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Complete direct method for electron-hydrogen scattering: Application to the collinear
and Temkin-Poet models
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We present an efficient generalization of the exterior complex sc&li@S method to extract discrete
inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal
method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold
ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization
cross sections near threshold strongly support the classical threshold law of Wdrimisr Rev.90, 817
(1953] (ocEL12820009 for the L=0 singlet collinear model and the semiclassical threshold law of Peterkop
[J. Phys. B16, L587 (1983] (0xE33™%%) for the L=0 triplet collinear model, and are consistent with
the semiclassical threshold law of Macek and IjRhys. Rev. A55 2024 (1997)] (ocxexd(—6.87
+0.01)E~8]) for the singlet Temkin-Poet model.
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I. INTRODUCTION [8—12). We show how the integral formulation for extract-
ing ionization amplitudes can be adopted to compute any
In a recent publication Baertsctet al. [1] demonstrated discrete excitation amplitude. We give numerous examples
that the method of exterior complex scali§CS could be  for the collinear{13,14 (CL) and TP models.
successfully applied to the Coulomb three-body problem of The work of Baertschgt al. [1] for the ECS solution to
electron-impact ionization. This was a significant break-the full hydrogen problem was preceded by many publica-
through in the field of electron collisions as they showed thafions which explored the theoretical basis for EQS], ap-
the time independent Schiimger equation could be used to Plication of ECS to short-range potential modgld)], and
calculate the scattered wave function without explicit knowl-Egggg;ngg;g’:g;Iﬁggfajorrn?tﬁ;jz Toor(ﬂg(?aéésrgr iF(;lrJ]?zlztion
edge of the asymptotic boundary conditions, which until re- .
cently [2] were not known for the full electron-hydrogen amplitudes for the CL ".’md TP modgkl] as weI_I as the ful
problem. Clearly, the ability to solve many-body problems,hydmgen probleni12], in contrast to their previous flux ex-

particularly above ionization threshold, without knowledgetrapm"Jltlon method. Our work s also based on this integral

. " : method for extracting ionization cross sections, originally
of their boundary conditions makes the ECS method 'nvalu'proposed by Peterkofi6] and Rudge and Seatdn7].

ab!e for larger more complex systems. Hoyvever, implemen- For the CL model, the efficiency of the present method
tation of the ECS method of Baertsckyal. involves solv-  paq qliowed us to probe significantly lower energies, which
ing very large and sparse systems of linear equations, makingquires much larger grids, with greater accuracy than previ-
its application to a four-body problertfor example, the oys fully quantal studiefl1,18,19. This allowed us to in-
electron-impact double ionization of heligmmpractical  yestigate the classical Wannig20] threshold law for the.
with current supercomputing technology. =0 singlet CL model, and provide a fitting function that
In an effort to reduce the computational overhead of theaccurately predicts the low-energy behavior of its total ion-
direct solution of the electron-hydrogen problem using ECSization cross sectioiTICS) [21]. Similar procedures were
as an incremental step towards solving the four-body probused to calculate the fully quantal threshold power law for
lem, we have adopted a propagation technique, originallghe L=0 triplet CL model, which supports the semiclassical
used by Poef3] to solve the Temkin-Pog#,5] (TP) model  calculations of Peterkof®2], and the threshold behavior of
problem. More recently it was used by Jones and Stelbovicthe singlet TP model, which is consistent with the calcula-
[6,7] for benchmark calculations for the TP ionization model.tions of Macek and Ihr§23].
In this paper we generalize this propagation method so thatit We have also explored the phase of the ionization ampli-
can be used with ECS. We believe that this algorithm hasude extracted from the ECS wave functions for several dif-
features that will lead to a significant saving in the compu-ferent configurations of the final-state continuum waves. We
tational requirement of the full hydrogen problem. were able to calculate cross sections using several choices
Once the scattering wave function has been computefbr these continuum waves, and found, as detailed in previ-
there still remains the problem of extracting the scatteringous ECS publications by McCurdst al. [11] for the model
amplitudes. The application of the ECS method has focusegroblems and Baertschgt al. [12] for the full hydrogen
thus far primarily on the ionization amplitud@.g., Refs.  problem, that the product of two Coulomb waves, with equal
charge, provides an accurate and smooth single-differential
cross section$SDCS. However, for the TP model we have
*Electronic address: bartlett@fizzy.murdoch.edu.au demonstrated that convergence of the ionization amplitude
"Electronic address: stelbovi@fizzy.murdoch.edu.au phase is only achieved directly when this final state is repre-
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sented by a plane wave for the fast electron and a Coulomihere = y- 1A is the outgoing scattered wave function for
wave for the slow electrofi24], which represents the true | _ 1=l,= 0 and

asymptotic boundary conditions for this model. In the CL

model, neither of these choices for the final-state continuum NPT 1

wave provides convergent phases. However, a recent paper x(rq,r,)= T[(Vlz(rl,rz)— r_) P1s(rq)sin(kir,)

by Rescigneet al.[25] gives correction formulas for the ion- ' 2

ization amplitude phases for both the CL and TP models

when the final-state continuum waves are approximated by +(—1)S(1H2)}, (7)
two Coulomb waves of arbitrary charges. We test these for-

mulas for these models for both the singlet and triplet Wav‘?/vhere¢1s(r)=rRls(r) andR;(r) is the radial wave func-

functions. tion for the ground staten(=1,=0) of hydrogen.
For the TP model th¥/;, term, derived from the first term
Il. THEORY of the partial-wave expansion of the electron-electron poten-
A. Scattered wave equations tial (1/|r1—r2|), is given by
The Schrdinger equation for the electron-impact of hy- 1 1
isfw(H) = g () i ionshiw () Vidllg,fp) = —= —————. ()
drogen isHV'™/=EW¥'") and using the relationshij r~ maxrq,ry)

=W+, may also be expressed as
The CL model is a low-energy approximation of the full
(E—H)\Ifsc(*)(rl,rz)z(lil—E)\Ifk_(rl,rz), (1) problem, and can be viewed as one where the ejected and
' scattered electrons leave the nucleus in opposite directions,

where ¥5¢*) is the scattered outgoing wave function and9'V!"N9 an electron-electron potential of
¥y is the symmetrized initial-state wave function given by

1
. Vlz(fl,fz)zm- 9
W (r1,12)= —=[Py(r)eN 24+ (- 1)3(1-2)]. (2)
\/E B. Exterior complex scaling

@, is the hydrogen ground-state wave functida,is the We solved Eq(6) using the method of exterior complex

momentum of the incident-electron. and the Hamiltonian 0fscaling, where all radial coordinates are rotated into the com-
the system is given by ’ plex plane by a fixed anglé, at a sufficiently large radius

Rg, such that convergence of the extracted cross sections is
1 1 1 1 obtained. This transformation,

TS5 Vi — = —+Viyrr) ()
2 2 5] ) 12 , , r, r< RO

20 Ryt (r-Ro)e”,  1=Ry,

I
<
g

(10)
where for the full hydrogen problem

allows a numerical solution to be calculated without knowl-
1 . (4) edge of the asymptotic boundary conditions, as all outgoing
[ri—ry] waves diminish exponentially beyonR,. The scattered
wave function contains only outgoing waves, but the inho-
All equations, unless otherwise noted, are in atomic unitgnogeneous termy contains both incoming and outgoing
(a.u). waves, and so must be truncatedRgt as incoming waves
The CL and TP models calculated in this paper are simdiverge using this transformation. This method has been used
plifications of the full hydrogen problem, and we only con- successfully by McCurdt al. [11] for the models consid-
sider the case where all angular momenta are zero, and thged in this paper, and later by Baertsetyal.[1] for the full
hydrogen target is initially in the ground staft26]. After  hydrogen problem.
performing a partial-wave expansion of H@) using Rescignoet al. [15] demonstrated that finite difference
methods may be used to solve this ECS transformation, pro-
1 vided thatR, is one of the grid points. The application of this
\Psc(ﬂ(rl’rZ)_r r 2 Y, (rr2) Vi (rl'rZ) (5 transformation to the numerical solution of E6) is equiva-
lent to solving the finite-difference equations for E®)
e Without transformation, but using complex grid spacing be-
yond Rg.

Viory,ry) =

and retaining only zero angular momentum terms we hav:

10 10 1 _ _ _
Et+s—S+ts—5+—+—=Vyrq,ra) | (rq,ry) C. Discrete final-state cross sections

292 2495 T I . ,
The method we use to compute the discrete final-state

=x(rq,ry), (6)  scattering amplitudes is based on the inte {24l
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. R and removing terms that asymptotically approach zero, we
|:J' W (ry, 1) (H=E)®* (ry,rp)dridr,, (1) arrive at the relationship

where® is an asymptotic approximation of the final state. (—1)S+t
The energy and potential operators can be removed by using fii(kj k)= 2—|, (17)
a

the relationship i —E) W (*)(r,,r,)=0, giving

1 and can calculate the scattering cross section using
|=§f {@* (ry,r)(Vi+VHW(ry,1p)

k4
_ O
W1y, 1) (V24 V2)D* 1y rp)drydro). (12) ‘Tji_k_iJ“ii(ki’ki)dei’ (18)

By rearrangement, and use of the divergence theorem, this

may then be converted into a surface integral over one coo?’ﬁv1 :lerrﬁtlfji d(las otfh(tahilzonrqnoerzteunq]ur?f :2? ;Cigﬁgedd S?;?gtrtzrrl.;hg
dinate and a volume integral over the other coordinate 9 ’ 9 9get,

given byk;=k;— 2(1- 1/nj2). For theL=0 models consid-
ered in this paper, this simplifies to

|=f d3r23§ (D% (1,1) VW (1, 15)
S

k:
—‘I’(+)(r1,rz)V1<I>*(r1,r2)]-dSl, (13) 0'“:4’77?:”“('(])'2 (19)

where we have also made use of the antisymmetry of)
and® in writing this form.
To derive the relationship betwednand the scatterin

To evaluatef;; for the L=0 models considered here, we
9 perform a partial-wave expansion by substituting

amplitude f;;, where the subscripts=(njl;m;) and j
=(n;l;m;) are the initial and final state of the target hydro- 1 L SLMI -~
gen atom, we substitute into EGL3) an asymptotic approxi- Y1~ (r1.r2)= o, ; Sy (e, r) M (rT2),
mation for the outgoing scattering wave function given by LT
(20)
1 e+ikjr1
\I'?C(Jr)(rl,rz)NE; q)j(rZ)Tfji(kjyki)y (14 1/1 o
CIDj(rl,rz)zE(r—¢nj|j(r1)Y|jmj(r1)e'ki'r2
whenr,—o=, r,/r;—0, and an asymptotic approximation !
of the final state given by
+(—1)S(l<—>2)), (21
1 .
<I>,~(r1,r2>=E[@;(n)e'kr'zﬂ—1>S(1H2)]. s
We can use the outgoing scattering wave functioift) in .
place of the outgoing total wave functioh(*) in Eq. (13), it g kDY (Y (F 29
as asymptotically the initial-state wave function does not © 7726 m;I KO Y in(K)Yim(r) 22

contribute to the integral. Then, by substituting the
asymptotic form for a plane wavén three dimensions into Eq. (13) and Eq.(17). By retaining only theL=1,=1,
, =0 terms, and using the notatiof(r ;,r,) = 59 Ar 1. >),
ikr_ ST A Ak s A A ikr we were able to derive the asymptotic form for the discrete
€ ikr LoD — Qe A+ Qe ™), (16 final-state scattering amplitude for the=1,=1,=0 case as

1 ) 1 J . J 1
fji(kj)w\/?f dr2r1¢nj0(r2) E'ﬁ(rl,rz)mlo(kjrl)_lo(kjrl)mElﬁ(rl,rz) ) (23

wherej is the spherical Bessel function fb# 0.
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D. lonization cross sections orthogonalization of the plane wave removes interference

The TICS results were extracted from the scattered way&Om discrete final-state scattering amplitudes.
function using the equation for ionization amplitude given in _Previously, it was shown by McCurdy and Rescidao]

Eq. (11). Details of the method leading to the limiting ex- that for a short-range potential problem, using a projection
pressions on a hypersphere have been given previously tgperator to project out the elastic channel from the scattering

McCurdy and Rescignfl0] and will not be repeated here. Wave function removes the wildly oscillatory behavior due to
For ourL=0 model problems the TICS is given by the discrete channels of the problem. Our orthogonalization

of the plane wave is equivalent to their procedure.

ER2 16
0(E)=J Kq,k,R)|?des, (24)

0 wkik1k2|f( Ill. COMPUTATIONAL METHODS

A. Numerov formula
where

The Numerov formula was used to numerically solve Eq.
(6) on a two-dimensional grid of pointsymmetric inr, and
r,). When translated to two dimensions the Numerov for-
mula uses grid point values af(i,j) and its eight nearest
neighbors. The derivation of this formula was given by Poet
[3], and allowed for the singularity at;=0 andr,=0 by
using a series expansion gf at these points. However, a
where the total system energy is given By e;+e,=(ki  further modification to the Numerov formula was required to
+ kg)/2, the hyperangle is given hy=arctan(,/r,), and the allow for the transition from real to complex coordinates at
hyperradius is given bR:x/rzl—}-rzz_ ® is a function that Rp- A benefit of our modified Numerov formula presented in
describes the final-state asymptotic continuum waves of ththe Appendix is that it allows for arbitrary grid spacing in
ionization process. other regiongboth real and complexremoving the restric-

This method for extracting the TICS from the scatteredtion of most Numerov implementations of either constant
wave function has been used successfully by McCetdgl.  grid spacing(e.g., Refs[28,29) or grid-doubling methods
[11] for the model hydrogen problems considered in this pa{€.g., Ref[7]).
per, and by Baertschgt al.[12] for the full problem. In both McCurdy et al. [11] observed small oscillations in their
of these papers the final-state continuum waves are approx@xtracted cross sections, which diminish with increastgg

mated by the product of two Coulomb waves with chazge and attributed them to diffraction effects caused by using
=1. finite grid methods. These oscillations were reduced by

smoothly truncating th¥;, potential on the left-hand side of
‘D(kl,flikzyrz):¢|(l_)(k1'r1)¢|(2_)(kz,r2), (26)  Eq.(6) nearR, using

J
(I)*(kl,kz,R,a)ﬁl//(R,a’)

R (m/2
f(kl,kz,R)""Ef da
0

d
“ YR @) 2 (ky kR )|, (25

wherel;=1,=0 for the model problems considered in this Vio(r1,r2) =V, r)exp(— (RIRy) R, (29
paper.

However, it is known that for the TP model this choice of whereR is the hyperradius. These effects were only notice-
continuum waves leads to a divergent ionization amplitudeable in our calculations at low incident energies, or srRgl!
phaseg[24,25. As it is also known that the boundary condi- however, we have applied the same smooth truncation when
tion of the TP model is a plane wave and Coulomb wavegalculatingall the results presented in this paper.
which has the form

D) (ky,rq,kp,1p)= ¢|(7)(klrl)sin(k2r2), ki<kz, . Propagation method
! 27) To minimize the computational overhead we used a

propagation method similar to that of P@&i, and recently

we also present SDCS calculations for this choice of conused by Jones and Stelbov{@] for the TP model, but was

tinuum waves. However, to ensure that the discrete excitanodified to allow for the inhomogeneous tergnin this

tion states of hydrogen, which are also containedsjndo ~ problem. The notation we use for ti#e B, C, andD matri-

not affect the ionization amplitude, we have made {h) ces is defined in Refl29], and should be referred to, in

=sin(kr) function orthogonal to the firsil bound states of ~conjunction with Ref[3], to obtain a detailed understanding

hydrogen(with | =0) using the relation of the grid labeling, etc. The Numerov formula for E&)
N may be represented in matrix form as
<r|k)L=(r|k>—; (r|n00)(n00|K), (28) AW =D BO. ) 4 c). i+ D=y (30

whereN can be made arbitrarily large. As|Kk), =(r|k) for ~ Where theith column of the grid is solved at each step. This
r—oo, the orthogonalization of the plane wave has no effec€duation can be reformed into the propagation equation
upon the asymptotic value of E@25). However, for the . .

finite values ofR used in our numerical calculations, the Y =p0. yl+1 4 D) (31)
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1.20 ——r

where theE propagation vector has been introduced into our

——
ae Ll . _ . ]
derivation, to allow for the inhomogeneous term. The propa- & I Collinear E;=0.5 a.u. Singlet (e.e)
gation matrix and propagation vector are then given by s Mr re 7
o g x
D =_—BM.ch, (32 E :! t
kst T
BO = (BM 4+ A0 pli-1)-1 33) 2 "
’ 2 A £ ]
8 : t ¥ ‘l'\:i :'-tt\! VA, A PRI
S~ - N2 o0 i ! It . £ ALV
EO=B®. (X(')_A(')' g( l))’ (34 g osof : : fl",'_-‘iv.,_r ik 55 x 750
g L | " ' ]
noting thati=1 and the boundary conditions af&”)=0 and R L ' TR
>, 0 1 200 300 400
#(0)=0. Radius ( a.u.)
The symmetry of the scattered wave function is given by 0.40—

2)

W(ry,r)=(—1)5(r,,ry), and so Eq.(6) need only be
solved in the lower triangular region bounded hy=0, r
=r,, andr;=R,a>Ro, hence the size of the propagation
matrices increase with increasimglt should be noted that
the matrices have the following dimensions®)(i,i—1),

BO(i,i), BW(i,i), CW(i,i+1), and DU(i,i+1), where
A BM andCY are band matrices ar8 and D™ are
dense matrices, and are real fmiRo and complex fori
=ig,. The vast majority of the computational effort is de-

voted to the matrix inversion in Eq33). I T N S S
Detailed descriptions of this method may be obtained oo 100 Radiuzs(x()au) 300 400
from other authors including Po€B], Jones and Stelbovics o

[6], and Wang and Callawd28], and will not be repeated in - F|G. 1. CL and TP singletd,e) 1s and 5 final-state scattering

this paper. Where our procedure differs from these previougross sections at ionization threshélds a.u), with spin weighting,
studies, is that due to the ECS transformation an asymptotigs a function of the hypercube dimension used in @§). The
approximation of the solution is not required at the edges 0§olid and dotted lines are the raw results, and the long dashes are
our grid (r1=Rpaxandr,=R,y), as the transformed wave the results after scaling byl + n sin(2,R)/R].

function can be set to zero on these boundaries.

In order to evaluate the scattering wave function over thebased upon the 10-point Bode’s ryl80] to evaluate this
entire grid, theA®, B, andC{") matrices must be retained integral, which required the order of 2000 points for an esti-
for all i. For most of the calculations presented in this papermated 0.001% accuracy. Also, it is important that the inter-
the memory required for this storage greatly exceeded thpolation routine used to calculate values i6fr,,r,), be-
memory capacity of the single supercomputer node that wéween grid points is very accurate. We used Chebyshev
used for each calculatio@ gigabytes Moreover, for sev- polynomials fitted to a 1810 grid containing the selected
eral of the calculations with very largR,,«, the storage point. We also noted that when using finite-difference meth-
requirement even exceeded the available high bandwidthds to calculate the@y/JR terms, all the points required to
hard disk capacity of the nod&0 gigabytes so we imple- calculate the derivative should be calculated using the same
mented a method of writing tH&() matrices to disk only at 10X10 grid (even when some of the points cross into a dif-
certain milestone values of during the forward pass of the ferent grid squane otherwise slight discontinuities appeared
propagation algorithnievaluating Eqs(32)—(34)]. in the integrand, which caused problems for our adaptive

On the backward pagevaluating Eq(31)], the B") ma- integration routine.
trices between the milestone valuesi afere required to be
recalculated. This resulted in an overall doubling of compu- IV. RESULTS
tation time, but allowed us to extend to very large grids A. Discrete final-state cross sections
without being limited by memory or hard disk capacity.

Temkin-Poet E=0.5 a.u. Singlet (e,e) _

038

~ e et e el Sy R e o v

y'T'v""“"'w'SSXSVOO._:

028

Scattering cross section ( units of 7a

Using Egs.(19) and (23) we were able to successfully
extract the discrete final-state cross sections from our scat-
tering wave functions for both the CL and TP models. How-

It should be noted that the integrand in E&5) is highly  ever, as is evident from Fig. 1, the cross sections exhibit a
oscillatory, and to ensure accurate calculation suitable inteslowly diminishing oscillatory behavior with respect ®
gration techniques must be employed. For example, the ionapproximately 1R). The relative amplitude of these oscil-
ization amplitude integral for the TP model at equal energylations increaséapproximately linearlywith the finaln state
sharing,Ep=2 a.u. andRy=400 a.u., were of the order of of the hydrogen target, and their wavelength also increases
150 oscillations. We used an adaptive grid-halving methodapproximately linearly with n. These oscillations increase

C. Integration and interpolation

022703-5



P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW AB9, 022703 (2004

TABLE I. CL model singlet ¢°) and triplet (1) electron-impact discrete final-state scattering cross sectignand total ionization
cross sections;;, wheren is the final orbital quantum number of the target hydrogen atgnis the total electron-impact cross secti@h,
is the incident-electron energp.u), and cross section units area2. Numbers in square brackets indicate powers of 10.

Eo 0% ods o3 ol ol af oy i s ol s ol ot at

0.1 1.11+0] 1.17+0] 1.60-3] 1.60 — 3]
0.2 1.63+0] 1.63+0] 1.86+0] 1.8 +0]
0.3 1.39+0] 1.39+0] 2.63+0] 2.63+0]
0.4 1.09+0] 3.71-2] 1.13+0] 2.69+0] 9.79-4] 2.64+0]
05 9.05-1] 2.37-2] 597-3] 2.3-3] 1.13-3] 9.39-1] 257+0] 2.87-3] 117-4] 1.2§-5] 2.24—6] 2.57+0]

0.6 7.62-1] 1.6§-2] 4.46-3] 1.87-3] 9.27-4] 6.01-3] 7.99-1] 227+0] 4.09-3] 3.8§-4] 9.34-5] 35-5] 4.0§-5] 2.27+0]
0.7 656-1] 1.27-2] 3.39-3] 1.39-3] 7.04-4] 9.03-3] 683-1] 2.0§+0] 4.87-3] 6.13-4] 1.80-4] 7.79-5] 2.3§-4] 2.0§+0]
0.8 572-1] 9.99-3] 2.64§-3] 1.0§-3] 543-4] 1.07-2] 596-1] 1.8§+0] 517-3] 7.61—-4] 24-4] 1.0J-4] 54§-4] 1.84+0]
0.9 505-1] 8.09-3] 210-3] 85§-4] 4.30-4] 1.04-2] 527-1] 1.6§+0] 51§-3] 849—-4] 287-4] 1.37-4] 9.0§-4] 1.66+0]
1.0 450-1] 664-3] 1.70-3] 6.9§-4] 3.57-4] 1.01-2] 469-1] 14§+0] 511-3] 890-4] 3.09-4] 1.45-4] 1.2§-3] 1.49+0]
1.5 2.87-1] 3.19-3] 7.91-4] 31§-4] 1.60—4] 7.26-3] 2.94-1] 9.4Qq-1] 4.09-3] 821-4] 3.01-4] 1.47-4] 2.39-3] 9.49-1]
20 1.98-1] 1.97-3] 4.63-4] 1.87-4] 9.24-5] 504-3] 206-1] 654-1] 3.14-3] 65§-4] 247-4] 1.20-4] 2.6§-3] 659—1]

with decreasing electron-impact energy, and as they remain The estimated accuracy of the TP cross sections range
constant when finer grid spacing is used, they are not causdtbm 0.5% for the higher energyec>0.5 a.u) 1s results to
by numerical inaccuracy of the scattering wave function. 1t2.0% for the 5 results and lower energyE(=<0.2 a.u) 1s
should be noted that thesITP plot has an inset at 200—250 'esults. The estimated error of the TICS results is 0.2%. The

a.u., which is plotted with a finéR spacing, thus showing the TPresults at 1, 1.5, and 2 a.u. match the very accurate finite-
true oscillatory behavior. difference methodFDM) results of Jones and Stelbovicg

The oscillations are consistent with a term of the formt© Within =1 least significant digit, and the low-energy re-
ne?kR/R, which asymptotically approaches zero butsults match the results of Bray and Stelbo\fi§] (interpo-

: : ) ; lated with cubic splines to match data points within our
contributes to the cross sections at firfkeThe dashed lines . A
in Fig. 1 have been scaled g+ n sin(ZR)/R] to remove estimated accuracy. We know of no other publications con-

. " taining discrete final-state cross sections for the CL model,
this term, and it is clear that these scaled results are Veryd estimate our errors to be the same as our TP results.
significantly smoother, with the exception of the £L The CL model 0.1 a.u. triplet elastic cross section in Table
results. _ | is highly suppressed, and from the singlet and triplet CL

It can also be seen from these plots that taking an averag@odel cross sections in Fig. 2, it is evident that this is the
through the oscillations will also allow convergence of theresult of a resonance. The singlet resonance is centered at
cross sections to be obtained at much smallefhe discrete  approximately 0.051 a.u. and the triplet resonance is centered
cross section results presented in Tables | and Il are calct 0.097 a.u., both of which are unphysical, and highlight the
lated atR=400 a.u. and taking an average of the last oscilinaccuracy of the CL model at energies below ionization
lation. threshold.

TABLE Il. TP model singlet and triplet electron-impact discrete final-state scattering cross sections and total ionization cross sections; see
Table | for units and column details.

Eo 0% ods o3s ol o3 af oy i s o3 s ol o at

0.1 4.22+0] 429+0] 1.04+1] 1.07+1]
0.2 1.46+0] 1.46+0] 6.94+0] 6.94+0]
0.3 7.57-1] 757-1] 4.97+0] 4.97+0]
04 476-1] 3.2§-2] 507-1] 3.74+0] 3.26-4] 3.74+0]
05 3.30-1] 4.07-2] 6.99-3] 1.80-3] 5.8§-4] 3.80-1] 2.90+0] 1.84-3] 354-5] 1.80-6] 1.61-7] 2.90+0]

0.6 250-1] 3.54-2] 817-3] 3.00-3] 1.49-3] 4.99-3] 3.03-1] 237+0] 3.4§-3] 2.2§-4] 444-5] 1.47-5] 9.001-6] 2.37+0]
0.7 20{-1] 2.94-2] 7.47-3] 2971-3] 143-3] 1.19-2] 254-1] 1.90+0] 454-3] 4.70-4] 1.23-4] 4.94-5] 1.07-4] 1.97+0]
08 1.70-1] 2.43-2] 6.3§-3] 259-3] 1.27-3] 1.69-2] 221-1] 1.59+0] 5.2§-3] 6.71-4] 2.01-4] 869-5] 3.20-4] 1.60+0]
09 1.48-1] 2.01-2] 534-3] 21§-3] 1.0§-3] 1.99-2] 1.97-1] 1.3§+0] 5.63-3] 82§-4] 263-4] 117-4] 6.30-4] 1.36+0]
1.0 1.31-1] 1.69-2] 450-3] 1.83-3] 9.20-4] 214-2] 1.7§-1] 1.1§+0] 577-3] 924-4] 3.0§-4] 1.40-4] 9.84-4] 1.17+0]
15 8.65-2] 8.07-3] 219-3] 867-4] 4.37-4] 1.94-2] 117-1] 6.37-1] 509-3] 9.8-4] 359-4] 1.77-4] 2.49-3] 6.41—1]
20 647-2] 4.61-3] 1.20-3] 4.87-4] 249-4] 1.47-2] 859-2] 4.04-1] 4.07-3] 83§-4] 3.19-4] 154-4] 3.10-3] 417-1]
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_ FIG._ 2. QL s_inglet and trip_let ela_stig scattering cross section, : Collinear Triplet (e,2e) 1
with spin weighting, as a function of incident-electron energy. 1 1
Examination of the cross section data in Tables | and Il & o5k 5 -
reveals the distinctly different behavior of the CL and TP g |
models. The singlet elastic cross sections of the CL model %
are three times larger than the TP model above ionization § .
threshold, whereas the triplet elastic cross sections are of 3 %10 " ]
similar magnitude. Below threshold, comparison of the elas- E
tic cross sections is difficult due to the wide resonance in the
CL model. The peak singlet inelastic cross sections for each 005 . L
model are of similar magnitude, but are consistently shifted "0.01 0.03 0.10
nearer to threshold in the CL model. The peak singlet ion- Total system energy E (a.u.)
ization cross section of the CL model is half that of the TP . . _ . .
model, and is once again closer to threshold. FIG. 3. CL singlet and tripletd, 2e) TICS, with spin weight-

The peak tnp'et inelastic and ionization cross sections ofng, as a function of total Sys.tem energy near ionization threshold.
each model have similar magnitude, and are also shiftedhe results are compared with those of Kato and Wataha8g
nearer threshold in the CL model, but to a lesser extent thalcCurdy et al. [11], and RObl"irz‘fa“H 2'2-8[19]- The singlet and
the singlet case. For energies below the peak cross sectioﬁghl["e_t resrl]Jlt_s ire dl‘llwl((jjes E]E ~“"and E*S, respectively, to em-
the CL model cross sections are less suppressed. phasize their threshold behavior.

hydrogen problem are predicted to be the same a4 th@
B. Threshold laws and ionization cross sections CL model[22,27,3§. Also, the threshold law for the >0
singlet and triplet partial waves for the full hydrogen prob-
lem is the same as the=0 singletpartial wave32—34,31.
So as to provide a complete review of the threshold be-

Previously [21], we presented details of our near-
threshold results for the=0 CL model for electron-impact

with atomic hydrogen. We found the threshold behavior to behavior of both models, we repeat our singlet results from our

consistent with the Wanm({QO].thresho.Id law, tq very high previous publication in Fig. 3, and discuss our fitting of these
accuracy, and was able to derive a fitting function that accu:

! AP : . 2 results in more detail.
rately pred!cts .thé‘_o singlet CL TICS(in units ofag) for Clearly, Fig. 3 shows good agreement between our CL
total energies in the range 0.005-0.2 a.u.,

model singlet TICS results and those of Kato and Watanabe

Ug:LO:E(l_lzato_oo4)((0_386t 0.007 — E(1.69+0.08) [;8]_f_0r all energ_ies (_:onsidered, and our results e_xhil_)it a
significant reduction in the energy-dependent oscillations.
+E2(4.1+0.5 - E3(4.6+1.1)). (35)  However, it should be noted that the Kato and Watanabe

results on our plot were obtained by scanning and digitizing

Our results also gave support to the semiclassical calculaheir published results, and may have additional errors intro-
tions of Peterkod22] for the CL model’s triplet threshold duced by this process. We have good agreement with the
behavior givingE33™0-02 results of McCurdyet al. [11] for energies above 0.01 a.u.,

Using semiclassical methods, the threshold power law foand with Robicheauxt al. [19] above 0.03 a.u., but both of
the triplet wave function for three-body breakup was firstthese data sets show significant errors below these energies.
proposed by Klar and Schlecf82] to beE*®L This incor-  They axis in the singlet plot has been divided By-?’ to
rect result was repeated in subsequent publicati@B8s34),  highlight the threshold behavior, where it is expected that the
but was correctly calculated by Peterkf#?] to be E33%  gradient of the plots should approach zero as the energy ap-
This matched subsequent derivatiof35,36], also using proaches threshold, if the Wannier threshold law holds for
semiclassical methods. It should be noted that the thresholthe CL model. This is indeed the case for our results and
laws for the singlet and tripldt =0 partial waves of the full those of Kato and Watanabe.
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TABLE lll. Coefficients for singlet CL model TICS nonlinear a lower-order polynomial. However, due to the fewer number
fitting for E=0.005-0.2 a.u. Figures in brackets are the standar@f points, and the increased estimated error of the points in
error of the last significant figure. this region, there is some uncertainty as to whetherl or
n=2 provides the best fit in this region. However, the coef-

nox* E Ao aE  aE? A’ aE ficients of then=1 fit are consistent with the=3 fit from
0 164.5 0.8966) 0.1422) Table Ill. As a test of the fitting functiohEq. (35)] we per-
1 117.0 1.07(2) 0.30G3) —0.76(1) formed a linear fit of the transformed data, over the same
2 507 1.11%2) 0.3593) —1.35(2) 2.016) energy intervals, and obtained the same valuesg,olvithin
P ' ' : their estimated standard error.
46.5 1.1284) 0.3847) —1. 4.15) —4.6(11 e : .
?1 423 1 1423 %348;1)) _239((;) 12%25)) _42((9)) 7516) Similar procedures were applied for the CL triplet TICS

presented in Fig. 3, over the energy range 0.01-0.2 a.u.,
which gave a fitting functiorfin units ofa3) of

We used a nonlinear fitting procedure, similar to that de- CL _ =(3.365:0.009)
scribed by Kato and Watanabe, over the energy range 0.005— 7s=1~ E ((0.56+0.02 - E(3.59£0.29
0.2 a.u., by fitting to the functiomr=E“g(E), where amth +E2(11+1)— E3(14= 3)). (36)
order series expansion g{E) was made.

With our fitting procedure, both the value of and its  However, when applied to smaller energy ranges, or com-
estimated error are dependent upon the number of terms ifared with the results of a linear fit of the transformed data,
9(E) and the estimated error of each of our data points. OUf, did not coincide within the stated error, and the polyno-
initial nonlinear fit was based upon the estimated errors ofyjg| coefficients changed significantlgis they are very sen-
our results, and the fitting function was then used to calculatgijtive to small changes in). We have therefore increased
the standard deviation of our results in each of four energy,r estimated standard error, and give the 0 CL triplet
regions of equal size. These standard deviations were thgRreshold power law aB3379%2 This is consistent with the
used as an improved estimate for the absolute error of thgemiclassical theoretical calculations of Peterkag], who
points in that region, and a new value @fwas calculated.  cajculated the triplet power-law coefficient to be three times
This procedure was performed iteratively until convergencgyyger than the singlet coefficient, that E3% The esti-
of the fitting function coefficients was obtained. . mated error for is larger than our singlet result due to using

The results of oun=0 ton=4 nonlinear fits are detailed fo\er points, limitingR, to 400 a.u., and the highly sup-
in Table Ill. Then=3 polynomial forg(E) was selected as pressed triplet cross sections, all of which resulted in an in-
the best fit, and is used for our estimate of the thresholdease in the estimated error or our plot points.
behavior given above. From the table we can see thagthe  \ve now turn to the TP model for which an interesting
parameter reduces with increasingindicating an increas- gpservation was made in the classical regif€]. It was
ingly better fit. The difference between thé of then=3  gshown that, classically, ionization cannot occur below ener-
andn=4 fits is not significant, indicating that over this en- gies of 1/6 a.u. even though it is energetically allowed.
ergy rangeg(E) can be suitably represented by a third-orderquantum mechanically we would expect a tunneling type of
polynomial. As our calculations have numerical errors, iN-suppression. For the singlet TP model Macek and a6}

creasing the degrees of freedom of the fitting function bemade a fully quantal prediction for the threshold power law
yond then=3 case did not improve thg? result and nec- of

essarily increased the standard error of the coefficients. In
order to select the best fit of our results we have consistently o0& prexp —6.87(E Y6+ 3.68E0). (37)
chosenn such thaty? approachesits minimum while the
maximum standard error of the coefficients remains below ater, Miyashitaet al. performed a fit of their resultégnor-
ﬁg:ft)i'aﬁ;d the polynomial coefficients do not increase eXPOjng the E term) and obtainedin units of waé)

We also performed a nonlinear fitting of the singlet data a£50=(104t 1)exp(— (6.75+0.02E 1) (39)
over the smaller energy range 0.005-0.05 a.u., and present
these results in Table IV. As this region is closer to threshold

) - : f i hing threshold. Th I ted re-
it was anticipated thaj(E) would be suitably represented by or energies, approaching threshio €Y a0 suggesied re

placingE ~ 6 with E~* and calculatingx from their numeri-
cal fit. There is justification for this as the derivationtof */6

relied on some theoretical approximatid8]. This gave a
threshold behavior of

TABLE IV. Coefficients for singlet CL model TICS nonlinear
fitting for E=0.005-0.05 a.u.

noox° E“ ap aE aE? agE® o LP ocexp(— (8.4+ 0.1)E ~0149:0.008) (39)

0 555 1.078) 0.28713)

1 197 1.12) 0.3863) —1.48(3) Our TP singlet TICS results are plotted in Fig. 4. We have
2 167 1.158) 0432 -2.313) 13 divided our results by fitting functions given by Miyashita
3 179 11420 0404) —-1.9(9) §16 -56(125)  etal to view the energy dependence of these functions, as

applied to our results. As in Fig. 3 for the CL model, we
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Lar —r— T required to accurately fit our data to this function, however,
3 Temkin-Poet Singlet (e,2e) the E~0-169-0.004tarm js again consistent with the Macek and
R ; Ihra prediction of arE~ /¢ dependence.
Ty Lof UMD DU Uteeee 3 In Fig. 4 we also present our triplet TICS results, divided
NEO S, \ ] by the threshold form calculated by Ihea al. [39]
£ \\ E
° I . ] 1
£ osf N E o§ly% ST exp(—15.76@& - 116EY). (42
. N
wn 04F =
8 ™M« a=104,B=6.75,y=1/6 "».\\ ] _ _
=) oaf  + 0=870, B=8.40,y=0.149 \\\_: Once again, the grg@ent of the plot a_pproaches zerk as
F — — Miyashita et al. S approaches zero, giving support to their estimated threshold
ook N e behavior for the TP triplet model. When a nonlinear fit of our
oot 0.10 1.00 results was made to this functional form, the calculated error
Total system energy E (a.u.) - .
of all the coefficients were too large to allow any conclusions
35r T ] to be made. This was due to the very highly suppressed cross
Temkin-Poet Triplet (e,2e) ] section near threshold and the limited number of data points.
— 30k " N It should be noted that our fitting functions for the
g [ ] Temkin-Poet moddlEgs.(40) and(41)] were very sensitive
ap L5k ' _ to the energy range _chosen for t_he fit, and the number of
& 1 ; terms in the modifying polynomial. Though our results
z f match theE ™Y functional form within our estimated error,
g 20F . - giving support to its validity, the possibility of alternate
g i . ] forms for the threshold law that closely match our results in
=HE ] the energy range considered, cannot be discounted. Our tabu-
[ " " . 6 6 ] lated results can be supplied, upon request, to interested
i f(x) =10 exp(-15.766 E " - 1.162E"") / (2E+1) ; readers for such tests.
Lo —— " Plots of the singlet and triplet SDCS for the CL model at
Total system energy E (a.u.) several energiegconsistent with Table)lare presented in

Fig. 5. The singlet plots have been normalized at equal en-

FIG. 4. TP singlet and tripletg{2e) TICS, with spin weighting, ~ ergy sharing to highlight the change in shape as a function of
as a function of total system energy near ionization threshold. Tancident-electron energy. At 0.6 a.u. incident-electron energy
emphasize their threshold behavior, the singlet results are dividethe SDCS shows a slight 4% reductioneat=0, compared
by the two fitting functiongsee text calculated by Miyashitat al. with €;= €,, and becomes flat near the incident energy of 0.7
[38], and the triplet results are divided by the fitting function cal- a.u. Beyond this energy, there is a marked relative increase in
culated by Ihraet al. [39]. The results of Miyashitat al. [38] for  the unequal energy-sharing region. There are no fully quantal
TP singlet energies 0.08-1.00 a.u. are displayed with long dasheg|. model SDCS results available for comparison, however,
and are mostly indistinguishable from our results. Their results athe trend of the SDCS shape, changing from concave to con-
Iqw_e_r_energi_es are not d_isplayed due to the significant errors iy a5 energy approaches threshold, is supported by the
digitizing their published figures. semiclassical calculations of Rdgtl].

) Plots of the singlet and triplet SDCS for the TP model at
would expect the gradient of our plots to approach zero aggyerg| energies are presented in Fig. 6. These are compared
we approach threshold, if they support the threshold law. \ith the FDM results of Jones and Stelbovicd, where

Using nonlinear fitting procedures we were able to fit oury, aijable. and agree within 0.5%, except near equal energy
data to the function expE ¢ (b+cE) over the energy sharing. ’ '
range 0.005-0.100 a.u., and obtair{gdunits of Trag)

‘T;Eo: exp(— (6.868+ O.OODE_”G) C. Final-state asymptotic continuum waves
Figure 7 shows the SDCS for the TP model using several
X{(142+2) - (224+ 8)E}, (40) choices for the final-state continuum wayds in Eq. (25)].

which matches Macek and lhra, within estimated error. Clea_rly the choice of two Coulomb W?.V(EEQ..(.ZG)] (CC)
Our fitting to the function ex@E °)(c+dE) over the prov!des a very smooth SDCS, and with sufficiently laRye
same energy range gavie units of wag) prowde§ results very close to the FDM r_esults_of Jones and
Stelbovicq 7] [see Fig. 10 for ;~r, behaviol. This method
TP _ _ —0.169+0.00 was first used by McCurdet al. [11], and is able to accu-
75-0= eXp~(6.7=0.9E ) rately calculate the magnitude of the ionization amplitude for
X {(117+39) — (181*+73)E}. (41)  both models considered in this paper, as well as the full
hydrogen problem[12]. Unless, otherwise stated, this
The significant errors of this fit limit the conclusions that we method has been used to calculate all TICS and SDCS cal-
can draw from our results. Many more data points would beculations in this paper.
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However, it is known that in the TP model the asymptotic sielnovics[7].
form of the final-state continuum waves is approximated by a

Coulomb wave for the slow electron and a plane wave folies showed that our primary grid spacif@40 a.u. at this

the fast electron. When ER7) was used with our scattering energy was required to be halved in order to provide stable
wave function, however, the SDCS oscillated wildly, due tophase results with increasirig) indicating that convergence
interference with discrete final-state Scattering also containegf the phase results is much more sensitive to the numerical
in the scattering wave function. Figure 7 shows that the

SDCS results using a Coulomb wave and an orthogonalizec'

plane wave(CO) [see Eq.(28)] removes this problem, and

gives results very similar to th€C) results, but with minor
fluctuations of the order of 1%. These fluctuations diminish =
with increasingR. For the case of two orthogonalized plane Nﬁ 015
waves (00), good results are obtained near equal energy go
sharing, but significant oscillations are apparent at asymmets
ric energy sharing.

In Fig. 8 we have plotted the phase of the ionization am-

plitude [Eq. (25)] extracted at variousR. The Coulomb
phasés) has been excluded from all phase plots in this paperQ
as it is known to be highly oscillatory whek approaches
zero. For the TP model, it is apparent that the phase is diver
gent when CC are used for the final-state continuum waves
and is consistent with the known logarithmic phase behavior
of this final state. However, the phase is convergent when

CO are used for the final-state continuum waves. The slight FIG. 7. TP singlet SDCS, with spin weighting, at 1.0 a.u.
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increase in phase shown on tRe=1000 a.u. CO plot does incident-electron energ{27.2 e\j for various choices for the final-
not indicate a slowly diverging phase. Our convergence studstate continuum waves, extractedRat 1000 a.u.
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FIG. 8. TP and CL singlet ionization amplitude phase using the FIG. 9. TP singlet and triplet ionization amplitude phases at
final-state continuum wave approximation of two Coulomb wavesvarious incident-electron energies, using a Coulomb wave for the
(CO), and an orthogonalized plane wave for the fast electron and &low electron and an orthogonalized Coulomb wave for the fast
Coulomb wave(CO) for the slow electron, extracted using the sur- €lectron.
face integral Eq(25) at the hyperradiR= 250, 500, and 1000 a.u.

Adjusted results have been made by adding phase adjustpients and
(43)—(45)] to our raw results. ,
iz

10y

Q(k;z)zarg(l“ +2§In(le)). (45)

errors introduced by finite grid methods.

For the CL model, however, neither the CC nor CO final- . .
state continuum waves provide convergent phase results, a$'€ Phase adjustment for the TP model is therefore zero for

neither describes the true asymptotic form of the continuuni® CO case, angrp+Q(k-,1) for the CC case. The phase
waves in this model. adjustment for the CL model igc, for the CO case and
Recently Rescignet al. [25] were able to demonstrate %cLtQ(k=,1) for the CC case. _
that the ionization amplitude phase for both the CL and TP These phase adjustments have been applied separately to
models could be made convergent, and for the TP modéu" CL and TP model results in Fig. 8, and demonstrate that
match the(CO) results presented in Fig. 8. Their procedurethe adjustments giv&convergent phases that are indepen-
can be applied to any choice of charges for the final-statgent of thez; and z, choice for the final-state asymptotic
Coulomb waves, by adding the logarithmic phase factorsContinuum waves.

including the Peterkop phase. Their phase adjustment equa- Figuré 9 shows the ionization amplitude phase for the TP
tions for the two models are model singlet and triplet states at various incident-electron

energies, using the CO final-state asymptotic continuum

z, 2, waves. The phase is clearly energy dependent, and the plots
brp= Ck R In(2KR), (43 also demonstrate a systematic flattenindth respect to the
€, energy fractiop with increasing incident-electron energy
1- 1 Ey. These plots were extracted at varying hyperr&ditio—
= 4 22 _ In(2KR (44) 1000 a.u, where good convergence of the SDCS were ob-
CL Kk Kk Kk k n( )1 . . . .
1 2 17Kz tained, and demonstrate only minor fluctuations in the phase,
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except near equal energy sharing in the triplet plots, where

s
i . M . ]

the ionization amplitudes are highly suppressed. b Temkin-Poet Ej=1.0 a.u. Singlet (e,2e)-:
; 0.100f 3

D. Grid spacing and convergence issues = C ]

& 0090 3

The scattering wave functions for the electron impact of &
hydrogen, and the simplified models presented in this paperg

100 a.u.,
----- 200 a.u., 6=0.02144

0.080

are highly oscillatory. The wavelength of these oscillations g [ ——- 400au,0=0.02138
determines the grid spacing, and the magnitude of their high; . .F "=~ g% o gﬂggg; , 3
order derivatives determines the accuracy, of the finite dif-x L .. 1000 au. 6=0.02137 \X\'
ference methods used for their solution. For discrete final-“ b — — 1200a.u.,6=0.02137 A T
i ; ; ; S ! 1400 a.u., 6=0.02137 R
state scattering, the scattering amplitude information is E FDM. 0=0.02140 =
contained mostly within the region wherg or r, are be- oosoba—— e 1 1 N N N
tween 0—42 a.u., wheren is the final-state orbital quantum 20 b 02 03 04 05

number. The wavelength of the primary oscillations of the Energy fraction (&, /E)

wave function in this region are determined by the momen-

F“”_‘ Of. the elastically Sca,ltte,red_ eIectrOn_,= 2l ,VZEO' F_Or ._electron energy of 1.0 a.(27.2 eV}, extracted using two Coulomb
|0n|za_t|on, _however,_the ionization amplitude information is waves for the final-state continuum waves, at various hyperRadii
contained in the region wherg~r,, where the wavelength gp\ results are by Jones and Stelbovigs The TICS calculated
of the wave function is determinegdsymptotically from the 4t eachR are displayed in the leger(@nits of wa2).

total system energy=2m/{2Ey— 1. The wavelength of the

wave functhn is t_herefore at a minimum whef‘_—>0 Orf2  more relaxed grid spacing in some regions, but the very large
—0, and this region determines the primary grid spacing of,ymper of possible grid spacing combinations, meant that
our grids. Extraction of the ionization cross sections on thenly 5 limited number of these possibilities could be tested.
hypersphere, as presented in Sec. Il D, requires the wavgowever, several interesting observations were noted during
function to be accurate over both of these regions and so oy, convergence testing.
grid spacing convergence studies have been performed using First, the shape of the SDCS only varied with the selec-
the SDCS calculated with E.q25)' . , tion of Ry, other grid spacingwithin limits) only served to
Near the nucleus, the high electrostatic potentials causggset the SDCS from the converged position. Therefore, if
distortions to the wave function, increasing the high-ordefjggg accuracy is acceptable, the grid spacing can be relaxed,
derivatives in this region, and thus requiring finer grid spac-nq the cross sections can be extracted from wave functions

ing to maintain accuracy of the Numerov method. calculated with significantly fewer grid points, which would
A detailed convergence study of the SDCS extracted fro”?equire significantly less computing resources.

the CL and TP wave functions was undertaken at several Second, a significant reduction in tiy dependence of

energies so that we could verify the energy dependence Qfc TicS was made by using a finer grid spacing aliyjt

the grid spacing and calculate the grid size required to prog heare complex scaling begins. We believe this to be due to

vide accurate results for each of these models. We did nqf,s giscontinuous first derivative of the complex scaled wave
observe any significantly different behavior between the,n«tion at these points. As the complex-scaling begins at

models, apart from the very largg, required in the TP gigerent relative phases of the wave function with different
model to obtain convergence of the SDCS near equal ENergy ., the finer grid spacing reduces the error in the finite-
sharing, as is evident in Fig. 10. It can be seen that gooditarence method at this discontinuity.

convergence of the SDCS is obtained for the TP model at 1.0 1hirq 2 very fine grid f;=0.01 a.u) was required near
a.u. andR=400 a.u., except near equal energy sharing. The,e origin due to the large Coulomb interactions in this re-

nonanalytic nature of the potential (1) atri=r, is be-  gign and is possibly also due to the polynomial approxima-
lieved to be the reason for the slow convergence of the

SDCS in this region. However, it should be noted that the
lack of convergence in the SDCS in this region has negli-
gible effect upon the TICS calculated from these plots, ami
that the TICS can be calculated very accurately wign
~400 a.u., at this energy. The problem of slow COnvergenCeregion(n)  Start(a.u) Length(au)  Spacingh, (a.u)
of the SDCS at equal energy sharing in the TP model was
also observed by Jones and StelboVitk 1 0.0 1.0 0.01
For the CL model with an incident-electron energy of 0.7 2 1.0 10.0 0.10
a.u., the grid spacing in Table V was used to obtain conver- 3 11.0 20.0 0.20
gence of the TICS to better than 0.2%, and convergence of 4 31.0 30.0 0.30

5

6

7

FIG. 10. TP singlet SDCS, with spin weighting, at an incident-

TABLE V. Grid spacing used at 0.7 a.u. incident-electron en-
rgy, with R;=600 a.u.,#=0.8 rad, with all spacing measured
long the real axis.

the SDCS at all energy fractions to better than 0.5%. 61.0 537.0 0.50

As seven regions of grid spacing were used in our calcu- 598.0 4.0 0.10
lations, with three other grid parameteRy,, Ry,ax, andé, it 602.0 13.0 0.50
may be possible to obtain results of similar accuracy with a
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tion of ¢ used to derive the Numerov formula at the singu-any general final-state continuum wave choice for both the
larities (whenr,=0 orr,=0). Though, the spacing can be CL and TP models.
increased to 0.05 a.u. without introducing large inaccuracies. Due to the very efficient propagation algorithm that we
Also, it should be noted that complete convergence was ndiave used in our ECS implementation, we have been able to
obtained with the main grid spacing 6£=0.50 a.u., but extend the computation grid to very large distances
was selected to balance computational effort with desired>1400 a.u. This has allowed us to accurately calculate
accuracy. Complete convergence is obtained Wif-0.30  TICS results for very low impact energies<(.505 a.u.,
a.u. 13.75 eV}, which has in turn allowed us to investigate the
Also, to ensure that settingy(Ryax.r2)=0 and threshold behavior for the singlet and triplet wave functions
(r1,Rmna0 =0 is an accurate approximation and does notfor the CL and TP models to high accuracy. The threshold
affect the accuracy of the wave function on the real gridbehavior is highly model dependent, and our results support
Rmax— Ro (the complex-scaled region of the grichust be  the classical calculations of Wannig20] for the L=0 CL
sufficiently large such that it contains approximately 1.5, orsinglet model, the semiclassical calculations of PetefR@p
more, oscillations of the wave function in its least oscillatoryfor the L=0 CL triplet model, and is consistent with the
region(alongr,=r,). Therefore, the length of the complex- fully quantal prediction of Macek and Ihf&3] for the TP
scaling region is energy dependent. singlet model, and the fully quantal prediction of Iretal.
Lastly, the following approximate energy relationships[39] for the TP triplet model.
were used to calculate the grid spacing for our models at These model problems have successfully tested the use of
other energies, using the 0.7 a.u. convergence testing to cdhe propagation method with ECS, and paved the way for

culate the proportionality constants: efficiently calculating solutions to the numerically intensive
full hydrogen problem. Further, with the efficiency gains
hnoc 1V(2E,), (46)  achieved by the propagation method, a fully quantal solution

of the Coulomb four-body problem is, in the not to distant
where E, is the energy of the incident electrdin a.u),  future, a distinct possibility.
indicating that the grid spacing is governed by th&R,, or
r,<Rg regions of the wave function, which contain the dis- ACKNOWLEDGMENTS

crete final-state scattering information. For ground-state scat- _ _
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indicating that the length of the complex-scaling region isvancgd CqmputingAPAC), and the Western Australian In-
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determined by the number of oscillations in the least oscilla-
tory region of the wave function, wherg=r,.

For our calculations we obtained convergent results when APPENDIX: NUMEROV FORMULA
Ro~40(Rax— Ro). However, for total system energies be-

'0""’ 0'0;" a.u., this results in aFO Igreater than the Iar%est compute the scattering wave function at different points on
value that we used in our calculatiofi3400 a.u., so the o grig and their selection depends on whether, =0

estimated error of our TICS for these low energies was 'n'and/orrj_1=0, dictating whether a series expansion #op

creased to 0.5-1.0%. There was little variation in our results, 4/ o, is used when deriving the formula. These Nu-
for different complex-scaling angle_m and 0.8 radians was merov fof]mulas may be most simply represented by
used for all the results presented in this paper.

Four variations of the Numerov formula are required to

We used the same grid spacing for discrete final-state 1 1
scattering and checked that this also provided convergent > > {(hZBi,Cj,thzAi,Dj,)zp(rm, Tivjr)
results. However, for energies below ionization threshold, the  i'=-1j'=-1
wave function is(for large R) highly suppressed in the re- Th2A2B, DO i i) = Al
gion r;~r,, and the complex scaling regiorR{,«— Ro) CB/ Dy Q1] +11)1=0, (AL)
was limited to 50 a.u. where from Eqs(3) and (6) we obtain
V. CONCLUSION o 1-6i0 1-6jp
QL) =2 B+ ==+ ——= =Vl 1) | (1, 1))

For theL=0 CL and TP models, the scattering wave ' !

function calculated using ECS and our propagation method —2x(ri,ry), (A2)
can be used to extract both ionization and discrete final-state

scattering cross sections to high accuracy. Also, with the corand whereh andt are the grid spacing in thieandj direc-
rect choice of final-state asymptotic continuum waves, contions, respectively, given bya=r;—r;_; andt=r;—r;_,.
vergent ionization amplitude phases can be obtained directlywo further coefficients are used,=(r;,—r;)/h and B
for the TP model. Moreover, as discovered by Rescigal.  =(r;, ,—r;)/t, which determine the expansigar contrac-
[25], converged ionization amplitudes can be extracted fotion) of the grid spacing in theandj directions, respectively.

022703-13



P. L. BARTLETT AND A. T. STELBOVICS PHYSICAL REVIEW AB9, 022703 (2004

i-1 i i+l B_i=—a+a’+a,
N 1 A
Bo=a3+ 4a’+4a+1,
B
Bi=a’+a—1. (A3)
v .
A 1 1/ When there is a singularity; ;=0 then
4 ./4_1:0,
\,/ N o N j_]
h ho Ao=(a+1)(3\?a’h?+4N2h2a— 30N ah+ A %h?
FIG. 11. The grid spacing in thiedirection and direction may —24\h+72),

be nonuniform, either real or complex, and is measured by the
parameters) andt and the expansiofor contraction ratios @ and A;=—\%h2—6Nah+2\%h2a+24nh—T72,

B.
— 2

. 1= —a—1),
Each grid measuremerit, t, «, and3 may be real or com- B-1=6a(a’~a—1)
plex, and are displayed graphically in Fig. 11. The values of
A, B, C, andD vary depending on whethey_,=0 and / or
rj,]_:O.

First, we shall consider only thiedirection. If there is no
singularityr;_,>0 then

Bo=(a+1)(3\a’h—6a?—18a+4Nah+\h—6),
B;=2\a’h—6a’+Nah—\h—6a+86. (A4)

The value ofA in these equations is set ta@ &vherez is the

A_1=12a, charge on the nucleus.
For thej direction, the formulas are similar to those above
Ao=—12(a+1), and are selected on whether there is a singularjty; =0,
or not,rj_,;>0. We letC;,= A;; andD;,=B;,, except that
A;=12, «a is replaced byg, andh is replaced byt.
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