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Atomic and molecular three-body ions with positively charged muons
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The properties of some atomic and molecular three-body ions which contain positively charged muonsm1

are considered. In particular, the ground states in the muonium ion Mu2 ~or m1e2e2) and muon-hydrogen
molecularp1m1e2,d1m1e2,t1m1e2 ions are studied in details. The energies of these systems have been
determined to high accuracy: E(Mu2)520.525 054 806 243 526 329 29 a.u., E(p1m1e2)
520.589 903 785 389 587 726 1 a.u.,E(d1m1e2)520.590 255 352 152 246 417 7 a.u., andE(t1m1e2)
520.590 374 098 892 682 888 0 a.u. The interparticle distances,d functions, two-particle cusps, and some
other bound-state properties are also presented for all considered systems. The photodetachment of the Mu2

ion is briefly discussed.
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The ability of positively charged muonsm1 to form vari-
ous atomic and molecular structures with electrons and
drogen nuclei has been well known since the middle of
1950s~see, e.g.,@1# and references therein!. In this study we
want to consider a number of atomic and molecular thr
body ions which contain positively charged muonsm1. The
muonm1 is considered below as a point particle with char
qm151e and massmm15206.768 262me , wheree is the
proton charge andme is the electron mass. In particular, th
main goal of this study is to determine the energies a
bound-state properties of the muonium ion Mu2 ~or
m1e2e2) and p1m1e2, d1m1e2, and t1m1e2 muon-
molecular ions. Here and below,p1, d1, and t1 are the
nuclei of hydrogen~protium!, deuterium, and tritium, respec
tively. Also, everywhere in this studye2 designates the
electron—i.e.,qe252e.

Note that the molecularp1m1e2, d1m1e2, and
t1m1e2 ions can be considered as the muon-substitu
H2

1 family of molecular ions. These ions have been stud
in a number of earlier works@2–4#. In general, these muon
molecular ions are of great interest for theoretical stud
since they can be considered as semiadiabatic~or soft-
adiabatic! three-body systems. In fact, it has already be
shown in@2–4# that thep1m1e2, d1m1e2, and t1m1e2

molecular ions are less adiabatic systems than the hydro
molecular ions HD1, HT1, and DT1. This directly related
to the fact that the muon massmm5206.768 262me is '9
times smaller than the corresponding proton massmp
51836.152 701me @5#. Therefore, one can also expect th
the isotope effects in the muon-hydrogen molecular ions
significantly larger than it can be found in the hydrogen m
lecular ions HD1, HT1, and DT1.

To study the bound-state spectra and isotope effects in
p1m1e2, d1m1e2, and t1m1e2 molecular ions both the
nonadiabatic and adiabatic methods can be applied. H
ever, in@2,3# it was found that the fully adiabatic~or Born-
Oppenheimer@6#! methods developed for the hydrogen m
lecular `H2

1 ion cannot provide even sufficient accuracy f
the muon-hydrogen molecular ions. The same problem
be found for the muonium ion Mu2 ~or m1e2e2), which
was considered earlier in@7–11#. The adiabatic method
1050-2947/2004/69~2!/022505~7!/$22.50 69 0225
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which can very accurately reproduce the total energy of
`H2 ion are not sufficiently accurate in applications to t
Mu2 ion. The reason is obvious, since the motion of t
‘‘nucleus’’ in the Mu2 ion cannot be neglected even in th
first approximation. Finally, the perturbation methods p
duce significant numerical errors in applications to the M2

ion.
To determine the ground bound states in the Mu2 and

p1m1e2, d1m1e2, and t1m1e2 ions to very high accu-
racy in this study we used the approach developed in@12#.
The approach developed in@12# is a highly accurate, nona
diabatic, variational method which can be applied to vario
three-body systems, including all known adiabatic thre
body ions. Note that the muonium ion Mu2 is the two-
electron three-body system with unit charges and heavy c
tral particlem1. As is well known~see, e.g.,@7#! such ions
have only one bound~ground! 1S(L50) state. In contrast
with this, the energy spectrum of each of the muon-hydrog
molecular ionsp1m1e2, d1m1e2, andt1m1e2 contains a
number of bound states. However, in this study we sh
restrict ourselves to consideration of the groundS(L50)
states only.

Below all considered ions are assumed to be the nonr
tivistic Coulomb three-body systems which contain t
three-point particles with chargesq1 ,q2 ,q3 and masses
m1 ,m2 ,m3. The nonrelativistic approximation means th
upi u!mic, where i 51,2,3. In general, the nonrelativisti
consideration is accurate only if all electron-muon a
electron-nucleus distancesr i j exceed the correspondin
Compton length L5\/mec5aa0'3.861 593 228
310211 cm @5#. Here and belowr i j 5r j i 5ur i2r j u and (i j )
5( j i )5(32), ~31!, and~21!.

In atomic units\51, me51, ande51, the nonrelativis-
tic HamiltonianH for an arbitrary Coulomb three-body sys
tem can be written in the form

H52
1

2m1
¹1

22
1

2m2
¹2

22
1

2m3
¹3

21
q3q2

r 32
1

q3q1

r 31
1

q2q1

r 21
,

~1!

wherem1 ,m2 ,m3 andq1 ,q2 ,q3 are the particle masses an
charges. In the present case, for the Mu2 ion the subscripts 1
and 2 mean electrons, while the subscript 3 designates
©2004 The American Physical Society05-1
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ALEXEI M. FROLOV PHYSICAL REVIEW A 69, 022505 ~2004!
positively charged muonm1. In the muon-hydrogen ions
p1m1e2, d1m1e2, and t1m1e2 the subscript 2 always
stands for the hydrogen nucleusp1,d1,t1, while the sub-
scripts 1 and 3 mean the muonm1 and electrone2, respec-
tively. Our present goal is to determine the solutions of
corresponding Schro¨dinger equation for the bound-sta
spectraHC5EC, whereE,0. In this study we apply the
approach@12# which allows one to obtain such solutions
arbitrarily high, in principle, accuracy.

The approach developed in@12# is based on the use o
exponential variational expansion in perimetric coordina
u1 , u2, andu3 which can be written in the form@12#

C5
1

A2
~11k P̂21!(

i 51

N

Ciexp~2a iu12b iu2

2g iu3!exp~ ı•d iu11ı•eiu21ı• f iu3!, ~2!

whereCi ( i 51, . . . ,N) are the linear~or variational! param-
eters, whilea i , b i , g i , d i , ei , and f i are the nonlinear pa
rameters (i 51, . . . ,N). The choice of these nonlinear pa
rameters is discussed below. The three perimetric coordin
u1 , u2, andu3 are truly independent and always positive
i.e., 0<ui,1` for i 51,2,3. These three perimetric coord
nates are simply related to the three scalar relative~or inter-
particle! coordinatesr i j 5ur i2r j u:

ui5
1

2
~r ik1r i j 2r jk!, r i j 5ui1uj , ~3!

wherer i j 5r j i and iÞ j Þk5(1,2,3) @12#. In Eq. ~2! the op-
erator P̂21 is the permutation of the two identical~1 and 2!
particles~electrons! in the symmetric Mu2 ion. For all non-
symmetric muon-hydrogen ions the factork equals zero,
while for the groundS(L50) state in the Mu2 ion we have
k511. In fact, the variational expansion, Eq.~2!, corre-
sponds to the caseL50, whereL is the total angular mo-
mentum of the considered system. The generalization of
~2! to the case of arbitraryL can be found, e.g, in@12#.

In fact, in actual computations, the highly accurate tr
functionsC can be produced only by using a complete o
timization of the nonlinear parametersa i , b i , g i , d i , ei ,
and f i ( i 51, . . . ,N) in Eq. ~2!. Below, the choice of the
nonlinear parameters in Eq.~2! proceeds as follows@12#. Let
i be the number~or index! of the basis function in Eq.~2!
(1< i<N) andk5mod(i ,3)11, where mod(i ,3) designates
modular division~i.e., an integer remainder after division o
i by 3!. The number 3 corresponds to the three-box vers
which is used in our present calculations. The same ver
was used successfully in variational calculations of vario
three-body systems@12#. In this version the parameter
a i , b i , g i , d i , ei , and f i are chosen quasirandomly from
the six intervals @A1

(k) ,A2
(k)#, @B1

(k) ,B2
(k)#, @G1

(k) ,G2
(k)#,

@D1
(k) ,D2

(k)#, @E1
(k) ,E2

(k)#, and@F1
(k) ,F2

(k)#:

a i5 ^̂ 1
2 i ~ i 11!A2&&~A2

(k)2A1
(k)!1A1

(k) ,

b i ^̂
1
2 i ~ i 11!A3&&~B2

(k)2B1
(k)!1B1

(k) ,
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g i5 ^̂ 1
2 i ~ i 11!A5&&~G2

(k)2G1
(k)!1G1

(k) ,

d i5 ^̂ 1
2 i ~ i 11!A7&&~D2

(k)2D1
(k)!1D1

(k) ,

ei5 ^̂ 1
2 i ~ i 11!A11&&~E2

(k)2E1
(k)!1E1

(k) ,

f i5 ^̂ 1
2 i ~ i 11!A13&&~F2

(k)2F1
(k)!1F1

(k) ,

wherek51,2,3 and the symbol̂̂•••&& designates the frac
tional part of a real number. As easy to understand
boundaries of six mentioned intervals—i.e
A1

(k) ,A2
(k) , . . . ,F1

(k) ,F2
(k)—are the actual nonlinear param

eters of the method. The parameters in the exponents in
~2! ~i.e., a i ,b i ,g i ,d i ,ei , f i , i 51, . . . ,N) are chosen quasi
randomly and not varied in calculations; i.e., they are n
actual ~i.e., varied! nonlinear parameters of the method.
fact, these parameters are usually called the lattice point
the variational expansion, Eq.~2!, rather than the nonlinea
parameters. Note that the total number of actual nonlin
parameters used in this stage of the procedure equal
(23633 for the considered three-box version!.

The second stage of our procedure@12# is essentially a
scaling of the lattice points chosen in the first step. The s
ing itself is performed as follows. The families of the param
etersa i , b i , g i , d i , ei , and f i ~which correspond to the
same k) are multiplied by the positive factorlk
(k51,2,3). Then, this parameterlk is also varied. The tota
number of such additional parameters equals 3 (331). Also,
one additional variational parameter is used to perform
scaling for all lattice points in Eq.~2!. Finally, this method
produces a properly balanced wave function which rep
sents the considered bound state very accurately. Note
the total number of actual nonlinear parameters in this v
sion of the procedure equals 40. These 40 actual nonlin
parameters were optimized in calculations with a relativ
small number (N<1000) of basis functions used in Eq.~2!.
In fact, this procedure has been used for thep1m1e2,
d1m1e2, andt1m1e2 ions. For the Mu2 ion it was found
that the use of complex parameters decreases the overa
ficiency of our method. Therefore, for the Mu2 ion we as-
sumed thatd i5ei5 f i50 for i 51, . . . ,N. In this case an-
other version of the procedure@12# has been used. Thi
version contains only 28 actual nonlinear parameters@12#.

The total ground-state energies of the considered i
~computed in atomic units! are presented in Tables I and I
Table I contains the total energies determined for the mu
hydrogenp1m1e2, d1m1e2, and t1m1e2 ions. Table II
contains the total energies obtained for the Mu2 ion. For the
Mu2 ion the results from two different series of calculatio
~with two different sets of nonlinear parameters! are shown.
The masses of muonm1 and protonp1 are presented above
while for the tritium and deuterium masses we used the v
ues mt55496.921 58me and md53670.483 014me @5#. As
follows from Tables I and II our results for th
Mu2, p1m1e2, d1m1e2, and t1m1e2 ions are signifi-
cantly more accurate than the results obtained for the
tems considered in earlier studies, including our wo
@4,11#. As we mentioned above in computations of the Mu2
5-2
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TABLE I. The total energiesE ~in atomic unitsme51, \51, e51) for the ground states of the muon
hydrogenp1m1e2, d1m1e2, and t1m1e2 ions. N designates the total number of basis functions used
Eq. ~2!. Ep

(a) are the best variational energies known from earlier calculations.

N p1m1e2 d1m1e2 t1m1e2

2000 20.5899037853895875798 20.5902553521522462749 20.5903740988926827463
2600 20.5899037853895877109 20.5902553521522464031 20.5903740988926828736
3000 20.5899037853895877230 20.5902553521522464146 20.5903740988926828850
3500 20.5899037853895877261 20.5902553521522464177 20.5903740988926828880

Ep
(a) @4# 20.589903728 20.590255253 20.59037390

Ep
(a) @3# 20.589904 20.590225 20.590374
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ion all d i , ei , and f i parameters (i 51, . . . ,N) in Eq. ~2!
were chosen to be equal to zero identically. For the mu
hydrogenp1m1e2, d1m1e2, and t1m1e2 ions all 63N
nonlinear parameters in Eq.~2! were used. Note that all ou
present calculations were performed by usingMPFUN, a mul-
tiprecisionFORTRAN-90 computation package developed
Bailey @13,14#.

Table III contains some bound-state properties~in atomic
units! for the Mu2 and p1m1e2, d1m1e2, and t1m1e2

ions. The properties shown include the expectation value
linear distances r i j and its various powers
r i j

21 ,r i j
2 ,r i j

3 ,r i j
4 @( i j )5( j i )5(32),(31),(21)#. Also, the two-

and three-particled functions and two-particle cusps are pr
sented on Table III. The notationd31, d21, andd321 stands
for the two- and three-particle Dirac delta functions, resp
tively. The two-body cusp ratios are determined in a tra
tional manner@15,16#:

n i j 5

K d~r i j !
]

]r i j
L

^d~r i j !&
, ~4!

whered i j 5d(r i j ) is the appropriate Dirac delta function an
( i j )5(32), (31), and~21!. The exact value ofn i j equals

n i j 5qiqj

mimj

mi1mj
, ~5!

whereqi andqj are the charges andmi andmj the masses o
the particles. For the two- and three-particle cusps only
best results are given in Table III. For all other bound-st
02250
-
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properties only stable figures from calculations with t
higherN are presented in this table.

The expectation values of the two interparticle cos
functions are determined traditionally:

t i j 5^cos~r ik ∧r jk!&5 K r ik•r jk

r ikr jk
L , ~6!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk) and

( i , j ,k)5(1,2,3)] as follows:

^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~7!

The value^ f & can be calculated directly or by applyingt i j .
Their coincidence indicates that thet21,t32,t31 and ^ f & ex-
pectation values have been computed correctly. The equ
ties

t211t321t315114^ f & ~8!

hold for an arbitrary three-body system. For the symme
Mu2 ion we havet325t31.

The virial factorh is determined as follows:
is

TABLE II. The total energiesE ~in atomic unitsme51, \51, e51) for the ground state of the Mu2 ion

(m1e2e2) computed for two different sets of nonlinear parameters.N designates the total number of bas
functions used in Eq.~2!. Ep

(a) are the best variational energies known from earlier calculations.

N E E

2000 20.525 054 806 243 526 328 74 20.525 054 806 243 526 328 53
2500 20.525 054 806 243 526 329 04 20.525 054 806 243 526 328 90
3000 20.525 054 806 243 526 329 19 20.525 054 806 243 526 329 09
3500 20.525 054 806 243 526 329 26 20.525 054 806 243 526 329 19
3800 20.525 054 806 243 526 329 29 20.525 054 806 243 526 329 25

Ep
(a) 20.525 054 806 243 451@11#
5-3
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TABLE III. The expectation valueŝXi j & in atomic units (me51, \51, e51) of some properties for the
ground states of the Mu2 ion. The notation 1 and 2 designates the two electrons, while 3 stands fo
muon (m1).

^Xi j & Value ^Xi j & Value

^r 21
21& 0.30919938897549610 ^r 31

21& 0.67965450073127438

^r 21& 4.43928009200701804 ^r 21
2 & 25.5145363622570757

^r 31& 2.7271829824915462 ^r 31
2 & 12.074193983236396

^r 21
3 & 184.0773129096977 ^r 31

3 & 77.63368972657732

^r 21
4 & 1632.23450788031 ^r 31

4 & 663.917823028855

^(r 31r 32)
21& 0.3782270843836621 ^r31•r32& 20.6830741978921419

^(r 31r 21)
21& 0.250177168395846 ^r31•r21& 12.7572681811285379

^(r 32r 31r 21)
21& 0.19728255714621

^2
1
2 ¹1

2& 0.261186844278620267 ^¹1•¹2& 0.0319963556535331443

^2
1
2 ¹3

2& 0.554370044210773683 ^¹1•¹3& 20.554370044210773683

t31 0.649201369272202025 ^d31& 0.1621506815
t21 20.103813878094673723 ^d21& 2.681680531023

^ f & 0.048647215112432582 ^d321& 4.844131023

n31 20.99518694698 n21 5.00000090121
n31

a 20.99518694534779330252 n21
a 0.5

h 5.3114310219 «b ~eV! 20.7472612251974200943

aThe expected cusp valuen i j determined from Eq.~5!.
bThe corresponding conversion factor is assumed to be equal 27.211 3961~eV/a.u.! exactly.
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h5U11
^V&
2^T&

U, ~9!

where^T& and ^V& are the expectation values of the kine
and potential energies, respectively. The deviation of the
tor h from zero indicates, in principle, the quality of th
wave function used. The appropriate binding energies« are
given in eV ~the conversion factor is 1 a.u
527.211 396 1 eV).

The numerical values for the properties of the Mu2 ion
presented in Table III agree quite well with the values kno
from previous highly accurate calculations@11#. For the
p1m1e2, d1m1e2, and t1m1e2 ions the properties pre
sented in Table IV were never determined before. Appro
mately, however, all computed properties for these ions
incide quite well with the bound-state properties obtained
the HD1, HT1, and DT1 and other similar ions computed i
@17,18#. Note also that some expectation values in Tables
and IV can be expressed as linear combinations of o
properties. For instance, for the three relative vect
r32, r31, andr21 we have

r322r311r2150. ~10!

Therefore, the three equalities@( i , j ,k)5(1,2,3)#

r ik•r jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~11!
02250
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hold in any case. For the appropriate expectation values
finds ~see Table III!

^r ik•r jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~12!

Analogously, sincep11p21p350, then we write

pi•pj5
1

2
~pk

22pi
22pj

2! ~13!

and

^pi•pj&5
1

2
~^pk

2&2^pj
2&2^pi

2&!, ~14!

respectively@( i , j ,k)5(1,2,3)#. Moreover, since in atomic
units the momentapi5(2ı)¹ i , one finds

^¹ i•¹ j&52^2 1
2 ¹k

2&1^2 1
2 ¹ i

2&1^2 1
2 ¹ j

2&, ~15!

where (i , j ,k)5(1,2,3). The expectation values form bo
sides of this equality can be found in Table III. In the sym
metric Mu2 ion one easily finds that̂¹1•¹3& is always
5-4
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TABLE IV. The expectation values~in atomic units! of some propertieŝX& for the ground states in the
m1p1e2, m1d1e2, andm1t1e2 ions. Below, the subscript 3 designates the electrone2 and 2 stands for
the tritium nucleus, while 1 means the positively charged muonm1.

^X& m1p1e2 m1d1e2 m1t1e2

^r 32
22& 1.38332194784 1.38406696683 1.38432262287

^r 21
22& 0.235393174082 0.235795882291 0.235932101935

^r 31
21& 1.40714678328 1.40938499014 1.41013666166

^r 32
21& 0.832504177058 0.833363252051 0.833652289885

^r 31
21& 0.825557229434 0.825987226271 0.826133929221

^r 21
21& 0.478253835879 0.478839774488 0.479038021799

^(r 32r 21)
21& 0.403857276839 0.404607338234 0.404860449311

^(r 31r 21)
21& 0.400950460207 0.401516032474 0.401707784198

^(r 31r 32)
21& 0.588047623894 0.588984310799 0.589301003123

^(r 32r 31r 21)
21& 0.292109652184 0.292650204842 0.292832860753

^r 32& 1.73294284709 1.73035612531 1.72948502899
^r 31& 1.74533389087 1.74347585046 1.74284532381
^r 21& 2.14964905895 2.14554247881 2.14415469516

^r 32
2 & 3.76133939760 3.74882857311 3.74461804494

^r 31
2 & 3.81085696015 3.80116394256 3.79788068759

^r 21
2 & 4.74623777621 4.72508380133 4.71794443387

^r 32
3 & 9.55863681256 9.50723369267 9.48995122332

^r 31
3 & 9.73421804773 9.69244532255 9.67832039520

^r 21
3 & 10.7539564303 10.6722728207 10.6447534610

^r 32
4 & 27.4754408819 27.2680167923 27.1983640343

^r 31
4 & 28.1087048740 27.9346664434 27.8759163656

^r 21
4 & 24.9848269401 24.7028465179 24.6080527942

^t31& 0.516872352652 0.516938604988 0.516959506009
^t32& 0.509692554936 0.509316132642 0.509190209532
^t21& 0.242221311233 0.242677080065 0.242831397092
^ f & 0.0671965547342 0.0672329545237 0.0672452782596

^r32•r21& 2.34836010683 2.33637421594 2.33234089561
^r31•r21& 2.39787766938 2.38870958539 2.38560353826
^r31•r32& 1.41297929077 1.41245435717 1.41227714933

^2
1
2 ¹1

2& 1.27714953992 1.30663336903 1.31696266243

^2
1
2 ¹2

2& 1.26666136753 1.29535220954 1.30541199577

^2
1
2 ¹3

2& 0.583082232791 0.583634614301 0.583821110754

^“2•“1& 1.96072867465 2.01835096427 2.03855354744
^“3•“1& 0.59357040518 0.59491577379 0.595371777406
^“3•“2& 0.57259406040 0.57235345481 0.572270444102

^d(r32)& 0.2045743 0.2049599 0.2050891
^d(r31)& 0.1997232 0.1998020 0.1998292
^d(r21)& 0.11927310210 0.12713310210 0.12971310210

^d(r321)& 0.8664310210 1.0106310210 1.0469310210

n32 20.99947434 20.99974636 20.99983689
n32

a 20.9994556794329 20.9997276304980 20.9998181130841
n31 20.99519759 20.99519757 20.99519759

n31
a 20.9951869453478 20.9951869453478 20.9951869453478

n21 65.886 67.724 68.448
n21

a 185.8408179408 195.7416064837 199.2725679222

aThe expected cusp valuen i j determined from Eq.~5!.
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positive, sincê ¹1•¹3&5^2 1
2 ¹3

2&5T3.0. In this study we
assume that the¹ i•¹ j operator acts on its right. A differen
expression can be found for the scalar product of two gra
ents, sincê ¹ ic•¹ jc&52^c¹ i•¹ jc&.

In conclusion, we want to discuss briefly the photodeta
ment of the Mu2 ion. This problem is closely related to th
asymptotic form of the three-body wave function obtain
above for the Mu2 ion. In general, the photodetachment
the Mu2 ion can be represented in the form Mu21\v
5Mu1e2, where \v designates the incident photon an
Mu is the muonium two-body system (m1e2). A detail
study of the photodetachment of the Mu2 and other similar
ions will be published elsewhere. Here we restrict oursel
to the approximate description which is based on Beth
method@19,20#. Bethe’s method was originally developed
describe the photodetachment of the weakly bound de
rium nucleus@19,21#. Later, it was found that the same a
proach can be used to describe the photodetachment o
arbitrary weakly bound system, including Coulomb thre
body ions such as`H2 and Ps2 ions @22,23#.

In application to the Mu2 ion, Bethe’s method allows on
to obtain the following formula for the photodetachme
cross sections(p) ~for more details, see@24#!:

s~p!5
64p2aa0

2

3~11mm
21!5

C2p3

~p21g2!3

5
4.302 552310217

~11mm
21!5

C2p3

~p21g2!3
cm2, ~16!

wherep5upu is the momentum of the outgoing electron~i.e.,
photoelectron!, a57.297 353 0831023 is the dimensionless
fine-structure constant, anda055.291 772 4931029 cm is
the Bohr radius. Also, in this formulamm5206.768 262me is
the muon mass andC is a constant which is determined fro
the asymptotic form of the three-body wave function

c~r !5
C

r b
exp~2gr !5C~r ,0,r !, ~17!

where C is a numerical constant,C(r 32,r 31,r 21) is the
highly accurate three-body wave function, Eq.~2!, b is some
positive constant, andg is another positive constant, which
uniformly related to the ionization potentialI @ I 5(g2/2)(1
1mm

21)#. By using our highly accurate wave functions w
have found that for the Mu2 ion b51. In fact, the expres-
sion for the photodetachment cross section presented ab
Eq. ~16!, has been produced by assuming thatb51 in Eq.
~17! for the Mu2 ion. Also, from our highly accurate wav
functions constructed for the Mu2 ion we have found tha
C50.318 022@24#. Now, the photodetachment cross secti
of the Mu2 ion in cm2 takes the form

s~p!54.247 798310218
p3

~p21g2!3
cm2. ~18!
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Since for the Mu2 ion g50.233 791 2, one finds from
the last expression that the maximal photodetachm
cross sections(p5g)54.155 03310217 cm2. The maximal
photodetachment cross section for the`H2 ion is
'4.104 03310217 cm2. This value was obtained by
using our extremely accurate variational wave functi
recently produced for the `H2 ion @E( `H2)
520.527 751 016 544 377 196 586 5 a.u.#.

Thus, in this study the problem of the ground bound sta
in the Mu2 (m1e2e2) and p1m1e2, d1m1e2, and
t1m1e2 ions has been considered. The ground-state e
gies and other bound-state properties of these systems
been determined to high accuracy. In fact, the numerical
curacy achieved in the present study is sufficient for
present and future experimental needs. The obtained va
tional energies for all considered systems@E(Mu2)
520.525 054 806 243 526 329 29 a.u., E(p1m1e2)
520.589 903 785 389 587 726 1 a.u., E(d1m1e2)
520.590 255 352 152 246 417 7 a.u., andE(t1m1e2)
520.590 374 098 892 682 888 0 a.u.] are significantly mo
accurate than the total energies known for these syst
from earlier calculations. The lowest order relativist
(;a2) and QED (;a3) corrections to the total energies o
the considered ground states are expected to be s
('131025 and '531027 a.u., respectively!. In fact, an
accurate evaluation of these correction for all considered i
is the goal of our next study.

The electron-‘‘nuclear’’ cusps in all considered system
have been determined very accurately. The electron-elec
cusp in the Mu2 ion has also been determined qui
accurately. However, the muon-nuclear cusps compu
in the p1m1e2, d1m1e2, and t1m1e2 ions are not even
approximately correct. This problem is well known~see,
e.g.,@18# and references therein! for the adiabatic three-body
systems X1Y1e2, where min(mX ,mY)@me51. In fact,
in such systems the two heavy nucleiX1 and Y1 move
in the field of some effective~or averaged! potentialV(r XY).
Here r XY5urX2rYu is the corresponding internuclea
distance. For the adiabatic systems the potentialV(r XY)
differs significantly from the original Coulomb potentia
qXqY /r XY . Therefore, the cusp computed for theV(r XY)
potential can also be different from the known Coulom
cusp, Eq. ~5!. Note, however, that for the considere
soft-adiabatic systemsp1m1e2, d1m1e2, and t1m1e2

the agreement between predicted and computed mu
nuclear cusps is significantly better than such an agreem
observed for actual adiabatic ionsp1d1e2, p1t1e2, and
d1t1e2 considered in@18#. In general, the cusp problem fo
the Coulomb adiabatic systems warrants further theoret
and numerical studies.

It is a pleasure to thank David H. Bailey~Lawrence Ber-
keley National Laboratory, Berkeley, California! and Anand
K. Bhatia ~NASA, Goddard Space Flight Center, Greenbe
Maryland! for valuable help and stimulating discussions a
the Natural Sciences and Engineering Research Counc
Canada for financial support.
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