). For a potential,
the pairwise Born-Mayer form is conveniently assumed,

V(r,x,R)=Vag(p-)+Vaclps),

where p.=r?=xrR+R%4 and Vag(p)=Vac(p)
=Vexp(—p/h\g). For this form, the equipotential surfacg
is characterized by two nondimensional parameiégsE
(normalized potential strengtiand \,/R¢q (normalized po-

(29

tential rang@ or equivalently by the normalized major and

minor semiaxes of the surfacey=u(*=1) anda, =u(0)

(see Ref[29]). As an illustration, the surfaces are plotted in

Fig. 3 using the parameters ag/Rqq=0.25 with Vo/E

=10° 10, and 10. It is seen in the figure that, as the
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FIG. 4. The inelasticity functiong(x) (upper panels and the
spectral profile factotdg/dx| ! when unconvolutedmiddle pan-
els) and convolutedlower panels In the upper panels are shown
the netq(x) (solid lineg together with the separate contributions
Jrot(X) (dashed linesandq,;,(x) (dot-dash lines In the middle and
lower panels are plotted the spectra given by theq{e) (solid
lines and those only byg,,(x) (dashed lines The inelasticity
functions are calculated using potential parameters\@fRq,
=0.25 andV,/E=10? with a reduced-mass ratio oh/M=0.8.

strength decreas?s’ the surfaqe is shrinked in size a”O_' d?ﬁe convoluted spectra in the lower panel are obtained with a
formed in shape; it becomes slightly concave near the minogayssian instrumental function of a widtfFWHM) Aq

axis atV,/E=10.

=0.2yIn 2m/(4Mm).

The hard potential model is expected to be valid when the

force range is as short as
exp( — Reg/ N o) = 7<1, (26)

and in addition when the surfacg obtained is convex, i.e.,

af>|r:;—27][ln 7—(In 7)?+16]. (27

Under such conditions, the spectrum behaves as illustrated in
Fig. 4. In three panels are, respectively, plotted inelasticity

functionq(x), spectral profile factojdg/dx| %, and its con-
volution (|dg/dx| 1), with a finite resolutionAg. The

horizontal axes are taken in common to be the variaple
structures of energy-loss spectra are readily related to those
of q(x). We note here that approximatedycq as far asq
<1 [see Eq(1D)].

As seen in the upper panel, the inelastiax) takes a
minimum atx=0 and maxima at boundary pointss +1 as

Amin="0 0)= , 28
" ( ) 16M a2 ( )

— x = i 9
Omax CI( 1) AM\ 1+ 7 (2 )
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In this panel are also plotted the rotatiorgl(x) and 6
vibrational qyj,(x) contributions. They exhibit out-of-phase
oscillations with x. The q,(X) has maxima arounc=
+0.6 and vanishing minima at=0 andx=*1, while the
Ovib(X) has vanishing minima around=+0.5 and maxima
at x=0 andx==*1. In contrast to respectivg,,(x) and
Qvib(X), however, the net|(x) increases withx| in all the
domain of —1=<x=<1. This behavior is generally confirmed
becausé d2q/dx?],_,>0 and +[dg/dX]y—-,>0; both re-
lations are shown to be valid when Eqg6) and (27) are
satisfied.

Corresponding to the behaviors@ffx), the unconvoluted o 6
spectrum takes a profile as shown in the middle panel. The S
hard shell model ¢=q,,) gives two branches; one has a B
step atq=0 [see Eq.(22)] and a rainbow at a maximum of R o)
Orot [S€€ EQ.(21)], and another has two rainbows at both 3
edgegsee Ref[30]). The step structure in the former branch
is veiled by the rainbow in the latter branch. On the other =
hand, the hard potential moded|€ q,,:+ Qvi,) has a single
curve accompanied by two distinct rises at both edges of the
spectrum. The structure a,,, is a rainbow divergence
[g'(0)=0]. The structure aig,a exactly makes a step
(9’ (£1)+#0), but it tends to a rainbow ag—0 [see Eq. e
(26)] becausa’ (= 1)=0(71n 7). COs

After convolution, however, the two models give similar FIG. 5. Differential cross sectiordo/d() atE=1 a.u. for col-
spectral profiles as seen in the lower panel; the_ spectra haygio, systems of H+N, (the lower pandland "Li*+N, (the
widely spaced double peaks @t Qmiy and Qmax, IFESPEC-  ypper pangl Plotted are the results of the vibrotator CT calcula-

tive of a rainbow[see Eq.(21)] or a step[see Ed.(22]  tions (thin solid line$ and of the hard potential modéhick solid
before convolution. The effect of vibrational excitation mani- jines), together with scatterings by a diffuse potential,(r)

fests itself in a shift of peak positions towards largewith (dashed linesand by a rigid spherédotted lines.

peak heights left almost unaltered. The hard potential model

derives a spectral domain in larger energy-losses than th@ass energy a&=1 (atomic units are used in this sectjon
hard shell model. The minimum positi@p,, increases with g difference only comes from the reduced masgm/M

decreasing minor axia, [see Eq.(28)]. The maximum po- =0.14 for H" + N, andm/M =0.80 for 'Li * +N,). Interac-

sition gmax is determined almost exclusively by a reduced-tion potentials are taken to be the same that Gétral. [21]

mass ration/M [see Eqs(26) and (29)]. used for the analysis of measured spectrdlin® + N, col-
lisions atE=0.62. The intermolecular potential is given in

IV. COMPARISON WITH CLASSICAL TRAJECTORY the pairwise form of Eq(25) with parameters oW,=1.3
CALCULATIONS X 107, Ao=0.50, andR.4=2.1. The intramolecular potential

) _ . is given in the Morse form asU(r)=Uy{exd—-2(R
As formulated in Sec. I, the hard potential model is glven_Reo)/ﬁO]_ 2 exi—(R—Re9/Bol} With U,=0.36 and B,
in the limit \— 0 of a vanishing range of force, though itis —q 79

not realistic in principle. In this section, we calculate classi-
cal trajectories with a realistic potential of finike and sys-

tematically compare them with the model. We demonstrate A. Single-differential cross section

how the model works and how the effects of finitemani- Results of the vibrotator CT calculation are shown in Fig.

fest themselves in the energy-loss spectra. 5 for the angular distributiodo/d{} and compared with the
The coupled Newton equations of motion are derivedhard potential model.

from the Hamiltonian of Eq(1) for a vibrotator molecule, As seen in the figure, the model gives almost linear de-

and numerically solved with the Verlet's algoritH®1]. This  pendence on ca According to Eq(13), they are written as
procedure is also applied for a rigid-rotor molecule using theda/dQ = (a?/4)[ 1+ 2(qg)cos#], with an effective radiusa
method of Lagrange multipligi32]. Cross sections are ob- and a mean inelasticityq) over the equipotential surface
tained on the basis of Eqg2) and (3) from a plenty Sg. The radius is determined so as to reproduce the total
(~10°) of trajectories with initial conditions assumed below area ofSg asfdS=4ma?, and calculated to ba= 3.0 in the
Eqg. (1). We investigate single- and double-differential crosspresent case. Angular dependence comes, throgighfrom
sections. Analysis of the former supports that of the latter. excitations of molecular internal freedoms. The slope is ap-
The calculations are carried out for collision systems ofpreciable in Li"+N,, whereas negligible in H+N,, be-
H™+N, and of 'Li "+ N,. For the two systems, we assume cause inelasticity is proportional to mass ratio/M [see
common effective interaction and set a common center-ofEq. (8)].
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b |, s c0s0=-0.5

12

COoso

12

FIG. 6. The deflection functiothe upper pangland the dis-
tancer., of the closest approactihe lower panglat E=1 a.u.
generated by a spherical potentié),(r)=E exd —(r—a)/A] with 6
a=3.0. They are plotted when=0.5 (dashed lingsand whenx
=0 (solid lineg. The deflection function is represented as impact
parametebb vs cosh, while the closest approach &@s=(rq;—a)/A
VS COsb.

Q
O
n
D
1
o
&)

On the other hand, the CT calculation exhibits nonlinear
dependence on c@s which diverges as cas—1. In back-
ward angles (co8<0), however, it shows moderate agree-
ment with the model, better in Li+ N, than in H" + N,. The
angular distributions are also compared in the figure with
those given by a spherical potenti&ls,{r)=E exg—(r
—a)/\] with a diffuseness of =0.50, the same value as in
the pairwise intermolecular potential taken above. They
show good accordance with the result of CT calculation, ex- FIG. 7. The scaled energy-loss spect(y) [see Eq.(30)] at
cept at backward angles for Lir N,. This observation indi- three scattering angles c_>f cés —0.5, 0, and 0.5 for a mass ratio of
cates that the nonlinear dependence primarily stems froffyM=0-14 (corresponding to H+N,). Results of four methods
distortion of trajectories due to a diffuse potential, which ar€ Plotted: the hard shell modghick dashed linés the hard po-
virtually masks internal excitation in H+ N,. Thus, the two tential modelthick solid lines, the rigid-rotor CT calculatiorithin

- S . . . dashed lines and the vibrotator CT calculatiofthin solid lines.
effects are discernible; for a given energytrajectory dis-
tortion is independent of the reduced magswhile internal
excitation crucially depends am.

We note that internal excitation itself may be perturbed by Energy-loss spectrdo/(de d()) are calculated at three
trajectory distortion during a collision. To make a guess, wescattering angles of cas=—0.5, 0, and 0.5, and shown in
show in Fig. 6 the deflection functioé (of the impact pa- Figs. 7 and 8, respectively, for Li- N, and for H" +N,. For
rameterb) and the distance., of closest approach using the convenience of comparison among different angkeand
diffuse potentiaV,{r) above. Correlating to each other, the different mass ratiosv/M (i.e., the two systemsthe energy-
6 andr., are seen to deviate from behaviors of the rigidloss is scaled in the figures by a variaglsuch that
sphere conspicuously at forward angles. Unlessfcak5,
however, the deflection function is reasonably reproduced by = 1—cosd
the rigid sphere. In addition, the distancg is close to the M 2
radiusa in such a degree gs.,—a|<\<a. On this basis,
we expect the hard potential model to be valid for scatteringAt each angle in each system are compared four methods,
angles larger than about 60°. i.e., the rigid-rotor CT calculation, and the vibrotator CT

B. Double-differential cross section

y. (30)
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TABLE I. Vibrational suddennese,;,7 and corresponding pa-
rameterp of the Morse potential employed for the vibrotator CT

5 COSG=-O_5 calculation in Figs. 9 and 10.

WyipT B for H +N, B for LiT+N,
Case(a) 0.12 1.69 4.07
Case(b) 0.30 0.70 € Bo) 1.69
Case(c) 0.73 0.29 0.70 € Bo)
Case(d) 1.78 0.12 0.29

y relation withy if g<<1 all over the equipotential surfacg .
When such is the case, the varialgles determined only by
— the surfaceSg asy=|ds/dR|? in hard potential moddlsee
COSG O g asy=| | p el

Eq.(8)], or asy=|RX (ds/dR)|? in the hard shell modékee

Eq. (23)]. The difference iny between the two models is
caused by vibrational excitation. The double peaks shown
are thereby shifted in parallel towards larger energy-losses
by about 0.2 in variablg, while the peak heights are little
altered. In particular, the nearly elastic peak emergeg at
=0 in the hard shell model, while gt=0.2 in the hard
potential model.

Small variation with angles and systems is seen, however,
in a position of the deeply inelastic peak. The hard potential
model derives the peak for'H+ N, at y=0.84—0.87, while
for Li*+N, at smallery as 0.63-0.76 slightly increasing
5 co0s0=0.5 with cosé. Similarly, the hard shell model derives the peak at
’i 4 y=0.63-0.65 for H+N,, while aty=0.50-0.58 for Li
t +N,. These dependences indicate a departure fromythe
scaling with increasingn/M and 1—cosé as a nonlinear
effect with inelasticityq [see Eq.(11)].

2. Comparison of rigid-rotor CT calculation
1 12 with the hard shell model

Throughout Figs. 7 and 8, the rigid-rotor CT calculation
derives a gross profile of double peaks; overall spectra fol-
FIG. 8. The same as Fig. 7 except that the mass ratio is taken 1J<9W the hard. shell model fairly well. This o_bservathn '_S
be m/M =0.80 (corresponding to Li+N.,). associated with the sudden character of rotational excitation.

Its criterion is given by a phase changg,r<<1 with rota-

calculation, the hard shell model, and the hard potentiafional angular frequencyy in collision time 7, while the
model. In the CT calculations, the trajectories are “boxed”hard shell model represents the sudden limigr—0 be-
with acceptance widths afy=0.05 andAcos#=0.1. Inthe causerx\—0. The change is estimatgd5] to be w7
models, the spectra are calculated using EtS), (18), and  =(m/M)(\¢/Reg)(ay—a,)=0.015 in H"+N,, and 0.10 in
(19), and convoluted with a Gaussian instrumental functionLi* +N,. Hence, although the latter is less perfect, both sys-
of a width [full width of half maximum (FWHM)] of Ay tems are considered to be sudden.

=0.2yIn 2. The spectra shown are, respectively, normalized For the peak positions, however, small but systematic de-
in the four methods, asff(y)dy=1 where f(y) partures from the model are found. At backward angles

xdo/(dedQ)). (cos#=—0.5 and 0, the deeply inelastic peak is appreciably
shifted towards smalley in Li"+N,, in contrast to H
1. Predictions of the hard potential model +N,. This behavior is explainable as due to imperfect sud-
and the hard shell model denness mentioned above; the sudden limit accounts for an

Throughout Figs. 7 and 8, both the models give spectralipper bound of the energy-loss. At a forward angle (&os
profiles with widely spaced double peaks. The spectra showr0.5), the double peaks are considerably shifted in parallel
are almost identical at different angles and mass ratios whetowards largery. This behavior is common in the two sys-
scaled by the variablyg; its domain is almost restricted as tems, hence interpreted as coming from trajectory distortion
0<y<1. In fact, Eqgs.(8), (16), and(30) indicate a scaling by a diffuse potential as shown in Fig. 6. The deeply inelastic
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FIG. 10. The same as Fig. 9 except that the mass ratio is taken

to bem/M =0.80 (corresponding to i+ N,).
FIG. 9. The scaled energy-loss spedt(s) [see Eq.(30)] at a 0 be ( ponding 1+No)

scattering angle of cag=—1 for a mass ratio om/M = 0.14 (cor- 3. Analyses of vibrotator CT calculation with the models

responding to H + N,). Results of four methods are plotted in the 0 016t Figs. 7 and 8, the vibrotator CT calculation
same way as in Fig. 7. In four pané&—(d), the vibrational period 40 jye an overall profile of double peaks. The spectral do-

is, respectively, modified according to casas-(d) in Table I. The N - . S .
vibrotator CT calculation depends on them, though the other thre(renam IS Sh'ﬁed tpward_s Iarg@rvylth C.Ose’ WhICh. IS assocl
methods give common spectra among the four panels. ated primarily with trajectory distortion by a diffuse poten-

tial. These behaviors are analogous to those found above in
the rigid-rotor CT calculation. However, the double peaks are
peak could be contributed from those trajectories whichocated at larger energy-losses, reflecting the effect of vibra-
would be deflected into larger angles by a hard potential. Théonal excitation.

nearly elastic peak may be contributed from an extended At backward angles (cas=—0.5 and 0§, the vibrational
region of interaction. effect is found to be considerably larger in" Ht N, than in
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Li*+N,. The deeply inelastic peak is nearly reproduced byextension of the hard shell model developed by Betkl.

the hard potential model in H+ N,, while rather by the hard [7,11]. For a homonuclear molecule, an overall spectral pro-
shell model in Li +N,. These observations are associatedfile with double peaks is derived, almost independent of the
with the sudden character of vibrational excitation. Its crite-Scattering angle and the reduced mass. The effect of vibra-
rion is given by a phase change,,r<1 with vibrational tional excitation manifests itself in a shift of the peak posi-
angular frequency,;, in collision time 7. The change is tions (by 20-30%. _ . _
estimated to bew,j,7=(2\/Bo) VUo/EYm/M =0.30 for The CT calculations using a finite-range model potential
H*+N,, and 0.73 for LT +N,. Hence, larger vibrational Nhave been carried out for collisions of'H N, and of Li*

excitation found in the former system is explainable as bettef N2 atE=1 a.u. The calculations have confirmed the effect
suddeness due to smaller mass of vibrational excitation the way the model predicts. It is also

To further elucidate the sudden character, we make Cflemonstrated that the spectra are virtually reduced to the
calculations by artificially modifying the Morse potential as hard potential model when the vibrational period is artifi-
Bo— B. With this procedure, we can adjust vibrational sud-cially taken much longer than a collision time, while reduced
denness, while conserving rotational suddenness along wifl the hard shell model when much shorter.
the equipotential surfacs: . Four different case&@)—(d) are Thus, the hard potential model serves as a standard for
considered according to Table I. The realistic vajig is revealing systematic effects of V|brat|0n'al excitation in thg
included in (b) for HF+N,, and in (c) for Li* +N,. The energy-loss §pectra. Ar_lquses of experimental spectra with
condition of w,,7<1 is duly satisfied in(@), but no more in  this model will be promising.

(d). Thus, comparison among the four cases resolves the de-
gree of vibrational suddenness when rotational excitation is ACKNOWLEDGMENTS
almost sudden.

The results at cog=1 are shown in Figs. 9 and 10, re-
spectively, for H + N, and Li" +N,. In H* +N,, the peak
shift between vibrotator and rigid-rotor CT calculations is
largest in casda), decreasing withw,;,7, and negligible in
case(d). In case(a), the overall spectrum is well reproduced
by the hard potential model, which represents the sudden  APPENDIX: REPRESENTATION OF VECTORS
limit for both rotational and vibrational excitationgy,q dS/IR AND 9S/ IR
—0 andw,;,7—0, becausex\—0. In casegd), the vibro-
tator spectrum is reduced to the rigid-rotor one, hence well. _ s _
reproduced by the hard shell model; vibrational motion islgg)n/(gm?ﬁ s(r,x:;)d ;?u/s&Rs:atl_sE‘{;nsgljazg)sll(ié/—ar)[](as/
virtually adiabatic and hardly excited. The parallel behaviors s=0 STOR LY s=0;
are also found in Li+N,, though the effect of imperfect He€Nce, by noting thays/or=r-n with normal vectorn

We are grateful to Professor S. Kita, Professor H.
Tanuma, and Professor Y. Itikawa for valuable discussions.
We would like to express our sincere thanks to Professor K.
Takayanagi for his comments in the early stages of this work.

The solutionr =r g(x,R) of E=V(r,x,R) is also a solu-

rotational suddenness is appreciable. =Jsldr, we can write
2
V. CONCLUDING REMARKS 98| o alp, NITX ‘i&)
) ar| ro(x,R) ax /_ _ '

In the present paper, we have developed the hard potential s=0 R=Req
model for collisions of an atonfor an ion with a diatomic
molecule by taking the limit of a vanishing range of force. ds ~ A s 1—-x% drg,
The model has an ideally sudden character for both vibra- Rl TN TOR R ox |
tional and rotational excitations, in the same way as the hard =0 R=Req

shell model for purely rotational excitatid®]. The energy- ) _ . . . .
loss spectrum is described by the inelasticity functigm) ~ With two unit vectors t=(xr—R)/y1-x and T=(xR
defined on the equipotential surface, which turns out to be ar-r)/1—x?, wheret-r=0 andT-R=0.
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