PHYSICAL REVIEW A 69, 022509 (2004

Relativistic many-body calculations of electric-dipole matrix elements, lifetimes,
and polarizabilities in rubidium
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Electric-dipole matrix elements fars-n’p, nd-n’p, and &—4f transitions in Rb are calculated using a
relativistic all-order method. A third-order calculation is also carried out for these matrix elements to evaluate
the importance of the high-order many-body perturbation theory contributions. The all-order matrix elements
are used to evaluate lifetimes 0§ andnp levels withn=6,7,8 andnd levels withn=4,5,6 for comparison
with experiment and to provide benchmark values for these lifetimes. The dynamic polarizabilities are calcu-
lated forns states of rubidium. The resulting lifetime and polarizability values are compared with available
theory and experiment.
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[. INTRODUCTION obtain values of the lifetimes of thes67s, 8s, 6p, 7p, 8p,
4d, 5d, and & levels. The lifetime of the 85, level is of
A recent proposall] for quantum computation utilizes special interest owing to the large discrepancies between ex-
the ground hyperfine states of a neutral atom as qubits, arigting experiment$4,5]. The third-order matrix-element cal-
realizes two-qubit quantum gates by conditional excitationgulation has also been carried out to evaluate the importance
to Rydberg states. The atoms are confined to the sites of & the higher-order contributions. The dynamic polarizabil-
optical lattice, and the optical potential seen by the atonities of the Rbns states are also calculated for both low-
depends on the dynamic polarizability of the atom. TherelYing and Rydberg levels. The evaluation of the accuracy of
fore, the atom will generally move in a different lattice po- the.polanzablhty calculations is conducted including a com-
tential when it is excited to the Rydberg state during the gat®arison between our data and other theory and experiment.
operation, which may cause motional heating and lead to
decoherence. In a recent pagpel, we proposed two solu- [l. ELECTRIC-DIPOLE MATRIX ELEMENTS
tions to this problem by matching the ac polarizabilities of
the atom in the 9“’“_?‘?' and Rydberg states. In th(_e flrs{ions were measured to high accuracy in R6f.and matrix
scheme, the p_olanzabllmeS are matched for the specific valy;oments  for nsn'p transitons with n=5,6 and n’
ues of the lattice photon frequency between the resonances.s g 7.8 were calculated using a single-dout&D) all-

In the second scheme, some accidental matches betwegfyer method in Refd3,7]. In the present work, we have
transition energies are used to match the ground-state polags|cylated matrix elements for sh p, 8s-np, 4d-np,
izability with the polarizability of the selected Rydberg statesgq-p, p, and &-np transitions withn="5,6,7, and 8 as well
(11p and 1% in the case of Rb The elimination of motional a5 4f-6d transitions using SD all-order methd@]. Very
decoherence is important in helping to design a high-fidelitypriefly, the wave function is represented as an expansion
two-qubit gate capable of meeting the error threshold for

scalable quantum computation. 1

Despite the existence of high-precision measurements of [W,)=| 142 pmadh@at 5 2 PmnatAmdndnda
the primary transition electric-dipole matrix elements in me mnab
alkali-metal atoms, accurate experimental data for other tran-
sitions are lacking with the exception of a very few transi- + > Prmunmd, T > Prnvadmandad, ||P,),

. . . . . m#uv mna

tions in Cs owing to the study of parity nonconservation. In

light of the importance of the atomic calculations for the (D)
guantum logic gate scheme with conditional excitations to

Rydberg levels, we have calculated the electric-dipole matriswhere®, is the lowest-order atomic state function, which is
elements for subsequent evaluation of lifetimes and polariztaken to be thérozen-coreDirac-Hartree-FockDHF) wave
abilities for a number of Rb levels. We note that the interesfunction of a state; a] anda; are creation and annihilation
in this particular logic gate scheme with neutral atoms result®perators, respectively. The indexs used to represent core
from its potential for fas{submicrosecondgate operations. states and indices andn indicate excited states.

We have performed all-order calculations of therp, The quantitiesp,, and p,,,, are single core and valence
8s-np, 4d-np, 5d-np, and &-np electric-dipole matrix el- excitation coefficients, and the quantitiegnap and pmma
ements withn=>5,6,7, and 8, and of thedd4f matrix ele- are double core and valence excitation coefficients, respec-
ments. These results are combined with previous all-ordetively. We obtain the equations for the excitation coefficients
calculations of the §&np and 6-np matrix element§3] to by substituting the above wave function into the many-body

The electric-dipole matrix elements for the-5p transi-
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TABLE |. Absolute values of all-order SD electric-dipole matrix elements for nifgen’s transitions in Rb in atomic units. The
lowest-order(DHF) and third-order values all also given. All-order values farrfp and 6-np transitions are from Ref3]. The corre-
sponding reduced oscillator strengths are given in rows laefddorder matrix elements and experimental energies are used in calculation
of oscillator strengths.

58-5p12 55-6pPys2 58-7py2 55-8pys2 58-5p32 55-6P3p2 58-7P32 55-8pP3p2
DHF 4.819 0.383 0.142 0.078 6.807 0.606 0.237 0.136
Third order 4,181 0.363 0.130 0.069 5.899 0.583 0.224 0.125
All order 4.221 0.333 0.115 0.059 5.956 0.541 0.202 0.111
fss—np 0.3404 0.0040 0.0006 0.0002 0.6905 0.0106 0.0017 0.0006
6s-5py2 6s-6py2 6s-7py2 6s-8py2 6s-5p32 6s-6p32 6s-7p32 6s-8p32
DHF 4.256 10.286 0.976 0.375 6.187 14.457 1.498 0.597
Third order 4.189 9.584 1.050 0.420 6.115 13.447 1.610 0.668
All order 4.119 9.684 0.999 0.393 6.013 13.592 1.540 0.628
fes—np —0.1946 0.5101 0.0117 0.0023 —0.4019 1.0267 0.0279 0.0058
7s-5pys 7s-6pys2 7s-7pPys2 7s-8pys2 75-5p3p 75-6p3p2 7s-7P3p2 75-8pP3p2
DHF 0.981 9.360 17.612 1.801 1.393 13.552 24.708 2.728
Third order 0.952 9.304 16.679 1.944 1.347 13.517 23.349 2.943
All order 0.954 9.189 16.844 1.865 1.352 13.353 23.587 2.833
frs—np —0.0190 —0.3330 0.6565 0.0186 —0.0375 —0.6821 1.3170 0.0432
8s-5py2 8s-6py2 8s-7py2 8s-8py2 8s-5p32 8s-6p32 8s-7p32 8s-8p32
DHF 0.514 1.922 16.151 26.817 0.727 2.705 23.343 37.577
Third order 0.500 1.839 16.162 25.587 0.705 2.578 23.428 35.770
All order 0.504 1.853 15.982 25.831 0.710 2.600 23.171 36.123
fgsnp —0.0063 —0.0278 —0.4701 0.7987 —0.0124 —0.0539 —0.9595 1.5993

Schralinger equation. The equations are solved iterativelyusing theB-spline method 10]. We use 40 splines of order
and the resulting expansion coefficients are used to calculate=7 for each angular momentum. The basis set orbitals are
matrix elements. In such a procedure, certain classes @fefined on a nonlinear grid and constrained to a large spheri-
many-body perturbation theofMBPT) terms are summed cal cavity of a radiusR= 100 a.u. This cavity radius is cho-

to all orders. However, the restriction of the expangibnto

sen to accommodate all valence orbitals for which atomic

the single and double excitations leads to some missingroperties are being calculated, i.e., @, np;,, andnps,

terms in the expression for the matrix elements starting fromy pitals with n=5.6.7.8 nds;,, and nds, orbitals with n
the fourth order. As it is important to understand how signifi-_ 4 5 & and 4., e '

cant higher-order corrections are for the transitions unde
consideration, we also conduct separate third-order calcul
tion of these matrix elemenfsncluding random-phase ap-
proximation(RPA) contributions iterated to all ordgrsThe

third-order calculation follows that of R€f9]. Such a calcu-

lation is of lower accuracy than the all-order one but the
difference in third-order and all-order values provides an es

4f 4, orbitals. The choice of the number

bt splines, cavity radius, and number of grid points is based
%n the comparison of the resulting basis set energies of the
valence orbitals listed above and electric-dipole matrix ele-
ments between these states with the energies and matrix el-
ements resulting from direct numerical solutions of the DHF
equations. We require that these basis set energies were ac-

timate of the importance of the higher-order contributions Curate to five or more significant figures. We have also veri-

Also, the breakdown of both all-order and third-order calcu-

fied that the differences between the third-order results ob-

lations to different contributions yields information regarding t&ined with this basis set and more accurate 50 spline basis
relative importance of the specific terms and possible largg®t are negligible at the current level of accuracy.
cancellations between different terms. Such information can Ve use the system of atomic units, a.u., in whegme,

be used to approximate some of the omitted contribution47€o and the reduced Planck const&nbave the numerical

and further estimate the uncertainty of the all-order calcula¥@lue 1. Polarizability in atomic units has the dimensions of
and its numerical values presented here are thus

tion. We should note that despite the fact that the entire third¥olume,
order contribution is contained in the all-order result, themeasure

d in units 0&3, whereay~0.052918 nm is Bohr

extraction of the third-order part from the all-order calcula-radius. The atomic units fax can be be converted to SI units

tion is not a straightforward taslsee Ref[7] for the corre-

via a/h[Hz/(VIm)?]=2.48832% 10 8a(a.u.), where the

spondence of the termsso a separate calculation is made toconversion coefficient is #eoagl h and Planck constart is
obtain third-order values. The separate calculation also afactored out. The atomic unit of frequenay is E,/#A
lows us to iterate RPA contribution to all orders.
The all-order and third-order calculations are conducted The third-order and all-order results fors-n’p transi-
with a complete set of basis DHF wave functions generatetions withn,n’=5,6,7 and 8 are summarized in Table | to-

~4.1341x 10'® Hz, whereE,, is Hartree energy.
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TABLE II. Absolute values of all-order SD electric-dipole matrix elements forripen’d and &d-4f transitions in Rb in atomic units.
The lowest-order and third-order values are also given. In the cases where lowest order and SD data are of different sign relative signs are
shown.

n 5 6 7 8
4dzp—Npye

DHF 9.046 6.725 1.181 0.578

Third order 8.092 5.289 1.119 0.566

All order 7.847 4.717 1.054 0.541
4dz— NP3y

DHF 4.082 2.955 0.534 0.262

Third order 3.655 2.307 0.502 0.255

All order 3.540 2.055 0.470 0.242
4ds;,— NP3y,

DHF 12.241 8.829 1.601 0.787

Third order 10.964 6.915 1.505 0.764

All order 10.634 6.184 1.411 0.726
5dzp— NPy

DHF 0.244 18.701 13.639 2.660

Third order 1.220 18.241 10.600 2.573

All order 1.616 18.106 9.768 2.400
5d3,— NP3y

DHF 0.157 8.443 5.983 1.198

Third order 0.607 8.232 4.609 1.146

All order 0.787 8.160 4.242 1.064
5ds2— NP3

DHF 0.493 25.340 17.884 3.592

Third order 1.821 24.695 13.843 3.435

All order 2.334 24.491 12.798 3.201
6dz,— NPy

DHF 0.512 —0.254 31.349 22.584

Third order 1.076 1.375 31.563 17.647

All order 1.180 1.989 31.422 16.631
6d3,— NP3

DHF 0.255 —0.028 14.158 9.901

Third order 0.513 0.732 14.242 7.662

All order 0.558 1.012 14.161 7.215
6d3,— NP3

DHF 0.778 —0.047 42.500 29.603

Third order 1.532 2.184 42.709 23.041

All order 1.658 2.974 42.481 21.784

6d3;,—4fs5) 6ds;,— 4fs) 6ds;,—4f 7

DHF 6.109 1.642 7.343

Third order 9.150 2.443 10.924

All order 9.938 2.642 11.813

gether with the lowest-order DHF values. The correspondingum of the fss ., oscillator strengths withn=5,6,7,8

reduced oscillator strengths calculated using forniilg slightly exceeds one because the contributions to the sum
rule =,fss .np=1 from the transitions witn=2,3,4 are
30.3756 negative.
- 2
fav=— 31 1)y [@lDIb) @

The results for thend-n’p matrix elements withn
=4,5,6 and then’=5,6,7,8 and 6-4f matrix elements are
are listed in the rows labeletls ,/,. In Eq. (2), D is the ~ summarized in Table Il. The transitions containing the fine
dipole operator and is a transition wavelength in nm. The structure components, such as-5p;, and ns-5p5, pairs,
all-order matrix elements and experimental energies fronfor example, have very similar relative correlation contribu-
Ref.[12] are used in the oscillator strength calculation. Thetions so we will omit the angular momentupsubscript in
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TABLE 1. Contributions to third-order and all-order electric-dipole reduced matrix elements for selected transitions in Rb.

5s-5pys 5s-7pys 7s-5py 7s-7pyp 5d3,—5p12 5d3;,—7p1s2 6d3,,— 6Py 6d3,—4f5p
Third order
DHF 4.819 0.149 0.981 17.612 0.244 13.639 —0.254 6.109
RPA —-0.213 —0.060 0.015 —-0.024 0.101 0.030 0.045 0.002
BO —-0.419 0.040 —0.038 —0.899 0.888 —3.048 1.589 3.041
SR 0.027 0.009 —0.004 0.002 —-0.013 —0.004 —0.005 0.001
Norm —0.033 —0.001 —0.002 —-0.012 —0.001 —0.016 0.000 —0.004
Total 4.181 0.130 0.952 16.679 1.220 10.600 1.375 9.150
All order

DHF 4.819 0.142 0.981 17.612 0.244 13.639 —0.254 6.109
Terma —0.234 —0.064 0.014 —-0.025 0.102 0.036 0.047 0.005
Termc —0.375 0.009 —-0.077 —0.648 1.575 —-3.372 2.752 4.393
Termd 0.039 0.017 0.056 0.149 —-0.197 —-0.024 —-0.439 —0.089
Other 0.039 0.012 —0.006 0.005 —0.025 —0.004 —0.009 0.002
Norm —0.068 —0.002 -0.014 —0.248 —0.083 —0.506 —0.109 —0.483
Total 4,220 0.115 0.954 16.844 1.616 9.768 1.989 9.938

the subsequent discussion. We find that the relative correlder the case of C§3,13,14. However, we also find that term
tion correction contribution varies very significantly with the d, which is missing entirely from third-order calculation is
transition. It is small, below 7%, for all&np, 7s-np, and  relatively large for B-5p and %-7p matrix elements. It is
8s-np transitions and for somed-n’p transitions. In those rather puzzling since we observe very good agreement of
situations where the third order and all-order values differ bythird-order and all-order results for these transitions. The
less than a few percent we expect the dipole matrix elemenfsossible explanation is accurate cancellation of the high-
to be accurate to at least 2%. order terms for these transitions. We note that telria not

We should note that in some cases it is possible that sucsignificant for the 8-5p transition, for which some conclu-
good agreement of the third-order and all-order values ision of accuracy may be drawn from the comparison with
fortuitous and may result from accurate cancellations of thesimilar Cs transition matrix elemeng&hich are measured to
higher-order terms. We address this issue below in more deguite good accuragy Accurate measurements of these ma-
tail. trix elements would be very useful in developing further un-

In Ref.[3], the all-order values for the primary transitions derstanding of this issue. We note that even though this term
were found to agree with a recent high-accuracy measurds significant, it is not very large, on the order of 5%.
ment[6] to within 0.2%—0.35%. The accuracy of the-6p, In the case ohd-n'p transitions, the terna (or BO term
5s-7p, and 5-8p matrix elements is, however, substantially for third-order calculationdominates. The relative contribu-
lower since they are relatively small matrix elements withtion of the correlation correction varies with the transition.
significant relative correlation contributions. To investigateFor 5d-5p and &-6p transitions, the DHF approximation
the correlation contributions in more detail, we give a break-gives a very poor result; the sign of the matrix element
down of both third-order and all-order calculations for eightchanges when correlation is added fad-6p matrix ele-
selected transitions in Table IIl. The third-order contributionsments and the DHF values fords6p matrix elements are
are separated to RPA, Brueckner-orbiaD), structural ra- about seven times too low. As expected, we find very large,
diation (SR) and normalization corrections following Ref. 25%-30%, differences between third-order and all-order cal-
[9]. For the all-order contributions, three terngg €, andd) culations for these transitions as the all-order calculation in-
are listed separately and the other 17 terms are grouped toludes correlation more completely. The tecnecan be cor-
gether in row labeled “Other.” The derivation and expres-rected by including triple excitations or use of the semi-
sions for these terms are given in Rdf8,8]. A normaliza- empirical scaling described in Refs3,7,13. To check the
tion correction is given in row labeled “Norm.” As it was validity of the scaling approach, we applied such a method to
noted earlier, there is no straightforward correspondence ahe 5d-5p matrix elements and compared the resulting ratio
the all-order and third-order breakdowifull description is  with the experimental measuremeas].
given in Ref.[7]), but terma partly corresponds to RPA-like In Table IV we give our values of the rati®
corrections and termato BO-like corrections. Termd is nor-
mally small with exception of some transitions. It is qua- _ (5p32|D|[5d32) (5p1/2 C1[|5d3)

(5p1/4D[5d3/) (5p3d|C4l[5da)

dratic in single-valence excitation coefficiens,, and,
therefore, contains only fifth and higher-order terms. We find

strong cancellations between BO and RPA terms f®6p, of the 5p3/,-5d3, and 54,»-5d3), electric-dipole matrix ele-
5s-7p, and 5-8p matrix elements. The difficulty of the cal- ments divided by the corresponding values of@ereduced
culation of such matrix elements has been described befomrmatrix elements, wher€, is the normalized spherical har-
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TABLE IV. The ratio R of the 5d3,—5p3, and Sd3,—5p TABLE V. Transition energiesE/hc) in cm™ !, matrix elements
electric-dipole matrix elements divided by the corresponding valuegin a.u) and corresponding contributions tp4, radiative width(in
of the C; reduced matrix elements, whef®, is the normalized MHz).
spherical harmonic. Comparison of the present results calculated in
different approximations with theoretical and experimental valuesTransition ¢ w) (v||Dlw) SE,w Ayw SwAow
from Ref.[15]. The correspondingd-5p matrix elements, divided
by the corresponding values of tkiy reduced matrix elements are 7P3p=7s

23.587 1559 1.068 1.068

also given. 7ps,—6s 1.540 7736 0556  1.624

7P~ 5s 0.202 27870  0.447 2071
5p,—5dy R 7p3—5d3, 4.242 2169  0.093  2.164

NENL 3/2-5/2  3/2-312  1/2-3/2 7P 4da, 0.470 8515  0.069  2.234
73— 5dsp 12.798 2169  0.847  3.081

DHF 0.3182  0.3034  0.2115 I 1411 8515 0623 3703

Third order 1.1756 1.1758 1.0562 1.113

All order 1.5063 1.5248 1.3995 1.089

Scaled 1.2801 1.2882 1.1707 1.100 1

MBPT [15] 1.0238 1.0216  0.9000 1.135 = (4

Expt. [15] 1.0688) > Ay

monic[11]. The present results are compared with theoreticaf’md the denominator of E¢4) gives the radiative width of
and experimental values from R¢fL5]. The corresponding the Ievelvl. lectric-dinol . ib h
5d-5p matrix elements, divided by the corresponding values Several electric-dipoléE]) transitions contribute to the

of the C, reduced matrix elements are also given. The theolfetime of each of the levels considered here. The simplest
retical value of Ref.[15] was obtained using relativistic case Is that of thesslevel, where only 8-5p,/, and &-5p,
third-order many-body theory[9]; some higher-order transitions need to be included. To calculate the lifetime of

Brueckner-orbital terms were also included, which account{® 8P State, we need to include ten E1 transitions and in
for the difference with our third-order result. As noted above, (N€ case of the &, level seven E1 transitions are allowed,

the largest contribution to theps5d matrix elements calcu- ncluding the @lz;-4f5; transition. The experimental ener-
lated using the all-order method comes from the teroon-

gies from Ref[12] are used in the lifetime calculation. We
taining single-valence excitation coefficients, . We scale illustrate the importance of the different channels contribut-
-
these excitation coefficienis,, with the ratio of the experi-

ing to the lifetime of the P5, state in Table V, where we
mental and corresponding theoretical correlation energies Ve the coefficients,,, for each transition together with the

described in Refd.3,13]. We list the results obtained using transition energies froril2] and corresponding matrix 'eIe-
such scaling in a row labeled “Scaled.” We find very signifi- MeNts from Tables I and II. The accumulated sHgA,, is

cant differences between all high-precision calculations"Sted in the last column. We find the contribution from the

which indicates that the accuracy of the all-order calculationy Pz 5ds transition to be nearly as large as the contribution

is around 10-20 % for these matrix elements. However, ouf"oM the 7s;-7s transition. All seven contributions need to.
all-order result for the rati is in much better agreement be included in an accurate calculation. The smallest contri-
with experimen{15] than the third-order value and theoret- bution to =,A,,, comes from Pg,-4ds, transition and is

ical calculation of Ref[15]. around 2%. o o
We list the contributions to @&, and &5, lifetimes as

well as the corresponding matrix elements and transition en-
. LIFETIMES ergies in Table VI. The dominant contributions td+3 and
6ds), lifetimes come from the @5,-5p1, and &s-5p3
e[ransitions, respectively. The next largest contribution is 14%
for the 6d5, lifetime and 7% for the @5, lifetime. We find
the contributions from @5,-4f5;, and &g -4f, transitions
to be around 7% for the corresponding level.

The results for thens, np, and nd lifetimes obtained
using all-order matrix elements are compared with experi-
mental values from Ref$4,5,1¢ in Table VII. We omit the

2.02613< 10 |<U||D||W>|2 ) effect of the blackbody radiation in our calculations. In Ref.
= 3 21 S 3 [a6], it was estimated to be small for the levels considered

here with the exception of thep8levels. It is still far below
experimental uncertainty of thep8evel lifetime. The results
where(v | D||w) is the reduced electric-dipole matrix element agree with experiment within the experimental precision for
for the transition between statesand w and \ is corre-  6s, 7s, 8s, 6p, and 4 levels. The values of thep? 8p,
sponding wavelength in nanometers. The lifetime of the statéd, and &l lifetimes are in good agreement with experiment.
v is calculated as The lower accuracy of the calculations is expected for these

We use the resulting all-order matrix elements to calculat
the lifetimes of the §, 7s, 8s, 6p, 7p, 8p, 4d, 5d, and &
levels in Rb for the comparison with experiment and provid-
ing benchmark values for these lifetimes.

The EinsteinA coefficientsA,,,, [11] are calculated using
the formula

VW
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TABLE VI. Transition energie€/hc in cm™*, matrix elements  ever, large uncertainties in the correlation contributions to

(a.u) and the corresponding contributions td4% and s, radia-  the relevant transitions do not allow to rule out 10% larger

tive widths (in MHz). value of this lifetime.
The accuracy of the theoretical calculations for these lev-

Transition ¢w) @[Dlw) B A ZuAuw els may be improved by including some triple-excitation
63— 5Py 1.180 16108  2.948 2948 contributiqns into the corr_espon_ding wave functi(_)ns._
605, 6Dy 1.989 4972 0.246 3.194 _ We estlm_ate some om|tted hlghe.r-order cpntnbunons us-
60— 7Py 31.422 852 0.309 3.504 mg_the scaling of the smg!e excitation cc_Je_ff|C|emt,§v de_—
60— 5D 0558 15870  0.630 4134 scnpeql above._ '_I'he contrlbutl_ons containing these s_l_ngle-
605~ 6D 1.012 4894 0.061 4195  ©Xcitation coefficients are dominant for all of the transitions
67 14161 817 0.055 4,250 needed for_the calc_ulatlon of lifetimes in Tabl_e VII. The life-

32~ [Par : ' : times obtained using scaled all-order matrix elements are
6dso— 4151, 9.938 1895 0341 4591 yigted in columnsSt. We find that the scaled data agree with
6ds2~5par 1.658 15872 3.712 3.712 experimental values within the experimental uncertainty for
6dsi2~6par 2.974 4896 0.351 4063 i levels with exception of @5, and &3, where the the-
6ds/>— 7P3r2 42.481 819 0.335 4398 qretical values are just outside the experimental uncertain-
60s,— 4fs) 2.642 1897  0.016 4414 iog
6ds,— 4f ) 11.813 1897 0.322 4.736

IV. POLARIZABILITIES

levels owing to the lower accuracy of thep-n’d matrix The valence part of the ac polarizability of an alkali-metal

elements with comparison to most of thp-n’s ones due to  atom inns state can be calculated using the formula
large correlation corrections for these matrix elements. It

should be noted that the experimental uncertainties mf 7 1 (Enp —Eno(Nn'pydD|ns)?
8p, and H lifetimes are rather largéup to 20% and two a)(w)= 5 E 2 >
recent experiments for thedg, level give substantially dif- 3w (Enrp,, End "~
ferent values: 25@) ns and 298) ns. Our result for @3,

lifetime (263 ng is very close to the first measurement, how- . (Enpy,— End(n'P3dlD|ns)?

L . L (En’p _Ens)z_w2
TABLE VII. Radiative widths(MHz) and lifetimes(ns) for ns, 3/2

np, andnd states in Rb. Experimental values are taken from the . . ) .
compilation in Ref[16] unless noted otherwise. The lifetimes ob- WhereD is the dipole operator. In this formula, is assumed
tained usingab initio all-order matrix elements and scaled all-order {0 be at least several linewidths off resonance with the cor-

values are listed in columns, and 7°, respectively. responding transition.
The core contribution to the polarizability, calculated in
State uAow 7 e 7P the DHF approximation is found to be small for Rb (23
and is weakly dependent an in the frequency range con-
6s 21.761 46.0 45.4 46) sidered here. The static value for the polarizability of'Rb
s 11.318 88.4 88.3 88) calculated in the random-phase approximat{d7,1§ is
911y 9.1a3, close to the value of 92 obtained by Johanss§mh9]
8s 6.201 161.3 161.8 163) [4] from analysis of the observed term values of nonpenetrating
154(7) Rydberg states. The accuracy of the RPA approximation for
1538) the core polarizability is estimated to be 5% in R&f. We
6P 7.729 129 123 128) use the RPA value for the core polarizability of Rias a
131(5) baseline, and adjust it to account for valence elecfrming
P12 3.394 295 280 2725) Eg. (5) with n’=2,3,4] and the frequency dependence by
8Py 1.899 527 508 using DHF calculations. The RPA and DHF values differ by
6P 8.461 118 113 113) only 2 %. The correction to the core polarizability owing to
7P 3.703 270 258 24@.0) the presence of the valence electron is very small, it is only
23310 —0.3a8 for 5s state in DHF approximation.
8pap 2.056 486 471 4080 First, we describe the calculation of the ground-state po-
4dgy, 11.478 87 83.5 8®) larizability ass(w). The expression5) converges rapidly
5d3, 5.193 193 243 2080) with n’ so the contribution witm’=5 is dominant. We use
6d3, 4.591 218 263 25@) [4] experimental §-5p matrix elements from Ref6], all-order
2988) (5] matrix elements from Ref{3], and experimental energies
4ds), 10.674 94 90 k) from [12] to evaluate the expression of E(p) with n’
5ds, 5.340 187 235 23@3) =5,6,7,8. The contribution to the ground-state polarizability
6ds/ 4.736 211 252 248) [4] from states witm’>8 is very small, o.ag in DHF approxi-

mation. We plot the ground state frequency-dependent polar-
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; g 10° - | | TABLE IX. Dynamic polarizabilitiesay(w) (in units ofa3) for
! Rb, ®=0.0576645 a.u., i.e\=790 nm.
ar 3 n QapHE a n QapHE
05 | 8 —304 — 295 14 —286
= ! 9 -292 15 —285
8 10 —289 16 —284
B 1 11 —288 17 —282
° o5 12 —287 18 —280
! 13 —287 19 =277
-1r 5S—5p1/2 | . . . . .
1 #High-accuracy value obtained using experimental energies and all-
. ‘ w . ‘ order matrix elements for the dominant terms with=7,8.
5256 0.057 0.058 0.059 0.06

o (a.u.) states of Rb witm=8 . . . 19using the DHF approximation;
i.e., using DHF values for both energies and matrix elements
in Eq. (5). We note that the calculations of the Rydberg state
polarizabilities are done with actual DHF states which are
o o direct numerical solutions of the DHF equations. We do not
izability in the vicinity of the %-5p,, and %-5pz), reso-  employ the B-spline basis set technique in the Rydberg state
nances in Fig. 1. The behavior within the few linewidths polarizability calculations as the cavity radius which would
from the resonances is not shown and the exact placement gg required to accommodate= 20 states is too large to re-
the resonances is indicated by the vertical dashed lines. Asroduce the wave functions of the relevant states even when
we see from Fig. lass(w) changes sign between two reso- |arge (100 spling basis set is used.

nances. We determined thatas(w)=0 at A5 The DHF calculations are done on the nonlinear grid of
=790.032(8) nnm 2], where the uncertainty results from the the form

uncertainty of the polarizability calculation. This crossing

point is of interest for the optical lattice experiments with Rb r(i)=rqo(el~HN—1), (6)

as the atoms will no longer be trapped at this wavelength.

We give the breakdown of the different contributions to TO calculate matrix elements and energies of the first few
the ground state polarizability for one particular frequency.excited states 500 grid points are sufficient. This type of grid
w=0.04298 a.u., corresponding tv=1.06 um [20], in  Provides a very dense grid near the origin. Thus we needed
Table VIII. The comparison with other theof21] and ex-  to confirm that there were sufficient points at laRyéo sup-
periment[22] is also given. Our value is in good agreementPort the Rydberg states. The parametgyeind h were cho-
with the result from{21]. The discrepancy is due to our use Sén to ensure sufficient number of points to calculate
of more accurate values for the electric-dipole matrix ele{ns|D|[n"p) matrix elements for high values of andn’.
ments. Our result is just outside the range of uncertainty oHowever, we found that the accurate DHF values of the ma-
the value a=(769+61)a inferred by Bonin and Kadar- X elem_ents even between high Rydberg states can be ob-
Kallen from an atomic deflection experimei2?]. tained with relatively small number 01_‘ grid points. For ex-

Next, we describe the calculation of the polarizabilities of2mPple, the values of the 8®0p,/, matrix element obtained

the Rydberg states. We calculate the polarizabilities ofithe With 500 and 40000 point grid&corresponding to approxi-
mately 10 and 200 points in the relevant grid sedtidiffer

by only 0.05%. The summation over in Eq. (5) is trun-

FIG. 1. Dynamic polarizabilityx(w) for the ground state of Rb
in atomic units.

TABLE VIII. Contributions to ground-state dynamic polariz-

ability of Rb in a3 for ©=0.04298 a.u. qe}ted am’=23 for all of the states. Such truncation i§ jus-
tified owing to very fast convergence of the sum owérin
Contribution value Eq. (5) [2]. To verify that the contributions from higher
and continuum are not significant at the present level of ac-
n'=5 682.84 curacy we conduct separate calculation of the polarizability
n'=6 1.48 of the 1 state using3-spline basis set. We verified that the
n'=7 0.16 result is independent on the cavity radius, when it is large
n'=8 0.04 enough to accommodate=10 andn=11 s and p orbitals;
a,(n'=5..8) 684.5272) we used cavities from 200 to 450 a.u.. The summation over
a,(n'>8) 0.178) the entire basis set yields the restl292 a.u. which differs
a,(n'=2.4) —0.26(13) from the value in Table IX by only 1 %.
o 9.1045) To evaluate the accuracy of the DHF approximation we
Final 693.59) also calculate the 8polarizability using the all-order matrix
Ref.[21] 711.4 elements from Table I. We find DHF result to be in good
Expt. [22] 76961) agreement with the high-precision value. The results of the

DHF calculation forw=0.0576645 a.u. corresponding Xo
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-270 ' ‘ ‘ matched at the point between two resonances where the
ground-state polarizability is small and negative. The exact
matching point for the 1&state is\ ;.= 790.14(2) nn2].

The matching of the polarizabilities allows to minimize mo-
tional heating in the quantum computation scheme with neu-
tral atoms.

—280 |

-290 |

—300 ¢ V. CONCLUSION

o, (@) (a,)

We have conducted a systematic study ofrisen’p and
nd-n’p electric-dipole matrix elements in rubidium using
relativistic all-order method. An investigation of the accu-
8.056 0.057 0.058 0.059 racy of these matrix elements was performed. The resulting

o(a.u.) matrix elements were used to calculate lifetimes of tise
andnp levels withn=6,7,8, andnd levels withn=4,5,6.

FIG. 2. Dynamic polarizabilitya(w) for the ns states of Rb  The lifetime values were found to be in good agreement with
in ag. experiment. The dynamic polarizabilities of the Rb states,
which are of interest for the optimization of quantum com-
putation scheme with neutral atoms mediated by the condi-
tional excitations to Rydberg states, were also calculated.

-310 |

—32

=790 nm as well as high-precision calculation for 8 are
given in Table IX. We find that the polarizability values do
not change substantially with for n>8.

We plot the frequency-dependent polarizabilities of 8
15s, and 2@ states in Fig. 2. As expected, the polarizabilities  This work was partially supported by the Advanced Re-
depend weakly orw for the frequencies considered here. search Development Activity, the National Security Agency,
The polarizabilities of the ground and Rydberg states can band NIST Advanced Technology Program.
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