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Relativistic many-body calculations of electric-dipole matrix elements, lifetimes,
and polarizabilities in rubidium
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Electric-dipole matrix elements forns-n8p, nd-n8p, and 6d24 f transitions in Rb are calculated using a
relativistic all-order method. A third-order calculation is also carried out for these matrix elements to evaluate
the importance of the high-order many-body perturbation theory contributions. The all-order matrix elements
are used to evaluate lifetimes ofns andnp levels withn56,7,8 andnd levels withn54,5,6 for comparison
with experiment and to provide benchmark values for these lifetimes. The dynamic polarizabilities are calcu-
lated for ns states of rubidium. The resulting lifetime and polarizability values are compared with available
theory and experiment.
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I. INTRODUCTION

A recent proposal@1# for quantum computation utilize
the ground hyperfine states of a neutral atom as qubits,
realizes two-qubit quantum gates by conditional excitatio
to Rydberg states. The atoms are confined to the sites o
optical lattice, and the optical potential seen by the at
depends on the dynamic polarizability of the atom. The
fore, the atom will generally move in a different lattice p
tential when it is excited to the Rydberg state during the g
operation, which may cause motional heating and lead
decoherence. In a recent paper@2#, we proposed two solu
tions to this problem by matching the ac polarizabilities
the atom in the ground and Rydberg states. In the fi
scheme, the polarizabilities are matched for the specific
ues of the lattice photon frequency between the resonan
In the second scheme, some accidental matches betw
transition energies are used to match the ground-state p
izability with the polarizability of the selected Rydberg stat
(11p and 15p in the case of Rb!. The elimination of motional
decoherence is important in helping to design a high-fide
two-qubit gate capable of meeting the error threshold
scalable quantum computation.

Despite the existence of high-precision measurement
the primary transition electric-dipole matrix elements
alkali-metal atoms, accurate experimental data for other t
sitions are lacking with the exception of a very few tran
tions in Cs owing to the study of parity nonconservation.
light of the importance of the atomic calculations for t
quantum logic gate scheme with conditional excitations
Rydberg levels, we have calculated the electric-dipole ma
elements for subsequent evaluation of lifetimes and pola
abilities for a number of Rb levels. We note that the inter
in this particular logic gate scheme with neutral atoms res
from its potential for fast~submicrosecond! gate operations

We have performed all-order calculations of the 7s-np,
8s-np, 4d-np, 5d-np, and 6d-np electric-dipole matrix el-
ements withn55,6,7, and 8, and of the 6d-4 f matrix ele-
ments. These results are combined with previous all-or
calculations of the 5s-np and 6s-np matrix elements@3# to
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obtain values of the lifetimes of the 6s, 7s, 8s, 6p, 7p, 8p,
4d, 5d, and 6d levels. The lifetime of the 6d3/2 level is of
special interest owing to the large discrepancies between
isting experiments@4,5#. The third-order matrix-element cal
culation has also been carried out to evaluate the importa
of the higher-order contributions. The dynamic polarizab
ities of the Rbns states are also calculated for both low
lying and Rydberg levels. The evaluation of the accuracy
the polarizability calculations is conducted including a co
parison between our data and other theory and experime

II. ELECTRIC-DIPOLE MATRIX ELEMENTS

The electric-dipole matrix elements for the 5s-5p transi-
tions were measured to high accuracy in Ref.@6# and matrix
elements for ns-n8p transitions with n55,6 and n8
55,6,7,8 were calculated using a single-double~SD! all-
order method in Refs.@3,7#. In the present work, we hav
calculated matrix elements for 7s-np, 8s-np, 4d-np,
5d-np, and 6d-np transitions withn55,6,7, and 8 as well
as 4f -6d transitions using SD all-order method@8#. Very
briefly, the wave function is represented as an expansion

uCv&5F11(
ma

rmaam
† aa1

1

2 (
mnab

rmnabam
† an

†abaa

1 (
mÞv

rmvam
† av1(

mna
rmnvaam

† an
†aaavG uFv&,

~1!

whereFv is the lowest-order atomic state function, which
taken to be thefrozen-coreDirac-Hartree-Fock~DHF! wave
function of a statev; ai

† andai are creation and annihilation
operators, respectively. The indexa is used to represent cor
states and indicesm andn indicate excited states.

The quantitiesrma and rmv are single core and valenc
excitation coefficients, and the quantitiesrmnab and rmnva
are double core and valence excitation coefficients, resp
tively. We obtain the equations for the excitation coefficien
by substituting the above wave function into the many-bo
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TABLE I. Absolute values of all-order SD electric-dipole matrix elements for thenp-n8s transitions in Rb in atomic units. The
lowest-order~DHF! and third-order values all also given. All-order values for 5s-np and 6s-np transitions are from Ref.@3#. The corre-
sponding reduced oscillator strengths are given in rows labeledf. All-order matrix elements and experimental energies are used in calcul
of oscillator strengths.

5s-5p1/2 5s-6p1/2 5s-7p1/2 5s-8p1/2 5s-5p3/2 5s-6p3/2 5s-7p3/2 5s-8p3/2

DHF 4.819 0.383 0.142 0.078 6.807 0.606 0.237 0.136
Third order 4.181 0.363 0.130 0.069 5.899 0.583 0.224 0.125
All order 4.221 0.333 0.115 0.059 5.956 0.541 0.202 0.111
f 5s→np 0.3404 0.0040 0.0006 0.0002 0.6905 0.0106 0.0017 0.000

6s-5p1/2 6s-6p1/2 6s-7p1/2 6s-8p1/2 6s-5p3/2 6s-6p3/2 6s-7p3/2 6s-8p3/2

DHF 4.256 10.286 0.976 0.375 6.187 14.457 1.498 0.597
Third order 4.189 9.584 1.050 0.420 6.115 13.447 1.610 0.668
All order 4.119 9.684 0.999 0.393 6.013 13.592 1.540 0.628
f 6s→np 20.1946 0.5101 0.0117 0.0023 20.4019 1.0267 0.0279 0.0058

7s-5p1/2 7s-6p1/2 7s-7p1/2 7s-8p1/2 7s-5p3/2 7s-6p3/2 7s-7p3/2 7s-8p3/2

DHF 0.981 9.360 17.612 1.801 1.393 13.552 24.708 2.728
Third order 0.952 9.304 16.679 1.944 1.347 13.517 23.349 2.943
All order 0.954 9.189 16.844 1.865 1.352 13.353 23.587 2.833
f 7s→np 20.0190 20.3330 0.6565 0.0186 20.0375 20.6821 1.3170 0.0432

8s-5p1/2 8s-6p1/2 8s-7p1/2 8s-8p1/2 8s-5p3/2 8s-6p3/2 8s-7p3/2 8s-8p3/2

DHF 0.514 1.922 16.151 26.817 0.727 2.705 23.343 37.577
Third order 0.500 1.839 16.162 25.587 0.705 2.578 23.428 35.770
All order 0.504 1.853 15.982 25.831 0.710 2.600 23.171 36.123
f 8s→np 20.0063 20.0278 20.4701 0.7987 20.0124 20.0539 20.9595 1.5993
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Schrödinger equation. The equations are solved iterativ
and the resulting expansion coefficients are used to calcu
matrix elements. In such a procedure, certain classe
many-body perturbation theory~MBPT! terms are summed
to all orders. However, the restriction of the expansion~1! to
the single and double excitations leads to some miss
terms in the expression for the matrix elements starting fr
the fourth order. As it is important to understand how sign
cant higher-order corrections are for the transitions un
consideration, we also conduct separate third-order calc
tion of these matrix elements@including random-phase ap
proximation~RPA! contributions iterated to all orders#. The
third-order calculation follows that of Ref.@9#. Such a calcu-
lation is of lower accuracy than the all-order one but t
difference in third-order and all-order values provides an
timate of the importance of the higher-order contributio
Also, the breakdown of both all-order and third-order calc
lations to different contributions yields information regardi
relative importance of the specific terms and possible la
cancellations between different terms. Such information
be used to approximate some of the omitted contributi
and further estimate the uncertainty of the all-order calcu
tion. We should note that despite the fact that the entire th
order contribution is contained in the all-order result, t
extraction of the third-order part from the all-order calcu
tion is not a straightforward task~see Ref.@7# for the corre-
spondence of the terms!, so a separate calculation is made
obtain third-order values. The separate calculation also
lows us to iterate RPA contribution to all orders.

The all-order and third-order calculations are conduc
with a complete set of basis DHF wave functions genera
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using theB-spline method@10#. We use 40 splines of orde
k57 for each angular momentum. The basis set orbitals
defined on a nonlinear grid and constrained to a large sph
cal cavity of a radiusR5100 a.u. This cavity radius is cho
sen to accommodate all valence orbitals for which atom
properties are being calculated, i.e., allns, np1/2, andnp3/2

orbitals with n55,6,7,8, nd3/2, and nd5/2 orbitals with n
54,5,6, and 4f 5/2, 4f 7/2 orbitals. The choice of the numbe
of splines, cavity radius, and number of grid points is bas
on the comparison of the resulting basis set energies of
valence orbitals listed above and electric-dipole matrix e
ments between these states with the energies and matri
ements resulting from direct numerical solutions of the DH
equations. We require that these basis set energies wer
curate to five or more significant figures. We have also ve
fied that the differences between the third-order results
tained with this basis set and more accurate 50 spline b
set are negligible at the current level of accuracy.

We use the system of atomic units, a.u., in whiche,me,
4pe0 and the reduced Planck constant\ have the numerica
value 1. Polarizability in atomic units has the dimensions
volume, and its numerical values presented here are
measured in units ofa0

3, wherea0'0.052 918 nm is Bohr
radius. The atomic units fora can be be converted to SI unit
via a/h@Hz/(V/m)2#52.4883231028a(a.u.), where the
conversion coefficient is 4pe0a0

3/h and Planck constanth is
factored out. The atomic unit of frequencyv is Eh /\
'4.134131016 Hz, whereEh is Hartree energy.

The third-order and all-order results forns-n8p transi-
tions with n,n855,6,7 and 8 are summarized in Table I t
9-2
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TABLE II. Absolute values of all-order SD electric-dipole matrix elements for thenp-n8d and 6d-4 f transitions in Rb in atomic units
The lowest-order and third-order values are also given. In the cases where lowest order and SD data are of different sign relative
shown.

n 5 6 7 8

4d3/22np1/2

DHF 9.046 6.725 1.181 0.578
Third order 8.092 5.289 1.119 0.566
All order 7.847 4.717 1.054 0.541

4d3/22np3/2

DHF 4.082 2.955 0.534 0.262
Third order 3.655 2.307 0.502 0.255
All order 3.540 2.055 0.470 0.242

4d5/22np3/2

DHF 12.241 8.829 1.601 0.787
Third order 10.964 6.915 1.505 0.764
All order 10.634 6.184 1.411 0.726

5d3/22np1/2

DHF 0.244 18.701 13.639 2.660
Third order 1.220 18.241 10.600 2.573
All order 1.616 18.106 9.768 2.400

5d3/22np3/2

DHF 0.157 8.443 5.983 1.198
Third order 0.607 8.232 4.609 1.146
All order 0.787 8.160 4.242 1.064

5d5/22np3/2

DHF 0.493 25.340 17.884 3.592
Third order 1.821 24.695 13.843 3.435
All order 2.334 24.491 12.798 3.201

6d3/22np1/2

DHF 0.512 20.254 31.349 22.584
Third order 1.076 1.375 31.563 17.647
All order 1.180 1.989 31.422 16.631

6d3/22np3/2

DHF 0.255 20.028 14.158 9.901
Third order 0.513 0.732 14.242 7.662
All order 0.558 1.012 14.161 7.215

6d3/22np3/2

DHF 0.778 20.047 42.500 29.603
Third order 1.532 2.184 42.709 23.041
All order 1.658 2.974 42.481 21.784

6d3/224 f 5/2 6d5/224 f 5/2 6d5/224 f 7/2

DHF 6.109 1.642 7.343
Third order 9.150 2.443 10.924
All order 9.938 2.642 11.813
in

e
om
h

sum

ne

u-
gether with the lowest-order DHF values. The correspond
reduced oscillator strengths calculated using formula@11#

f ab52
30.3756

~2 j a11!l
u^aiDib&u2 ~2!

are listed in the rows labeledf ns→n8p . In Eq. ~2!, D is the
dipole operator andl is a transition wavelength in nm. Th
all-order matrix elements and experimental energies fr
Ref. @12# are used in the oscillator strength calculation. T
02250
g

e

sum of the f 5s→np oscillator strengths withn55,6,7,8
slightly exceeds one because the contributions to the
rule (nf 5s→np51 from the transitions withn52,3,4 are
negative.

The results for thend-n8p matrix elements withn
54,5,6 and then855,6,7,8 and 6d-4 f matrix elements are
summarized in Table II. The transitions containing the fi
structure components, such asns-5p1/2 and ns-5p3/2 pairs,
for example, have very similar relative correlation contrib
tions so we will omit the angular momentumj subscript in
9-3
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TABLE III. Contributions to third-order and all-order electric-dipole reduced matrix elements~a.u.! for selected transitions in Rb.

5s-5p1/2 5s-7p1/2 7s-5p1/2 7s-7p1/2 5d3/225p1/2 5d3/227p1/2 6d3/226p1/2 6d3/224 f 5/2

Third order
DHF 4.819 0.149 0.981 17.612 0.244 13.639 20.254 6.109
RPA 20.213 20.060 0.015 20.024 0.101 0.030 0.045 0.002
BO 20.419 0.040 20.038 20.899 0.888 23.048 1.589 3.041
SR 0.027 0.009 20.004 0.002 20.013 20.004 20.005 0.001
Norm 20.033 20.001 20.002 20.012 20.001 20.016 0.000 20.004
Total 4.181 0.130 0.952 16.679 1.220 10.600 1.375 9.150

All order
DHF 4.819 0.142 0.981 17.612 0.244 13.639 20.254 6.109
Term a 20.234 20.064 0.014 20.025 0.102 0.036 0.047 0.005
Term c 20.375 0.009 20.077 20.648 1.575 23.372 2.752 4.393
Term d 0.039 0.017 0.056 0.149 20.197 20.024 20.439 20.089
Other 0.039 0.012 20.006 0.005 20.025 20.004 20.009 0.002
Norm 20.068 20.002 20.014 20.248 20.083 20.506 20.109 20.483
Total 4.220 0.115 0.954 16.844 1.616 9.768 1.989 9.938
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the subsequent discussion. We find that the relative corr
tion correction contribution varies very significantly with th
transition. It is small, below 7%, for all 6s-np, 7s-np, and
8s-np transitions and for somend-n8p transitions. In those
situations where the third order and all-order values differ
less than a few percent we expect the dipole matrix elem
to be accurate to at least 2%.

We should note that in some cases it is possible that s
good agreement of the third-order and all-order values
fortuitous and may result from accurate cancellations of
higher-order terms. We address this issue below in more
tail.

In Ref. @3#, the all-order values for the primary transition
were found to agree with a recent high-accuracy meas
ment@6# to within 0.2%–0.35%. The accuracy of the 5s-6p,
5s-7p, and 5s-8p matrix elements is, however, substantia
lower since they are relatively small matrix elements w
significant relative correlation contributions. To investiga
the correlation contributions in more detail, we give a bre
down of both third-order and all-order calculations for eig
selected transitions in Table III. The third-order contributio
are separated to RPA, Brueckner-orbital~BO!, structural ra-
diation ~SR! and normalization corrections following Re
@9#. For the all-order contributions, three terms (a, c, andd)
are listed separately and the other 17 terms are groupe
gether in row labeled ‘‘Other.’’ The derivation and expre
sions for these terms are given in Refs.@7,8#. A normaliza-
tion correction is given in row labeled ‘‘Norm.’’ As it was
noted earlier, there is no straightforward correspondenc
the all-order and third-order breakdown~full description is
given in Ref.@7#!, but terma partly corresponds to RPA-like
corrections and termc to BO-like corrections. Termd is nor-
mally small with exception of some transitions. It is qu
dratic in single-valence excitation coefficientsrmv and,
therefore, contains only fifth and higher-order terms. We fi
strong cancellations between BO and RPA terms for 5s-6p,
5s-7p, and 5s-8p matrix elements. The difficulty of the cal
culation of such matrix elements has been described be
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for the case of Cs@3,13,14#. However, we also find that term
d, which is missing entirely from third-order calculation
relatively large for 7s-5p and 7s-7p matrix elements. It is
rather puzzling since we observe very good agreemen
third-order and all-order results for these transitions. T
possible explanation is accurate cancellation of the hi
order terms for these transitions. We note that termd is not
significant for the 6s-5p transition, for which some conclu
sion of accuracy may be drawn from the comparison w
similar Cs transition matrix elements~which are measured to
quite good accuracy!. Accurate measurements of these m
trix elements would be very useful in developing further u
derstanding of this issue. We note that even though this t
is significant, it is not very large, on the order of 5%.

In the case ofnd-n8p transitions, the termc ~or BO term
for third-order calculation! dominates. The relative contribu
tion of the correlation correction varies with the transitio
For 5d-5p and 6d-6p transitions, the DHF approximation
gives a very poor result; the sign of the matrix eleme
changes when correlation is added for 6d-6p matrix ele-
ments and the DHF values for 5d-5p matrix elements are
about seven times too low. As expected, we find very lar
25%–30%, differences between third-order and all-order c
culations for these transitions as the all-order calculation
cludes correlation more completely. The termc can be cor-
rected by including triple excitations or use of the sem
empirical scaling described in Refs.@3,7,13#. To check the
validity of the scaling approach, we applied such a method
the 5d-5p matrix elements and compared the resulting ra
with the experimental measurement@15#.

In Table IV we give our values of the ratioR

R5
^5p3/2iDi5d3/2&

^5p1/2iDi5d3/2&

^5p1/2iC1i5d3/2&

^5p3/2iC1i5d3/2&

of the 5p3/2-5d3/2 and 5p1/2-5d3/2 electric-dipole matrix ele-
ments divided by the corresponding values of theC1 reduced
matrix elements, whereC1 is the normalized spherical har
9-4
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monic@11#. The present results are compared with theoret
and experimental values from Ref.@15#. The corresponding
5d-5p matrix elements, divided by the corresponding valu
of the C1 reduced matrix elements are also given. The th
retical value of Ref.@15# was obtained using relativisti
third-order many-body theory@9#; some higher-order
Brueckner-orbital terms were also included, which accou
for the difference with our third-order result. As noted abo
the largest contribution to the 5p-5d matrix elements calcu
lated using the all-order method comes from the termc con-
taining single-valence excitation coefficientsrmv . We scale
these excitation coefficientsrmv with the ratio of the experi-
mental and corresponding theoretical correlation energie
described in Refs.@3,13#. We list the results obtained usin
such scaling in a row labeled ‘‘Scaled.’’ We find very signi
cant differences between all high-precision calculatio
which indicates that the accuracy of the all-order calculat
is around 10-20 % for these matrix elements. However,
all-order result for the ratioR is in much better agreemen
with experiment@15# than the third-order value and theore
ical calculation of Ref.@15#.

III. LIFETIMES

We use the resulting all-order matrix elements to calcu
the lifetimes of the 6s, 7s, 8s, 6p, 7p, 8p, 4d, 5d, and 6d
levels in Rb for the comparison with experiment and prov
ing benchmark values for these lifetimes.

The EinsteinA coefficientsAvw @11# are calculated using
the formula

Avw5
2.0261331015

l3

u^viDiw&u2

2 j v11
s21, ~3!

where^viDiw& is the reduced electric-dipole matrix eleme
for the transition between statesv and w and l is corre-
sponding wavelength in nanometers. The lifetime of the s
v is calculated as

TABLE IV. The ratio R of the 5d3/225p3/2 and 5d3/225p1/2

electric-dipole matrix elements divided by the corresponding val
of the C1 reduced matrix elements, whereC1 is the normalized
spherical harmonic. Comparison of the present results calculate
different approximations with theoretical and experimental val
from Ref. @15#. The corresponding 5d-5p matrix elements, divided
by the corresponding values of theC1 reduced matrix elements ar
also given.

5pJ25dJ8 R
J2J8 3/225/2 3/223/2 1/223/2

DHF 0.3182 0.3034 0.2115 1.434
Third order 1.1756 1.1758 1.0562 1.113
All order 1.5063 1.5248 1.3995 1.089
Scaled 1.2801 1.2882 1.1707 1.100
MBPT @15# 1.0238 1.0216 0.9000 1.135
Expt. @15# 1.068~8!
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~4!

and the denominator of Eq.~4! gives the radiative width of
the levelv.

Several electric-dipole~E1! transitions contribute to the
lifetime of each of the levels considered here. The simp
case is that of the 6s level, where only 6s-5p1/2 and 6s-5p3/2
transitions need to be included. To calculate the lifetime
the 8p3/2 state, we need to include ten E1 transitions and
the case of the 6d3/2 level seven E1 transitions are allowe
including the 6d3/2-4 f 5/2 transition. The experimental ene
gies from Ref.@12# are used in the lifetime calculation. W
illustrate the importance of the different channels contrib
ing to the lifetime of the 7p3/2 state in Table V, where we
give the coefficientsAvw for each transition together with th
transition energies from@12# and corresponding matrix ele
ments from Tables I and II. The accumulated sum(wAvw is
listed in the last column. We find the contribution from th
7p3/2-5d5/2 transition to be nearly as large as the contributi
from the 7p3/2-7s transition. All seven contributions need t
be included in an accurate calculation. The smallest con
bution to (wAvw comes from 7p3/2-4d3/2 transition and is
around 2%.

We list the contributions to 6d3/2 and 6d5/2 lifetimes as
well as the corresponding matrix elements and transition
ergies in Table VI. The dominant contributions to 6d3/2 and
6d5/2 lifetimes come from the 6d3/2-5p1/2 and 6d5/2-5p3/2
transitions, respectively. The next largest contribution is 1
for the 6d3/2 lifetime and 7% for the 6d5/2 lifetime. We find
the contributions from 6d3/2-4 f 5/2 and 6d5/2-4 f 7/2 transitions
to be around 7% for the corresponding level.

The results for thens, np, and nd lifetimes obtained
using all-order matrix elements are compared with exp
mental values from Refs.@4,5,16# in Table VII. We omit the
effect of the blackbody radiation in our calculations. In R
@16#, it was estimated to be small for the levels conside
here with the exception of the 8p levels. It is still far below
experimental uncertainty of the 8p level lifetime. The results
agree with experiment within the experimental precision
6s, 7s, 8s, 6p, and 4d levels. The values of the 7p, 8p,
5d, and 6d lifetimes are in good agreement with experime
The lower accuracy of the calculations is expected for th

s

in
s

TABLE V. Transition energies (E/hc) in cm21, matrix elements
~in a.u.! and corresponding contributions to 7p3/2 radiative width~in
MHz!.

Transition (vw) ^viDiw& dEvw Avw (wAvw

7p3/227s 23.587 1559 1.068 1.068
7p3/226s 1.540 7736 0.556 1.624
7p3/225s 0.202 27870 0.447 2.071
7p3/225d3/2 4.242 2169 0.093 2.164
7p3/224d3/2 0.470 8515 0.069 2.234
7p3/225d5/2 12.798 2169 0.847 3.081
7p3/224d5/2 1.411 8515 0.623 3.703
9-5
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levels owing to the lower accuracy of thenp-n8d matrix
elements with comparison to most of thenp-n8s ones due to
large correlation corrections for these matrix elements
should be noted that the experimental uncertainties ofp,
8p, and 5d lifetimes are rather large~up to 20%! and two
recent experiments for the 6d3/2 level give substantially dif-
ferent values: 256~4! ns and 298~8! ns. Our result for 6d3/2
lifetime ~263 ns! is very close to the first measurement, ho

TABLE VI. Transition energiesE/hc in cm21, matrix elements
~a.u.! and the corresponding contributions to 6d3/2 and 6d5/2 radia-
tive widths ~in MHz!.

Transition (vw) ^viDiw& dEvw Avw (wAvw

6d3/225p1/2 1.180 16108 2.948 2.948
6d3/226p1/2 1.989 4972 0.246 3.194
6d3/227p1/2 31.422 852 0.309 3.504
6d3/225p3/2 0.558 15870 0.630 4.134
6d3/226p3/2 1.012 4894 0.061 4.195
6d3/227p3/2 14.161 817 0.055 4.250
6d3/224 f 5/2 9.938 1895 0.341 4.591
6d5/225p3/2 1.658 15872 3.712 3.712
6d5/226p3/2 2.974 4896 0.351 4.063
6d5/227p3/2 42.481 819 0.335 4.398
6d5/224 f 5/2 2.642 1897 0.016 4.414
6d5/224 f 7/2 11.813 1897 0.322 4.736

TABLE VII. Radiative widths~MHz! and lifetimes~ns! for ns,
np, and nd states in Rb. Experimental values are taken from
compilation in Ref.@16# unless noted otherwise. The lifetimes o
tained usingab initio all-order matrix elements and scaled all-ord
values are listed in columnstv andtv

sc, respectively.

State (wAvw tv tv
sc tv

expt

6s 21.761 46.0 45.4 46~5!

7s 11.318 88.4 88.3 88~6!

91~11!

8s 6.201 161.3 161.8 161~3! @4#

154~7!

153~8!

6p1/2 7.729 129 123 125~4!

131~5!

7p1/2 3.394 295 280 272~15!

8p1/2 1.899 527 508
6p3/2 8.461 118 113 112~3!

7p3/2 3.703 270 258 246~10!

233~10!

8p3/2 2.056 486 471 400~80!

4d3/2 11.478 87 83.5 86~6!

5d3/2 5.193 193 243 205~40!

6d3/2 4.591 218 263 256~4! @4#

298~8! @5#

4d5/2 10.674 94 90 94~6!

5d5/2 5.340 187 235 230~23!

6d5/2 4.736 211 252 249~5! @4#
02250
It

-

ever, large uncertainties in the correlation contributions
the relevant transitions do not allow to rule out 10% larg
value of this lifetime.

The accuracy of the theoretical calculations for these l
els may be improved by including some triple-excitati
contributions into the corresponding wave functions.

We estimate some omitted higher-order contributions
ing the scaling of the single excitation coefficientsrmv de-
scribed above. The contributions containing these sing
excitation coefficients are dominant for all of the transitio
needed for the calculation of lifetimes in Table VII. The life
times obtained using scaled all-order matrix elements
listed in columntv

sc. We find that the scaled data agree wi
experimental values within the experimental uncertainty
all levels with exception of 7p3/2 and 6d3/2, where the the-
oretical values are just outside the experimental uncert
ties.

IV. POLARIZABILITIES

The valence part of the ac polarizability of an alkali-me
atom inns state can be calculated using the formula

av
ns~v!5

1

3 (
n8

S ~En8p1/2
2Ens!^n8p1/2iDins&2

~En8p1/2
2Ens!

22v2

1
~En8p3/2

2Ens!^n8p3/2iDins&2

~En8p3/2
2Ens!

22v2 D , ~5!

whereD is the dipole operator. In this formula,v is assumed
to be at least several linewidths off resonance with the c
responding transition.

The core contribution to the polarizability, calculated
the DHF approximation is found to be small for Rb (9.3a0

3)
and is weakly dependent onv in the frequency range con
sidered here. The static value for the polarizability of R1

calculated in the random-phase approximation@17,18# is
9.1a0

3, close to the value of 9.0a0
3 obtained by Johansson@19#

from analysis of the observed term values of nonpenetra
Rydberg states. The accuracy of the RPA approximation
the core polarizability is estimated to be 5% in Ref.@3#. We
use the RPA value for the core polarizability of Rb1 as a
baseline, and adjust it to account for valence electron@using
Eq. ~5! with n852,3,4] and the frequency dependence
using DHF calculations. The RPA and DHF values differ
only 2 %. The correction to the core polarizability owing
the presence of the valence electron is very small, it is o
20.3a0

3 for 5s state in DHF approximation.
First, we describe the calculation of the ground-state

larizability a5s(v). The expression~5! converges rapidly
with n8 so the contribution withn855 is dominant. We use
experimental 5s-5p matrix elements from Ref.@6#, all-order
matrix elements from Ref.@3#, and experimental energie
from @12# to evaluate the expression of Eq.~5! with n8
55,6,7,8. The contribution to the ground-state polarizabi
from states withn8.8 is very small, 0.2a0

3 in DHF approxi-
mation. We plot the ground state frequency-dependent po

e

9-6
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izability in the vicinity of the 5s-5p1/2 and 5s-5p3/2 reso-
nances in Fig. 1. The behavior within the few linewidt
from the resonances is not shown and the exact placeme
the resonances is indicated by the vertical dashed lines
we see from Fig. 1,a5s(v) changes sign between two res
nances. We determined thata5s(v)50 at lvac
5790.032(8) nm@2#, where the uncertainty results from th
uncertainty of the polarizability calculation. This crossin
point is of interest for the optical lattice experiments with R
as the atoms will no longer be trapped at this wavelengt

We give the breakdown of the different contributions
the ground state polarizability for one particular frequen
v50.04298 a.u., corresponding tol51.06mm @20#, in
Table VIII. The comparison with other theory@21# and ex-
periment@22# is also given. Our value is in good agreeme
with the result from@21#. The discrepancy is due to our us
of more accurate values for the electric-dipole matrix e
ments. Our result is just outside the range of uncertainty
the valuea5(769661)a0

3 inferred by Bonin and Kadar
Kallen from an atomic deflection experiment@22#.

Next, we describe the calculation of the polarizabilities
the Rydberg states. We calculate the polarizabilities of thens

FIG. 1. Dynamic polarizabilitya(v) for the ground state of Rb
in atomic units.

TABLE VIII. Contributions to ground-state dynamic polariz
ability of Rb in a0

3 for v50.04298 a.u.

Contribution Value

n855 682.84
n856 1.48
n857 0.16
n858 0.04

av(n855..8) 684.52~72!

av(n8.8) 0.17~8!

avc(n852.4) 20.26(13)
ac 9.10~45!

Final a 693.5~9!

Ref. @21# 711.4
Expt. @22# 769~61!
02250
of
As

,

t

-
f

f

states of Rb withn58 . . . 19using the DHF approximation
i.e., using DHF values for both energies and matrix eleme
in Eq. ~5!. We note that the calculations of the Rydberg st
polarizabilities are done with actual DHF states which a
direct numerical solutions of the DHF equations. We do n
employ the B-spline basis set technique in the Rydberg s
polarizability calculations as the cavity radius which wou
be required to accommodaten520 states is too large to re
produce the wave functions of the relevant states even w
large ~100 spline! basis set is used.

The DHF calculations are done on the nonlinear grid
the form

r ~ i !5r 0~e( i 21)h21!. ~6!

To calculate matrix elements and energies of the first f
excited states 500 grid points are sufficient. This type of g
provides a very dense grid near the origin. Thus we nee
to confirm that there were sufficient points at largeR to sup-
port the Rydberg states. The parametersr 0 andh were cho-
sen to ensure sufficient number of points to calcul
^nsiDin8p& matrix elements for high values ofn and n8.
However, we found that the accurate DHF values of the m
trix elements even between high Rydberg states can be
tained with relatively small number of grid points. For e
ample, the values of the 20s-20p3/2 matrix element obtained
with 500 and 40 000 point grids~corresponding to approxi
mately 10 and 200 points in the relevant grid section! differ
by only 0.05%. The summation overn8 in Eq. ~5! is trun-
cated atn8523 for all of the states. Such truncation is ju
tified owing to very fast convergence of the sum overn8 in
Eq. ~5! @2#. To verify that the contributions from highern8
and continuum are not significant at the present level of
curacy we conduct separate calculation of the polarizab
of the 10s state usingB-spline basis set. We verified that th
result is independent on the cavity radius, when it is la
enough to accommodaten510 andn511 s and p orbitals;
we used cavities from 200 to 450 a.u.. The summation o
the entire basis set yields the result2292 a.u. which differs
from the value in Table IX by only 1 %.

To evaluate the accuracy of the DHF approximation
also calculate the 8s polarizability using the all-order matrix
elements from Table I. We find DHF result to be in goo
agreement with the high-precision value. The results of
DHF calculation forv50.0576645 a.u. corresponding tol

TABLE IX. Dynamic polarizabilitiesans(v) ~in units ofa0
3) for

Rb, v50.0576645 a.u., i.e.l5790 nm.

n aDHF a n aDHF

8 2304 2295a 14 2286
9 2292 15 2285
10 2289 16 2284
11 2288 17 2282
12 2287 18 2280
13 2287 19 2277

aHigh-accuracy value obtained using experimental energies and
order matrix elements for the dominant terms withn857,8.
9-7
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5790 nm as well as high-precision calculation forn58 are
given in Table IX. We find that the polarizability values d
not change substantially withn for n.8.

We plot the frequency-dependent polarizabilities of 8s,
15s, and 20s states in Fig. 2. As expected, the polarizabiliti
depend weakly onv for the frequencies considered her
The polarizabilities of the ground and Rydberg states can

FIG. 2. Dynamic polarizabilitya(v) for the ns states of Rb
in a0

3.
. A

e

.

0

in

at

.

02250
.
e

matched at the point between two resonances where
ground-state polarizability is small and negative. The ex
matching point for the 15s state islvac5790.14(2) nm@2#.
The matching of the polarizabilities allows to minimize m
tional heating in the quantum computation scheme with n
tral atoms.

V. CONCLUSION

We have conducted a systematic study of thens-n8p and
nd-n8p electric-dipole matrix elements in rubidium usin
relativistic all-order method. An investigation of the acc
racy of these matrix elements was performed. The resul
matrix elements were used to calculate lifetimes of thens
and np levels with n56,7,8, andnd levels with n54,5,6.
The lifetime values were found to be in good agreement w
experiment. The dynamic polarizabilities of thens Rb states,
which are of interest for the optimization of quantum com
putation scheme with neutral atoms mediated by the co
tional excitations to Rydberg states, were also calculated
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