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High-energy expansion of Coulomb corrections to thee¿eÀ photoproduction cross section

R. N. Lee,* A. I. Milstein,† and V. M. Strakhovenko‡

Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
~Received 10 October 2003; published 20 February 2004!

The correction of order 1/v to the high-energy totale1e2 photoproduction cross section in the electric field
of a heavy atom is derived with the exact account of this field;v is the photon energy. The consideration is
based on the use of the quasiclassical electron Green’s function in an external electric field. The next-to-leading
correction to the cross section is discussed. The influence of screening on the Coulomb corrections is examined
in the leading approximation. It turns out that the corresponding correction to the high-energy total cross
section isv independent. In the region where both produced particles are relativistic, the corrections to the
high-energy asymptotics of the electron~positron! spectrum are derived. Our results for the total cross section
are in good agreement with experimental data for photon energies down to a few MeV. In addition, the
corrections to the bremsstrahlung spectrum are obtained from the corresponding results for pair production.
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I. INTRODUCTION

Knowledge of the photoabsorption cross sections is v
important in various applications, see, e.g., Ref.@1#. The rel-
evant processes are the atomic photoeffect, nuclear phot
sorption, incoherent and coherent photon scattering,
e1e2 pair production. In the coherent processes, by defi
tion, there is no excitation or ionization of an atom. T
high-accuracy estimation of the corresponding cross sect
is required. They have different dependence on the pho
energyv. At v*10 MeV, the cross section ofe1e2 pair
production becomes dominant@2#. The coherent contribution
scoh to the pair production cross section is roughlyZ times
larger than the incoherent one (Z is the atomic number!,
thereby being the most important for heavy atoms. Just
coherent pair production is considered below.

The theoretical and experimental investigation of the
herent pair production has a long history, see Ref.@2#. In the
Born approximation, the cross sectionsB is known for arbi-
trary photon energy@3,4#. The account of the effect o
screening is straightforward in this approximation and can
easily performed if the atomic form factor is known@5#. For
heavy atoms it is necessary to take into account the Coul
correctionssC ,

scoh5sB1sC . ~1!

These corrections are higher-order terms of the pertu
tion theory with respect to the atomic field. The magnitude
sC depends onv and the parameterZa (a51/137 is the
fine-structure constant!. The formal expression forsC , exact
in Za andv, was derived by O” verbo” et al. @6#. This expres-
sion has a very complicated form causing severe difficul
in computations. The difficulties grow asv increases, so tha
numerical results in Ref.@6# were obtained only forv
,5 MeV.
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In the high-energy regionv@m (m is the electron mass
\5c51), the consideration is greatly simplified. As a resu
a rather simple form was obtained in Ref.@7,8# for the Cou-
lomb corrections in the leading approximation with resp
to m/v. However, the theoretical description of the Coulom
corrections at intermediate photon energies (5 –100 Me
has not been completed. At present, all estimates ofsC in
this region are based on the ‘‘bridging’’ expression deriv
by O” verbo” @9#. This expression is actually an extrapolation
the results obtained forv,5 MeV. It is based on some as
sumptions on the form of the asymptotic expansion ofsC at
high photon energy. It is commonly believed that the brid
ing expression has an accuracy providing the maximum e
in scoh of the order of a few tens of percent.

Here we develop a description ofe1e2 pair production at
intermediate photon energies by deriving the next-to-lead
term of the high-energy expansion ofsC . First we consider
a pure Coulomb field and representsC in the form

sC5sC
(0)1sC

(1)1sC
(2)1•••. ~2!

The term sC
(n) has the form (m/v)nS(n)( ln v/m), where

S(n)(x) is some polynomial. Thev independent termsC
(0)

corresponds to the result of Davieset al. @8#. In the present
paper we derive the termsC

(1) . It turns out thatS(1) is v
independent in contrast to a second-degree polynomial
gested by O” verbo” @9#. We present an ansatz forsC

(2) , which
provides a good agreement with available experimental d
for v.5 MeV.

The high-energy expansion of the Coulomb corrections
the spectrum has the form similar to Eq.~2!. In the region
«6@m, we derive the termdsC

(1)/dx, where«2 and«1 are
the electron and positron energy, respectively,x5«2 /v. The
term dsC

(1)/dx may be important, e.g., for description of th
development of electromagnetic showers in a medium. T
correction found is antisymmetric with respect to the perm
tation «1↔«2 and does not contribute to the total cro
section. In fact,sC

(1) originates from two energy regions«1

;m and «2;m, where the spectrum is not known. How
ever, our result forsC

(1) allows us to claim that the spectrum
©2004 The American Physical Society08-1
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in these regions differs drastically from the result obtain
by Davieset al. @8# for «6@m, if the latter is formally ap-
plied at«2;m or «1;m.

The effect of screening onsC at v@m is considered
quantitatively. In the leading approximation, we find the c
responding correctionsC

(scr) , which isv independent similar
to sC

(0) . So, for the atomic field,sC
(scr) should be added to

the right-hand side of Eq.~2!. The screening correction to th
spectrum is also obtained.

In this paper we present the explicit calculations of t
corrections, which have been given without derivation in o
recent work@10# and used for the detailed comparison
theory with experimental data.

II. GENERAL DISCUSSION

The cross section ofe1e2 pair production by a photon in
an external field reads

dscoh5
a

~2p!4v
dpdqd~v2«12«2!uM u2, ~3!

where«25«p5Ap21m2, «15«q , andp, q are the electron
and positron momenta, respectively. The matrix elemenM
has the form

M5E dr c̄p
(1)~r!êcq

(2)~r!exp~ ik•r!. ~4!

Herecp
(1) andcq

(2) are positive-energy and negative-ener
solutions of the Dirac equation in the external field,em is the
photon polarization four-vector,k is the photon momentum
ê5emgm, gm are the Dirac matrices. It is convenient to stu
various processes in external fields using the Green’s fu
tion G(r2 ,r1u«) of the Dirac equation in this field. This
Green’s function can be represented in the form

G~r2 ,r1u «!5(
n

cn
(1)~r2!c̄n

(1)~r1!

«2«n1 i0

1E dp

~2p!3
Fcp

(1)~r2!c̄p
(1)~r1!

«2«p1 i0

1
cp

(2)~r2!c̄p
(2)~r1!

«1«p2 i0
G , ~5!

wherecn
(1) is the discrete-spectrum wave function,«n is the

corresponding binding energy. The regularization of deno
nators in Eq.~5! corresponds to the Feynman rule. From E
~5!,

E dVqcq
(2)~r2!c̄q

(2)~r1!52 i
~2p!2

q«q
dG ~r2 ,r1u2«q!,

E dVpcp
(1)~r1!c̄p

(1)~r2!5 i
~2p!2

p«p
dG~r1 ,r2u«p!, ~6!
02270
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whereVp is the solid angle ofp, anddG5G2G̃. The func-
tion G̃ is obtained from Eq.~5! by the replacementi0↔
2 i0.

Taking the integrals overVp andVq in Eq. ~3!, we obtain
the electron spectrum, which is the cross-section differen
with respect to the electron energy«2 . Using relations~6!,
we express this spectrum via the Green’s functions:

dscoh

d«2
5

a

vE E dr1 dr2 e2 ik•r Sp$dG~r2 ,r1u«2!ê

3dG~r1 ,r2u2«1! ê%, ~7!

where r5r22r1 and «15v2«2 is the positron energy
Since the spectrum is independent of the photon polarizat
here and below we assumee* 5e ~linear polarization!.

Due to the optical theorem, the process of pair product
is related to the process of Delbru¨ck scattering~coherent
scattering of a photon in the electric field of an atom v
virtual electron-positron pairs!. At zero scattering angle, th
amplitudeMD of Delbrück scattering reads

MD52iaE d«E E dr1 dr2 e2 ik•r Sp$G~r2 ,r1u«! ê

3G~r1 ,r2u«2v! ê%. ~8!

It is necessary to subtract, from the integrand in Eq.~8!, the
value of this integrand at zero external field (Za50). Be-
low, such a subtraction is assumed to be made.

It follows from Eqs.~7! and ~8! and the analytical prop-
erties of the Green’s function that

1

v
Im MD5scoh1sb f . ~9!

Here

sb f52
2ipa

v E E dr1 dr2 e2 ik•r(
n

Sp$rn~r2 ,r1! ê

3dG~r1 ,r2u«n2v! ê%,

rn~r2 ,r1!5 lim
«→«n

~«2«n!G~r2 ,r1u«!. ~10!

The quantitysb f coincides with the total cross section o
the so-called bound-free pair production when an electro
produced in a bound state. In fact, due to the Pauli princip
there is no bound-free pair production on neutral atom
Nevertheless, the termsb f should be kept in the right-han
side of Eq.~9!. In a Coulomb field, the total cross sectionsb f
was obtained in Ref.@11# for v@m. In this limit, sb f
}1/mv and should be taken into account when using
relation ~9! for the calculation of the corrections toscoh .
The main contribution tosb f comes from the low-lying
bound states@11# when screening can be neglected. So,
Eq. ~9! we can usesb f obtained in Ref.@11#.
8-2
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It is convenient to representdscoh /d«2 and MD in an-
other form using the Green’s functionD(r2 ,r1u«) of the
squared Dirac equation,

G~r2 ,r1u«!5$g0@«2V~r2!#2g•p21m%D~r2 ,r1u«!,

p252 i“2 . ~11!

According to Ref.@12#, we can rewrite Eq.~7! in the form

dscoh

d«2
5

a

2vE E dr1dr2 e2 ik•rSp$@~2e•p22êk̂!

3dD~r2 ,r1u«2!#@~2e•p11êk̂!

3dD~r1 ,r2u2«1!#%, ~12!

and Eq.~8! as

MD5 iaE d«E E dr1dr2e2 ik•r Sp$@~2e•p2

2êk̂!D~r2 ,r1u«!#@~2e•p11êk̂!D~r1 ,r2u«2v!#%

12iaE d«E dr SpD~r,ru«!. ~13!

The last term in Eq.~13! is v independent, and has n
imaginary part. Therefore, it does not contribute to the re
tion ~9!. The details of the transformation of Eqs.~7! and~8!
to Eqs.~12! and ~13! are presented in Appendix A.

III. GREEN’S FUNCTION

To obtain the spectrum~7!, ~12! and the Delbru¨ck scatter-
ing amplitude~8!, ~13! it is necessary to know the explic
form of the Green’s function of the Dirac equation in th
Coulomb potentialV(r )52Za/r . An integral representa
tion for G(r2 ,r1u«) has been obtained in Ref.@13#. For u«u
.m it has the form

G~r2 ,r1u«!52
i

4pr 2r 1kE0

`

dsexp@2iZas l

1 ik~r 21r 1!coths#T,

T5@12~g•n2!~g•n1!#

3F ~g0«1m!
y

2
]ySB2 iZag0k coths SBG

1@11~g•n2!~g•n1!#~g0«1m!SA

1 imZag0g•~n21n1!SB

1
ik2~r 22r 1!

2 sinh2 s
g•~n21n1!SB

2k cothsg•~n22n1!SA . ~14!

In this formula
02270
-

SA5(
l 51

`

e2 ipnJ2n~y! l @Pl8~x!1Pl 218 ~x!#,

SB5(
l 51

`

e2 ipnJ2n~y!@Pl8~x!2Pl 218 ~x!#,

n5Al 22~Za!2, k5A«22m2, l5«/k,

y52kAr 1r 2/sinhs, x5n1•n2 , n1,25r1,2/r 1,2,
~15!

J2n(y) are Bessel functions andPl(x) are Legendre polyno-
mials, Pl8(x)5]xPl(x). The Green’s functionD(r2 ,r1u«)
can be obtained from Eq.~14! by keeping inT the terms}m:

D~r2 ,r1u«!52
i

4pr 2r 1kE0

`

dsexp@2iZas l1 ik~r 21r 1!

3coths#H @12~g•n2!~g•n1!#
y

2
]ySB

1@11~g•n2!~g•n1!#SA

1 iZag0g•~n21n1!SBJ . ~16!

We are going to derive the high-energy asymptotic exp
sion of the spectrum in the region«6@m. For the first two
terms of such an expansion the main contribution to the
tegral in Eqs.~7! and ~12! is given by the regionr 5ur2
2r1u;v/m2, see Refs.@14,15#. Let us introduce the variable
r as the component ofr1 ~or r2) perpendicular tor:

r5
r3@r13r2#

r 2
. ~17!

As shown in Ref.@15#, the main contribution to the Cou
lomb corrections to the spectrum originates from the reg
r;1/m and u,c;m/v!1, whereu is the angle between
the vectorsr2 and 2r1, and c is the angle between th
vectors r and k. In this region we haveu'rr/r 1r 2. The
argument of the Legendre polynomials in Eq.~15! is x
5n1•n2'211u2/2. Besides, the termk(r 21r 1);v2/m2

@1 in the exponents in Eqs.~14! and ~16! is large, and the
integral is determined by larges. Then coths'112 exp
(22s), and from Eq. ~16! we have exp(22s);1/kr
;m2/v2. The argumenty of the Bessel functions inSA,B can
be estimated asy;kr /sinhs;v/m@1.

A simple method of the calculation ofSA,B at y@1, 1
1x'u2/2!1, andyu;1 has been formulated in the Appen
dix of Ref. @15#. It turns out that the leading term and the fir
correction are determined by values ofl;y;v/m in sums
SA,B . This fact is in agreement with the evident estimatel
;«r;v/m@1. In the same way as in Ref.@15# we obtain
for SA,B with the first correction taken into account

SA52
y2

8
J0~yu/2!F11 i

p~Za!2

y G ,

8-3
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SB52
y

2u
J1~yu/2!F11 i

p~Za!2

y G . ~18!

Let us pass in Eq.~16! from the integration overs to the
integration overy, see Eq.~15!. We have

exp@2iZals#'S 4kAr 1r 2

y D 2iZal

, coths'11
y2

8k2r 1r 2

.

Then we obtain

D~r2 ,r1u«!5
ieik(r 11r 2)

16pkr 2r 1
E

0

`

y dyS 4kAr 1r 2

y D 2iZal

3expF i ~r 21r 1!y2

8kr 1r 2
G H @11 ip~Za!2/y#

3FJ0~yu/2!12iZa
J1~yu/2!

yu
a•~n21n1!G

1p~Za!2
J1~yu/2!

y2u
@n23n1#•SJ , ~19!

wherea5g0g, S5( i /2)@g3g#. This expression is the qua
siclassical Green’s function of the squared Dirac equa
with the first correction taken into account. The leading te
in this expression, as well as the corresponding expres
for G(r2 ,r1u«), has been derived in Refs.@14,15#. It is con-
venient to rewrite Eq.~19! in another form using the rela
tions

E
0

`

q dqJ0~qu!g~q!5E dq

2p
eiq•ug~q!,

E
0

`

q dqJ1~qu!g~q!52 i E dq

2p

~q•u!

qu
eiq•ug~q!, ~20!

where g(q) is an arbitrary function,q and u are two-
dimensional vectors. In our case we direct the vectoru along
r so thatu5r r/r 1r 2. Using Eq.~20! we have

D~r2 ,r1u«!5
ieik(r 11r 2)

8pkr 2r 1
E dqS 2kAr 1r 2

q D 2iZal

3expF i ~r 21r 1!q2

2kr 1r 2
1 iq•uG H F11

ip~Za!2

2q G
3F11Za

a•q

q2 G2
ip~Za!2

4q3
~r/r !•@q3S#J .

~21!

The leading term of this formula has been obtained in R
@16,17#. Let us integrate by parts the term containinga ma-
trix and make the change of variableq→k(q2r). We obtain
02270
n

on

s.

D~r2 ,r1u«!5
ikeikr

8p2r 1r 2
E dqexpF i

krq2

2r 1r 2
G S 2Ar 1r 2

uq2ru D
2iZal

3H S 11
r

2r 1r 2l
a•qD S 11 i

p~Za!2

2kuq2ru D
2

p~Za!2

4k2
~g0/l2g•r/r !

g•~q2r!

uq2ru3 J . ~22!

Note that in this formula and below we can setl5sgn«.
It is easy to check that within our accuracy the contrib

tion of the last term in braces vanishes after taking the tr
in Eq. ~12!. Therefore, this term can be omitted in the pro
lem under consideration. The remaining terms in Eq.~22!
can be represented in the form

D~r2 ,r1u«!5F11
a•~p11p2!

2« GD (0)~r2 ,r1u«!, ~23!

D (0)~r2 ,r1u«!5
ikeikr

8p2r 1r 2
E dqexpF i

krq2

2r 1r 2
G

3S 2Ar 1r 2

uq2ru D
2iZalS 11 i

p~Za!2

2kuq2ru D . ~24!

The functionD (0)(r2 ,r1u«) is nothing but the quasiclassica
Green’s function of the Klein-Gordon equation in the Co
lomb field. The functiondD in Eq. ~12! is defined asdD

5D2D̃, whereD̃ is obtained from Eq.~23! by the replace-
mentD (0)→D (0)* .

IV. COULOMB CORRECTIONS TO THE SPECTRUM

In this section we consider the Coulomb corrections to
spectrum,dsC /dx, for «6@m taking into account terms o
the orderm/«6 . According to Ref.@8#, the higher-order
terms of the perturbation theory with respect to the exter
field ~Coulomb corrections! are not seriously modified by
screening. However, this question has not been studied q
titatively so far. The influence of screening on Coulomb c
rections is investigated in detail in Sec. VI. In the prese
section we calculatedsC /d«2 in a pure Coulomb field.

Substituting Eq.~23! in Eq. ~12! and taking the trace, we
obtain

dsC

d«2
5

4a

v
ReE E dr1dr2e2 ik•rH 4@e•p2D2

(0)#@e•p1D1
(0)#

2
v2

«2«1
@e•~p11p2!D2

(0)#@e•~p11p2!D1
(0)#J ,

D2
(0)5D (0)~r2 ,r1u«2!, D1

(0)5D (0)~r1 ,r2u2«1!.
~25!

The terms}D (0)D (0)* are omitted in this formula since the
do not contribute to the leading term and the correction
are interested in. Besides, we have integrated by parts
terms containing second derivatives ofD (0). In this formula
8-4
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and below we assume the subtraction from the integran
the terms of the order (Za)0 and (Za)2. Then we use the
relation

~e•p1,2!D
(0)~r2 ,r1u«!5

ik2eikr

8p2r 1r 2
E dqexpF i

krq2

2r 1r 2
G

3S 2Ar 1r 2

uq2ru D
2iZalS 11 i

p~Za!2

2kuq2ru D
3S 7

e•r

r
1

e•q

r 1,2
D , ~26!

and pass from the variablesr1,2 to the variables

r5r22r1 , r5
r3@r13r2#

r 2
, z52

~r•r1!

r 2
. ~27!

In terms of these variablesdr1dr25r dr dr dz, and within
our accuracyr 15rz, r 25r (12z). We obtain from Eq.~25!

dsC

d«2
52

a«2«1

16p4v
ReE dr

r 5E0

1 dz

z2~12z!2E E E
3dq2dq1drS Q1

Q2
D 2iZa

expF ivr

2 S c22
m2

«2«1
D

1 i
«2q2

2 1«1q1
2

2rz~12z!
GF11

ip~Za!2

2 S 1

«2Q2
1

1

«1Q1
D G

3H 4«2«1S e•r1
e•q2

12zD S 2e•r1
e•q1

z D
2

v2

z2~12z!2
~e•q2!~e•q1!J , ~28!

where Q65uq62ru and c is the angle between vectorsr
andk. SincedsC /d«2 is independent of the photon pola
ization, we can replace in Eq.~28! eiej by 1

2 d '
i j 5 1

2 (d i j

2kikj /v2). The integral overr can be taken with the help o
the relations~see Appendix B!

f ~Za!5
1

2p~Za!2q2E drF S Q1

Q2
D 2iZa

2112~Za!2 ln2
Q1

Q2
G

5Re@c~11 iZa!1C#,

g~Za!5
i

4pqE dr

Q1
F S Q1

Q2
D 2iZa

21G
5Za

G~12 iZa!G~1/21 iZa!

G~11 iZa!G~1/22 iZa!
, ~29!

where c(t)5d ln G(t)/dt, C50.577 . . . is the Euler con-
stant,q5uq22q1u. We have
02270
of dsC

d«2
52

a~Za!2«2«1

8p2v
ReE

0

`dr

r 3E0

`

c dcE
0

1 dz

z2~12z!2

3E E dq2dq1 expF ivr

2 S c22
m2

«2«1
D

1 i
«2q2

2 1«1q1
2

2rz~12z!
GFq2f ~Za!1pqS g~Za!

«1

2
g* ~Za!

«2
D G H 4«2«1S 2r 2c21

q2•q1

z~12z! D
2

v2

z2~12z!2
~q2•q1!J . ~30!

Passing to the variablesq̃5q21q1 , q5q22q1 , we take
all integrals in the following order:dc, dq̃, dq, dr, dz. The
final result for the Coulomb corrections to the spectrum re

dsC
(0)

dx
1

dsC
(1)

dx
524s0F S 12

4

3
x~12x! D f ~Za!

2
p3~122x!m

8x~12x!v

3S 12
3

2
x~12x! D Reg~Za!G ,

x5«2 /v, s05a~Za!2/m2. ~31!

In Eq. ~31!, the term} f (Za) corresponds to the leadin
approximationdsC

(0)/dx @8#, the term}Reg(Za) is the first
correctiondsC

(1)/dx. In contrast to the leading term, this co
rection is antisymmetric with respect to the permutati
«1↔«2 ~or x↔12x) and, therefore, does not contribute
the total cross section. Besides, the correction is an odd fu
tion of Za due to the charge-parity conservation and t
antisymmetry mentioned above. The antisymmetric contri
tion enhances the production of electrons atx,1/2 and sup-
presses it atx.1/2. Evidently, the opposite situation occu
for positrons. Qualitatively, such a behavior of the spectr
takes place for anyv being the most pronounced at lo
photon energy@6#. At intermediate photon energies, the spe
trum ~31! essentially differs from that given by the leadin
approximation. We illustrate this statement in Fig. 1, whe
s0

21dsC /dx with correction~solid line! and without correc-
tion ~dashed line! are plotted forZ582 andv550 MeV.

Due to the antisymmetry ofdsC
(1)/dx at «6@m, the term

sC
(1) in the total cross section may originate only from t

energy regions«2;m and«15v2«2;m. The quasiclas-
sical approximation cannot be used directly in these regio
and another approach is needed to calculate the spect
We are going to do this elsewhere. However, for the to
cross section, it is possible to overcome this difficulty
means of dispersion relations~see Sec. V!.

As known ~see, e.g., Ref.@18#!, the spectrum of brem-
sstrahlung can be obtained from the spectrum of pair prod
8-5
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tion. This can be performed by means of the substitut
«1→2«, v→2v8, anddx→ydy, wherey5v8/«, v8 is
the energy of an emitted photon,« is the initial electron
energy. Using Eq.~31!, we obtain for the Coulomb correc
tions to the bremsstrahlung spectrum

y
dsC

g

dy
524s0F S y21

4

3
~12y! D f ~Za!2

p3~22y!m

8~12y!«

3S y21
3

2
~12y! D Reg~Za!G . ~32!

This formula describes bremsstrahlung from electro
For the spectrum of photons emitted by positrons, it is n
essary to change the sign ofZa in Eq. ~32!. Our result~32!
coincides with that obtained in Ref.@19# if the obvious mis-
take in the latter is corrected by changing

1

g
→ 1

2 S m

«
1

m

«2v8
D 5

~22y!m

2~12y!«

in Eq. ~22! of Ref. @19#. The correction~32! is the most
important aty close to unity, see Fig. 2, wheres0

21ydsC
g /dy

with correction~solid line! and without correction~dashed
line! are shown forZ582 and«550 MeV.

FIG. 1. The dependence ofs0
21dsC /dx on x, see Eq.~31!, for

Z582, v550 MeV. Dashed curve, leading approximation; so
curve, first correction is taken into account.

FIG. 2. The dependence ofs0
21ydsC

g /dy on y, see Eq.~31!, for
Z582, «550 MeV. Dashed curve, leading approximation; so
curve, first correction is taken into account.
02270
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V. COULOMB CORRECTIONS TO THE TOTAL
CROSS SECTION

In the leading approximation, the Coulomb correctio
sC

(0) to the total cross section of pair production forv@m
were obtained in Ref.@8#. Using this result and dispersio
relations, the corresponding termMDC

(0) in the forward Del-
brück scattering amplitudeMD was obtained in Ref.@20#.
These two quantities read

sC
(0)52 28

9 s0 f ~Za!, MDC
(0) 52 i 28

9 vs0 f ~Za!, ~33!

wheres0 and f (Za) are defined in Eqs.~31! and ~29!, re-
spectively.

In this section we derive the correctionsC
(1) by means of

the relation~9!. Starting from Eq.~13! and performing the
same calculations as in the preceding section we obtain

MDC
(0) 1MDC

(1) 524ivs0E
0

1

dxF S 12
4

3
x~12x! D f ~Za!

2
p3m

8v S 12
3

2
x~12x! D

3S g* ~Za!

x
2

g~Za!

12x D G . ~34!

Here the integration overx corresponds to the integratio
over «/v. After the integration theMDC

(0) in Eq. ~34! coin-
cides with that in Eq.~33!. The integral inMDC

(1) is logarith-
mically divergent. Note that we have obtained the integra
in Eq. ~33! under the conditionsx@m/v and 12x@m/v.
Taking the integral fromd to 12d, whered*m/v, we find
within logarithmic accuracy that ImMDC

(1) vanishes and

ReMDC
(1) 52

a~Za!2p3 Im g~Za!

m
ln

v

m
. ~35!

The quantity ImMDC
(1) does not contain ln(v/m) and is

determined by the regions of integration over«, where «
;m and v2«;m, and, therefore, the quasiclassical a
proximation is invalid. Nevertheless, this quantity, which
related tosC

(1) ~9!, can be obtained from the dispersion rel
tion for MD @20#,

ReMD~v!5
2

p
v2 PE

0

` Im MD~v8! dv8

v8~v822v2!
. ~36!

Using this relation, it can be easily checked that the hig
energy asymptotics~35! unambiguously corresponds to th
v-independent high-energy asymptotics

Im MDC
(1) 5

a~Za!2p4 Im g~Za!

2m
. ~37!

Substituting Eq.~35! into Eq.~9! and usingsb f from Ref.
@11# in the form
8-6
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sb f54ps0 ~Za!3 f 1~Za!
m

v
, ~38!

we have forsC
(1)

sC
(1)5s0 Fp4

2
Im g~Za!24p~Za!3 f 1~Za!G m

v
. ~39!

The functionf 1(Za) is plotted in Fig. 3.
The quantity (v/m)sC

(1)/sC
(0) is shown in Fig. 4~solid

curve!. It is seen that this ratio is numerically large for anyZ.
Therefore, the termsC

(1) gives a significant contribution to
sC for intermediate photon energies. Dashed curve in Fig
gives the same ratio whensb f in Eq. ~39! is omitted. It is
seen that the relative contribution of the term} f 1(Za) in
Eq. ~39! is numerically small.

VI. SCREENING CORRECTIONS

In two previous sections the cross section ofe1e2 pair
production has been considered for a pure Coulomb fi
The differencedV(r ) between an atomic potential and
Coulomb potential of a nucleus leads to the modification
this cross section known as the effect of screening. In
Born approximation, this effect was studied long ago~see,
e.g., Ref.@5#!. Let us consider nowsC

(scr) characterizing the
influence of screening on the Coulomb corrections. Recol
that the Coulomb corrections denote the higher-order te
of the perturbation theory with respect to the atomic field.

FIG. 3. The quantityf 1 as a function ofZ.

FIG. 4. The quantity (v/m)sC
(1)/sC

(0) as a function ofZ ~solid
curve!. The dashed curve corresponds to the same quantity wit
the contribution of the bound-free pair production.
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far it was only known that the correctionsC
(scr) is not large

@8#. Here we consider this issue quantitatively.
The quasiclassical Green’s functionD (0)(r2 ,r1u«) for an

arbitrary localized potentialV(r ) has been obtained in Re
@21# with the first correction taken into account. The leadi
term has the form~see also Ref.@12#!

D (0)~r2 ,r1u «!5
ikeikr

8p2r 1r 2
E dq

3expF i
kr q2

2r 1r 2
2 ilr E

0

1

dxV~r11xr2q!G .
~40!

Substituting this formula into Eq.~25!, we obtain@cf. Eq.
~28!#

dsC

d«2
52

a«2«1

16p4v
ReE dr

r 5E0

1 dz

z2~12z!2E E E
3dq2dq1dr expH iF1

ivr

2 S c22
m2

«2«1
D

1 i
«2q2

2 1«1q1
2

2rz~12z! J H 4«2«1S e•r1
e•q2

12zD
3S 2e•r1

e•q1

z D2
v2

z2~12z!2
~e•q2!~e•q1!J ,

F5r E
0

1

dx@V~r11xr2q1!2V~r11xr2q2!#. ~41!

The phaseF can be represented as

F52Za ln~Q1 /Q2!1F (scr)

52Za ln~Q1 /Q2!1r E
0

1

dx@dV~r11xr2q1!

2dV~r11xr2q2!#. ~42!

As in the case of a pure Coulomb field, the main con
bution to the Coulomb corrections comes from the region
integrationq6;r;1/m. The main contribution to the inte
gral overx in Eq. ~42! comes from the narrow region aroun
the point x052r1•r/r 25z, dx5r/r !1. Therefore, it is
possible to perform the integration in Eq.~42! from 2` to
`. Thus we can estimateF (scr) as F (scr);r dV(r)
;Za dV(r)/V(r)!1. In our calculation ofsC

(scr) , we re-
tain the linear term of expansion inF (scr). By definition,

dV~r !5E dD

~2p!3
ei DrF~D!

4pZa

D2
, ~43!

whereF(Q) is the atomic electron form factor. Substitutin
this formula to Eq.~42! and taking the integral overx from
2` to `, we obtain forF (scr)

ut
8-7
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F (scr)5E dD'

~2p!2
ei D'rF~D'!

4pZa

D'
2

, ~44!

whereD' is two-dimensional vector lying in the plane pe
pendicular tor. Then we use the identity, see Eqs.~22! and
~23! in Ref. @17#,

E drS ur2q1u
ur2q2u D

2iZa

exp@ i D'•~r2q6!#

5
q2

4D'
2 E dfS f 1

f 2
D 2iZa

exp@ iq•f6/2#, ~45!

where q5q22q1 and f65f6D' . Expanding Eq.~41! in
F (scr) and using the identity~45!, we take the integrals ove
variablesq6 , r, andz and obtain

dsC
(scr)

dx
5

8a~Za!

3p E dD'

D'
4

F~D'!E df

2p S f 1

f 2
D 2iZa

3FR~j2 ,a!

f 2
2

2
R~j1 ,a!

f 1
2 G ,

R~m, a!5
~m21!

4m2 H 1

2Am
@1826m1a~m212m23!#

3 lnFAm11

Am21
G2182a~m23!J ,

j651116m2/ f 6
2 , a56x~12x!. ~46!

Using the trick introduced in Sec. IX in Ref.@17#, we
rewrite this formula in another form. Let us multiply th
integrand in Eq.~46! by

1[E
21

1

dy dS y2
2f•D'

f 21D'
2 D

5~ f 21D'
2 !E

21

1 dy

uyu
d„~ f2D' /y!22D'

2 ~1/y221!…,

~47!

FIG. 5. The ratiosC
(scr)/sC

(0) as a function ofZ.
02270
change the order of integration overf and y, and make the
shift f→f1D' /y. After that the integration overf can be
done easily. Then we make the substitutiony5tanht and
obtain

dsC
(scr)

dx
5

32

3
s0m2E

0

` dQ

Q3
F~Q!E

0

` dt

sinht Fsin~2Zat!

2Za
2tG

3E
0

2pdw

2p
@etR~m1 , a!2e2tR~m2 , a!#,

m6511
8m2e6t sinh2t

Q2~cosht1cosw!
. ~48!

Integrating overx, we have

sC
(scr)5

32

3
s0m2E

0

` dQ

Q3
F~Q!E

0

` dt

sinht Fsin~2Zat!

2Za
2tG

3E
0

2pdw

2p
@etR~m1 , 1!2e2tR~m2 , 1!#. ~49!

Similar to sC
(0) , this correction isv independent. Shown in

Fig. 5 is theZ dependence of the ratiosC
(scr)/sC

(0) calculated
with the use of the form factors taken from Ref.@22#. As seen
from Fig. 5, this ratio is approximately fitted by the line
function sC

(scr)'25.431024ZsC
(0) .

The corresponding correction to the bremsstrahlung sp
trum is obtained from Eq.~48! by means of the same subst
tutions as in Sec. IV. So that the quantityy21dsC

g(scr)/dy is
given by the right-hand side of Eq.~48! if we set a5(y
21)/y2.

VII. ESTIMATION OF sC
„2… FROM EXPERIMENTAL DATA

The most detailed and accurate experimental data h
been obtained just in the region of intermediate photon
ergies. In this region, the first correctionsC

(1) , obtained
above, becomes large, see Fig. 4 for (v/m)sC

(1)/sC
(0) , and

the next termsC
(2) in the expansion~2! may be significant.

Using the arguments similar to those presented by Da

FIG. 6. Thev dependence ofS5(scoh2sB)/sC
(0) for Bi. Solid

curve, our result; dashed curve, the result of O” verbo” @9#; experimen-
tal data from Ref.@23#.
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et al. @8# the following ansatz forsC
(2) has been suggested

our recent paper@10#:

sC
(2)5s0@b ln~v/2m!1c#S m

v D 2

, ~50!

whereb and c are some functions ofZa. It was shown in
Ref. @10# that experimental data forscoh are well described
by the formula

scoh5sB1sC
(0)1sC

(scr)1sC
(1)1sC

(2) , ~51!

wheresC
(0) , sC

(scr) , and sC
(1) are from Eqs.~33!, ~49!, and

~39!, respectively; sC
(2) is given by Eq. ~50! with b

53.78(v/m)s0
21sC

(1) , c50.
It is interesting to compare our predictions for the Co

lomb corrections to the total cross section with the results
O” verbo” @9#. Shown in Figs. 6 and 7 is the ratioS5(scoh

2sB)/sC
(0) , which is the Coulomb corrections in units o

sC
(0) , Eq. ~33!.
Our results are represented by solid curves, those

O” verbo” are shown as dashed curves. The values ofS ex-
tracted from the experimental data are also shown. The
sults for Bi are plotted in Fig. 6 with the experimental da
taken from Ref.@23#. The results for Pb are plotted in Fig.
with the experimental data taken from Ref.@24,25#. It is seen
that the difference between our results and those of O” verbo” is
small at relatively low energies and becomes noticeable av
increases. According to our results, this difference tends
constantsC

(scr)/sC
(0) at v→`. The experimental data are, o

the whole, in a better agreement with our results than w
those of O” verbo”.

VIII. CONCLUSION

For the e1e2 photoproduction, we have calculated th
leading correction~31! to the electron spectrum in the regio
«6@m. This contribution noticeably modifies the spectru
at intermediate photon energy. It turns out that the correc
is antisymmetric with respect to the permutation«1↔«2

and hence does not contribute to the total cross section.
leading correction to the total cross section,sC

(1) , originates
from two regions«1;m and«2;m. We have obtainedsC

(1)

~39! using dispersion relations. In contrast to the form of t

FIG. 7. Same as Fig. 6 but for Pb; experimental data from R
@24,25#.
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fit suggested by O” verbo” @9#, the quantitysC
(1) does not con-

tain any powers of ln(v/m). We have also performed th
quantitative investigation of the influence of screening on
Coulomb corrections~48! and~49!. It is important thatsC

(scr)

does not vanish in the high-energy limit. We have sugges
a form for the next-to-leading correctionsC

(2) to the total
cross section. Altogether, the corrections found allow one
represent well the available experimental data.

Starting with the results obtained for thee1e2 photopro-
duction spectrum, we have obtained the corresponding
rections to the bremsstrahlung spectrum as well.
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APPENDIX A

In this appendix we perform the transformation from E
~8! to Eq.~13!. The transformation from Eq.~7! to Eq.~12! is
performed in the same way.

The Delbr̈uck scattering amplitude~8! can be represente
as follows:

MD52iaE d«E dr2 Sp̂ r2u@P̂2m#21ê@P̂2 k̂

2m#21ê ur2&. ~A1!

HereP̂5g0@«2V(r)#2g•p andp52 i“. We represent the
operator@P̂2m#21 in Eq. ~A1! in the form

@P̂2m#215@P̂22m2#21~P̂1m!

and use the relation

~P̂1m!ê5@2ê~P̂2 k̂2m!2êk̂22e•p#.

Then we obtain

MD52iaE d«E dr2 Sp̂ r2u$2@P̂22m2#21 @2e•p

1êk̂# @~P̂2 k̂!22m2#21~P̂2 k̂1m!ê

2ê@P̂22m2#21ê%ur2&. ~A2!

We obtain another expression forMD using the represen
tation

@P̂2 k̂2m#215~P̂2 k̂1m!@~P̂2 k̂!22m2#21

and the relation

ê~P̂2 k̂1m!5@2ê~P̂2m!2êk̂22e•p#.

We have

s.
8-9
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MD52iaE d«E dr2 Sp̂ r2u$2~P̂1m!@P̂22m2#21@2e•p

1êk̂#@~P̂2 k̂!22m2#21ê2ê@~P̂2 k̂!22m2#21ê%ur2&.

~A3!

The terms odd inm in Eqs.~A2! and~A3! vanish after taking
a trace. It is evident that

E d«E dr2 ^r2u@~P̂2 k̂!22m2#21ur2&

5E d«E dr2^r2u@P̂22m2#21ur2&.

Taking a half sum of Eqs.~A2! and~A3! and using the iden-
tity *dx Sp̂ xuA1A2ux&5*dx Sp̂ xuA2A1ux&, valid for arbi-
trary operatorsA1 andA2, we obtain

MD5 iaE d«E dr2 Sp̂ r2u$~2e•p2êk̂!@P̂22m2#21 @2e•p

1êk̂#@~P̂2 k̂!22m2#2112@~P̂2 k̂!22m2#21%ur2&.

~A4!

This formula is equivalent to Eq.~13!.

APPENDIX B

In this appendix we derive the formulas~29!. In the inte-
gral for f (Za) let us make the change of variablesr→(r
1q11q2)/2:

f ~Za!5
1

8p~Za!2q2E drF S ur1qu
ur2qu D

2iZa

21

12~Za!2ln2
ur1qu
ur2quG . ~B1!

Let us multiply the integrand in Eq.~46! by

1[E
21

1

dy dS y2
2r•q

r21q2D 5~r21q2!E
21

1 dy

uyu
d„~r2q/y!2

2q2~1/y221!…, ~B2!
.

02270
change the order of integration overr andy, and make the
shift r→r1q/y. Then the integral overr becomes trivial
and we have

f ~Za!5
1

4~Za!2E21

1 dy

uyu3
F S 11y

12yD iZa

21

1
~Za!2

2
ln2S 11y

12yD G . ~B3!

Then we make the substitutiony5tanht and obtain

f ~Za!5
1

2~Za!2E0

`

dt
cosht

sinh3t
@cos~2Zat!2112~Za!2t2#

5E
0

`dte2t

sinht
@12cos~2Zat!#5Re@c~11 iZa!1C#.

~B4!

In order to calculate the functiong(Za) we make a shiftr
→r1q1 in Eq. ~29! and use the exponential parametrizati

An5
eipn/2

G~2n!
E

0

` ds

s11n
exp@ iAs#. ~B5!

Then we have

g~Za!5
iepZa/2

4pqG~ iZa!
E drr2112iZaE

0

`

ds s211 iZa

3$exp@ is~r2q!2#2exp@ isr2#%. ~B6!

Taking the integral over the angles of two-dimensional v
tor r and making the substitutionsr→r/As, s→s/q2 we
come to

g~Za!5
iepZa/2

2G~ iZa!
E

0

`

dr r2iZa exp@ ir2#E
0

`

ds s23/2

3@eisJ0~2rAs!21#. ~B7!

Taking the integrals overs and then overr we finally obtain

g~Za!5Za
G~12 iZa!G~1/21 iZa!

G~11 iZa!G~1/22 iZa!
. ~B8!
t
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