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Atomic and molecular three-body ions with positively charged muons
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The properties of some atomic and molecular three-body ions which contain positively chargeduriuons
are considered. In particular, the ground states in the muonium ion (dux e~ e”) and muon-hydrogen
molecularp™u*e”,d"u*e",t"u e ions are studied in details. The energies of these systems have been
determined to high accuracy: E(Mu~)=-—0.525054 806 24352632929 a.u., E(ptute’)
=—0.589903 7853895877261 a.uE(d*u*e”)=—0.590255352 1522464177 a.u., amt u*e")
=—0.590374 098 8926828880 a.u. The interparticle distanédanctions, two-particle cusps, and some
other bound-state properties are also presented for all considered systems. The photodetachment of the Mu
ion is briefly discussed.
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The ability of positively charged muons™ to form vari-  which can very accurately reproduce the total energy of the
ous atomic and molecular structures with electrons and hy=H™ ion are not sufficiently accurate in applications to the
drogen nuclei has been well known since the middle of théMlu™ ion. The reason is obvious, since the motion of the
1950s(see, e.g.f1] and references thergirin this study we ~ “nucleus” in the Mu™ ion cannot be neglected even in the
want to consider a number of atomic and molecular threefirSt approximation. Finally, the perturbation methods pro-
body ions which contain positively charged mugns. The QUce significant numerical errors in applications to the Mu

muonu* is considered below as a point particle with chargelon.i.O determine the ground bound states in the Mand
q,+=+e and masam,+=206.768 26, wheree is the

_ _ tute , d*ute, andt ute  ions to very high accu-
proton charge andh, is the electron mass. In particular, the yacy in this study we used the approach developefl#).
main goal of this study is to determine the energies andrhe approach developed 2] is a highly accurate, nona-
bound-state properties of the muonium ion Mulor diabatic, variational method which can be applied to various
ute"e”) andpTute, dufe, andtTute” muon- three-body systems, including all known adiabatic three-
molecular ions. Here and below ", d*, andt® are the body ions. Note that the muonium ion Muis the two-
nuclei of hydroger{protium), deuterium, and tritium, respec- electron three-body system with unit charges and heavy cen-
tively. Also, everywhere in this studg~ designates the tral particles ™. As is well known(see, e.g.[7]) such ions
electron—i.e.g.- = —e. have only one boundground 'S(L=0) state. In contrast
Note that the molecularp™u*e”, d*u*e”, and with this, the energy spectrum of each of the muon-hydrogen
t*u"e” ions can be considered as the muon-substitutedholeculariong®n*e”, d"u’e”, andt”n"e” contains a

H,* family of molecular ions. These ions have been studied?imber of bound states. However, in this study we shall
in a number of earlier worki2—4). In general, these muon- restrict ourselves to consideration of the groudd =0)

molecular ions are of great interest for theoretical studiesStates only.

since they can be considered as semiadiabdic soft- Below all considered ions are assumed to be the nonrela-
adiabati¢ three-body systems. In fact, it has already beerfiVistic Coulomb three-body systems which contain the
shown in[2—4] that thep* x"e”, d*u*e", andt* u'e" three-point particles with chargeg,,q,,93 and masses

molecular ions are less adiabatic systems than the hydrogdPi,M2,Ms. The nonrelativistic approximation means that
molecular ions HD, HT*, and DT". This directly related |Pil<Mic, wherei=123. In general, the nonrelativistic
to the fact that the muon mass,=206.768 268, is ~9 consideration is accurate only if all electron-muon and
times smaller than the corregponding proton mass electron-nucleus distances; exceed the corresponding
=1836.152 70, [5]. Therefore, one can also expect that Com_p}clnn length A =7%/mec=aap~3.861593228
the isotope effects in the muon-hydrogen molecular ions arg¢ 10~ ¢m [5]. Here and below;=rj;=[r;—rj| and (j)
significantly larger than it can be found in the hydrogen mo-= (i1)=(32), (31), and(21). N
lecular ions HO', HT*, and DT'. In atomic unitsh =1, m,=1, ande=1, the nonrelativis-

To study the bound-state spectra and isotope effects in tHi#¢ HamiltonianH for an arbitrary Coulomb three-body sys-
ptute , d*ute, andt™ uTe” molecular ions both the €M can be written in the form

nonadiabatic and adiabatic methods can be applied. How- 1 1 1 9s9> GsQ: G0
ever, in[2,3] it was found that the fully adiabati@or Born-  H=— 5 Vi 5 Vi— 5 Vi+ + + ,
Oppenheimef6]) methods developed for the hydrogen mo- my m2 M3 M2 Fa1 r21(1)

lecular“H, " ion cannot provide even sufficient accuracy for
the muon-hydrogen molecular ions. The same problem cawherem;,m,,m5; andq,,q,,qs are the particle masses and
be found for the muonium ion Mu (or n"e~e™), which  charges. In the present case, for the Man the subscripts 1
was considered earlier ifi—11]. The adiabatic methods and 2 mean electrons, while the subscript 3 designates the
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positively charged muon™. In the muon-hydrogen ions yi=(ti(i+1) \/§>>(G(2k)—G(lk))+G(1"),
pfute , d"ute”, andtTu*e” the subscript 2 always
stands for the hydrogen nucleps ,d*,t*, while the sub-
scripts 1 and 3 mean the mugn” and electrore™, respec-
tively. Our present goal is to determine the solutions of the

8=(3i(i+1)\T)(DY DY) + DY,

: =dLi(i (k) _ (k) (k)
corresponding Schdinger equation for the bound-state e=(zili +l)‘/1—1>>(E2 SRS
spectraHWV =EWV, whereE<O. In this study we apply the Lo . . .
approach 12] which allows one to obtain such solutions to fi=(3i(+1)VIYFP -FI)+FP,

arbitrarily high, in principle, accuracy.
The approach developed [12] is based on the use of wherek=1,2,3 and the symbd{- - -)) designates the frac-
exponential variational expansion in perimetric coordinategional part of a real number. As easy to understand the

U;, Uy, andug which can be written in the forrfi2] boundaries of SixX mentioned intervals—i.e.,
AR AN FR FX_are the actual nonlinear param-
1 R eters of the method. The parameters in the exponents in Eq.
V= E(lJr KPzﬁiZl Ciexp( — aju;— Biu; ) (.e., a;,Bi,v,6 ,e,fi,i=1,... N) are chosen quasi-
randomly and not varied in calculations; i.e., they are not
— yiug)exp(1- Sjuy+1-eu,+1-fug), (2)  actual(i.e., varied nonlinear parameters of the method. In
fact, these parameters are usually called the lattice points of
whereC; (i=1, ... N) are the lineafor variationa) param-  the variational expansion, E(), rather than the nonlinear
eters, whilea;, B;, vi, 6, €, andf; are the nonlinear pa- parameters. Note that the total number of actual nonlinear
rameters (=1, ... N). The choice of these nonlinear pa- parameters used in this stage of the procedure equals 36
rameters is discussed below. The three perimetric coordinaté@ < 6x 3 for the considered three-box versjon
Ui, Uy, andug are truly independent and always positive—  The second stage of our procediife?] is essentially a

i.e., 0<u;< -+ for i=1,2,3. These three perimetric coordi- scaling of the lattice points chosen in the first step. The scal-
nates are simply related to the three scalar relgtivénter-  ing itself is performed as follows. The families of the param-
particle coordinates;=|r;—r;|: etersa;, B, vi, 6, &, andf; (which correspond to the
same k) are multiplied by the positive factorh,
(k=1,2,3). Then, this parametg&y, is also varied. The total
Ui =§(rik+ Fij =T, Tij=uituj, (3 number of such additional parameters equals 8 {3. Also,
one additional variational parameter is used to perform a
wherer;; =r;; andi+#j#k=(1,2,3)[12]. In Eq. (2) the op- scaling for all lattice points in Eq2). Finally, this method
erator P, is the permutation of the two identic&l and 2 produces a pr(_)perly balanced wave function which repre-
particles(electrons in the symmetric Mu ion. For all non- sents the considered bound state very accurately. Note that
symmetric muon-hydrogen ions the facter equals zero the total number of actual nonlinear parameters in this ver-
while for the groundS(L =0) state in the Md ion we have’ sion of the procedurg egual_s 40. The;e 40 qctual non_lmear
k=-+1. In fact, the variational expansion, E€®), corre- parameters were optimized in .calcula'uons with a relatively
sponds to the éasb=0, wherel is the totél ang,ular mo- small number N=<1000) of basis functions used in E@).

) L

mentum of the considered system. The generalization of Ecijn+ Lafé’_ th;] dqioiﬁigr?o::ngffhne LI:/IsgdioLOirt \;'\J/]Eg foin’ d

(2) to the case of arbitrary can be found,. €.g, ipd.2]. . that the use of complex parameters decreases the overall ef-
In fact, in actual computations, the highly accurate trlalfiCienC of our method. Therefore. for the Mion we as-

functionsW can be produced only by using a complete Op'sumedythatﬁ-—e —f _(') for i—1 ' N. In this case an

.. . . ) : Y ! =€ =1= =4, ...\ -

grr?(;z? tl(?n_ ',if the ,\T)O ?ILlnEar (pz?raég ?ct)\eizvmt,hg : ,chy(;i’cgl ’ofe It’he other version of the procedudgl?] has been used. This

nonlir;ea:pérérﬁéters in ng) p.roceeds' as followl2]. Let version contains only 28 actual nonlinear parameft&g$.

i be the numbefor index of the basis function in Eq(2) The total ground-state energies of the considered ions

. N . (computed in atomic unijsare presented in Tables | and II.
(I<i=N) .a.n(;Ik—.modG ’3.)+ 1, Where_mod(,3) deggngtes Table | contains the total energies determined for the muon-
modular division(i.e., an integer remainder after division of

+ A + A + oA

i by 3). The number 3 corresponds to the three-box versiortfydro.genp pe,d Bo& ar_1dt p-e ions. Table I
> . : _contains the total energies obtained for the Man. For the

which is used in our present calculations. The same versio

i i . 'SI9Fu~ ion the results from two different series of calculations
was used successfully in variational calculations of varlou%Wi,[h two different sets of nonlinear parametease shown
three-body system$12]. In this version the parameters The masses of muoa* and protorp™ are presented abové,
i, Bis ¥i: O, &, arggfi (el})re cho?k()en ((qkl)Jaswan((lj(;)ml()l/()from while for the tritium and deuterium masses we used the val-
the six Jnervals [Au A2 1 [B1 BTl [GY1.G27]. yes my=5496.921 561, and my=3670.483 01, [5]. As
[D17.D27], [E17.E27], and[Fi7,F37]: follows from Tables | and Il our results for the
Mu™, ptute ,d"u*e”, andt*u'e” ions are signifi-
cantly more accurate than the results obtained for the sys-
tems considered in earlier studies, including our works
Bi(%i(i+1)y3NBX-BK)+BW, [4,11]. As we mentioned above in computations of the Mu

ai=(3i(i+1)V2)AP - AL+ AW,
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TABLE I. The total energie€ (in atomic unitsm,=1, 2=1, e=1) for the ground states of the muon-
hydrogenp*n*e™, d"u*e™, andt™ u*e™ ions.N designates the total number of basis functions used in
Eq. (2). Ef,a) are the best variational energies known from earlier calculations.

N p+,u+e_ d+,u+e_ t+,u,+e_
2000 —0.5899037853895875798 —0.5902553521522462749 —0.5903740988926827463
2600 —0.5899037853895877109 —0.5902553521522464031 —0.5903740988926828736
3000 —0.5899037853895877230 —0.5902553521522464146 —0.5903740988926828850
3500 —0.5899037853895877261 —0.5902553521522464177 —0.5903740988926828880
Eg") [4] —0.589903728 —0.590255253 —0.59037390
E [3] —0.589904 —0.590225 —0.590374
ion all &, e, andf; parametersiE1, ... N) in Eq. (2 properties only stable figures from calculations with the
were chosen to be equal to zero identically. For the muonhigherN are presented in this table.

hydrogenp™u*e™, d"u*e™, andt*u"e” ions all 6XN The expectation values of the two interparticle cosine

nonlinear parameters in E€R) were used. Note that all our functions are determined traditionally:

present calculations were performed by usimgFun, a mul-

tiprecision FORTRAN-90 computation package developed by Fic- ik

Bailey [13,14] Tij:<001rik Drjk)>:< ! >, (6)
Table 1ll contains some bound-state propertiesatomic ikl ji

units) for the Mu” andp*ute , d*ute, andt* ute”

ions. The properties shown include the expectation values o¥here (,j,k)=(1,2,3). The quantity(f) is expressed in

linear  distances r; and its various powers terms_ of the relative coord|nates3g,rl32,r2]) or perimetric

rptrd sl [3i§) = (ji)=(32),(31),(21). Also, the two- ~ coordinates W, ,u,,us) [where uj=z(rjj+ri—rjy) and

and three-particle functions and two-particle cusps are pre- (i.],k)=(1,2,3)] as follows:

sented on Table Ill. The notatiofy;, 551, and 5351 Stands

for the two- and three-particle Dirac delta functions, respec- u; Up Ug
tively. The two-body cusp ratios are determined in a tradi- (Hh={v r_32r_3]_r_21 ¥
tional mannef15,16:
d :f f f |#/(ug,Up,U3)|?UsUsuzdusduydus.  (7)
5(rij)m
ij
= , 4 , .
i (a(rij)) @ The value(f) can be calculated directly or by applying .

Their coincidence indicates that the,, 73,, 73, and(f) ex-

whered;; = 5(rj;) is the appropriate Dirac delta function and peciation values have been computed correctly. The equali-
(i))=(32), (31), and21). The exact value of;; equals ties

M 5) rort Tapt 7= 1 4() ®
mi+m;’ 21T 7327 731

vij = qid;

whereq; andq; are the charges amd; andm; the masses of hold for an arbitrary three-body system. For the symmetric
the particles. For the two- and three-particle cusps only thé/lu™ ion we havers,= 73;.
best results are given in Table Ill. For all other bound-state The virial factor » is determined as follows:

TABLE II. The total energie€ (in atomic unitsm,=1, A=1, e=1) for the ground state of the Muion
(n*e”e™) computed for two different sets of nonlinear paramethirsiesignates the total number of basis
functions used in Eq2). Eg") are the best variational energies known from earlier calculations.

N E E
2000 —0.525 054 806 243 526 328 74 —0.525 054 806 243 526 328 53
2500 —0.525 054 806 243 526 329 04 —0.525 054 806 243 526 328 90
3000 —0.525 054 806 243 526 329 19 —0.525 054 806 243 526 329 09
3500 —0.525 054 806 243 526 329 26 —0.525 054 806 243 526 329 19
3800 —0.525 054 806 243 526 329 29 —0.525 054 806 243 526 329 25
E®@ —0.525 054 806 243 45[11]
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TABLE Ill. The expectation valueéX;;) in atomic units =1, #=1, e=1) of some properties for the
ground states of the Muion. The notation 1 and 2 designates the two electrons, while 3 stands for the

muon (u™").

(Xij) Value (Xij) Value

() 0.30919938897549610 (rat 0.67965450073127438
(a0 4.43928009200701804 (r3y 25.5145363622570757
(ray 2.7271829824915462 (r3p 12.074193983236396
(r3) 184.0773129096977 (r3) 77.63368972657732
(r3y 1632.23450788031 (r3p 663.917823028855
((rars) ) 0.3782270843836621 (rayra) —0.6830741978921419
(S 0.250177168395846 (rayron) 12.7572681811285379
((ragfaro) ) 0.19728255714621

(—3V3) 0.261186844278620267 (V1-V5) 0.0319963556535331443
(—3V3) 0.554370044210773683 (V1-V3) —0.554370044210773683
Ta1 0.649201369272202025 (830) 0.1621506815

To1 —0.103813878094673723 (850) 2.681680% 10 °

(f) 0.048647215112432582 (8320) 4.8441x10°3

va —0.99518694698 Vo1 5.00000090121

vy @ —0.99518694534779330252 vy @ 0.5

7 5.3114x10°1° e® (ev) —0.7472612251974200943

The expected cusp valug; determined from Eq(5).
®The corresponding conversion factor is assumed to be equal 27.21168@6du) exactly.

hold in any case. For the appropriate expectation values one

(V) .
, (9)  finds (see Table 1)

2T)

7]=‘1~|—

where(T) and(V) are the expectation values of the kinetic 1, ) )
and potential energies, respectively. The deviation of the fac- (Pt = 5 ((riid +(rji0 = (rij))- (12)
tor » from zero indicates, in principle, the quality of the
wave function used. The appropriate binding energiese ) )
given in eV (the conversion factor is 1 a.u. Analogously, since;+p,+p;=0, then we write
=27.2113961 eV).
The numerical values for the properties of the Mion 1
presented in Table Ill agree quite well with the values known Pi- P; Iz(pﬁ— pi—p;) (13
from previous highly accurate calculatiodl]. For the
ptute , d*ute”, andt*ue” ions the properties pre-
sented in Table IV were never determined before. Approxi-and
mately, however, all computed properties for these ions co-
incide quite well with the bound-state properties obtained for 1
the HD", HT*, and DT" and other similar ions computed in (pi-py)= ~(pDy— (PP —(p?)), (14)
[17,18. Note also that some expectation values in Tables IlI 2 .
and IV can be expressed as linear combinations of other

properties. For instance, for the three relative Vectorgespectively| (i,j,k)=(1,2,3)]. Moreover, since in atomic
32, 31, andry we have units the moment@;=(—1)V,, one finds

I’32— I’31+ r21: O (10)
(Vi-Vp)=—(= 3V +(—3V)+(- V), (19
Therefore, the three equalitigéi,j,k) =(1,2,3)]

where ,j,k)=(1,2,3). The expectation values form both
_— :}(r; +r2 _12) (11) sides of this equality can be found in Table IIl. In the sym-
L A L metric Mu~ ion one easily finds thatV,-V3) is always
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TABLE IV. The expectation value@n atomic unit$ of some propertieéX) for the ground states in the
npte , utdte , andutt™ e ions. Below, the subscript 3 designates the elec&orand 2 stands for

the tritium nucleus, while 1 means the positively charged mudn

(X) wpte wnrdTe” pnitte”

(r37 1.38332194784 1.38406696683 1.38432262287
(r57 0.235393174082 0.235795882291 0.235932101935

(rad) 1.40714678328 1.40938499014 1.41013666166
It 0.832504177058 0.833363252051 0.833652289885

32

(r3d) 0.825557229434 0.825987226271 0.826133929221
(ot 0.478253835879 0.478839774488 0.479038021799
((Fagon) ™Y 0.403857276839 0.404607338234 0.404860449311
((raron) ™Y 0.400950460207 0.401516032474 0.401707784198
((rar 32)_1> 0.588047623894 0.588984310799 0.589301003123
((Fag s o)~ ) 0.292109652184 0.292650204842 0.292832860753

(rsp 1.73294284709 1.73035612531 1.72948502899
(rap 1.74533389087 1.74347585046 1.74284532381
(ran 2.14964905895 2.14554247881 2.14415469516
(r3) 3.76133939760 3.74882857311 3.74461804494
(r3) 3.81085696015 3.80116394256 3.79788068759
(r3) 4.74623777621 4.72508380133 4.71794443387
r 9.55863681256 9.50723369267 9.48995122332
3.
(r3p 9.73421804773 9.69244532255 9.67832039520
(r3) 10.7539564303 10.6722728207 10.6447534610
ra 27.4754408819 27.2680167923 27.1983640343
3.
(r3) 28.1087048740 27.9346664434 27.8759163656
(r3) 24.9848269401 24.7028465179 24.6080527942
(730) 0.516872352652 0.516938604988 0.516959506009
(732 0.509692554936 0.509316132642 0.509190209532
(720) 0.242221311233 0.242677080065 0.242831397092
(f) 0.0671965547342 0.0672329545237 0.0672452782596
(Fap-Tar) 2.34836010683 2.33637421594 2.33234089561
(Fap-Tay) 2.39787766938 2.38870958539 2.38560353826
(ra1 o) 1.41297929077 1.41245435717 1.41227714933
(—3V? 1.27714953992 1.30663336903 1.31696266243
(—3V3) 1.26666136753 1.29535220954 1.30541199577
(—3V2 0.583082232791 0.583634614301 0.583821110754
(V5-V,) 1.96072867465 2.01835096427 2.03855354744
(V3-V,) 0.59357040518 0.59491577379 0.595371777406
(V3-Vy) 0.57259406040 0.57235345481 0.572270444102
(8(rz)) 0.2045743 0.2049599 0.2050891
(8(rz) 0.1997232 0.1998020 0.1998292
(8(r21)) 0.11927% 10 %0 0.12713« 1010 0.12971x 10 1°
(8(rs0) 0.8664x 10 10 1.0106<10°1° 1.0469<10°1°
V3o —0.99947434 —0.99974636 —0.99983689
Vg2 —0.9994556794329 —0.9997276304980 —0.9998181130841
v —0.99519759 —0.99519757 —0.99519759
v 2 —0.9951869453478 —0.9951869453478 —0.9951869453478
vy 65.886 67.724 68.448
vy, 2 185.8408179408 195.7416064837 199.2725679222

&The expected cusp valug; determined from Eq(5).
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positive, sincgV;-V3)=(—3V3)=T5>0. In this study we Since for the Mu ion y=0.2337912, one finds from
assume that th&;-V; operator acts on its right. A different the last expression that the maximal photodetachment
expression can be found for the scalar product of two gradieross sectiomr(p=y)=4.15503<10 1’ cn?. The maximal
ents, sincg V-V )= —(4V;- V). photodetachment cross section for th&H™ ion is

In conclusion, we want to discuss briefly the photodetach~4.104 03 10" " cn?. This value was obtained by
ment of the Mu ion. This problem is closely related to the uysing our extremely accurate variational wave function
asymptotic form of the three-body wave function obtainedrecently —produced for the “H~ ion [E(*H")
above for the Mu ion. In general, the photodetachment of — _ 0 527 751 016 544 377 196586 5 3.u.
the Mu™ ion can be represented in the form Méf o Thus, in this study the problem of the ground bound states
=Ml_1+e , whergﬁw designates the |nC|de_nt photon _and in the MU (u"e"e”) and p*u‘e”, du'e”, and
Mu is the muonium two-body systemu(e”). A detail

t*uTe” ions has been considered. The ground-state ener-
study of the photodetachment of the Mand other similar " J

) ; : - ies and other bound-state properties of these systems have
ions will be published elsewhere. Here we restrict ourselveg prop y

to the approximate descrintion which is based on Bethe's een determined to high accuracy. In fact, the numerical ac-
method[fg 20. Bethe's met%od was oriainallv developed to cUracy achieved in the present study is sufficient for all
describe tr;e bhotodetachment of the %veak)I/y boung deutdresent and future experimental needs. The obtained varia-
rium nucleus[19,21). Later, it was found that the same ap- ional energies for all considered systeni&(Mu)

proach can be used to describe the photodetachment of an— 0-525054 806 24352632929 a.u., E(p"un"e)
arbitrary weakly bound system, including Coulomb three-=—0.589903 785389587 726 1 a.u., E(d"u"e)
body ions such a§H~ and Ps ions[22,23. =—-0.5902553521522464177 a.u.,, anE(ttute’)

In application to the Mu ion, Bethe’s method allows one = —0.590 374 0988926828880 a.u.] are significantly more
to obtain the following formula for the photodetachmentaccurate than the total energies known for these systems
cross sectiorr(p) (for more details, sef24]): from earlier calculations. The lowest order relativistic

(~a?) and QED ¢ «°) corrections to the total energies of

the considered ground states are expected to be small
64m’aad c?pd 9 P

o(p)= — (=1x10°° and ~5x10 7 a.u., respectively In fact, an
3(1+m,Y)® (p?+92)3 accurate evaluation of these correction for all considered ions
17 s is the goal of our next study.
_ 4.30255210 Cp o (16) The electron-“nuclear” cusps in all considered systems
(1+m,hH°  (p?+9?)3 ' have been determined very accurately. The electron-electron

_ _ _ cusp in the MU ion has also been determined quite
wherep=|p| is the momentum of the outgoing electrére.,  accurately. However, the muon-nuclear cusps computed
ph0t06|ectr0h a=7.297 353 0& 10_3 is the dimensionless in the p+M+e_' d+M+e_’ andt+ﬂ+e_ jons are not even
fine-structure constant, anay=5.2917724% 10 ° cm is  approximately correct. This problem is well knoweee,

the Bohr radius. Also, in this formula, =206.768 26f. is ¢ g.[18] and references thergifor the adiabatic three-body
the muon mass an@ is a constant which is determined from gygiems X*y*e~, where minfn,m)>m.=1. In fact

the asymptotic form of the three-body wave function in such systems the two heavy nuckéi and Y* move

in the field of some effectivéor averagegpotentialV(rxy).

C Here ryy=|rx—ry| is the corresponding internuclear
P(r)=—exp(—yr)=¥(r,0r), (17)  distance. For the adiabatic systems the potent@iyy)

r differs significantly from the original Coulomb potential
0xQy/rxy. Therefore, the cusp computed for tN&ryy)
potential can also be different from the known Coulomb
cusp, Eg.(5). Note, however, that for the considered
soft-adiabatic systemgu e, d*ue”, andtute”
the agreement between predicted and computed muon-
nuclear cusps is significantly better than such an agreement

bserved for actual adiabatic iops'd“e™, p"tfe™, and

*t*e™ considered if18]. In general, the cusp problem for
the Coulomb adiabatic systems warrants further theoretical
and numerical studies.

where C is a numerical constant¥(rs,,rsq,r»q) is the
highly accurate three-body wave function, E2), 8 is some
positive constant, angl is another positive constant, which is
uniformly related to the ionization potentid]l = (y?/2)(1
+m;1)]. By using our highly accurate wave functions we
have found that for the Muion 8=1. In fact, the expres-
sion for the photodetachment cross section presented abo
Eq. (16), has been produced by assuming tBat1 in Eq.
(17) for the Mu™ ion. Also, from our highly accurate wave
functions constructed for the Muion we have found that

C=0.31802224]. Now, the photodetachment cross section |t s a pleasure to thank David H. Bailéiawrence Ber-

of the Mu™ ion in cnt takes the form keley National Laboratory, Berkeley, Califorpiand Anand
K. Bhatia (NASA, Goddard Space Flight Center, Greenbelt,
3 Maryland for valuable help and stimulating discussions and
o(p)=4.247 79% 10718p— cmé. (18  the Natural Sciences and Engineering Research Council of
(p2+ 9?3 Canada for financial support.

022505-6



ATOMIC AND MOLECULAR THREE-BODY IONS WITH . ..

[1] W. Heitler, The Quantum Theory of RadiatioBrd ed.(Oxford
University Press, London, 1954

PHYSICAL REVIEW A69, 022505 (2004

[12] A.M. Frolov, Phys. Rev. B64, 036704(2001).
[13] D.H. Bailey, ACM Trans. Math. Softw21, 379(1995.

[2] D. McKenna and B. Webster, J. Chem. Soc., Faraday Trans. [l14] D.H. Bailey, Comput. Sci. Eng, 24 (2000.

80, 589(1984.

[15] T. Kato, Commun. Pure Appl. Mathi0, 151 (1957.

[3] D. McKenna and B. Webster, J. Chem. Soc., Faraday Trans. [[16] R.T Pack and W. Byers Brown, J. Chem. PM&.556 (1966.

81, 225(1985.
[4] A.M. Frolov and V.H. Smith, Jr., J. Phys. B8, L449 (1995.
[5] E.R. Cohen and B.N. Taylor, Phys. Todag(8), 9 (2000.
[6] M. Born and J.R. Oppenheimer, Ann. Phyiseipzig) 84, 457
(1927.
[7] A.M. Frolov and A.Yu. Yeremin, J. Phys. B2, 1263(1989.
[8] A.M. Frolov, Z. Phys. D: At., Mol. Clusterg, 61 (1986.
[9] A.K. Bhatia and R.J. Drachman, Phys. Re\b& 2787(1987).
[10] P. Petelenz and V.H. Smith, Jr., Phys. Re\B@\ 5125(1987).
[11] A.M. Frolov, Phys. Rev. /8, 4479(1998.

[17] A.K. Bhatia, Phys. Rev. /&8, 2787(1998.

[18] A.M. Frolov, J. Phys. B35, L331 (2002.

[19] H.A. Bethe and R. Peierls, Proc. R. Soc. London, Set48
146 (1935.

[20] H.A. Bethe and C. Longmire, Phys. Rei, 647 (1950.

[21] A.l. Akhiezer and V.B. BerestetskiQuantum Electrodynamics
(Interscience, New York, 1965

[22] T. Ohmura and H. Ohmura, Phys. R&L8 154 (1960.

[23] A.K. Bhatia and R.J. Drachman, Phys. Re\82 3745(1985.

[24] A.M. Frolov, J. Phys. Bto be published

022505-7



