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Finite-field evaluation of the Lennard-Jones atom-wall interaction constantC,
for alkali-metal atoms
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A finite-field scaling method is applied to evaluate the Lennard-Jones interaction co@stémt alkali-
metal atoms. The calculations are based on the relativistic single-double approximation in which single and
double excitations of Dirac-Hartree-Fock wave functions are included to all orders in perturbation theory.
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I. INTRODUCTION lation by King[7]. These accurate values 6% for lithium
are about 2% smaller than the value obtained from a Hartree-
The long-range interaction between an atom and a pefock (HF) calculation.

fectly conducting wall is governed by the Lennard-Jofigs An accurate semiempirical value &5 for sodium was
static image potential also obtained by Kharchenket al. [5] from an analysis of
the S_; sum rule,
e’C,
V@)= —=, (1) » [
= — 2 =
S-1=3(R) 2 Eo—E,’

wherez is the distance between the atom and the wall. The
coefficientC5 in Eq. (1) is the expectation value of the op-

erator wheref, is the oscillator strength of the transition from the

ground state to an excited stateThe quantitieE, andE,
1 are energies of the ground state and excited state, respec-
= (xiXj+ Y1y +2z)), tively. This value differs from the HF value &3 by about
16 73 10%. The more elaborate calculations byzgsonet al. [8]
improve the agreement between theoretical and semiempir-
in the atomic ground state. Hemge=(Xx;,y;,z) is the coor- ical values for sodium somewhat.
dinate of theith atomic electron with respect to the nucleus. Third-order many-body perturbation-theory calculations
For an atom with a spherically symmetric ground state, onef C; for all alkali-metal atoms and all-order single-double

can replaceC; by the equivalent expression calculations ofCjy for Li, Na, and K were given by Derevi-
ankoet al.[9]. The all-order calculations for Li and Na were
C3=%(0|R?|0), in close agreement with other precise values. More recently,

Derevianko et al. [10] deduced accurate theoretical and
where R=3,r,. The Lennard-Jones interaction constant isSémiempirical values oC; for all alkali-metal atoms from
important in models accounting for the finite conductivity of ©Scillator-strength sum rules.

the wall material by Bardeef?2] and Mavroyannig3]. Ad- In the present work, we use finite-field many-body meth-
ditionally, the wall-atom-wall interaction constant for small ©dS to obtain values ofR") and make comparisons with
wall separation distances is proportionalQg [4,5]. previous work. One advantage of the finite field method is

Precise values 5 for lithium were obtained by Yan and that aII—ordeIr randfom-prk]}ase approximatiRPA) correc- o
Drake [6] from an elaborate configuration-interactiol) tions are included rom the start. A second advantage is that
calculation and confirmed by an independent calculation by!th order corrections to the energy give many-body
Yan et al. [4]. The Cl value ofCs for lithium is in close pertléjrbanon—theor)(MBPT) corrections to matrix elements
agreement with the value inferred from a variational calcu-0f R normally associated with orden¢-1). A third advan-

tage is that matrix elements of one- and two-particle opera-
tors are essentially trivial to obtain, in contrast to the lengthy
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i= i i#] a a

aa

is known as the “finite-field” method and is widely used in In particular, if we choosé&) =V, then the corresponding
quantum chemistry. We evaluate the ground-state expectatioralue of the closed-shell energy is

value of the operator by adding the scalar operatgf to

the many-electron Hamiltonian and calculating the resulting

1
energyE(\). The desired expectation value is then given by EHFZE €a— E(VHF)aa}-
R2)— | dE
( >—X'Ln0 an Ill. RESULTS

A. HF level

To evaluate the energy, we use standard many-body methods. We consider an atom with one electron beyond closed
The modified many-electron Hamiltonian may be writtenshells. The core and valence energies are given at the HF
level of approximation by
1
E+2)\ri.” EEHF):Z
a

1
H=2 ho(i)+5 2

i1#]

—ZJUUJ,

1
ea_E(VHF)aa}a (4)

where
Ef=e,, 5
ho=cCa-p+Bmc+V,,{r)+Ar2+U(r).
where the summation indexranges over closed shells, and
Expressing the Hamiltonian in second-quantized form andvhere €, is the eigenvalue of the valence “frozen core”

normally ordering with respect to the closed core, we find (Dirac)-Hartree-Fock equation.
In setting up the HF equations, we aNd? to the nuclear

1 potential and add 2r;-r; to the two-particle interaction that
H=Eo+> ¢:ala s > vijtalalaay: defines the HF potential. The modified electron-electron in-
! 1kl teraction becomes

+Z (VHF_U)ij :aiTaj . (3) 1 * rI;
' r—+2)\r1-r2=2 ——5 PL(cos®) +2\r,r,P4(cosb).
12 =o rL
where

It follows that only theL=1 term in the HF potential is
modified and this term becomes

) vl(ab,r)—>ul(ab,r)+2)\rf r'[Pa(r")Py(r")
In the above equations, 0

+Qa(r")Qp(r’)]dr’,
(Vip)ij= 2 [Viaja—Viaajl, _
a whereP,4(r) andQ,(r) are large and small component radial
. Dirac wave functions, respectively. As a practical matter, we
with chooseh<1 for neutral atoms to maintain some resem-
blance to the usual HF picture. The HF energy includes first-
Uijkl = < ij

order MBPT corrections, together with all second- and
kl). higher-order RPA corrections. In columns 2 and 3 of Table I,

The lowest approximation to the wave function for a
closed-shell atom is

1
r—12+2)\ri . rj
we list HF valence energies""(\) and the HF core ener-

gies EMP(\) as functions ofn for the alkali-metal atoms
from Li to Fr.

. S . )
Wo=aza,- - -a,0). B. Second-order MBPT

We can easily go beyond the HF approximation and in-
The expectation of the Hamiltonian in this state, which givesclude the second-order MBPT corrections to the core energy
the first approximation to the ground-state energy, is E® and to the valence enerds}?):
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TABLE |. Variation of MBPT contributions to energies of alkali-metal atoms with the scaling parameter
X, whereH(\)=H +\R2.

A MO0 ECI0) EP0) EC0)
Li
—0.00006 —0.1973918 —7.2372588 —0.0016257 —0.0400988
—0.00004 —0.1970331 —7.2372410 —0.0016327 —0.0400995
—0.00002 —0.1966760 —7.2372232 —0.0016397 —0.0401001
0.00002 —0.1959663 —7.2371876 —0.0016535 —0.0401014
0.00004 —0.1956137 —7.2371698 —0.0016603 —0.0401020
0.00006 —0.1952625 —7.2371520 —0.0016671 —0.0401026
Na
—0.00006 —0.1832811 —161.8961446 —0.0057754 —0.3836680
—0.00004 —0.1828627 —161.8960647 —0.0058073 —0.3836734
—0.00002 —0.1824466 —161.8959849 —0.0058389 —0.3836788
0.00002 —0.1816209 —161.8958252 —0.0059014 —0.3836896
0.00004 —0.1812111 —161.8957454 —0.0059323 —0.3836950
0.00006 —0.1808033 —161.8956655 —0.0059630 —0.3837004
K
—0.00006 —0.1493919 —601.3789128 —0.0120214 —0.7237274
—0.00004 —0.1487522 —601.3786754 —0.0121561 —0.7237770
—0.00002 —0.1481185 —601.3784379 —0.0122889 —0.7238267
0.00002 —0.1468683 —601.3779630 —0.0125494 —0.7239262
0.00004 —0.1462511 —601.3777256 —0.0126774 —0.7239760
0.00006 —0.1456389 —601.3774882 —0.0128041 —0.7240257
Rb
—0.00006 —0.1414238 —2979.6664077 —0.0144304 —1.8931869
—0.00004 —0.1407050 —2979.6660442 —0.0146265 —1.8932719
—0.00002 —0.1399943 —2979.6656808 —0.0148194 —1.8933569
0.00002 —0.1385951 —2979.6649539 —0.0151967 —1.8935271
0.00004 —0.1379058 —2979.6645905 —0.0153817 —1.8936122
0.00006 —0.1372228 —2979.6642272 —0.0155647 —1.8936974
Cs
—0.00006 —0.1299267 —7786.6477893 —0.0168211 —3.1079015
—0.00004 —0.1290615 —7786.6472240 —0.0171307 —3.1080755
—0.00002 —0.1282090 —7786.6466589 —0.0174334 —3.1082495
0.00002 —0.1265379 —7786.6455289 —0.0180225 —3.1085978
0.00004 —0.1257176 —7786.6449640 —0.0183103 —3.1087722
0.00006 —0.1249066 —7786.6443992 —0.0185943 —3.1089466
Fr
—0.00006 —0.1334806 —24307.9714413 —0.0206103 —5.8273192
—0.00004 —0.1326676 —24307.9707289 —0.0209570 —5.8275533
—0.00002 —0.1318658 —24307.9700168 —0.0212968 —5.8277875
0.00002 —0.1302922 —24307.9685926 —0.0219595 —5.8282563
0.00004 —0.1295191 —24307.9678807 —0.0222839 —5.8284909
0.00006 —0.1287542 —24307.9671690 —0.0226043 —5.8287257

1 U mnatd abmn !n the above equations, indicasandb refer to core orbitals,
E@=—_ >, — e (6) indicesm andn refer to virtual orbitals, and@ refers to the
2 abmn €m* €n~ €2~ €p valence orbital. The second-order energies include those cor-
~ ~ rections to the matrix element &2 usually associated with
E@= _ 2 UmmwbVvbmn I UmvabV abny _ third-order MBPT—one interaction witRR?> and two Cou-
v bmn €mT €n— €,— €, abm EmT €, €a— €p lomb interactions. In columns 4 and 5 of Table I, we list
7 EP(\) andEP(\) for various values of.
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TABLE I1. Values of (dE/d\),—o=(R?) for alkali-metal atoms

as order of differentiation formula is increased. Step sie,

=0.000 02.
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TABLE lll. Comparison of the present second-order finite-field
(FF?) values ofR? with third-order MBPT values from Ref9]
and with semiempiricalSE) values from Ref[10]. The value for Li
reported under SE is obtained by rounding the “exact” value

Order dE™7dn  dEMP/dN  dEP/dN  dEP/dN  (R?) 18.2% . .. given in Refs[6,7].
Li Element FE) MBPT SE
3 17.7418 0.8904 —0.3445 —0.0315 18.256
5 17.7415 0.8904 —0.3445 —0.0315 18.256 Li 18.26 18.26 18.22
7 17.7415 0.8904 —0.3445 —0.0315 18.256 Na 22.80 22.79 22.45
K 34.13 34.05 34.52
Na Rb 39.46 39.37 40.92
3 206433 39922 -15631 -0.2694 22.803 Cs 46.59 46.35 5096
5 20.6427 3.9922 —1.5629 —0.2694 22.803
7 20.6427 3.9922 —-1.5629 -—-0.2694 22.803
K In Table II, we show results of applying the differentiation
3 312556  11.8718 -6.5118 —2.4864 34.129 formulas to the data in Table I. The re;glting valueg Rf)
5 312531 11.8718 —6.5105 —2.4864 34.128 &€ numerically stable to about four dIgI.tS for the cases con-
7 312532 118718 —65105 —24864 34.128 sidered. These values are compared Wl_th values from third-
order MBPT and other accurate values in Table I
Rb
3 34.9792 18.1725 —9.4361 —4.2549 39.461 .
5 349755 181729 —9.4336 —4.2549 39.460 D. Third-order MBPT
7 34.9755 18.1730 —9.4337 —4.2549 39.460 Expressions for third-order correlation corrections to core
and valence energies of atoms with a single valence electron
Cs were given in Ref[12] and applied to study ground-state
3 417773 28.2500 —14.7337 —8.7108 46.583 removal energies of Cs and Tl in RéfL3]. In the present
5 417703  28.2499 —14.7276 —8.7108 46.582 gpplications, these formulas are used to evaluate, effectively,
7 41.7704 282498 —14.7278 —8.7108 46.582 fourth-order corrections to matrix elementsRf. Although
Er we do not expect the third-order calcglations presented in
3 99%0l 3605 165691 ~11.7207 deese  opChO 0 e R AL S o s in any case
> 39.3343 35.6068 —16.5634 —11.7207 46.657 necessary to carry out third-order energ),/ calculations to de-
7 39.3344 35.6073 —16.5635 —11.7207 46.658

The energies are given on the grid

C. Differentiation formulas

An=(—3h,—2h,—h,0, h,2h,3h)

with spacingh=0.000 02. To evaluatgR?), we make use of

termine EC) ., the correction to the SD energies that ac-
counts approximately for omitted triple excitations in the SD
equations.

Third-order corrections for lithium aredE®)/d\
=—0.0297 andiE®Y)/d\ = — 0.0011. Adding these values to
the earlier second-order result leads(®?)=18.2250 for
lithium. This slightly improves the agreement of MBPT with
the exact nonrelativistic value. However, better agreement

a hierarchy of successively more accurate Lagrangian diffeican be achieved in the SD approximation. Therefore, here we

entiation formulas:

dE
dn

@ 1
) = (E[L1+E[-1]),

only calculatedEC) Jd\. These contributions are 0.00252
for Li, 0.00201 for Na, 0.72532 for K, 1.10114 for Rb,
2.32450 for Cs, and 2.59698 for Fr.

TABLE IV. Calculated values ofR?) for Li as the number of

dE\® partial wavesl 5 included in the SD equations is increased are
(ﬁ) =%{16( E[1]-E[—-1])-2(E[2]—-E[—2])}, tabulated along with extrapolated values obtained by applying Ait-
ken’s 6> method tol ,,=(2,3,4) and (3,4,5).
de\ (™ 2
(ﬁ) o {S40E[ 1] E[~ 1]) - 108 E[ 2] ~E[~2]) | ma dAE, /d\ dAE,/d\ (R?)
2 —0.37905 —0.03284 18.2200
+12(E[3]-E[-3])} 3 —0.38362 ~0.03279 18.2155
4 —0.38509 —0.03279 18.2140
to obtaindE/d\ atA=0. In the above, we designa&\ ;) 5 —0.38570 —0.03279 18.2134
by E[n]. The kth approximation to the derivative 2-3-4 —0.38579 —0.03279 18.2133
(dE/d)\)® has an error proportional #o*. The first two of 3-4-5 ~0.38612 ~0.03279 18.2130

these formulas are given in Chap. 25 of Réfl].
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TABLE V. Values of dE/d\),_, in the SD+E),, approxima- TABLE VI. Final results for(R?) for alkali atoms.
tion as the order of differentiation formula is increased. Step size;
h=0.00002. The SD equations included all partial waves Wwith Li Na K Rb Cs Fr

<6 for Li, Na, K, Rb, Cs and with<5 for Fr.
18.216 22.641 35.593 42.349 53.991 56.536

Order de"P  del"P  dAE, dAE, dES), (R?)
dA dx da dx order corrections but is missing small third-order corrections
(written out explicitly in Ref.[15]) referred to asE(),.
These missing terms have their origin in omitted triple exci-
tations (single-valence—double-core excitatipraf the HF
ground state. Numerical values Bf>),, for the alkali-metal
atoms are given at the end of Sec. Il D.
Na a. Lithium. Calculations for Li include all partial waves
3 20.6433 3.9922 —1.7038 —0.2922 0.0020 22.642 with |=<6. To estimate highdrcontributions we use Aitken’s
5 206427 3.9922 —1.7037 —0.2922 0.0020 22.641 &2 method. Table IV shows contributions {(&?) evaluated
7  20.6427 3.9922 —1.7037 —0.2922 0.0020 22.641 with I, ranging from 2 to 5. The final extrapolated value
(R?)=18.213 from Table IV differs from the “exact” non-
K relativistic value(18.216 004 for lithium given by Yan and
3 312556 11.8719 —5.9711 —2.2866 0.7255 35595 prake [6], but is in precise agreement with an earlier SD
5 31.2531 11.8718 —5.9703 —2.2866 0.7253 35.593 (gt by Derevianket al.[9]. The small difference with the
7 31.2532 11.8718 —5.9703 —2.2866 0.7253 35.593 exact nonrelativistic value is dominated by the contribution
Rb from E3).., evaluated in the preceding subsection, which has
3 349792 18.1725 —8.2136 —3.6888 1.1014 42351 the valued E(eizr;{d)\=0.0025. When this correction is added
34.9755 18.1729 —8.2119 —3.6888 1.1011 42.349 to the SD result 18.2130 for lithium, we obtain the value
7  34.9755 18.1730 —8.2117 —3.6888 1.1011 42.349 18.2155, differing from the exact nonrelativistic result by
only —0.0005. The residual difference has the sign and order
Cs of magnitude expected for a relativistic correctionRtx
41.7773 28.2500—11.6972 —6.6590 2.3254 53.997 b. Other alkalis.In Table V, we show the derivatives of
41.7703 28.2499-11.6942 —6.6590 2.3245 53.991 valence and core energies of alkali atoms from Li to Fr cal-
7 417704 28.2498-11.6943 —6.6590 2.3245 53.991 culated in the SD approximation with,,,=6 as the order of
the differentiation is increased. We also include the contribu-
tion from the missing third-order enerdst3)., evaluated in
the preceding section.
The SD result for sodiuniR?) =22.6425(3) agrees well
E. All-order single-double calculations with the earlier SD result 22.6293 from Dereviardoal. [9]
. . and with the semiempirical value 22.65 from Kharchenko
The SD equations, also referred to as all-order pair equas; 4, [5]. Note, however, that present results for all alkali

tllor:js_, (se_e Ch?p.tlS ofIRt_e[_‘L4]), pr?_vlde ta meth?d c.’f IN" " atoms other than lithium are substantially larger than semi-
cluding important correlation corrections to the atomic wave mpirical values obtained in RfL0] (see Table II).

function to all orders in perturbation theory. One solves a se The resulting valueR?) from the SD calculation, which

of coupled equatlon_s fc_)r single _e_xcnatlon coefficiepis,, are our most accurate predictions, are summarized in
Pmy, and double excitation coefficiensnnap, Pmma Of the Table VI

HF ground state, see R¢fl5], for example. Once these ex-
pansion coefficients have been determined, the correlation
correction to the core energyE. is given by

Li
3 17.7418 0.8904 —0.3860 —0.0328 0.0025 18.216
17.7415 0.8904 —0.3859 —0.0328 0.0025 18.216
7 17.7415 0.8904 —0.3859 —0.0328 0.0025 18.216

&)1

(&)]

g1 w

Fr
3 39.3401 35.6056—12.4105 —8.5968 2.5970 56.536

IV. CONCLUSION

In this paper we present the most complete fallyinitio

AEC=E 2 vabmr}‘,mnab (8) all-order calculations of the Lennard-Jones interaction con-

b stantC; for alkali-metal atoms. Incorporating of the rescaled
R? operator into original Hartree-Fock Hamiltonian allows
and the correlation correction to the valence energy is gives to stay within standard SD technique while also including
by important subclasses of higher-order contributions. Results
for Li agree precisely with the “exact” Cl results of Yan and
Drake[6], while results for other alkali atoms are probably
the most accurate available to date.

mna

AEUZE Umvama"’E Uabvamuab""E UvbmnPmnub -
ma mab mna
9)

The core energy is exact through third order in MBPT and
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