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High-energy expansion of Coulomb corrections to theete™ photoproduction cross section
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The correction of order 4/ to the high-energy tota* e~ photoproduction cross section in the electric field
of a heavy atom is derived with the exact account of this fields the photon energy. The consideration is
based on the use of the quasiclassical electron Green'’s function in an external electric field. The next-to-leading
correction to the cross section is discussed. The influence of screening on the Coulomb corrections is examined
in the leading approximation. It turns out that the corresponding correction to the high-energy total cross
section isw independent. In the region where both produced particles are relativistic, the corrections to the
high-energy asymptotics of the electr@positror) spectrum are derived. Our results for the total cross section
are in good agreement with experimental data for photon energies down to a few MeV. In addition, the
corrections to the bremsstrahlung spectrum are obtained from the corresponding results for pair production.
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I. INTRODUCTION In the high-energy regiom>m (m is the electron mass,
h=c=1), the consideration is greatly simplified. As a result,
Knowledge of the photoabsorption cross sections is verga rather simple form was obtained in REf,8] for the Cou-
important in various applications, see, e.g., R&f. The rel-  lomb corrections in the leading approximation with respect
evant processes are the atomic photoeffect, nuclear photoate-m/w. However, the theoretical description of the Coulomb
sorption, incoherent and coherent photon scattering, andorrections at intermediate photon energies (5—100 MeV)
e*e” pair production. In the coherent processes, by definihas not been completed. At present, all estimates©in
tion, there is no excitation or ionization of an atom. Thethis region are based on the “bridging” expression derived
high-accuracy estimation of the corresponding cross sectiortsy Overbb[9]. This expression is actually an extrapolation of
is required. They have different dependence on the photothe results obtained fap<<5 MeV. It is based on some as-
energyw. At ®=10 MeV, the cross section af"e™ pair  sumptions on the form of the asymptotic expansiomrgfat
production becomes domind&]. The coherent contribution high photon energy. It is commonly believed that the bridg-
o¢on t0 the pair production cross section is rougllyimes  ing expression has an accuracy providing the maximum error
larger than the incoherent on& (is the atomic numbgr in o, Of the order of a few tens of percent.
thereby being the most important for heavy atoms. Just the Here we develop a description ef e~ pair production at
coherent pair production is considered below. intermediate photon energies by deriving the next-to-leading
The theoretical and experimental investigation of the coterm of the high-energy expansion @f . First we consider
herent pair production has a long history, see R&f.In the  a pure Coulomb field and represergt in the form
Born approximation, the cross sectiog is known for arbi-
trary photon energy{3,4]. The account of the effect of o=+ +o@+. ... 2)
screening is straightforward in this approximation and can be
easily performed if the atomic form factor is knos)|. For
heavy atoms it is necessary to take into account the Coulom,
correctionso ¢,

he term ¢! has the form §/w)"S™(In w/m), where

(W (x) is some polynomial. The» independent terns{)
corresponds to the result of Daviesal. [8]. In the present
paper we derive the terre). It turns out thatS™) is w
independent in contrast to a second-degree polynomial sug-

These corrections are higher-order terms of the perturbadested by/@erbb[9]. We present an ansatz fo'(z); which

tion theory with respect to the atomic field. The magnitude ofProvides a good agreement with available experimental data

o depends onw and the parametefa (a=1/137 is the for ®>5 MeV. _ _

fine-structure constantThe formal expression farc, exact The high-energy expansion of the Coulomb corrections to

in Za andw, was derived by/@erbbet al.[6]. This expres- the spectrum has the form similar to Eg). In the region

sion has a very complicated form causing severe difficulties => M, we derive the terndo/dx, wherez _ ande , are

in computations. The difficulties grow asincreases, so that the electron and positron energy, respectivelye - /w. The

numerical results in Ref[6] were obtained only forw term do(cl)/dx may be important, e.g., for description of the

<5 MeV. development of electromagnetic showers in a medium. The
correction found is antisymmetric with respect to the permu-
tation ¢ . <~e_ and does not contribute to the total cross

Ocon=0toc. (1)

*Electronic address: R.N.Lee@inp.nsk.su section. In factgﬁ:l) originates from two energy regions,
"Electronic address: A.l.Milstein@inp.nsk.su ~m and e _~m, where the spectrum is not known. How-
*Electronic address: V.M.Strakhovenko@inp.nsk.su ever, our result for) allows us to claim that the spectrum
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in these regions differs drastically from the result obtameq,\,hereg is the solid angle op, andG=G—G. The func-

by Davieset al. [8] for £.>m, if the latter is formally ap- o1 & is obtained from Eq(5) by the replacemeni0
plied ate _~more, ~m. ~i0

; . . i0.
The effect of screening ow: at w>m is considered Taking the integrals ovef, and{l in Eq. (3), we obtain

quant|tat-|vely. In the 'e(f;‘g;”g approximation, we find j[he.: €9 the electron spectrum, which is the cross-section differential
responding correctioors which isw independent similar i respect to the electron energy . Using relationg6),

to o’ So, for the atomic fieldgE*? should be added to e express this spectrum via the Green’s functions:

the rlght hand side of Eq2). The screening correction to the

spectrum is also obtained. docon @ ' )

In this paper we present the explicit calculations of the de ;j J drqydr, e"k"Sp{éG(rz,rﬂs,)e
corrections, which have been given without derivation in our -
recent work[10] and used for the detailed comparison of X 8G(ry,fo|— &) é}, @

theory with experimental data.

wherer=r,—r; and ¢, =w—¢e_ is the positron energy.
Il. GENERAL DISCUSSION Since the spectrum is independent of the photon polarization,
here and below we assume&=e (linear polarizatioi
Due to the optical theorem, the process of pair production
is related to the process of Dellmiu scattering(coherent
scattering of a photon in the electric field of an atom via

The cross section af* e~ pair production by a photon in
an external field reads

__“ o 2 virtual electron-positron paiysAt zero scattering angle, the
7coh (2m)*w dpdqdlw—e. )M amplitudeM, of Delbrick scattering reads
wheres,=sp=\/p2+ m?, £, =g&q, andp, g are the electron _ o J j f —ik-r .
and positron momenta, respectively. The matrix eleniént Mp=2ia | de drydrze SHG(ra.rale) €
has the form -
XG(ry,rple— o) €}. (8)
:J dr s (reyd ) (nexplik-r). (49 Itis necessary to subtract, from the integrand in @, the

value of this integrand at zero external field«=0). Be-
low, such a subtraction is assumed to be made.

It follows from Egs.(7) and (8) and the analytical prop-
erties of the Green’s function that

Herey{") andy{ ) are positive-energy and negative-energy
solutions of the Dirac equation in the external fiedg,is the
photon polarization four-vectok is the photon momentum,
Aezeﬂy“, y* are the Dirac matrices. It is convenient to study 1
various processes in external fields using the Green’s func- —IMMp=0cont Ops - 9
tion G(r,,r,|e) of the Dirac equation in this field. This w

Green'’s function can be represented in the form

Here
Gr2.ni 8)22 % Opt=— ZIWIJ fdrldrze ik rE SPlpn(ra,ry) €
w( (r) 0 () pn(rZrrl)ZEILTn(S_Sn)G(rzyr1|8)- (10

: (5

gt+e,—i0

The quantityo,; coincides with the total cross section of
Wherez//(” is the discrete-spectrum wave functiaf, is the  the so-called bound-free pair production when an electron is
corresponding binding energy. The regularization of denomiProduced in a bound state. In fact, due to the Pauli principle,
nators in Eq(5) corresponds to the Feynman rule. From Eq.there is no bound-free pair production on neutral atoms.

(5), Nevertheless, the term,; should be kept in the right-hand
side of Eq.(9). In a Coulomb field, the total cross sectiap;
- - (27)2 was obtained in Ref[11] for w>m. In this limit, oy
f Ay (r) vl () = —i 0 8G (rp,11| — &), «1/mw and should be taken into account when using the
a relation (9) for the calculation of the corrections @.qp,.
(2m)? The main contribution too,; comes from the low-lying

) 5G(r1,r2|sp), (6) bound state$11] when scrgening can be neglected. So, in
Eqg. (9 we can usery; obtained in Ref[11].

f Qo (r) g (rp) =i
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It is convenient to represento.,,/de ~ and Mp in an-
other form using the Green’s functioD(r,,r;|e) of the
squared Dirac equation,

G(rp.1q|e)={¥[e—V(rp)]— y-p+miD(r,,14]e),

According to Ref[12], we can rewrite Eq(7) in the form

da'coh_

@ —iker Ak
de_ zwjfdrldrze Sp{[(2e-p,—€k)

X 8D(rp,rle_)][(2e- py+ek)
X5D(rl=r2|_8+)]}v (12)

and Eq.(8) as
MD=iaf dsf fdrldrze‘”"rSp{[(Zepz
—ek)D(ry,r1]e) ][ (2e-py+€ek)D(ry,r5]e — w) ]}

+2iaf dsj dr SpD(r,r|e). (13

The last term in Eq(13) is w independent, and has no
imaginary part. Therefore, it does not contribute to the rela

tion (9). The details of the transformation of Eqg) and(8)
to Egs.(12) and(13) are presented in Appendix A.

Ill. GREEN'S FUNCTION

To obtain the spectrur(?), (12) and the Delbrak scatter-
ing amplitude(8), (13 it is necessary to know the explicit
form of the Green’s function of the Dirac equation in the
Coulomb potentialV(r)=—Za/r. An integral representa-

tion for G(r,,r,|¢) has been obtained in RdfL3]. For ||
>m it has the form

G(ry,rqle)= Kfo dsexd 2iZas\

B 4arory
+ik(ry+rq)coths]T,
T=[1-(y-nx)(y-ny)]

X

(Ye+ m)%ﬁySB—iZa)/OK coths S
+[ 1+ (y-np) (y-n)](¥% +m)S,
+ImZayO‘y (n2+ nl)SB

ik%(ra—ry)

-(Ny+ng)S
2sinkt's (N2t n)Se

— k cothsy-(n,—n;)S,. (14

In this formula
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Sa

I; e "™ 3,,(y) I[P/ (X)+P|_1(x)],

sB=|§1 e "3, (YP] (X) = P{_1(x)],

V=\/|2—(Za)2, K=\/82—m2, N=¢lk,
y=2k\riry/sinhs, x=ny-ny, Ny,=r;,/r;,,

(15

J,,(y) are Bessel functions arféj(x) are Legendre polyno-
mials, P/ (x)=d,P,(x). The Green’s functionD(r,,rs|e)
can be obtained from E@14) by keeping inT the terms<m;

D(ry,rqile)= f dsexg2iZasN+ik(ry+r;)

4’7Tr2r1K 0

xcoths][ [1—(y-ny)(y nl)]% dySg
+[1+(y-n2)(y-Nn1)]Sa
+iZayO'}/‘(n2+n1)SB]- (16)

We are going to derive the high-energy asymptotic expan-
sion of the spectrum in the regien.>m. For the first two
terms of such an expansion the main contribution to the in-
tegral in Egs.(7) and (12) is given by the regiorr =|r,
—r14|~w/m?, see Refg[14,15. Let us introduce the variable
p as the component aof; (or r,) perpendicular ta:

rX[ryXrs,]

P - (17

r

As shown in Ref[15], the main contribution to the Cou-
lomb corrections to the spectrum originates from the region
p~1/m and 0,y~m/w<<1, whered is the angle between
the vectorsr, and —rq4, and ¢ is the angle between the
vectorsr and k. In this region we haved~rp/rqr,. The
argument of the Legendre polynomials in E@5) is x
=n;-n,~—1+ 6%/2. Besides, the term(r,+r;)~ w?/m?
>1 in the exponents in Eq$14) and(16) is large, and the
integral is determined by largs. Then cotls~1+2exp
(—2s), and from Eg. (16) we have exp{2s)~1/kr
~m?/ »?. The argumeny of the Bessel functions iB, g can
be estimated ag~ «r/sinhs~w/m=1.

A simple method of the calculation &, g at y>1, 1
+x~ 6?/2<1, andy 6~ 1 has been formulated in the Appen-
dix of Ref.[15]. It turns out that the leading term and the first
correction are determined by valueslofy~ w/m in sums
Spg- This fact is in agreement with the evident estimate
~egp~w/m>1. In the same way as in RdfL5] we obtain
for S, g with the first correction taken into account

m(Za)?
y

2
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y  m(Za)? i kel < krq2 [ 24rqr, | 22
Sg=— 55J1(y0/2)| 1+i : (18 D(r,,r4|e)= fd exr{i— hLE
20 y ( 2 l| ) 8’772r1r2 a 2rlr2 |q_p|
Let us pass in Eq(16) from the integration oves to the r - m(Za)?
integration ovely, see Eq(15). We have X + mﬂfﬂ) ( 1+i m)
A Jrar, | 2Zan 2 5
edeiZahs]%(—lz) , coths=1+ Z . _m(Za) (y°IN— r/r)ﬂ . (22
y 8k rqro 4K |q p|3
Then we obtain Note that in this formula and below we can $et sgne.
It is easy to check that within our accuracy the contribu-
ieik(r1tra) ro P /r1r2 2iZan tion of the last term in braces vanishes after taking the trace
D(rp,rqile)= WJO y (—) in Eq. (12). Therefore, this term can be omitted in the prob-
21

lem under consideration. The remaining terms in E2P)
can be represented in the form

i(rytryy? .
ex;{w} | [1+im(Za)?ly]

Ji(yor2)
yo

D(rp,rqle)=

i ke T krg?
quex i
872ryr, 2141
(2W)2'M(1 m(Za)?

i
wherea= "y, 3= (i/2)[ yX y]. This expression is the qua- la-pl |a—pl
siclassical Green’s function of the squared Dirac equatiormhe functionD(O)(rz,r1|s) is nothing but the quasiclassical
with the first correction taken into account. The leading termGreen’s function of the Klein-Gordon equation in the Cou-
in this expression, as well as the corresponding expressiggmb field. The functionsD in Eq. (12) is defined assD

for G(rz,ry|e), has been derived in Refsl4,15. Itis con-  _p_§ whereD is obtained from Eq(23) by the replace-
venient to rewrite Eq(19) in another form using the rela- | ,antp(©)_, (O«

tions '

DO(rp,rife), (23

a-(pr+py)
e

Jo(y0/2)+2IZa a~(n2+n1)

D(o)(rz,r1|8)=

S(yor2)
2

+7(Za) [n,X nl]-E], (19

(24

IV. COULOMB CORRECTIONS TO THE SPECTRUM

f qdgh(a)g(q)= f 5—€'%%(a), In this section we consider the Coulomb corrections to the
spectrumdoc/dx, for e.>m taking into account terms of
the orderm/e. . According to Ref.[8], the higher-order

qu dqd(q0)g(q) = —i f ﬂ (a-9) e %(q), (20) terms of the perturbation theory with respect to the external
0 T g6 field (Coulomb correctionsare not seriously modified by
screening. However, this question has not been studied quan-
where g(q) is an arbitrary function,q and @ are two- titatively so far. The influence of screening on Coulomb cor-
dimensional vectors. In our case we direct the veétatong  rections is investigated in detail in Sec. VI. In the present

p so that@=rplr,r,. Using Eq.(20) we have section we calculatdoc/de _ in a pure Coulomb field.
Substituting Eq(23) in Eq. (12) and taking the trace, we
jeik(ri+ry) ZKE 2iZan obtain
D(r21r1|8): 8 [or qu< )
TKI ol q doc _ —ik-r (0) (0)
d o —Re dr,dr,e 4[e-p,D’[e-p:DY]
i(ro+ry)g? im(Za)? &
exg————+iq- 0§ | 1+ ——— 5
2Krqfy 2¢q 1) ©0) ©0)
[e-(p1tp2)D][e (p1+p2) DY ],
X|1+Z @9 i7T(Za)z(/) X3 o
— = ———(r/r)- .
“E T L] DO=DO(r,rife ), DO=DO(ry,ry|—c,).
2
(21) (25

The terms<D(©D©* gre omitted in this formula since they
The leading term of this formula has been obtained in Refsdo not contribute to the leading term and the correction we
[16,17). Let us integrate by parts the term containiagna-  are interested in. Besides, we have integrated by parts the
trix and make the change of varialfje> k(q— p). We obtain  terms containing second derivativesdf°). In this formula
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and below we assume the subtraction from the integrand of doc a(Za)?e ¢
the terms of the orderZ)® and Za)?. Then we use the ] - — 'R f Bf ¥d ,pj —
relation e 87w or 0 z°(1-2)
m?
2 |Kr r 2 f fd d ex;{ ( 2__ )
(e prdDONry,1y]e)= quexr{ ik } a-cd+ v e g,
8 rlrz 2r l 2 (Z )
e-q’+e,.q} 9(Za
(ZW 2IZa)\( . W(ZQ)Z) +I—2rz(1—z) 9*f(Za)+ mq e,
I—
la—pl 2x|g—p| ‘(2
g a) ( 22 CI‘Q+)
er e - 4e e.| —r2g2y
e (26) & [ oe G
r o rio
wZ
and pass from the variables, to the variables - m(qf O ) (- (30)

F=t,—r,, p= M S (r'gl)_ (27)  Passing to the variables=q_+q. , 4=0-—d., we take
r r all integrals in the following orderd, dq, dqg, dr, dz. The

final result for the Coulomb corrections to the spectrum reads
In terms of these variabledr,dr,=r drdpdz, and within

our accuracy ;=rz, r,=r(1—z). We obtain from Eq(25 dol® do® 4
Y1 2=1( ) (29 c ¢ =—4doy| | 1— x(1—Xx) | f(Za)
dx dx 3
doc _ az_ s ej dff : J f f 73(1-2x)m
de_ 167*w 0 Z2(1-2) C8xX(1-Xw
Q. 2iZa i or ) m? 3
xdqdq+dp(Q—) exp 5| ¥ - e e, X 1—§x(1—x)) Reg(Za) |,
_s_q2_+s+qi i7T(Za)2 1 1 =g | = a(Z )2/m2 (31)
1 o212 2 |z_0_ =0, “e-len gomatzayim
e e In Eq. (31), the termof(Za) corresponds to the leading
X{4s_s+ er+ _q) ( —er+ q+) approximationdo?/dx [8], the termxReg(Za) is the first
1= z correctiondo?)/dx. In contrast to the leading term, this cor-

2 rection is antisymmetric with respect to the permutation
B ) (e-q.)(e q+)} (29) e, —¢&_ (orx«<1—x) and, therefore, does not contribute to

7%(1-2)? the total cross section. Besides, the correction is an odd func-
tion of Za due to the charge-parity conservation and the
where Q. =|q. —p| and ¢ is the angle between vectors antisymmetry mentioned above. The antisymmetric contribu-
andk. Sincedoc/de_ is independent of the photon polar- tion enhances the production of electronxatl/2 and sup-
ization, we can replace in Eq28) e'el by 18! =1(s" presses it ak>1/2. Evidently, the opposite situation occurs
—k'kl/w?). The integral ovep can be taken with the help of for positrons. Qualitatively, such a behavior of the spectrum
the relations(see Appendix B takes place for anyw being the most pronounced at low

photon energy6]. At intermediate photon energies, the spec-
trum (31) essentially differs from that given by the leading
approximation. We illustrate this statement in Fig. 1, where
oo 1daC/dx with correction(solid line) and without correc-
tion (dashed lingare plotted forZ=82 andw=50 MeV.
Due to the antisymmetry afcl)/dx at . >m, the term
(1) in the total cross section may originate only from the

B 1 Q+ 2|Za_ b Q4
f(Za)= 277(Za)2q2f dp (Q_) 1+2(Za)?In 0

=Rg y(1+iZa)+C],

9(Za)= b @ (%) lea_l energy regiong_~m ande ., =w—¢&_~m. The quasiclas-
4mq) Q. [\ Q- sical approximation cannot be used directly in these regions,
. . and another approach is needed to calculate the spectrum.
aI‘(l—!Za)F(llZ-FfZa) (290 We are going to do this elsewhere. However, for the total
F(1+iZa)l'(12-iZa)’ cross section, it is possible to overcome this difficulty by
means of dispersion relatioiisee Sec. V.
where (t)=dInI'(t)/dt, C=0.577... is the Euler con- As known (see, e.g., Ref{18]), the spectrum of brem-
stant,g=|q_—q,|. We have sstrahlung can be obtained from the spectrum of pair produc-
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FIG. 1. The dependence 0fgldac/dx onx, see Eq(31), for
Z=82, »=50 MeV. Dashed curve, leading approximation; solid
curve, first correction is taken into account.

PHYSICAL REVIEW A69, 022708 (2004

V. COULOMB CORRECTIONS TO THE TOTAL
CROSS SECTION

In the leading approximation, the Coulomb corrections
o9 to the total cross section of pair production foe>m
were obtained in Ref[8]. Using this result and dispersion
relations, the corresponding terM(DO(); in the forward Del-
brick scattering amplituddl, was obtained in Ref[20].
These two quantities read

o0=—-25.f(Za), MR=-iZwo,f(Za), (33
whereoy and f(Za) are defined in Eqs(31) and (29), re-
spectively.

In this section we derive the correctiar}) by means of
the relation(9). Starting from Eq.(13) and performing the

tion. This can be performed by means of the substitutiorsame calculations as in the preceding section we obtain

e,——¢, v——w', anddx—ydy, wherey=ow'le, o' is
the energy of an emitted photos, is the initial electron
energy. Using Eq(31), we obtain for the Coulomb correc-
tions to the bremsstrahlung spectrum

Y
d(Tc_

dy

73(2—y)m

— 490 8(1—y)e

y

4
y?+ 5(1—y)>f<2a)—

X (32

3
y2+ 5(1—y)) Reg(Za)

This formula describes bremsstrahlung from electrons

For the spectrum of photons emitted by positrons, it is nec
essary to change the sign B in Eq. (32). Our result(32)
coincides with that obtained in R€f19] if the obvious mis-
take in the latter is corrected by changing

|

in Eq. (22) of Ref. [19]. The correction(32) is the most
important aty close to unity, see Fig. 2, whene}lydag/dy
with correction(solid line) and without correction(dashed
line) are shown foiZ=82 ande =50 MeV.

m | (2—y)m

C2(1-y)e

E—wW

0

o5 \ydol,/dy

FIG. 2. The dependence of, 'ydo2/dy ony, see Eq(31), for
Z=82,e=50 MeV. Dashed curve, leading approximation; solid
curve, first correction is taken into account.

MO+ MB = —diwo fldx (1—fx(1—x))f(za)
DC DC 0 3
0
°m 1 3 1
T Be (172X

9*(Za) g(Za)
X 1-x

Here the integration ovex corresponds to the integration
over e/ w. After the integration theM @ in Eq. (34) coin-
cides with that in Eq(33). The integral inM is logarith-
mically divergent. Note that we have obtained the integrand
in Eq. (33) under the conditions>m/w and 1-x>m/w.
Taking the integral from$ to 1— &8, wheres=m/w, we find
within logarithmic accuracy that Il 2 vanishes and

(34

(O]

a(Za)?>mImg(Za) In

Q) —
ReMyé m

(35

The quantity ImM (Dlé does not contain In¢/m) and is
determined by the regions of integration over where ¢
~m and w—e&~m, and, therefore, the quasiclassical ap-
proximation is invalid. Nevertheless, this quantity, which is
related t0cr§;1) (9), can be obtained from the dispersion rela-
tion for M [20],

2

*» IMMp(w') do’
ReMD(w)ZEwZ L

?)
0 w/(w/Z_ (1)2)
Using this relation, it can be easily checked that the high-

energy asymptotic$35) unambiguously corresponds to the
w-independent high-energy asymptotics

(36)

B a(Za)?m*Img(Za)

1
ImM o

(37)

Substituting Eq(35) into Eq.(9) and usingo,; from Ref.
[11] in the form
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1.2 far it was only known that the correcticmE:SC’) is not large
[8]. Here we consider this issue gquantitatively.

The quasiclassical Green’s functi@®)(r,,r,|e) for an
0.8 arbitrary localized potentiaV(r) has been obtained in Ref.

= 0.6 [21] with the first correction taken into account. The leading
’ term has the fornisee also Ref.12])
0.4
H I kT
0.2 DO )= -5 — [ d
87T2r1r2
°% 20 40 60 80 100 5
A CKIQ ) 1
. . xex;{lﬂ—n\rf de(rﬁxr—q)}.
FIG. 3. The quantityf, as a function oZ. 12 0
(40)
— 3 m
opi=4moy (Za) fl(Za)Z, (38 Substituting this formula into Eq25), we obtain[cf. Eq.
(28)]
we have fora&
doc ag_g, dr (1 dz
. 0 ] Wt ]
oP=q, —Img(Za)—4m(Za)*f1(Ze) | —. (39) - 1br'w r>Joz(1-2)
. i r m?
The functionf,(Z«) is plotted in Fig. 3. qudmdpeX% D+ 7( e s )
The quantity @/m)c/o® is shown in Fig. 4(solid -
curve. Itis seen that this ratio is numerically large for afy e 0> +e.q2 eq-
Therefore, the termr{") gives a significant contribution to L m] e-&| €1+ E)
o for intermediate photon energies. Dashed curve in Fig. 4
gives the same ratio whem,; in Eq. (39) is omitted. It is eq, 2
seen that the relative contribution of the tepni,(Z«) in X| —er+ )— 5 2(e- q-)(e q+)},
Eq. (39) is numerically small. z z(1-2)
1
VI. SCREENING CORRECTIONS q):rfo dX[V(ri+xr—q.)—V(ry+xr—qg-)]. (41

In two previous sections the cross sectionedfe™ pair

production has been considered for a pure Coulomb fieldy,q phasab can be represented as

The differencesV(r) between an atomic potential and a

Coulomb potential of a nucleus leads to the modification of - (scn

this crosspsection known as the effect of screening. In the ®=22aln(Q./Q-)+¢

Born approximation, this effect was studied long agee,

e.g., Ref[5]). Let us consider now S characterizing the

influence of screening on the Coulomb corrections. Recollect

that the Coulomb corrections denote the higher-order terms —oV(ry+xr—q-)J. (42

of the perturbation theory with respect to the atomic field. So  As in the case of a pure Coulomb field, the main contri-
bution to the Coulomb corrections comes from the region of

0 integrationq-~ p~1/m. The main contribution to the inte-

-5 gral overx in Eg. (42) comes from the narrow region around

the point xo=—r;-r/r?=z, éx=plr<1. Therefore, it is

possible to perform the integration in E@2) from —« to

w. Thus we can estimatab®) as B~ p 5V(p)

~Za 8V(p)IV(p)<1. In our calculation ofr§”, we re-

tain the linear term of expansion (", By definition,

=2ZaIn(Q, /Q_)+rf1dx[ SV(ri+xr—ay)
0

(43

dA A AnZa
5V(r)=f —e'"YF(A)
0 20 40 60 80 100 (2

7)® A%

FIG. 4. The quantity ¢/m)oV/¢{?) as a function ofZ (solid ~ WhereF(Q) is the atomic electron form factor. Substituting
curve. The dashed curve corresponds to the same quantity withouthis formula to Eq(42) and taking the integral ovet from
the contribution of the bound-free pair production. —o to %, we obtain ford (¢
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.01

.02

.03

.04

.05

40 60 80

Z

FIG. 5. The ratioc$/¢{") as a function oZ.

Blse) f 9
(2m)?

whereA, is two-dimensional vector lying in the plane per-
pendicular tor. Then we use the identity, see E§82) and
(23) in Ref.[17],

o

S
4A2

) A«
ALPE(A ) ——,
L

(44)

lp—a.]
lp—a-|

2iZa
) extfiA, - (p—0.)]

2iZa
df( ) exdiq-f./2], (45)

whereq=qg_—q. andf.=f+A . Expanding Eq.(42) in
® ) and using the identity45), we take the integrals over
variablesg.. , r, andz and obtain

dol  8a(Za) [ dA, df [ f, )22
dx 37 f A4 F(AL) _<f_)
R(g— 1a) R(§+ !a)

e e

(k=1 | 1
R(u, ——[18-6 2+2u-3
(m, @)= e {2\/;[ pta(p+2pu—3)]
NPER }
n —18-a(u-3){,
Ju-1 g

£.=1+16m%f2, a=6x(1—X). (46)

Using the trick introduced in Sec. IX in Refl7], we

rewrite this formula in another form. Let us multiply the
integrand in Eq(46) by

1
1EJ dys| y—
-1

2+Ai>f

2f’AJ_
f24+ A2
—A, ly)?— A% (1%-1)),

(47)

PHYSICAL REVIEW A69, 022708 (2004

0.8
0.6
0.4
k2!
0.2
0
-0.2
5 10 15 20 25 30 35
w (MeV)

FIG. 6. Thew dependence 08= (o ¢on— o)/ o) for Bi. Solid
curve, our result; dashed curve, the resulf 9&@b[9]; experimen-
tal data from Ref[23].

change the order of integration oveandy, and make the
shift f—f+ A, /y. After that the integration ovef can be
done easily. Then we make the substitutipr tanhr and

obtain
dol 32 dr S|n(22a7-)
_ > 2
dx 3 7om f (Q)f sinhr o
JZWd(P R -
X o ﬂ[e (ny,a)—€ "R(u-,a)],
.. 8m?e” "sinkfr 48
fe Q?(coshr+cose)
Integrating overx, we have
32 dr SIn(ZZaT)
(sen_—— 2
e 3 7o j Q)f sinhr o
2nde _
XJ Z—[ETR(M+.1)—G R(p-, D] (49
0 a

Similar to o), this correction isw independent. Shown in
Fig. 5 is theZ dependence of the rati®{>°"/{? calculated
with the use of the form factors taken from REE2]. As seen
from Fig. 5, this ratio is approximately fitted by the linear
function (r(s”)~ 5.4x10 *2¢®

The corresponding correction to the bremsstrahlung spec-
trum is obtained from Eq48) by means of the same substi-
tutions as in Sec. IV. So that the quantity*do2¢"/dy is
given by the right-hand side of Edq48) if we seta=(y

—1)Iy2.

VIl. ESTIMATION OF ag) FROM EXPERIMENTAL DATA

The most detailed and accurate experimental data have
been obtained just in the region of intermediate photon en-
ergies. In this region, the first correction’), obtained
above, becomes large, see Fig. 4 far/r(n)a(l) o®, and
the next terms?) in the expansior(2) may be significant.
Using the arguments similar to those presented by Davies

022708-8
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o s fit suggested by/ @erbb[9], the quantityc':) does not con-
) tain any powers of Ing/m). We have also performed the
0.6 quantitative investigation of the influence of screening on the
- Coulomb correction$48) and(49). It is important thair{$°”
does not vanish in the high-energy limit. We have suggested
® 0.2 a form for the next-to-leading correction?) to the total
0 cross section. Altogether, the corrections found allow one to
represent well the available experimental data.
0.2 Starting with the results obtained for tkée~ photopro-
5 >0 20 €0 80 duction spectrum, we have obtained the corresponding cor-
w (MeV) rections to the bremsstrahlung spectrum as well.
FIG. 7. Same as Fig. 6 but for Pb; experimental data from Refs. ACKNOWLEDGMENTS
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APPENDIX A

whereb and c are some functions af «. It was shown in ) ] )

Ref.[10] that experimental data far.,, are well described In this appendix we perform the transformation from Eq.
by the formula (8) to EQ.(13). The transformation from Eq7) to Eq.(12) is

performed in the same way.
Toon=0Tp+ O'(CO)+ U(Cscr)Jr Ug)+ U(C2) , (51) The Delbuck scattering amplitudé8) can be represented

as follows:

whereo®, o8 and o) are from Egs(33), (49), and

(39), respectively; o&) is given by Eq. (50 with b |\/|D=2iaf dsf dr, SEr,|[P—m] e Bk
=3.78(w/m)oy to®), c=0.

It is interesting to compare our predictions for the Cou-
lomb corrections to the total cross section with the results of
Overbb [9]. Shown in Figs. 6 and 7 is the rat®= (o¢on
—og)lo, which is the Coulomb corrections in units of
o, Eq.(33).

Our results are represented by solid curves, those of D 1=l D2_ 2117
Overbb are shown as dashed curves. The values @- [P=m] (P2 =m*] A (Pt m)
tracted from the experimental data are also shown. The regnd use the relation
sults for Bi are plotted in Fig. 6 with the experimental data
taken from Ref[23]. The results for Pb are plotted in Fig. 7 (P+m)e=[ —e(P—k—m)—ek—2e-p].
with the experimental data taken from Rgt4,25. It is seen
that the difference between our results and thosévefrbis  Then we obtain
small at relatively low energies and becomes noticeable as
increases. According to our results, this difference tends to a
constantr$°/ () at w—o0. The experimental data are, on

the whole, in a better agreement with our results than with An A oo, giaa -
those of ¥erbh +ek] [(P—k)*“—m?]"H(P—k+m)e

—e[P>—m?] " tel|ry). (A2)

—m] te|ry). (A1)

HereP= 1% &—V(r)]—y-p andp=—iV. We represent the
operatof P—m] ™t in Eq. (A1) in the form

MD=2iaf dsf dr, Sp(rol{—[P*—m?] 1 [2e-p

VIll. CONCLUSION

We obtain another expression fioky using the represen-

For thee*e~ photoproduction, we have calculated thetation

leading correctior{31) to the electron spectrum in the region
e.>m. This contribution noticeably modifies the spectrum
at intermediate photon energy. It turns out that the correction
is antisymmetric with respect to the permutation <& _ and the relation

and hence does not contribute to the total cross section. The

leading corrgction to the total cross sectiorﬁ)l), or@ginatles e(P—k+m)=[—e(P—m)—ek—2e p].
from two regionss . ~m ands _~m. We have obtained&")

(39) using dispersion relations. In contrast to the form of theWe have

[P—k—m] = (P—k+m)[(P—k)?—m?]"!

022708-9
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MD=2iaf dsJ dr, Sp(r,|{— (P+m)[P>—m?]~ [ 2e-p
+ek][(P—k)?—m?] te—e[ (P—k)2—m?] tel|r,).
(A3)
The terms odd it in Egs.(A2) and(A3) vanish after taking
a trace. It is evident that

f dsf dry (ro|[(P—K)2—m?]r,)

=j dsf dro(ro|[P2—m?] Y ry).

Taking a half sum of EqgA2) and(A3) and using the iden-
tity [dx Sp(x|A1A,|X)=[dx Sp(x|]A,A|X), valid for arbi-
trary operatorsA\; andA,, we obtain

MDziaJ dsjerSp(r2|{(2e-p—éR)[f?z—mZ]*l[Ze-p
+ek][(P—k)2=m?] "1+ 2[ (P—k)2=m?] H}r,).
(A4)

This formula is equivalent to Eq13).

APPENDIX B

In this appendix we derive the formulé29). In the inte-
gral for f(Za) let us make the change of variablps-(p
+0;+q.)/2:

|p+ql| %
f - @ e
(Za) 87T(Za)2q2J lp—d
,pt ql}
2

+2(Za)?In? PEr (B1)

Let us multiply the integrand in Eq46) by
1= dyé( )—( g [ oo a2
—qz(llyz—l)), (B2)

PHYSICAL REVIEW A69, 022708 (2004

change the order of integration ovgrandy, and make the
shift p— p+qly. Then the integral ovep becomes trivial
and we have

1 1 dy
f(Za)= —
(2 4(Za>2J1 yI?

(Za)? ,[1+y
2 1-y

Then we make the substitutign=tanhr and obtain

1+y iZa

1-y

(B3)

f(Za)= fmd cosh [cos{ZZar) 1+2(Za)?7]

2(Za)?Jo  sinkr

B =dre” 7 B )
= Jo SinhT[1—COE{ZZar)]—Re[$(l+|Za)+C].

(B4)

In order to calculate the functiog(Z«) we make a shifjp
—p+q, in Eq.(29) and use the exponential parametrization

eiWV/Z o

s
AV= T—0) o o — - exdiAs]. (B5)

Then we have

ie mZal2
1+2iZa 1+iZa
4 qr(lza)fd”” f dss

x{exfis(p—q)2]—exdisp?]}. (B6)

Taking the integral over the angles of two-dimensional vec-
tor p and making the substitutions— p/+/s, s—s/q? we
come to

9(Za)=

i ewZa/Z s

_ 2iZa C o [C e 32
0(Za) 2T (Za) o dp p7““exdip ]fo dss

x[€°35(2p\/s)— 1]. (B7)
Taking the integrals oves and then ovep we finally obtain

I'(1-iZa)T(1/2+iZa)
T(1+iZa)(1/2—iZa)®

9(Za)=Za (B8)
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