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Complete direct method for electron-hydrogen scattering: Application to the collinear
and Temkin-Poet models

Philip L. Bartlett* and Andris T. Stelbovics†

Centre for Atomic, Molecular and Surface Physics, Murdoch University, Perth 6150, Australia
~Received 5 September 2003; published 4 February 2004!

We present an efficient generalization of the exterior complex scaling~ECS! method to extract discrete
inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal
method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold
ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization
cross sections near threshold strongly support the classical threshold law of Wannier@Phys. Rev.90, 817
~1953!# (s}E1.12860.004) for theL50 singlet collinear model and the semiclassical threshold law of Peterkop
@J. Phys. B16, L587 ~1983!# (s}E3.3760.02) for the L50 triplet collinear model, and are consistent with
the semiclassical threshold law of Macek and Ihra@Phys. Rev. A55, 2024 ~1997!# „s}exp@(26.87
60.01)E21/6#… for the singlet Temkin-Poet model.
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o
k

ha
to

l
re
n
s

ge
lu

en

ki

th
S

ob
al

vi
el
at
ha
u

te
in
se

t-
any
les

ca-

ion

-
ral
lly

od
ich
evi-

at
n-

for
al
f
la-

pli-
dif-
We
ices

evi-

ual
tial

e
ude
re-
I. INTRODUCTION

In a recent publication Baertschyet al. @1# demonstrated
that the method of exterior complex scaling~ECS! could be
successfully applied to the Coulomb three-body problem
electron-impact ionization. This was a significant brea
through in the field of electron collisions as they showed t
the time independent Schro¨dinger equation could be used
calculate the scattered wave function without explicit know
edge of the asymptotic boundary conditions, which until
cently @2# were not known for the full electron-hydroge
problem. Clearly, the ability to solve many-body problem
particularly above ionization threshold, without knowled
of their boundary conditions makes the ECS method inva
able for larger more complex systems. However, implem
tation of the ECS method of Baertschyet al. involves solv-
ing very large and sparse systems of linear equations, ma
its application to a four-body problem~for example, the
electron-impact double ionization of helium! impractical
with current supercomputing technology.

In an effort to reduce the computational overhead of
direct solution of the electron-hydrogen problem using EC
as an incremental step towards solving the four-body pr
lem, we have adopted a propagation technique, origin
used by Poet@3# to solve the Temkin-Poet@4,5# ~TP! model
problem. More recently it was used by Jones and Stelbo
@6,7# for benchmark calculations for the TP ionization mod
In this paper we generalize this propagation method so th
can be used with ECS. We believe that this algorithm
features that will lead to a significant saving in the comp
tational requirement of the full hydrogen problem.

Once the scattering wave function has been compu
there still remains the problem of extracting the scatter
amplitudes. The application of the ECS method has focu
thus far primarily on the ionization amplitude~e.g., Refs.
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@8–12#!. We show how the integral formulation for extrac
ing ionization amplitudes can be adopted to compute
discrete excitation amplitude. We give numerous examp
for the collinear@13,14# ~CL! and TP models.

The work of Baertschyet al. @1# for the ECS solution to
the full hydrogen problem was preceded by many publi
tions which explored the theoretical basis for ECS@15#, ap-
plication of ECS to short-range potential models@10#, and
benchmark calculations for the TP model@8,9#. Later publi-
cations explored integral methods for extracting ionizat
amplitudes for the CL and TP models@11# as well as the full
hydrogen problem@12#, in contrast to their previous flux ex
trapolation method. Our work is also based on this integ
method for extracting ionization cross sections, origina
proposed by Peterkop@16# and Rudge and Seaton@17#.

For the CL model, the efficiency of the present meth
has allowed us to probe significantly lower energies, wh
requires much larger grids, with greater accuracy than pr
ous fully quantal studies@11,18,19#. This allowed us to in-
vestigate the classical Wannier@20# threshold law for theL
50 singlet CL model, and provide a fitting function th
accurately predicts the low-energy behavior of its total io
ization cross section~TICS! @21#. Similar procedures were
used to calculate the fully quantal threshold power law
the L50 triplet CL model, which supports the semiclassic
calculations of Peterkop@22#, and the threshold behavior o
the singlet TP model, which is consistent with the calcu
tions of Macek and Ihra@23#.

We have also explored the phase of the ionization am
tude extracted from the ECS wave functions for several
ferent configurations of the final-state continuum waves.
were able to calculate cross sections using several cho
for these continuum waves, and found, as detailed in pr
ous ECS publications by McCurdyet al. @11# for the model
problems and Baertschyet al. @12# for the full hydrogen
problem, that the product of two Coulomb waves, with eq
charge, provides an accurate and smooth single-differen
cross sections~SDCS!. However, for the TP model we hav
demonstrated that convergence of the ionization amplit
phase is only achieved directly when this final state is rep
©2004 The American Physical Society03-1
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sented by a plane wave for the fast electron and a Coulo
wave for the slow electron@24#, which represents the tru
asymptotic boundary conditions for this model. In the C
model, neither of these choices for the final-state continu
wave provides convergent phases. However, a recent p
by Rescignoet al. @25# gives correction formulas for the ion
ization amplitude phases for both the CL and TP mod
when the final-state continuum waves are approximated
two Coulomb waves of arbitrary charges. We test these
mulas for these models for both the singlet and triplet wa
functions.

II. THEORY

A. Scattered wave equations

The Schro¨dinger equation for the electron-impact of h
drogen isĤC (1)5EC (1), and using the relationshipC (1)

5Csc(1)1Cki
may also be expressed as

~E2Ĥ !Csc(1)~r1 ,r2!5~Ĥ2E!Cki
~r1 ,r2!, ~1!

where Csc(1) is the scattered outgoing wave function a
Cki

is the symmetrized initial-state wave function given b

Cki
~r1 ,r2!5

1

A2
@F1s~r1!eiki•r21~21!S~1↔2!#. ~2!

F1s is the hydrogen ground-state wave function,ki is the
momentum of the incident-electron, and the Hamiltonian
the system is given by

Ĥ52
1

2
¹1

22
1

2
¹2

22
1

r 1
2

1

r 2
1V12~r1 ,r2!, ~3!

where for the full hydrogen problem

V12~r1 ,r2!5
1

ur12r2u
. ~4!

All equations, unless otherwise noted, are in atomic u
~a.u.!.

The CL and TP models calculated in this paper are s
plifications of the full hydrogen problem, and we only co
sider the case where all angular momenta are zero, and
hydrogen target is initially in the ground state@26#. After
performing a partial-wave expansion of Eq.~1! using

Csc(1)~r1 ,r2!5
1

r 1r 2
(

l 1l 2L
c l 1l 2

L ~r 1 ,r 2!Y l 1l 2
L0 ~ r̂1 , r̂2! ~5!

and retaining only zero angular momentum terms we ha

S E1
1

2

]2

]r 1
2

1
1

2

]2

]r 2
2

1
1

r 1
1

1

r 2
2V12~r 1 ,r 2!D c~r 1 ,r 2!

5x~r 1 ,r 2!, ~6!
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wherec5c l 1l 2
L is the outgoing scattered wave function f

L5 l 15 l 250, and

x~r 1 ,r 2!5
A2p

ki
F S V12~r 1 ,r 2!2

1

r 2
Df1s~r 1!sin~kir 2!

1~21!S~1↔2!G , ~7!

wheref1s(r )5rR1s(r ) andR1s(r ) is the radial wave func-
tion for the ground state (n51,l 50) of hydrogen.

For the TP model theV12 term, derived from the first term
of the partial-wave expansion of the electron-electron pot
tial (1/ur12r2u), is given by

V12~r 1 ,r 2!5
1

r .
5

1

max~r 1 ,r 2!
. ~8!

The CL model is a low-energy approximation of the fu
problem, and can be viewed as one where the ejected
scattered electrons leave the nucleus in opposite directi
giving an electron-electron potential of

V12~r 1 ,r 2!5
1

r 11r 2
. ~9!

B. Exterior complex scaling

We solved Eq.~6! using the method of exterior comple
scaling, where all radial coordinates are rotated into the co
plex plane by a fixed angleu, at a sufficiently large radius
R0, such that convergence of the extracted cross section
obtained. This transformation,

z~r !5H r , r ,R0

R01~r 2R0!eiu, r>R0 ,
~10!

allows a numerical solution to be calculated without know
edge of the asymptotic boundary conditions, as all outgo
waves diminish exponentially beyondR0. The scattered
wave function contains only outgoing waves, but the inh
mogeneous termx contains both incoming and outgoin
waves, and so must be truncated atR0, as incoming waves
diverge using this transformation. This method has been u
successfully by McCurdyet al. @11# for the models consid-
ered in this paper, and later by Baertschyet al. @1# for the full
hydrogen problem.

Rescignoet al. @15# demonstrated that finite differenc
methods may be used to solve this ECS transformation,
vided thatR0 is one of the grid points. The application of th
transformation to the numerical solution of Eq.~6! is equiva-
lent to solving the finite-difference equations for Eq.~6!
without transformation, but using complex grid spacing b
yond R0.

C. Discrete final-state cross sections

The method we use to compute the discrete final-s
scattering amplitudes is based on the integral@27#
3-2
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I 5E C (1)~r1 ,r2!~Ĥ2E!F* ~r1 ,r2!dr1dr2 , ~11!

whereF is an asymptotic approximation of the final sta
The energy and potential operators can be removed by u
the relationship (Ĥ2E)C (1)(r1 ,r2)50, giving

I 5
1

2E $F* ~r1 ,r2!~¹1
21¹2

2!C (1)~r1 ,r2!

2C (1)~r1 ,r2!~¹1
21¹2

2!F* ~r1 ,r2!dr1dr2%. ~12!

By rearrangement, and use of the divergence theorem,
may then be converted into a surface integral over one c
dinate and a volume integral over the other coordinate

I 5E d3r 2 R
S1

@F* ~r1 ,r2!¹1C (1)~r1 ,r2!

2C (1)~r1 ,r2!¹1F* ~r1 ,r2!#•dS1 , ~13!

where we have also made use of the antisymmetry ofC (1)

andF in writing this form.
To derive the relationship betweenI and the scattering

amplitude f j i , where the subscriptsi[(ni l imi) and j
[(nj l jmj ) are the initial and final state of the target hydr
gen atom, we substitute into Eq.~13! an asymptotic approxi-
mation for the outgoing scattering wave function given b

C i
sc(1)~r1 ,r2!;

1

A2
(

j
F j~r2!

e1 ik j r 1

r 1
f j i ~kj ,ki !, ~14!

when r 1→`, r 2 /r 1→0, and an asymptotic approximatio
of the final state given by

F j~r1 ,r2!5
1

A2
@F j~r1!eikj •r21~21!S~1↔2!#. ~15!

We can use the outgoing scattering wave functionC i
sc(1) in

place of the outgoing total wave functionC (1) in Eq. ~13!,
as asymptotically the initial-state wave function does
contribute to the integral. Then, by substituting t
asymptotic form for a plane wave~in three dimensions!,

eik•r;
2p

ikr
@d~V̂k2V̂ r!e

ikr2d~V̂k1V̂ r!e
2 ikr #, ~16!
02270
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and removing terms that asymptotically approach zero,
arrive at the relationship

f j i ~kj ,ki !5
~21!S11

2p
I , ~17!

and can calculate the scattering cross section using

s j i 5
kj

ki
E u f j i ~kj ,ki !u2dk̂j , ~18!

where kj is the momentum of the scattered electron. T
magnitude of this momentum, for a ground state target
given bykj5ki2

1
2 (121/nj

2). For theL50 models consid-
ered in this paper, this simplifies to

s j i 54p
kj

ki
u f j i ~kj !u2. ~19!

To evaluatef j i for the L50 models considered here, w
perform a partial-wave expansion by substituting

C i
sc(1)~r1 ,r2!5

1

r 1r 2
(
l 1l 2

LMP

i Lc l 1l 2
SLMP~r 1 ,r 2!Yl 1l 2

LM ~r1̂,r2̂!,

~20!

F j~r1 ,r2!5
1

A2
S 1

r 1
fnj l j

~r 1!Yl jmj
~ r̂1!eikj •r2

1~21!S~1↔2! D , ~21!

and

eik•r54p(
l 50

`

(
m52 l

l

i l j l~kr !Ylm* ~ k̂!Ylm~ r̂! ~22!

into Eq. ~13! and Eq.~17!. By retaining only theL5 l 15 l 2

50 terms, and using the notationc(r 1 ,r 2)5c00
S000(r 1 ,r 2),

we were able to derive the asymptotic form for the discr
final-state scattering amplitude for theL5 l 15 l 250 case as
f j i ~kj !;
1

A2p
E dr2r 1

2fnj0
~r 2!F 1

r 1
c~r 1 ,r 2!

]

]r 1
j 0~kj r 1!2 j 0~kj r 1!

]

]r 1

1

r 1
c~r 1 ,r 2!G , ~23!

where j 0 is the spherical Bessel function forl 50.
3-3
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D. Ionization cross sections

The TICS results were extracted from the scattered w
function using the equation for ionization amplitude given
Eq. ~11!. Details of the method leading to the limiting ex
pressions on a hypersphere have been given previousl
McCurdy and Rescigno@10# and will not be repeated here
For ourL50 model problems the TICS is given by

s~E!5E
0

E/2 16

pkik1k2
u f ~k1 ,k2 ,R!u2de2 , ~24!

where

f ~k1 ,k2 ,R!;
R

2E0

p/2

daFF* ~k1 ,k2 ,R,a!
]

]R
c~R,a!

2c~R,a!
]

]R
F* ~k1 ,k2 ,R,a!G , ~25!

where the total system energy is given byE5e11e25(k1
2

1k2
2)/2, the hyperangle is given bya5arctan(r2 /r1), and the

hyperradius is given byR5Ar 1
21r 2

2. F is a function that
describes the final-state asymptotic continuum waves of
ionization process.

This method for extracting the TICS from the scatter
wave function has been used successfully by McCurdyet al.
@11# for the model hydrogen problems considered in this
per, and by Baertschyet al. @12# for the full problem. In both
of these papers the final-state continuum waves are app
mated by the product of two Coulomb waves with chargz
51.

F~k1 ,r 1 ,k2 ,r 2!5f l 1
(2)~k1 ,r 1!f l 2

(2)~k2 ,r 2!, ~26!

where l 15 l 250 for the model problems considered in th
paper.

However, it is known that for the TP model this choice
continuum waves leads to a divergent ionization amplitu
phase@24,25#. As it is also known that the boundary cond
tion of the TP model is a plane wave and Coulomb wa
which has the form

F (2)~k1 ,r 1 ,k2 ,r 2!5f l 1
(2)~k1r 1!sin~k2r 2!, k1,k2 ,

~27!

we also present SDCS calculations for this choice of c
tinuum waves. However, to ensure that the discrete exc
tion states of hydrogen, which are also contained inc, do
not affect the ionization amplitude, we have made the^r uk&
5sin(kr) function orthogonal to the firstN bound states of
hydrogen~with l 50) using the relation

^r uk&'5^r uk&2(
n

N

^r un00&^n00uk&, ~28!

whereN can be made arbitrarily large. As^r uk&'5^r uk& for
r→`, the orthogonalization of the plane wave has no eff
upon the asymptotic value of Eq.~25!. However, for the
finite values ofR used in our numerical calculations, th
02270
e
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orthogonalization of the plane wave removes interfere
from discrete final-state scattering amplitudes.

Previously, it was shown by McCurdy and Rescigno@10#
that for a short-range potential problem, using a project
operator to project out the elastic channel from the scatte
wave function removes the wildly oscillatory behavior due
the discrete channels of the problem. Our orthogonaliza
of the plane wave is equivalent to their procedure.

III. COMPUTATIONAL METHODS

A. Numerov formula

The Numerov formula was used to numerically solve E
~6! on a two-dimensional grid of points~symmetric inr 1 and
r 2). When translated to two dimensions the Numerov f
mula uses grid point values ofc( i , j ) and its eight neares
neighbors. The derivation of this formula was given by Po
@3#, and allowed for the singularity atr 150 and r 250 by
using a series expansion ofc at these points. However,
further modification to the Numerov formula was required
allow for the transition from real to complex coordinates
R0. A benefit of our modified Numerov formula presented
the Appendix is that it allows for arbitrary grid spacing
other regions~both real and complex!, removing the restric-
tion of most Numerov implementations of either consta
grid spacing~e.g., Refs.@28,29#! or grid-doubling methods
~e.g., Ref.@7#!.

McCurdy et al. @11# observed small oscillations in the
extracted cross sections, which diminish with increasingR0,
and attributed them to diffraction effects caused by us
finite grid methods. These oscillations were reduced
smoothly truncating theV12 potential on the left-hand side o
Eq. ~6! nearR0 using

Ṽ12~r 1 ,r 2!5V12~r 1 ,r 2!exp„2~R/R0!(R0/3)
…, ~29!

whereR is the hyperradius. These effects were only notic
able in our calculations at low incident energies, or smallR0,
however, we have applied the same smooth truncation w
calculatingall the results presented in this paper.

B. Propagation method

To minimize the computational overhead we used
propagation method similar to that of Poet@3#, and recently
used by Jones and Stelbovics@29# for the TP model, but was
modified to allow for the inhomogeneous termx in this
problem. The notation we use for theA, B, C, andD matri-
ces is defined in Ref.@29#, and should be referred to, i
conjunction with Ref.@3#, to obtain a detailed understandin
of the grid labeling, etc. The Numerov formula for Eq.~6!
may be represented in matrix form as

A( i )
•c¢ ( i 21)1B( i )

•c¢ ( i )1C( i )
•c¢ ( i 11)5x¢ ( i ), ~30!

where thei th column of the grid is solved at each step. Th
equation can be reformed into the propagation equation

c¢ ( i )5D( i )
•c¢ ( i 11)1E( i ), ~31!
3-4
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COMPLETE DIRECT METHOD FOR ELECTRON- . . . PHYSICAL REVIEW A 69, 022703 ~2004!
where theE¢ propagation vector has been introduced into o
derivation, to allow for the inhomogeneous term. The pro
gation matrix and propagation vector are then given by

D( i )52B̃( i )
•C( i ), ~32!

B̃( i )5~B( i )1A( i )
•D( i 21)!21, ~33!

E¢ ( i )5B̃( i )
•~x¢ ( i )2A( i )

•E¢ ( i 21)!, ~34!

noting thati>1 and the boundary conditions arec¢ (0)50¢ and

c¢ ( i )(0)50.
The symmetry of the scattered wave function is given

c(r 1 ,r 2)5(21)Sc(r 2 ,r 1), and so Eq.~6! need only be
solved in the lower triangular region bounded byr 250, r 1
5r 2, and r 15Rmax.R0, hence the size of the propagatio
matrices increase with increasingi. It should be noted tha
the matrices have the following dimensions:A( i )( i ,i 21),
B( i )( i ,i ), B̃( i )( i ,i ), C( i )( i ,i 11), and D( i )( i ,i 11), where
A( i ), B( i ), andC( i ) are band matrices andB̃( i ) and D( i ) are
dense matrices, and are real fori , i R0

and complex fori

> i R0
. The vast majority of the computational effort is d

voted to the matrix inversion in Eq.~33!.
Detailed descriptions of this method may be obtain

from other authors including Poet@3#, Jones and Stelbovic
@6#, and Wang and Callaway@28#, and will not be repeated in
this paper. Where our procedure differs from these previ
studies, is that due to the ECS transformation an asymp
approximation of the solution is not required at the edges
our grid (r 15Rmax andr 25Rmax), as the transformed wav
function can be set to zero on these boundaries.

In order to evaluate the scattering wave function over
entire grid, theA( i ), B̃( i ), andC( i ) matrices must be retaine
for all i. For most of the calculations presented in this pap
the memory required for this storage greatly exceeded
memory capacity of the single supercomputer node that
used for each calculation~4 gigabytes!. Moreover, for sev-
eral of the calculations with very largeRmax, the storage
requirement even exceeded the available high bandw
hard disk capacity of the node~50 gigabytes!, so we imple-
mented a method of writing theB̃( i ) matrices to disk only at
certain milestone values ofi, during the forward pass of th
propagation algorithm@evaluating Eqs.~32!–~34!#.

On the backward pass@evaluating Eq.~31!#, the B̃( i ) ma-
trices between the milestone values ofi were required to be
recalculated. This resulted in an overall doubling of comp
tation time, but allowed us to extend to very large gri
without being limited by memory or hard disk capacity.

C. Integration and interpolation

It should be noted that the integrand in Eq.~25! is highly
oscillatory, and to ensure accurate calculation suitable i
gration techniques must be employed. For example, the
ization amplitude integral for the TP model at equal ene
sharing,E052 a.u. andR05400 a.u., were of the order o
150 oscillations. We used an adaptive grid-halving meth
02270
r
-

y

d

s
tic
f

e

r,
e
e

th

-

e-
n-
y

d

based upon the 10-point Bode’s rule@30# to evaluate this
integral, which required the order of 2000 points for an es
mated 0.001% accuracy. Also, it is important that the int
polation routine used to calculate values forc(r 1 ,r 2), be-
tween grid points is very accurate. We used Chebys
polynomials fitted to a 10310 grid containing the selecte
point. We also noted that when using finite-difference me
ods to calculate the]c/]R terms, all the points required to
calculate the derivative should be calculated using the s
10310 grid ~even when some of the points cross into a d
ferent grid square!, otherwise slight discontinuities appeare
in the integrand, which caused problems for our adapt
integration routine.

IV. RESULTS

A. Discrete final-state cross sections

Using Eqs.~19! and ~23! we were able to successfull
extract the discrete final-state cross sections from our s
tering wave functions for both the CL and TP models. Ho
ever, as is evident from Fig. 1, the cross sections exhib
slowly diminishing oscillatory behavior with respect toR
~approximately 1/R). The relative amplitude of these osci
lations increase~approximately linearly! with the finaln state
of the hydrogen target, and their wavelength also increa
~approximately linearly! with n. These oscillations increas

FIG. 1. CL and TP singlet (e,e) 1s and 5s final-state scattering
cross sections at ionization threshold~0.5 a.u.!, with spin weighting,
as a function of the hypercube dimension used in Eq.~23!. The
solid and dotted lines are the raw results, and the long dashe
the results after scaling by@11n sin(2knR)/R#.
3-5



P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW A69, 022703 ~2004!
TABLE I. CL model singlet (s0) and triplet (s1) electron-impact discrete final-state scattering cross sectionssns and total ionization
cross sectionss i , wheren is the final orbital quantum number of the target hydrogen atom,s t is the total electron-impact cross section,E0

is the incident-electron energy~a.u.!, and cross section units arepa0
2. Numbers in square brackets indicate powers of 10.

E0 s1s
0 s2s

0 s3s
0 s4s

0 s5s
0 s i

0 s t
0 s1s

1 s2s
1 s3s

1 s4s
1 s5s

1 s i
1 s t

1

0.1 1.11@10# 1.11@10# 1.60@23# 1.60@23#

0.2 1.63@10# 1.63@10# 1.86@10# 1.86@10#

0.3 1.39@10# 1.39@10# 2.63@10# 2.63@10#

0.4 1.09@10# 3.71@22# 1.13@10# 2.69@10# 9.79@24# 2.69@10#

0.5 9.05@21# 2.31@22# 5.97@23# 2.36@23# 1.13@23# 9.38@21# 2.51@10# 2.82@23# 1.17@24# 1.26@25# 2.24@26# 2.51@10#

0.6 7.62@21# 1.68@22# 4.46@23# 1.81@23# 9.21@24# 6.01@23# 7.92@21# 2.27@10# 4.09@23# 3.85@24# 9.34@25# 3.55@25# 4.06@25# 2.27@10#

0.7 6.56@21# 1.27@22# 3.39@23# 1.38@23# 7.04@24# 9.03@23# 6.83@21# 2.05@10# 4.81@23# 6.13@24# 1.80@24# 7.73@25# 2.35@24# 2.06@10#

0.8 5.72@21# 9.99@23# 2.63@23# 1.08@23# 5.43@24# 1.02@22# 5.96@21# 1.83@10# 5.11@23# 7.61@24# 2.45@24# 1.09@24# 5.48@24# 1.84@10#

0.9 5.05@21# 8.05@23# 2.10@23# 8.58@24# 4.30@24# 1.04@22# 5.27@21# 1.65@10# 5.18@23# 8.49@24# 2.87@24# 1.31@24# 9.06@24# 1.66@10#

1.0 4.50@21# 6.64@23# 1.71@23# 6.96@24# 3.52@24# 1.01@22# 4.69@21# 1.48@10# 5.11@23# 8.90@24# 3.09@24# 1.45@24# 1.26@23# 1.49@10#

1.5 2.82@21# 3.19@23# 7.91@24# 3.15@24# 1.60@24# 7.26@23# 2.94@21# 9.40@21# 4.09@23# 8.21@24# 3.01@24# 1.47@24# 2.39@23# 9.48@21#

2.0 1.98@21# 1.91@23# 4.63@24# 1.83@24# 9.22@25# 5.04@23# 2.06@21# 6.52@21# 3.12@23# 6.58@24# 2.47@24# 1.21@24# 2.68@23# 6.59@21#
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with decreasing electron-impact energy, and as they rem
constant when finer grid spacing is used, they are not cau
by numerical inaccuracy of the scattering wave function
should be noted that the 1s TP plot has an inset at 200–25
a.u., which is plotted with a finerR spacing, thus showing th
true oscillatory behavior.

The oscillations are consistent with a term of the fo
ne2iknR/R, which asymptotically approaches zero, b
contributes to the cross sections at finiteR. The dashed lines
in Fig. 1 have been scaled by@11n sin(2knR)/R# to remove
this term, and it is clear that these scaled results are v
significantly smoother, with the exception of the 5s CL
results.

It can also be seen from these plots that taking an ave
through the oscillations will also allow convergence of t
cross sections to be obtained at much smallerR. The discrete
cross section results presented in Tables I and II are ca
lated atR5400 a.u. and taking an average of the last os
lation.
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The estimated accuracy of the TP cross sections ra
from 0.5% for the higher energy (E0.0.5 a.u.! 1s results to
2.0% for the 5s results and lower energy (E0<0.2 a.u.! 1s
results. The estimated error of the TICS results is 0.2%. T
TP results at 1, 1.5, and 2 a.u. match the very accurate fin
difference method~FDM! results of Jones and Stelbovics@7#
to within 61 least significant digit, and the low-energy r
sults match the results of Bray and Stelbovics@31# ~interpo-
lated with cubic splines to match data points! to within our
estimated accuracy. We know of no other publications c
taining discrete final-state cross sections for the CL mod
and estimate our errors to be the same as our TP results

The CL model 0.1 a.u. triplet elastic cross section in Ta
I is highly suppressed, and from the singlet and triplet
model cross sections in Fig. 2, it is evident that this is
result of a resonance. The singlet resonance is centere
approximately 0.051 a.u. and the triplet resonance is cent
at 0.097 a.u., both of which are unphysical, and highlight
inaccuracy of the CL model at energies below ionizati
threshold.
tions; see
TABLE II. TP model singlet and triplet electron-impact discrete final-state scattering cross sections and total ionization cross sec
Table I for units and column details.

E0 s1s
0 s2s

0 s3s
0 s4s

0 s5s
0 s i

0 s t
0 s1s

1 s2s
1 s3s

1 s4s
1 s5s

1 s i
1 s t

1

0.1 4.22@10# 4.22@10# 1.02@11# 1.02@11#

0.2 1.46@10# 1.46@10# 6.94@10# 6.94@10#

0.3 7.57@21# 7.57@21# 4.97@10# 4.97@10#

0.4 4.76@21# 3.26@22# 5.07@21# 3.74@10# 3.26@24# 3.74@10#

0.5 3.30@21# 4.07@22# 6.99@23# 1.80@23# 5.86@24# 3.80@21# 2.90@10# 1.89@23# 3.54@25# 1.81@26# 1.61@27# 2.90@10#

0.6 2.50@21# 3.54@22# 8.17@23# 3.00@23# 1.42@23# 4.99@23# 3.03@21# 2.32@10# 3.46@23# 2.28@24# 4.44@25# 1.47@25# 9.01@26# 2.32@10#

0.7 2.01@21# 2.94@22# 7.42@23# 2.91@23# 1.43@23# 1.19@22# 2.54@21# 1.90@10# 4.59@23# 4.70@24# 1.23@24# 4.92@25# 1.02@24# 1.91@10#

0.8 1.70@21# 2.43@22# 6.36@23# 2.55@23# 1.27@23# 1.69@22# 2.21@21# 1.59@10# 5.28@23# 6.77@24# 2.01@24# 8.65@25# 3.20@24# 1.60@10#

0.9 1.48@21# 2.01@22# 5.34@23# 2.16@23# 1.08@23# 1.99@22# 1.97@21# 1.35@10# 5.63@23# 8.25@24# 2.63@24# 1.17@24# 6.30@24# 1.36@10#

1.0 1.31@21# 1.68@22# 4.50@23# 1.83@23# 9.20@24# 2.14@22# 1.76@21# 1.16@10# 5.77@23# 9.24@24# 3.08@24# 1.40@24# 9.84@24# 1.17@10#

1.5 8.65@22# 8.02@23# 2.13@23# 8.67@24# 4.37@24# 1.94@22# 1.17@21# 6.32@21# 5.08@23# 9.89@24# 3.59@24# 1.72@24# 2.48@23# 6.41@21#

2.0 6.47@22# 4.61@23# 1.20@23# 4.87@24# 2.45@24# 1.47@22# 8.59@22# 4.04@21# 4.02@23# 8.38@24# 3.13@24# 1.52@24# 3.10@23# 4.12@21#
3-6
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COMPLETE DIRECT METHOD FOR ELECTRON- . . . PHYSICAL REVIEW A 69, 022703 ~2004!
Examination of the cross section data in Tables I and
reveals the distinctly different behavior of the CL and T
models. The singlet elastic cross sections of the CL mo
are three times larger than the TP model above ioniza
threshold, whereas the triplet elastic cross sections ar
similar magnitude. Below threshold, comparison of the el
tic cross sections is difficult due to the wide resonance in
CL model. The peak singlet inelastic cross sections for e
model are of similar magnitude, but are consistently shif
nearer to threshold in the CL model. The peak singlet i
ization cross section of the CL model is half that of the
model, and is once again closer to threshold.

The peak triplet inelastic and ionization cross sections
each model have similar magnitude, and are also shi
nearer threshold in the CL model, but to a lesser extent t
the singlet case. For energies below the peak cross sect
the CL model cross sections are less suppressed.

B. Threshold laws and ionization cross sections

Previously @21#, we presented details of our nea
threshold results for theL50 CL model for electron-impac
with atomic hydrogen. We found the threshold behavior to
consistent with the Wannier@20# threshold law, to very high
accuracy, and was able to derive a fitting function that ac
rately predicts theL50 singlet CL TICS~in units ofa0

2) for
total energies in the range 0.005–0.2 a.u.,

sS50
CL 5E(1.12860.004)

„~0.38660.007!2E~1.6960.08!

1E2~4.160.5!2E3~4.661.1!…. ~35!

Our results also gave support to the semiclassical calc
tions of Peterkop@22# for the CL model’s triplet threshold
behavior givingE3.3760.02.

Using semiclassical methods, the threshold power law
the triplet wave function for three-body breakup was fi
proposed by Klar and Schlecht@32# to beE3.881. This incor-
rect result was repeated in subsequent publications@33,34#,
but was correctly calculated by Peterkop@22# to be E3.381.
This matched subsequent derivations@35,36#, also using
semiclassical methods. It should be noted that the thres
laws for the singlet and tripletL50 partial waves of the full

FIG. 2. CL singlet and triplet elastic scattering cross secti
with spin weighting, as a function of incident-electron energy.
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hydrogen problem are predicted to be the same as theL50
CL model @22,27,36#. Also, the threshold law for theL.0
singlet and triplet partial waves for the full hydrogen pro
lem is the same as theL50 singletpartial wave@32–34,37#.

So as to provide a complete review of the threshold
havior of both models, we repeat our singlet results from
previous publication in Fig. 3, and discuss our fitting of the
results in more detail.

Clearly, Fig. 3 shows good agreement between our
model singlet TICS results and those of Kato and Watan
@18# for all energies considered, and our results exhibi
significant reduction in the energy-dependent oscillatio
However, it should be noted that the Kato and Watana
results on our plot were obtained by scanning and digitiz
their published results, and may have additional errors in
duced by this process. We have good agreement with
results of McCurdyet al. @11# for energies above 0.01 a.u
and with Robicheauxet al. @19# above 0.03 a.u., but both o
these data sets show significant errors below these ener
The y axis in the singlet plot has been divided byE1.127 to
highlight the threshold behavior, where it is expected that
gradient of the plots should approach zero as the energy
proaches threshold, if the Wannier threshold law holds
the CL model. This is indeed the case for our results a
those of Kato and Watanabe.

,

FIG. 3. CL singlet and triplet (e, 2e) TICS, with spin weight-
ing, as a function of total system energy near ionization thresh
The results are compared with those of Kato and Watanabe@18#,
McCurdy et al. @11#, and Robicheauxet al. @19#. The singlet and
triplet results are divided byE1.127 and E3.28, respectively, to em-
phasize their threshold behavior.
3-7
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P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW A69, 022703 ~2004!
We used a nonlinear fitting procedure, similar to that d
scribed by Kato and Watanabe, over the energy range 0.0
0.2 a.u., by fitting to the functions5Eag(E), where annth
order series expansion ofg(E) was made.

With our fitting procedure, both the value ofa and its
estimated error are dependent upon the number of term
g(E) and the estimated error of each of our data points. O
initial nonlinear fit was based upon the estimated errors
our results, and the fitting function was then used to calcu
the standard deviation of our results in each of four ene
regions of equal size. These standard deviations were
used as an improved estimate for the absolute error of
points in that region, and a new value ofa was calculated.
This procedure was performed iteratively until convergen
of the fitting function coefficients was obtained.

The results of ourn50 to n54 nonlinear fits are detailed
in Table III. Then53 polynomial forg(E) was selected as
the best fit, and is used for our estimate of the thresh
behavior given above. From the table we can see that thx2

parameter reduces with increasingn, indicating an increas-
ingly better fit. The difference between thex2 of the n53
andn54 fits is not significant, indicating that over this e
ergy rangeg(E) can be suitably represented by a third-ord
polynomial. As our calculations have numerical errors,
creasing the degrees of freedom of the fitting function
yond then53 case did not improve thex2 result and nec-
essarily increased the standard error of the coefficients
order to select the best fit of our results we have consiste
chosenn such thatx2 approachesits minimum while the
maximum standard error of the coefficients remains be
25%, and the polynomial coefficients do not increase ex
nentially.

We also performed a nonlinear fitting of the singlet da
over the smaller energy range 0.005–0.05 a.u., and pre
these results in Table IV. As this region is closer to thresho
it was anticipated thatg(E) would be suitably represented b

TABLE III. Coefficients for singlet CL model TICS nonlinea
fitting for E50.005–0.2 a.u. Figures in brackets are the stand
error of the last significant figure.

n x2 Ea a0 a1E a2E2 a3E3 a4E4

0 164.5 0.894~6! 0.142~2!

1 117.0 1.071~2! 0.300~3! 20.76(1)
2 50.7 1.112~2! 0.359~3! 21.35(2) 2.01~6!

3 46.5 1.128~4! 0.386~7! 21.69(8) 4.1~5! 24.6(11)
4 46.3 1.148~5! 0.43~1! 22.4(2) 12~2! 243(9) 75~16!

TABLE IV. Coefficients for singlet CL model TICS nonlinea
fitting for E50.005–0.05 a.u.

n x2 Ea a0 a1E a2E2 a3E3

0 55.5 1.073~2! 0.287~3!

1 19.7 1.129~2! 0.386~3! 21.48(3)
2 16.7 1.152~8! 0.43~2! 22.3(3) 7~3!

3 17.9 1.14~2! 0.40~4! 21.9(9) 8~16! 256(125)
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a lower-order polynomial. However, due to the fewer numb
of points, and the increased estimated error of the point
this region, there is some uncertainty as to whethern51 or
n52 provides the best fit in this region. However, the co
ficients of then51 fit are consistent with then53 fit from
Table III. As a test of the fitting function@Eq. ~35!# we per-
formed a linear fit of the transformed data, over the sa
energy intervals, and obtained the same values ofa, within
their estimated standard error.

Similar procedures were applied for the CL triplet TIC
presented in Fig. 3, over the energy range 0.01–0.2 a
which gave a fitting function~in units of a0

2) of

sS51
CL 5E(3.36560.009)

„~0.5660.02!2E~3.5960.25!

1E2~1161!2E3~1463!…. ~36!

However, when applied to smaller energy ranges, or co
pared with the results of a linear fit of the transformed da
a did not coincide within the stated error, and the polyn
mial coefficients changed significantly~as they are very sen
sitive to small changes ina). We have therefore increase
our estimated standard error, and give theL50 CL triplet
threshold power law asE3.3760.02. This is consistent with the
semiclassical theoretical calculations of Peterkop@22#, who
calculated the triplet power-law coefficient to be three tim
larger than the singlet coefficient, that is,E3.38. The esti-
mated error fora is larger than our singlet result due to usin
fewer points, limitingR0 to 400 a.u., and the highly sup
pressed triplet cross sections, all of which resulted in an
crease in the estimated error or our plot points.

We now turn to the TP model for which an interestin
observation was made in the classical regime@40#. It was
shown that, classically, ionization cannot occur below en
gies of 1/6 a.u. even though it is energetically allowe
Quantum mechanically we would expect a tunneling type
suppression. For the singlet TP model Macek and Ihra@23#
made a fully quantal prediction for the threshold power la
of

sS50
TP }exp~26.870E21/613.680E1/6!. ~37!

Later, Miyashitaet al. performed a fit of their results~ignor-
ing theE1/6 term! and obtained~in units of pa0

2)

sS50
TP 5~10461!exp„2~6.7560.02!E21/6

… ~38!

for energies approaching threshold. They also suggested
placingE21/6 with E2a and calculatinga from their numeri-
cal fit. There is justification for this as the derivation ofE21/6

relied on some theoretical approximations@23#. This gave a
threshold behavior of

sS50
TP }exp„2~8.460.1!E20.14960.008

…. ~39!

Our TP singlet TICS results are plotted in Fig. 4. We ha
divided our results by fitting functions given by Miyashi
et al. to view the energy dependence of these functions
applied to our results. As in Fig. 3 for the CL model, w

rd
3-8



a
.
u

e
b

er,
d

ed

s
old

ur
rror
ns
ross
nts.
e

r of
ts
,
e
in

abu-
sted

at

en-
n of
rgy

0.7
e in
ntal
er,
on-
the

at
ared

rgy

ral

and

for
full
is
cal-

. T
id

al-

h
a

s

COMPLETE DIRECT METHOD FOR ELECTRON- . . . PHYSICAL REVIEW A 69, 022703 ~2004!
would expect the gradient of our plots to approach zero
we approach threshold, if they support the threshold law

Using nonlinear fitting procedures we were able to fit o
data to the function exp(aE21/6)(b1cE) over the energy
range 0.005–0.100 a.u., and obtained~in units of pa0

2)

sS50
TP 5exp„2~6.86860.007!E21/6

…

3$~14262!2~22468!E%, ~40!

which matches Macek and Ihra, within estimated error.
Our fitting to the function exp(aE2b)(c1dE) over the

same energy range gave~in units of pa0
2)

sS50
TP 5exp„2~6.760.3!E20.16960.004

…

3$~117639!2~181673!E%. ~41!

The significant errors of this fit limit the conclusions that w
can draw from our results. Many more data points would

FIG. 4. TP singlet and triplet (e,2e) TICS, with spin weighting,
as a function of total system energy near ionization threshold
emphasize their threshold behavior, the singlet results are div
by the two fitting functions~see text! calculated by Miyashitaet al.
@38#, and the triplet results are divided by the fitting function c
culated by Ihraet al. @39#. The results of Miyashitaet al. @38# for
TP singlet energies 0.08–1.00 a.u. are displayed with long das
and are mostly indistinguishable from our results. Their results
lower energies are not displayed due to the significant error
digitizing their published figures.
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required to accurately fit our data to this function, howev
theE20.16960.004term is again consistent with the Macek an
Ihra prediction of anE21/6 dependence.

In Fig. 4 we also present our triplet TICS results, divid
by the threshold form calculated by Ihraet al. @39#

sS51
TP }

1

2E11
exp~215.766E21/621.162E1/6!. ~42!

Once again, the gradient of the plot approaches zero aE
approaches zero, giving support to their estimated thresh
behavior for the TP triplet model. When a nonlinear fit of o
results was made to this functional form, the calculated e
of all the coefficients were too large to allow any conclusio
to be made. This was due to the very highly suppressed c
section near threshold and the limited number of data poi

It should be noted that our fitting functions for th
Temkin-Poet model@Eqs.~40! and~41!# were very sensitive
to the energy range chosen for the fit, and the numbe
terms in the modifying polynomial. Though our resul
match theE21/6 functional form within our estimated error
giving support to its validity, the possibility of alternat
forms for the threshold law that closely match our results
the energy range considered, cannot be discounted. Our t
lated results can be supplied, upon request, to intere
readers for such tests.

Plots of the singlet and triplet SDCS for the CL model
several energies~consistent with Table I! are presented in
Fig. 5. The singlet plots have been normalized at equal
ergy sharing to highlight the change in shape as a functio
incident-electron energy. At 0.6 a.u. incident-electron ene
the SDCS shows a slight 4% reduction ate150, compared
with e15e2, and becomes flat near the incident energy of
a.u. Beyond this energy, there is a marked relative increas
the unequal energy-sharing region. There are no fully qua
CL model SDCS results available for comparison, howev
the trend of the SDCS shape, changing from concave to c
vex as energy approaches threshold, is supported by
semiclassical calculations of Rost@41#.

Plots of the singlet and triplet SDCS for the TP model
several energies are presented in Fig. 6. These are comp
with the FDM results of Jones and Stelbovics@7#, where
available, and agree within 0.5%, except near equal ene
sharing.

C. Final-state asymptotic continuum waves

Figure 7 shows the SDCS for the TP model using seve
choices for the final-state continuum waves@F in Eq. ~25!#.
Clearly the choice of two Coulomb waves@Eq. ~26!# ~CC!
provides a very smooth SDCS, and with sufficiently largeR
provides results very close to the FDM results of Jones
Stelbovics@7# @see Fig. 10 forr 1'r 2 behavior#. This method
was first used by McCurdyet al. @11#, and is able to accu-
rately calculate the magnitude of the ionization amplitude
both models considered in this paper, as well as the
hydrogen problem @12#. Unless, otherwise stated, th
method has been used to calculate all TICS and SDCS
culations in this paper.
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P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW A69, 022703 ~2004!
However, it is known that in the TP model the asympto
form of the final-state continuum waves is approximated b
Coulomb wave for the slow electron and a plane wave
the fast electron. When Eq.~27! was used with our scatterin
wave function, however, the SDCS oscillated wildly, due
interference with discrete final-state scattering also conta
in the scattering wave function. Figure 7 shows that
SDCS results using a Coulomb wave and an orthogonal
plane wave~CO! @see Eq.~28!# removes this problem, an
gives results very similar to the~CC! results, but with minor
fluctuations of the order of 1%. These fluctuations dimin
with increasingR. For the case of two orthogonalized plan
waves ~OO!, good results are obtained near equal ene
sharing, but significant oscillations are apparent at asymm
ric energy sharing.

In Fig. 8 we have plotted the phase of the ionization a
plitude @Eq. ~25!# extracted at variousR. The Coulomb
phase~s! has been excluded from all phase plots in this pa
as it is known to be highly oscillatory whenk approaches
zero. For the TP model, it is apparent that the phase is di
gent when CC are used for the final-state continuum wa
and is consistent with the known logarithmic phase beha
of this final state. However, the phase is convergent w
CO are used for the final-state continuum waves. The sl
increase in phase shown on theR51000 a.u. CO plot does
not indicate a slowly diverging phase. Our convergence s

FIG. 5. CL singlet and triplet (e,2e) SDCS, with spin weight-
ing, at various incident-electron energies. The singlet plots h
been normalized to 1.00 at equal energy sharing (e15e2), and the
original SDCS may be obtained by multiplying bya (pa0

2/ a.u.!.
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ies showed that our primary grid spacing~0.40 a.u. at this
energy! was required to be halved in order to provide sta
phase results with increasingR, indicating that convergence
of the phase results is much more sensitive to the nume

e

FIG. 6. TP singlet and triplet SDCS, with spin weighting,
various incident-electron energies. FDM results are by Jones
Stelbovics@7#.

FIG. 7. TP singlet SDCS, with spin weighting, at 1.0 a.
incident-electron energy~27.2 eV! for various choices for the final-
state continuum waves, extracted atR51000 a.u.
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COMPLETE DIRECT METHOD FOR ELECTRON- . . . PHYSICAL REVIEW A 69, 022703 ~2004!
errors introduced by finite grid methods.
For the CL model, however, neither the CC nor CO fin

state continuum waves provide convergent phase result
neither describes the true asymptotic form of the continu
waves in this model.

Recently Rescignoet al. @25# were able to demonstrat
that the ionization amplitude phase for both the CL and
models could be made convergent, and for the TP mo
match the~CO! results presented in Fig. 8. Their procedu
can be applied to any choice of charges for the final-s
Coulomb waves, by adding the logarithmic phase facto
including the Peterkop phase. Their phase adjustment e
tions for the two models are

fTP5S 1

k,
2

z1

k1
2

z2

k2
D ln~2KR!, ~43!

fCL5S 12z1

k1
1

12z2

k2
2

1

k11k2
D ln~2KR!, ~44!

FIG. 8. TP and CL singlet ionization amplitude phase using
final-state continuum wave approximation of two Coulomb wav
~CC!, and an orthogonalized plane wave for the fast electron an
Coulomb wave~CO! for the slow electron, extracted using the su
face integral Eq.~25! at the hyperradiiR5250, 500, and 1000 a.u
Adjusted results have been made by adding phase adjustments@Eq.
~43!–~45!# to our raw results.
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Q~k;z!5argXGS 12 i
z

kD12
z

k
ln~k/K ! C. ~45!

The phase adjustment for the TP model is therefore zero
the CO case, andfTP1Q(k.,1) for the CC case. The phas
adjustment for the CL model isfCL for the CO case and
fCL1Q(k.,1) for the CC case.

These phase adjustments have been applied separate
our CL and TP model results in Fig. 8, and demonstrate
the adjustments giveR-convergent phases that are indepe
dent of thez1 and z2 choice for the final-state asymptoti
continuum waves.

Figure 9 shows the ionization amplitude phase for the
model singlet and triplet states at various incident-elect
energies, using the CO final-state asymptotic continu
waves. The phase is clearly energy dependent, and the
also demonstrate a systematic flattening~with respect to the
e1 energy fraction! with increasing incident-electron energ
E0. These plots were extracted at varying hyperradii~400–
1000 a.u.!, where good convergence of the SDCS were o
tained, and demonstrate only minor fluctuations in the pha

e
s
a

FIG. 9. TP singlet and triplet ionization amplitude phases
various incident-electron energies, using a Coulomb wave for
slow electron and an orthogonalized Coulomb wave for the
electron.
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except near equal energy sharing in the triplet plots, wh
the ionization amplitudes are highly suppressed.

D. Grid spacing and convergence issues

The scattering wave functions for the electron impact
hydrogen, and the simplified models presented in this pa
are highly oscillatory. The wavelength of these oscillatio
determines the grid spacing, and the magnitude of their h
order derivatives determines the accuracy, of the finite
ference methods used for their solution. For discrete fin
state scattering, the scattering amplitude information
contained mostly within the region wherer 1 or r 2 are be-
tween 0 –4n2 a.u., wheren is the final-state orbital quantum
number. The wavelength of the primary oscillations of t
wave function in this region are determined by the mom
tum of the elastically scattered electron,l52p/A2E0. For
ionization, however, the ionization amplitude information
contained in the region wherer 1'r 2, where the wavelength
of the wave function is determined~asymptotically! from the
total system energyl52p/A2E021. The wavelength of the
wave function is therefore at a minimum whenr 1→0 or r 2
→0, and this region determines the primary grid spacing
our grids. Extraction of the ionization cross sections on
hypersphere, as presented in Sec. II D, requires the w
function to be accurate over both of these regions and so
grid spacing convergence studies have been performed u
the SDCS calculated with Eq.~25!.

Near the nucleus, the high electrostatic potentials ca
distortions to the wave function, increasing the high-ord
derivatives in this region, and thus requiring finer grid sp
ing to maintain accuracy of the Numerov method.

A detailed convergence study of the SDCS extracted fr
the CL and TP wave functions was undertaken at sev
energies so that we could verify the energy dependenc
the grid spacing and calculate the grid size required to p
vide accurate results for each of these models. We did
observe any significantly different behavior between
models, apart from the very largeR0 required in the TP
model to obtain convergence of the SDCS near equal en
sharing, as is evident in Fig. 10. It can be seen that g
convergence of the SDCS is obtained for the TP model at
a.u. andR5400 a.u., except near equal energy sharing. T
nonanalytic nature of the potential (1/r .) at r 15r 2 is be-
lieved to be the reason for the slow convergence of
SDCS in this region. However, it should be noted that
lack of convergence in the SDCS in this region has ne
gible effect upon the TICS calculated from these plots, a
that the TICS can be calculated very accurately whenR0
'400 a.u., at this energy. The problem of slow converge
of the SDCS at equal energy sharing in the TP model w
also observed by Jones and Stelbovics@7#.

For the CL model with an incident-electron energy of 0
a.u., the grid spacing in Table V was used to obtain conv
gence of the TICS to better than 0.2%, and convergenc
the SDCS at all energy fractions to better than 0.5%.

As seven regions of grid spacing were used in our ca
lations, with three other grid parameters,R0 , Rmax, andu, it
may be possible to obtain results of similar accuracy wit
02270
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more relaxed grid spacing in some regions, but the very la
number of possible grid spacing combinations, meant t
only a limited number of these possibilities could be test
However, several interesting observations were noted du
our convergence testing.

First, the shape of the SDCS only varied with the sel
tion of R0, other grid spacing~within limits! only served to
offset the SDCS from the converged position. Therefore
less accuracy is acceptable, the grid spacing can be rela
and the cross sections can be extracted from wave funct
calculated with significantly fewer grid points, which wou
require significantly less computing resources.

Second, a significant reduction in theR0 dependence of
the TICS was made by using a finer grid spacing aboutR0,
where complex scaling begins. We believe this to be due
the discontinuous first derivative of the complex scaled wa
function at these points. As the complex-scaling begins
different relative phases of the wave function with differe
R0, the finer grid spacing reduces the error in the fini
difference method at this discontinuity.

Third, a very fine grid (h150.01 a.u.! was required near
the origin due to the large Coulomb interactions in this
gion, and is possibly also due to the polynomial approxim

FIG. 10. TP singlet SDCS, with spin weighting, at an incide
electron energy of 1.0 a.u.~27.2 eV!, extracted using two Coulomb
waves for the final-state continuum waves, at various hyperradR.
FDM results are by Jones and Stelbovics@7#. The TICS calculated
at eachR are displayed in the legend~units of pa0

2).

TABLE V. Grid spacing used at 0.7 a.u. incident-electron e
ergy, with R05600 a.u.,u50.8 rad, with all spacing measure
along the real axis.

Region~n! Start ~a.u.! Length ~a.u.! Spacinghn ~a.u.!

1 0.0 1.0 0.01
2 1.0 10.0 0.10
3 11.0 20.0 0.20
4 31.0 30.0 0.30
5 61.0 537.0 0.50
6 598.0 4.0 0.10
7 602.0 13.0 0.50
3-12
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tion of c used to derive the Numerov formula at the sing
larities ~when r 150 or r 250). Though, the spacing can b
increased to 0.05 a.u. without introducing large inaccurac
Also, it should be noted that complete convergence was
obtained with the main grid spacing ofh550.50 a.u., but
was selected to balance computational effort with des
accuracy. Complete convergence is obtained withh550.30
a.u.

Also, to ensure that settingc(Rmax,r 2)50 and
c(r 1 ,Rmax)50 is an accurate approximation and does
affect the accuracy of the wave function on the real gr
Rmax2R0 ~the complex-scaled region of the grid! must be
sufficiently large such that it contains approximately 1.5,
more, oscillations of the wave function in its least oscillato
region~alongr 15r 2). Therefore, the length of the complex
scaling region is energy dependent.

Lastly, the following approximate energy relationshi
were used to calculate the grid spacing for our models
other energies, using the 0.7 a.u. convergence testing to
culate the proportionality constants:

hn}1/A~2E0!, ~46!

where E0 is the energy of the incident electron~in a.u.!,
indicating that the grid spacing is governed by ther 1!R0 or
r 2!R0 regions of the wave function, which contain the d
crete final-state scattering information. For ground-state s
tering

Rmax2R0}1/A~2E021!, ~47!

indicating that the length of the complex-scaling region
determined by the number of oscillations in the least osci
tory region of the wave function, wherer 15r 2.

For our calculations we obtained convergent results w
R0'40(Rmax2R0). However, for total system energies b
low 0.04 a.u., this results in anR0 greater than the larges
value that we used in our calculations~1400 a.u.!, so the
estimated error of our TICS for these low energies was
creased to 0.5–1.0 %. There was little variation in our res
for different complex-scaling anglesu, and 0.8 radians wa
used for all the results presented in this paper.

We used the same grid spacing for discrete final-s
scattering and checked that this also provided converg
results. However, for energies below ionization threshold,
wave function is~for large R) highly suppressed in the re
gion r 1'r 2, and the complex scaling region (Rmax2R0)
was limited to 50 a.u.

V. CONCLUSION

For the L50 CL and TP models, the scattering wa
function calculated using ECS and our propagation met
can be used to extract both ionization and discrete final-s
scattering cross sections to high accuracy. Also, with the
rect choice of final-state asymptotic continuum waves, c
vergent ionization amplitude phases can be obtained dire
for the TP model. Moreover, as discovered by Rescignoet al.
@25#, converged ionization amplitudes can be extracted
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any general final-state continuum wave choice for both
CL and TP models.

Due to the very efficient propagation algorithm that w
have used in our ECS implementation, we have been ab
extend the computation grid to very large distanc
(.1400 a.u.!. This has allowed us to accurately calcula
TICS results for very low impact energies (,0.505 a.u.,
13.75 eV!, which has in turn allowed us to investigate th
threshold behavior for the singlet and triplet wave functio
for the CL and TP models to high accuracy. The thresh
behavior is highly model dependent, and our results sup
the classical calculations of Wannier@20# for the L50 CL
singlet model, the semiclassical calculations of Peterkop@22#
for the L50 CL triplet model, and is consistent with th
fully quantal prediction of Macek and Ihra@23# for the TP
singlet model, and the fully quantal prediction of Ihraet al.
@39# for the TP triplet model.

These model problems have successfully tested the us
the propagation method with ECS, and paved the way
efficiently calculating solutions to the numerically intensi
full hydrogen problem. Further, with the efficiency gain
achieved by the propagation method, a fully quantal solut
of the Coulomb four-body problem is, in the not to dista
future, a distinct possibility.

ACKNOWLEDGMENTS

The authors would like to thank Igor Bray for his effor
in obtaining the computing resources required to support
project, and acknowledge the support of the Australian R
search Council~ARC!, the Australian Partnership for Ad
vanced Computing~APAC!, and the Western Australian In
teractive Virtual Environments Center~IVEC!.

APPENDIX: NUMEROV FORMULA

Four variations of the Numerov formula are required
compute the scattering wave function at different points
the grid, and their selection depends on whetherr i 2150
and/orr j 2150, dictating whether a series expansion forc i ,0
and/or c0,j is used when deriving the formula. These N
merov formulas may be most simply represented by

(
i 8521

1

(
j 8521

1

$~h2Bi 8Cj 81t2Ai 8Dj 8!c~r i 1 i 8 ,r j 1 j 8!

1h2t2Bi 8Dj 8V~ i 1 i 8, j 1 j 8!%50, ~A1!

where from Eqs.~3! and ~6! we obtain

V~ i , j !52S E1
12d i ,0

r i
1

12d j ,0

r j
2V12~r i ,r j ! Dc~r i ,r j !

22x~r i ,r j !, ~A2!

and whereh and t are the grid spacing in thei and j direc-
tions, respectively, given byh5r i2r i 21 and t5r j2r j 21.
Two further coefficients are used,a5(r i 112r i)/h and b
5(r j 112r j )/t, which determine the expansion~or contrac-
tion! of the grid spacing in thei andj directions, respectively
3-13



o

ve

th

P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW A69, 022703 ~2004!
Each grid measurement,h, t, a, andb may be real or com-
plex, and are displayed graphically in Fig. 11. The values
A, B, C, andD vary depending on whetherr i 2150 and / or
r j 2150.

First, we shall consider only thei direction. If there is no
singularity r i 21.0 then

A21512a,

A05212~a11!,

A1512,

FIG. 11. The grid spacing in thei direction andj direction may
be nonuniform, either real or complex, and is measured by
parametersh and t and the expansion~or contraction! ratiosa and
b.
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f

B2152a31a21a,

B05a314a214a11,

B15a21a21. ~A3!

When there is a singularityr i 2150 then

A2150,

A05~a11!~3l2a2h214l2h2a230lah1l2h2

224lh172!,

A152l2h226lah12l2h2a124lh272,

B2156a~a22a21!,

B05~a11!~3la2h26a2218a14lah1lh26!,

B152la2h26a21lah2lh26a16. ~A4!

The value ofl in these equations is set to 2z wherez is the
charge on the nucleus.

For thej direction, the formulas are similar to those abo
and are selected on whether there is a singularity,r j 2150,
or not, r j 21.0. We letCj 85Ai 8 andDj 85Bi 8 , except that
a is replaced byb, andh is replaced byt.
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