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Finite-field evaluation of the Lennard-Jones atom-wall interaction constantC3
for alkali-metal atoms
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A finite-field scaling method is applied to evaluate the Lennard-Jones interaction constantC3 for alkali-
metal atoms. The calculations are based on the relativistic single-double approximation in which single and
double excitations of Dirac-Hartree-Fock wave functions are included to all orders in perturbation theory.
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I. INTRODUCTION

The long-range interaction between an atom and a
fectly conducting wall is governed by the Lennard-Jones@1#
static image potential

V~z!52
e2C3

z3
, ~1!

wherez is the distance between the atom and the wall. T
coefficientC3 in Eq. ~1! is the expectation value of the op
erator

1

16 (
i , j

~xixj1yiyj12zizj !,

in the atomic ground state. Here,r i5(xi ,yi ,zi) is the coor-
dinate of thei th atomic electron with respect to the nucleu
For an atom with a spherically symmetric ground state, o
can replaceC3 by the equivalent expression

C35 1
12 ^0uR2u0&,

where R5( ir i . The Lennard-Jones interaction constant
important in models accounting for the finite conductivity
the wall material by Bardeen@2# and Mavroyannis@3#. Ad-
ditionally, the wall-atom-wall interaction constant for sma
wall separation distances is proportional toC3 @4,5#.

Precise values ofC3 for lithium were obtained by Yan and
Drake @6# from an elaborate configuration-interaction~CI!
calculation and confirmed by an independent calculation
Yan et al. @4#. The CI value ofC3 for lithium is in close
agreement with the value inferred from a variational cal
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lation by King @7#. These accurate values ofC3 for lithium
are about 2% smaller than the value obtained from a Hart
Fock ~HF! calculation.

An accurate semiempirical value ofC3 for sodium was
also obtained by Kharchenkoet al. @5# from an analysis of
the S21 sum rule,

S215
2

3
^R2&5(

n

f n

E02En
,

where f n is the oscillator strength of the transition from th
ground state to an excited staten. The quantitiesE0 andEn
are energies of the ground state and excited state, res
tively. This value differs from the HF value ofC3 by about
10%. The more elaborate calculations by Jo¨nssonet al. @8#
improve the agreement between theoretical and semiem
ical values for sodium somewhat.

Third-order many-body perturbation-theory calculatio
of C3 for all alkali-metal atoms and all-order single-doub
calculations ofC3 for Li, Na, and K were given by Derevi-
ankoet al. @9#. The all-order calculations for Li and Na wer
in close agreement with other precise values. More recen
Derevianko et al. @10# deduced accurate theoretical an
semiempirical values ofC3 for all alkali-metal atoms from
oscillator-strength sum rules.

In the present work, we use finite-field many-body me
ods to obtain values of̂R2& and make comparisons wit
previous work. One advantage of the finite field method
that all-order random-phase approximation~RPA! correc-
tions are included from the start. A second advantage is
nth order corrections to the energy give many-bo
perturbation-theory~MBPT! corrections to matrix element
of R2 normally associated with order (n11). A third advan-
tage is that matrix elements of one- and two-particle ope
tors are essentially trivial to obtain, in contrast to the leng
calculations ordinarily required.

II. METHOD

The method used here to evaluate the expectation valu
the operator

/
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R25F(
i 51

N

r i G2

5(
i

r i
212(

iÞ j
r i•r j ~2!

is known as the ‘‘finite-field’’ method and is widely used
quantum chemistry. We evaluate the ground-state expecta
value of the operator by adding the scalar operatorlR2 to
the many-electron Hamiltonian and calculating the result
energyE(l). The desired expectation value is then given

^R2&5 lim
l→0

dE

dl
.

To evaluate the energy, we use standard many-body meth
The modified many-electron Hamiltonian may be writt

H5(
i

h0~ i !1
1

2 (
iÞ j

F 1

r i j
12lr i•r j G2(

i
U~r i !,

where

h05ca•p1bmc21Vnuc~r !1lr 21U~r !.

Expressing the Hamiltonian in second-quantized form a
normally ordering with respect to the closed core, we fin

H5E01(
i

e i :ai
†ai :1

1

2 (
i jkl

v i jkl :ai
†aj

†alak :

1(
i j

~VHF2U ! i j :ai
†aj :, ~3!

where

E05(
a

ea1(
a

S 1

2
VHF2U D

aa

.

In the above equations,

~VHF! i j 5(
a

@v ia ja2v iaa j#,

with

v i jkl 5 K i j U 1

r 12
12lr i•r jUkl L .

The lowest approximation to the wave function for
closed-shell atom is

C05aa
†ab

†
•••an

†u0&.

The expectation of the Hamiltonian in this state, which giv
the first approximation to the ground-state energy, is
02250
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^C0uHuC0&5E05(
a

ea1(
a

S 1

2
VHF2U D

aa

.

In particular, if we chooseU5VHF, then the corresponding
value of the closed-shell energy is

EHF5(
a

Fea2
1

2
~VHF!aaG .

III. RESULTS

A. HF level

We consider an atom with one electron beyond clos
shells. The core and valence energies are given at the
level of approximation by

Ec
(HF)5(

a
Fea2

1

2
~VHF!aaG , ~4!

Ev
(HF)5ev , ~5!

where the summation indexa ranges over closed shells, an
where ev is the eigenvalue of the valence ‘‘frozen core
~Dirac!-Hartree-Fock equation.

In setting up the HF equations, we addlr 2 to the nuclear
potential and add 2lr i•r j to the two-particle interaction tha
defines the HF potential. The modified electron-electron
teraction becomes

1

r 12
12lr1•r25 (

L50

` r ,
L

r .
L11

PL~cosu!12lr 1r 2P1~cosu!.

It follows that only theL51 term in the HF potential is
modified and this term becomes

v1~ab,r !→v1~ab,r !12lr E
0

`

r 8@Pa~r 8!Pb~r 8!

1Qa~r 8!Qb~r 8!#dr8,

wherePa(r ) andQa(r ) are large and small component radi
Dirac wave functions, respectively. As a practical matter,
choosel!1 for neutral atoms to maintain some rese
blance to the usual HF picture. The HF energy includes fi
order MBPT corrections, together with all second- a
higher-order RPA corrections. In columns 2 and 3 of Table
we list HF valence energiesEv

(HF)(l) and the HF core ener
gies Ec

(HF)(l) as functions ofl for the alkali-metal atoms
from Li to Fr.

B. Second-order MBPT

We can easily go beyond the HF approximation and
clude the second-order MBPT corrections to the core ene
Ec

(2) and to the valence energyEv
(2) :
8-2
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TABLE I. Variation of MBPT contributions to energies of alkali-metal atoms with the scaling param
l, whereH(l)5H1lR2.

l Ev
(HF)(l) Ec

(HF)(l) Ev
(2)(l) Ec

(2)(l)

Li
20.00006 20.1973918 27.2372588 20.0016257 20.0400988
20.00004 20.1970331 27.2372410 20.0016327 20.0400995
20.00002 20.1966760 27.2372232 20.0016397 20.0401001

0.00002 20.1959663 27.2371876 20.0016535 20.0401014
0.00004 20.1956137 27.2371698 20.0016603 20.0401020
0.00006 20.1952625 27.2371520 20.0016671 20.0401026

Na
20.00006 20.1832811 2161.8961446 20.0057754 20.3836680
20.00004 20.1828627 2161.8960647 20.0058073 20.3836734
20.00002 20.1824466 2161.8959849 20.0058389 20.3836788

0.00002 20.1816209 2161.8958252 20.0059014 20.3836896
0.00004 20.1812111 2161.8957454 20.0059323 20.3836950
0.00006 20.1808033 2161.8956655 20.0059630 20.3837004

K
20.00006 20.1493919 2601.3789128 20.0120214 20.7237274
20.00004 20.1487522 2601.3786754 20.0121561 20.7237770
20.00002 20.1481185 2601.3784379 20.0122889 20.7238267

0.00002 20.1468683 2601.3779630 20.0125494 20.7239262
0.00004 20.1462511 2601.3777256 20.0126774 20.7239760
0.00006 20.1456389 2601.3774882 20.0128041 20.7240257

Rb
20.00006 20.1414238 22979.6664077 20.0144304 21.8931869
20.00004 20.1407050 22979.6660442 20.0146265 21.8932719
20.00002 20.1399943 22979.6656808 20.0148194 21.8933569

0.00002 20.1385951 22979.6649539 20.0151967 21.8935271
0.00004 20.1379058 22979.6645905 20.0153817 21.8936122
0.00006 20.1372228 22979.6642272 20.0155647 21.8936974

Cs
20.00006 20.1299267 27786.6477893 20.0168211 23.1079015
20.00004 20.1290615 27786.6472240 20.0171307 23.1080755
20.00002 20.1282090 27786.6466589 20.0174334 23.1082495

0.00002 20.1265379 27786.6455289 20.0180225 23.1085978
0.00004 20.1257176 27786.6449640 20.0183103 23.1087722
0.00006 20.1249066 27786.6443992 20.0185943 23.1089466

Fr
20.00006 20.1334806 224307.9714413 20.0206103 25.8273192
20.00004 20.1326676 224307.9707289 20.0209570 25.8275533
20.00002 20.1318658 224307.9700168 20.0212968 25.8277875

0.00002 20.1302922 224307.9685926 20.0219595 25.8282563
0.00004 20.1295191 224307.9678807 20.0222839 25.8284909
0.00006 20.1287542 224307.9671690 20.0226043 25.8287257
cor-

ist
Ec
(2)52

1

2 (
abmn

vmnabṽabmn

em1en2ea2eb
, ~6!

Ev
(2)52(

bmn

vmnvbṽvbmn

em1en2ev2eb
1(

abm

vmvabṽabmv

em1ev2ea2eb
.

~7!
02250
In the above equations, indicesa andb refer to core orbitals,
indicesm andn refer to virtual orbitals, andv refers to the
valence orbital. The second-order energies include those
rections to the matrix element ofR2 usually associated with
third-order MBPT—one interaction withR2 and two Cou-
lomb interactions. In columns 4 and 5 of Table I, we l
Ev

(2)(l) andEc
(2)(l) for various values ofl.
8-3
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C. Differentiation formulas

The energies are given on the grid

ln5~23h,22h,2h,0, h,2h,3h!

with spacingh50.000 02. To evaluatêR2&, we make use of
a hierarchy of successively more accurate Lagrangian di
entiation formulas:

S dE

dl D (3)

5
1

2h
~E@1#1E@21# !,

S dE

dl D (5)

5
1

24h
$16~E@1#2E@21# !22~E@2#2E@22# !%,

S dE

dl D (7)

5
1

720h
$540~E@1#2E@21# !2108~E@2#2E@22# !

112~E@3#2E@23# !%

to obtaindE/dl at l50. In the above, we designateE(ln)
by E@n#. The kth approximation to the derivative
(dE/dl)(k) has an error proportional tohk. The first two of
these formulas are given in Chap. 25 of Ref.@11#.

TABLE II. Values of (dE/dl)l505^R2& for alkali-metal atoms
as order of differentiation formula is increased. Step sizeh
50.000 02.

Order dEv
(HF)/dl dEc

(HF)/dl dEv
(2)/dl dEc

(2)/dl ^R2&

Li
3 17.7418 0.8904 20.3445 20.0315 18.256
5 17.7415 0.8904 20.3445 20.0315 18.256
7 17.7415 0.8904 20.3445 20.0315 18.256

Na
3 20.6433 3.9922 21.5631 20.2694 22.803
5 20.6427 3.9922 21.5629 20.2694 22.803
7 20.6427 3.9922 21.5629 20.2694 22.803

K
3 31.2556 11.8718 26.5118 22.4864 34.129
5 31.2531 11.8718 26.5105 22.4864 34.128
7 31.2532 11.8718 26.5105 22.4864 34.128

Rb
3 34.9792 18.1725 29.4361 24.2549 39.461
5 34.9755 18.1729 29.4336 24.2549 39.460
7 34.9755 18.1730 29.4337 24.2549 39.460

Cs
3 41.7773 28.2500 214.7337 28.7108 46.583
5 41.7703 28.2499 214.7276 28.7108 46.582
7 41.7704 28.2498 214.7278 28.7108 46.582

Fr
3 39.3401 35.6056 216.5691 211.7207 46.656
5 39.3343 35.6068 216.5634 211.7207 46.657
7 39.3344 35.6073 216.5635 211.7207 46.658
02250
r-

In Table II, we show results of applying the differentiatio
formulas to the data in Table I. The resulting values of^R2&
are numerically stable to about four digits for the cases c
sidered. These values are compared with values from th
order MBPT and other accurate values in Table III.

D. Third-order MBPT

Expressions for third-order correlation corrections to co
and valence energies of atoms with a single valence elec
were given in Ref.@12# and applied to study ground-sta
removal energies of Cs and Tl in Ref.@13#. In the present
applications, these formulas are used to evaluate, effectiv
fourth-order corrections to matrix elements ofR2. Although
we do not expect the third-order calculations presented
this section to be as accurate as the single-double~SD! cal-
culations given in the following section, it is in any cas
necessary to carry out third-order energy calculations to
termine Eextra

(3) , the correction to the SD energies that a
counts approximately for omitted triple excitations in the S
equations.

Third-order corrections for lithium aredEv
(3)/dl

520.0297 anddEc
(3)/dl520.0011. Adding these values t

the earlier second-order result leads to^R2&518.2250 for
lithium. This slightly improves the agreement of MBPT wit
the exact nonrelativistic value. However, better agreem
can be achieved in the SD approximation. Therefore, here
only calculatedEextra

(3) /dl. These contributions are 0.0025
for Li, 0.00201 for Na, 0.72532 for K, 1.10114 for Rb
2.32450 for Cs, and 2.59698 for Fr.

TABLE III. Comparison of the present second-order finite-fie
(FF(2)) values ofR2 with third-order MBPT values from Ref.@9#
and with semiempirical~SE! values from Ref.@10#. The value for Li
reported under SE is obtained by rounding the ‘‘exact’’ val
18.216 . . . given in Refs.@6,7#.

Element FF(2) MBPT SE

Li 18.26 18.26 18.22
Na 22.80 22.79 22.45
K 34.13 34.05 34.52
Rb 39.46 39.37 40.92
Cs 46.59 46.35 50.96

TABLE IV. Calculated values of̂R2& for Li as the number of
partial wavesl max included in the SD equations is increased a
tabulated along with extrapolated values obtained by applying
ken’s d2 method tol max5(2,3,4) and (3,4,5).

l max dDEv /dl dDEc /dl ^R2&

2 20.37905 20.03284 18.2200
3 20.38362 20.03279 18.2155
4 20.38509 20.03279 18.2140
5 20.38570 20.03279 18.2134

2-3-4 20.38579 20.03279 18.2133
3-4-5 20.38612 20.03279 18.2130
8-4
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E. All-order single-double calculations

The SD equations, also referred to as all-order pair eq
tions ~see Chap. 15 of Ref.@14#!, provide a method of in-
cluding important correlation corrections to the atomic wa
function to all orders in perturbation theory. One solves a
of coupled equations for single excitation coefficientsrma ,
rmv and double excitation coefficientsrmnab, rmnva of the
HF ground state, see Ref.@15#, for example. Once these ex
pansion coefficients have been determined, the correla
correction to the core energyDEc is given by

DEc5
1

2 (
mnab

vabmnr̃mnab ~8!

and the correlation correction to the valence energy is gi
by

DEv5(
ma

ṽvavmrma1(
mab

vabvmr̃mvab1(
mna

vvbmnr̃mnvb .

~9!

The core energy is exact through third order in MBPT a
contains important fourth- and higher-order corrections. T
valence energy also includes important fourth- and high

TABLE V. Values of (dE/dl)l50 in the SD1Eextra
(3) approxima-

tion as the order of differentiation formula is increased. Step s
h50.000 02. The SD equations included all partial waves witl
<6 for Li, Na, K, Rb, Cs and withl<5 for Fr.

Order
dEv

(HF)

dl

dEc
(HF)

dl

dDEv

dl

dDEc

dl

dEextra
(3)

dl
^R2&

Li
3 17.7418 0.8904 20.3860 20.0328 0.0025 18.216
5 17.7415 0.8904 20.3859 20.0328 0.0025 18.216
7 17.7415 0.8904 20.3859 20.0328 0.0025 18.216

Na
3 20.6433 3.9922 21.7038 20.2922 0.0020 22.642
5 20.6427 3.9922 21.7037 20.2922 0.0020 22.641
7 20.6427 3.9922 21.7037 20.2922 0.0020 22.641

K
3 31.2556 11.8719 25.9711 22.2866 0.7255 35.595
5 31.2531 11.8718 25.9703 22.2866 0.7253 35.593
7 31.2532 11.8718 25.9703 22.2866 0.7253 35.593

Rb
3 34.9792 18.1725 28.2136 23.6888 1.1014 42.351
5 34.9755 18.1729 28.2119 23.6888 1.1011 42.349
7 34.9755 18.1730 28.2117 23.6888 1.1011 42.349

Cs
3 41.7773 28.2500211.6972 26.6590 2.3254 53.997
5 41.7703 28.2499211.6942 26.6590 2.3245 53.991
7 41.7704 28.2498211.6943 26.6590 2.3245 53.991

Fr
3 39.3401 35.6056212.4105 28.5968 2.5970 56.536
02250
a-

e
et

on
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order corrections but is missing small third-order correctio
~written out explicitly in Ref. @15#! referred to asEextra

(3) .
These missing terms have their origin in omitted triple ex
tations ~single-valence—double-core excitations! of the HF
ground state. Numerical values ofEextra

(3) for the alkali-metal
atoms are given at the end of Sec. III D.

a. Lithium. Calculations for Li include all partial wave
with l<6. To estimate higherl contributions we use Aitken’s
d2 method. Table IV shows contributions to^R2& evaluated
with l max ranging from 2 to 5. The final extrapolated valu
^R2&518.213 from Table IV differs from the ‘‘exact’’ non-
relativistic value~18.216 004! for lithium given by Yan and
Drake @6#, but is in precise agreement with an earlier S
result by Dereviankoet al. @9#. The small difference with the
exact nonrelativistic value is dominated by the contributi
from Eextra

(3) , evaluated in the preceding subsection, which h
the valuedEextra

(3) /dl50.0025. When this correction is adde
to the SD result 18.2130 for lithium, we obtain the val
18.2155, differing from the exact nonrelativistic result b
only 20.0005. The residual difference has the sign and or
of magnitude expected for a relativistic correction toR2.

b. Other alkalis.In Table V, we show the derivatives o
valence and core energies of alkali atoms from Li to Fr c
culated in the SD approximation withl max56 as the order of
the differentiation is increased. We also include the contri
tion from the missing third-order energyEextra

(3) evaluated in
the preceding section.

The SD result for sodium̂R2&522.6425(3) agrees wel
with the earlier SD result 22.6293 from Dereviankoet al. @9#
and with the semiempirical value 22.65 from Kharchen
et al. @5#. Note, however, that present results for all alk
atoms other than lithium are substantially larger than se
empirical values obtained in Ref.@10# ~see Table III!.

The resulting valueŝR2& from the SD calculation, which
are our most accurate predictions, are summarized
Table VI.

IV. CONCLUSION

In this paper we present the most complete fullyab initio
all-order calculations of the Lennard-Jones interaction c
stantC3 for alkali-metal atoms. Incorporating of the rescal
R2 operator into original Hartree-Fock Hamiltonian allow
us to stay within standard SD technique while also includ
important subclasses of higher-order contributions. Res
for Li agree precisely with the ‘‘exact’’ CI results of Yan an
Drake @6#, while results for other alkali atoms are probab
the most accurate available to date.
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e,
TABLE VI. Final results for^R2& for alkali atoms.

Li Na K Rb Cs Fr

18.216 22.641 35.593 42.349 53.991 56.53
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