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Compact representation of helium wave functions in perimetric and hyperspherical coordinates
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Variational calculations of the ground-state energy of helium are performed using a basis set representation
that includes an explicit treatment of the Fock expansion in hyperspherical coordinates. The construction of
basis functions that have the correct cusp behavior at three-particle coalescence points and the evaluation of
integrals containing these functions is discussed. The basis set in hyperspherical coordinates is added to a basis
set consisting of products of Laguerre polynomials in perimetric coordinates. It is demonstrated that the use of
Fock basis functions provides a substantial improvement in the convergence rate of the basis set expansion.
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[. INTRODUCTION wherey;; is the reduced mass of particleandj, g; andg;
are the charges of the two patrticles, and the caret over the
A two-electron atomic system is an excellent testingwave function denotes a spherical average. A lesser but still
ground for new quantum theories since it is the simpleswvery important consideration is the cusp behavior at three-
system with enough complexity to contain the main featuregparticle coalescences. This behavior is believed to be prop-
of a many-body theory. This complexity arises from theerly described by the Fock expansiB+13|
electron-electron Coulomb energy which depends on the in- . k2]
terelectronic distance;,=|r,—r,|. Furthermore, the scaled _ k I
Hamiltonian for infinitclaZnLLc%eari'"nass and chaifegiven in \If(r,a,e)—kzo ;o Yl O)riin Ty, @

atomic units by
where use of the hyperspherical coordinatgs, and 6 [de-

1 1 1 1 fined in Egs.(18)—(20) below] reveals the presence of a
H=-— —(Vf+ V%) ——— — =, (1) logarithmic singularity as the hyperradius tends to zero. This
2 fi T2 2l region is only a tiny part of the full configuration space and
is often neglected when constructing trial wave functions. In
does not depend on any experimental constants whose valuggch cases, the convergence rate can be very slow, particu-
change with improvements in measurement techniquesarly if the basis functions that must approximate the neigh-
Therefore, it provides a standard for theoretical Ca"bratiOnborhood of the Singu|arity are inflexible. A primary objective
After the wave function belonging to this Hamiltonian has of this work is to handle the logarithmic singularity directly
been obtained, it is possible to compute perturbative correcso that the remainder of the basis set is free to concentrate on
tions to the nonrelativistic energy. It has been establitiéd regions of configuration space that are further away from the
that relativistic and QED corrections to the energy levels ofycleus. If successful, this strategy should provide an im-
an atomic or molecular system require highly accurate nonproved convergence rate for the basis set expansion, or
relativistic wave functions. Rayleigh-Ritz variational calcu- equi\/a|en'[|y7 a more compact representaﬂon of the helium
lations provide a wave function with relative error approxi- wave function.
mately proportional to the square root of the relative error in - Many different basis sets have been applied to the helium
the energy. Therefore, if nonrelativistic variational wave Hamiltonian(1) with varying degrees of success. It is not the
functions are to be used for perturbative applications, and ifntent of this work to provide a complete account of the
the energies are used to estimate the quality of the wavgany contributions that have been reported in the literature
functions, then it is necessary to calculate the nonrelativistigor this problem. However, we would like to benchmark the
energies to far greater accuracy than would otherwise bgresent method, so it is useful to provide a brief review of
needed. some of the current standards. One very successful method is
The success of variational calculations depends upon thg use a Hylleraas-type basis sgit4] which effectively
rate of convergence of the basis set expansion used to CoRandles the electron correlation through usegfas a coor-
struct the trial wave function. The convergence rate is conginate. A related method introduced by Drakis, 16 uses
trolled by the analytic structure of the exact wave function“qoubled” basis sets in which two different exponential
[2—7]. For problems in atomic or molecular physics, thescale factors are used for each combination}ofr¥,. This
main consideration when constructing trial wave functions ispethod, originally designed for states of high angular mo-
the cusp behavior at two particle coalescences. This behavighentum[15], has been successfully applied $states by
is described by the Kato conditid@] Drake[16] and also by Kleindienst, lahow, and Merckens
[17]. These basis sets build in the two-particle cusps due to
o the linear terms imq, r,, andrq,, but generally have diffi-
ar = wij0id; W (ri;=0), (2)  culty handling the three-particle cusp characterized by the
=0 logarithmic terms of the Fock expansion. Nevertheless, these
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basis sets tend to be very flexible, particularly the doubled25] have used better than ten thousand such functions in
basis sets, so that the three-particle cusp may be adequat@lyder to obtain a benchmark nonrelativistic ground-state en-
approximated if enough functions are used. Another methodgrgy.

introduced by Frankowski and Pekefis,19, uses the basis Large numbers of basis functions are now routinely being

functions used together with advances in computing power to produce
remarkable new benchmarks for the ground-state energy of

4 coskct) helium[26-30. Schwartz has likened this effort to the com-
bn1.mj(S,t,u)=s"'u™(In s)lexp( —s/2) X sinhct) petition between mathematicians to compute ever more dig-

(4) its of the numberm [30]. Some of the recent calculations,
most notably those of Koroboj27], have achieved their
success using simple expansions that seem to ignore the ana-
Iytic structure of the wave function. Like the Laguerre basis
in perimetric coordinate§25], the latest benchmark6—

30] require several thousands of basis functions. In the
present work, we desire to utilize the insights provided by
our current understanding of the analytic properties of the
wave function, and find a basis which will cut down on the

in the Hylleraas coordinates
S=I’1+I’2, t:rz_rl, u=rqo,

subject to the constraints

=
L m=0, number of functions needed to get good convergence. In do-
and ing so, we remove the flexibility provided by other methods
and confirm the importance of the logarithmic singularity.
(n+14m)=2j=0 =0 The present approach uses the Laguerre basis in perimet-

ric coordinates as a primary basis in order to build in the
(n+1+m)=2j+2=0 if n<0. correct two-particle cusps. A small number of functions
which exactly incorporate the first few terms of the Fock

This basis set provides the correct cusp structure at all twoexpansion are then added to the primary Laguerre basis. The
particle coalescences due to linear termg jnr,, andr,, computational linear dependence problem that plagues some
and the correct singularity structure at the three-particle cogM€thods is not an issue here since the Laguerre functions are
lescence since the logarithmic terms of the Fock expansioflose to orthogonal and the number of Fock functions is

are expandable in powers aIn(s), and ¢/s). For the smaII_. Furthermore, we expect that the number of Laguerre
ground state, the nonlinear variational parametés zero, functions will be considerably reduced as a consequence of
and it is required thak be even in order to ensure that the dealing with the three-particle cusp directly. In the following

ticlesr, <5, or equivalentlyt< —t. For excited stateg is  derived and also how the matrix element integrals containing

used to build in the correlation that occurs when one electrof® Fock functions can be evaluated to 30 digits via Gaussian
is close to the nucleus with the other electron far away. Théluadrature in three dimensions. We use the new basis set to
choice of coshf) or sinhgt) is made to give the basis func- Variationally solve the Schdinger equation for the Hamil-

tion the proper symmetry under exchange of particles. Henctonian(1). The optimized nonlinear parameters are given for
for singlet states costi) is used when the indekis even th_e new basis sets, and the vgrratrongl energies are compa.red
and sinh¢t) is used with odd values df For triplet states the With well-known values obtained using the standard basis
situation is reversed. The Frankowski-Pekeris method de3€ts described above.

scribed above has been used by Baker, Freund, Hill, and

Morgan [20] to calculate very accurate wave functions for Il. COORDINATES AND NOTATION

the low-lying S-states of helium using only several hundred

bas_is functi_ons. The basis set was very S”CCESSM in appl'Hates. The most common set of six coordinates consists of
cation to high-energy double photoionizatip?l] where a the electronic spherical polar coordinates 6;, ¢, and

proper.descrrptron of electron co_rr_elatron near_the nucleus IS . 6,, ¢,. The kinetic-energy operator in these coordinates
essential. It can, however, be difficult to use in some case given by

because of possible computational linear dependence prob—
lems as the size of the basis set increases. 1 1

Another successful methd@2-25 is to use a Laguerre — —(V§+ Vg)z — 2
basis in perimetric coordinates. This basis set is analytically 2 21=1
equivalent to Hylleraas-type basis sets. Therefore, it builds in

The Hamiltonian(1) contains six independent coordi-

~+ +—), (5)

#? 2 a9 A,
o'?l’ﬁ M drn I’ﬁ

the two-particle cusps but fails to effectively model the Where

three-particle cusp characterized by the logarithmic terms of 2

the Fock expansion. The method, however, is very efficient _ 1 i(sina i) + 1 a_ (6)
since the matrix element integrals can be evaluated analyti- " sing, 36, "90n]  sint6, dp?

cally. Also, since Laguerre polynomials are numerically
stable and since the relevant matrices are sparse, many furig- order to take account of the effects of electron-electron
tions can be included in the basis set. In factrdguset al.  correlation, it is convenient to use coordinate systems that
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explicitly contain the interelectronic distancg,. The most  The conventional hyperspherical coordinates, and are
common setisq, r,, r», «, B, andy, wherea, B, andy  obtained fromr, r,, andr, via the definitions

are the three Euler angles which specify the rotation from the

space-fixed axes to the body-fixed axes. Bostates, the r=yri+rs (18
Euler angles are ignorable and the kinetic-energy operator is
' r
given by a=2tan? r—z) (19)
1
1(V2+V2)_1za+2(9+4 a+az s
201 T2 2\rydry rpdry rpdrn g2 9= cos 1 r1+r2—r12> 20
2rqro
2P rimratrn & o . . .
t—=+2— The kinetic-energy operator in hyperspherical coordinates is
a5 Iy, rifiz  drydryp given by
rp-ritrd, 8 @ 1 ., ., 1[# 54\ 2
Fafip  drpdry; _§(V1+V2):_§ PﬂLFE —r—Z/J, (21)
with the volume element where
d T:8’7T2(r1r2r12)dr1dr2dr12. (8) (92 9 (92 J
L=—+2 co'(a)(?—+csc2(a) —2+cot(0)% :
The coordinates,, r,, andr,, are easily transformed to the da @ a6

perimetric coordinatef22]

(22)

Another set of hyperspherical angles that turned out to be

=—ri+r,+ . o
Q= 7hml2mh, © very useful in the present context was first introduced by
Pluvinage[31]. These angles are defined b
Qx=r1—Trp+tryy, (10 gef31] g y
Lo (—ra+ra)+rifri+ry)
Q12=r1+r2— T, (11) E=tan ! | 2 ZJ ¥ 12 radlatre , (23
Iritrol(rotry)+rp(ri—rs)
with each coordinate having domdifie] as a consequence L
of the triangle condition forr,, r,, andr,. The kinetic an! [ri+rof(ri—ro)+rfri+ry) 24
energy in perimetric coordinates is 7=tan o= :
ginp [ritrol(rytry)+rp(—ry+ry)

T (100 (@i Qg
2 1 2 121 1 2 (9(]12

The angular kinetic-energy operator in Pluvinage coordinates

1z is
N P J N J J J Jd 1 9 J 9 9
PR - — _ o — | q — |+ —si JE—
Jdy 1d0, A4y 2d0;  dqgp g, L=wigm o€ Sin(2¢) €| dny S|n(277)(977 '
J 0 J J 0 J (25
Iy 1M1, A1p <20y where
i a W(€,7)=[sin(2¢)+sin(27)]. (26)
- a—Qz&—], (12
di e Using the Jacobian
where Ary,ry,r) zﬁcos(§+n 27
P1=2Q;+ Q121 20102012, (13 ar.é&m 2 2 )
Py=2Q,+ Q1o+ 20105012, (14)  together with Eqgs(8) and(26), gives the volume element
and dr=72r>w(&, n)drdéd 7. (28
Q1=0%0,+q1203, (15) IIl. FOCK EXPANSION
5 2 In order to construct basis functions that incorporate the
Q2=0q101+ 01207, (16) Fock expansion, it is necessary to know the angular coeffi-
, 5 cients ¢, in Eq. (3). The standard method for obtaining
Q12=0102+0103. (17 these coefficients is to put the Fock expansion into the
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Schralinger equation to get the recursion relation where C is the coefficient of the homogeneous solution at
second order. The functioR,4(¢) and its derivative are

defined by[33]

1
[_5_ Zk(k+4) | )= (€ +1)(k+2)|thy p+1)+ (£+1)

i _ _ _ -
X2 )t 5 N rr_2 Fag($)= 5 {Lio[1+exp(2i §)] - Li[ 1+exp(im+2i¢)]}

i w2
L 1 +rin[1+expid)]— —, »
T 7y >|l//k—1,f>+§E|¢/k—2,e>- mIn[1+expi¢)] 8 (34)

12
(29 dFoq(¢p) —2¢+m[l—cog¢)]

dé in2 , (35

The inhomogeneous problef®9) was solved numerically by ¢ sin(2¢)

Feagin, Macek, and Stara¢&2]. It has also been solved
independently by Hill[33] using hyperangles expressed in
Pluvinage coordinate$23) and (24). The operatorl in
Pluvinage coordinate®5) is self-adjoint for¢ and 7 in the
interval[ 0,77/2] with the volume elemen(28). The eigenval-
ues of £ are given by—n(n+2) with n a non-negative
integer, and the eigenvectors are given[88,34]

where Lj, is the dilogarithm functio{35]. The first-order
poles in Eq.(35) indicate that the functiofr,4(¢) has loga-
rithmic branch-point singularities ab=n/2 for n#0 and
n=+1. Although these singularities are outside the physical
range G< ¢<x/2, they will nevertheless have an important
impact on the convergence rate of the basis set expansion
used to obtain the higher-order terms of the Fock expansion

(2m+1)(n+1)(n—m)! and ultimately on the effectiveness of the numerical methods
dnm(éEm)=2"m! N m+1)! [cog 7 used to compute the matrix element integrals. To obtain the
& ' higher-order terms of the Fock expansion, the inhomoge-
cog 7+ &) . neous problem29) was solved numerically33] using the
—91"Pn, cosn—8) Chalsin(n— &)1, Schwinger-Levine variational principle
30 P a6
whereP,,, andC|' are the Legendre and Gegenbauer polyno- [x) <;(|A|}> '

mials, respectively. The operator on the left-hand side of Eq.

(29) is singular ifk=2n. Therefore, the right-hand side of The maximum is achieved when

Eqg. (29) must be orthogonal to all of the eigenvectors be-

longing to thisn if solutions are to exist. If solutions do exist, ~ C

they will contain linear combinations of homogeneous solu- Ix)= K|‘1’>, (37
tions for each value of. Apart from the¢{=0 case, the

constants in these linear combinations can be uniquely dete\Wherec is an arbitrary constant. In the present cade
mined if the right-hand side of Eq29) is made orthogonal _ — £ k(k+4) and¥ is equal fo the right-hand side 61‘

to the eigenvectors fof — 1. The first few terms of the Fock Eq.(29). For each combination afand? . a trial function of
expansion have been worked out analytic§8yl12,33. The d. (29). ,

; . . ) the form
result in Pluvinage coordinates =1 and
N N
V2 (nté n—§& TE )=
¢10:§S'”(T _ ﬁc‘”{T)' 3 X(Em)= 3 2 CnTn00To(y) (39
1 1 2 was used33], whereT,, are Chebyshev polynomials of the
z//20=6< 2—E+ E) - i(sin &E+sing) +sin( g+ §€) first kind with x andy related to the Pluvinage angles by
m§-m|, 1 1y, 1 £= T (x+1), (39
X( 3.7 +§COE{77—§) 1+§ +3ﬂ_zsm(77 4
1 T
~&[F24(§) ~Faa(n)]+codn+£)| C—55In2 n=7(y+1). (40)
E n . . . . .
— —Inlcog = — —|cog = — —| |}, (320  Rapid convergence of the trial functidB8) is necessary in
3z 2 4 2 4 order to devise an efficient quadrature scheme for matrix

element evaluatiorisee Sec. Y. The convergence rate for
33) Chebyshev expansions may be analyie8l,37] by consid-
ering the expansion of an arbitrary analytic function

1/(2
¢21=§ ;_1 cog n+§&),
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add the terms of the Fock expansion directly to our basis set
since they do not falloff properly at large distances. We can

get around the problem by building in the exponential decay

at large distances and then removing the exponential effects
at small distances. The resulting function is

the ellipse

9 K [ki2]
! S(r€m=2 2 gkwlFEm (& mriine’,
(46)
where
FIG. 1. The integration contou€ and the ellipse of analyticity k 1
. .. _ _ m —
for evaluatmg_ the coeﬁlf:lents c_)f_a Chebyshev exp_anBB(?ﬂlof the' gk(r,&m)= E: e [rf(&n)]Mexd —rf(&,n)]. (47)
Fock expansion. The singularities that limit the size of the ellipse m=0
occur at*=3 and yield coefficientg, that decrease lik& " with
R=3+242. The contribution from the functiofi(¢, ), which is needed
to provide the proper falloff at large distance, is removed at
* small r so that¢y reproduces the Fock expansion through
f(x)= 2, c,Ta(X)(1—x3) 14 (41)  order K. We note that the unknown enerd@y and the un-
n=0 known coefficientsc,, of the homogeneous solutions are
contained within the single functiog, . We could in prin-
where ) ) e
ciple treat these unknown parameters as nonlinear variational
2 1 parameters and attempt to optimize them. A better approach
CF;I f(X)Tr(X)(1—x2) " Ydx (42) s to use the expansion
-1

for n>0. The coefficientg, can be evaluated by using con-
tour integration in the complex plane. The result i§34]

M N
¢k,|<§.n>=ngo nzo CrE " Wi mnl(€,7), (48)

C=— nf f(z)(1_22)1/4(z_1)2—ﬂ—1 in order to break uppy into separate basis functions, and
I then use the diagonalization to determine the values of the
unknown parameters. This procedure uniquely defines the
n+1n+ E;2n+ 1;i dz. (43  Fock functions which we denote ). For example, foiK
2 1-z =7, which is the largest value &f considered in this work,
we obtain the basis functions

XFq

The contour is shown in Fig. 1. The largebehavior ofc, is

dominated byR™", whereR is the largest value such that (N_ " + 24 2
(1—272) Y4 (2) is analytic within the ellipsé36,37] $06,0= Co( 970000 61000 + Is¥200d “+ Istb210d INT
+Qathaood >+ dathaiod *INT +gathaged *

+ 0314100 INT + G3thazod N1 +Gothspod
+Qots10d °INT + Gathsa0d °INT + g1 thgood °

+ 011100 °IN T + 91 ¢he20d °INT + g1 iheaed CIN3r

Regz)=%(R+R Y)cog ), (44)
Im(z)=%(R—R Y)sin(6), (45)

with 0< §<27. ForR>1, the serie$41) converges td (z)
for all z inside the ellipsgsee Fig. 1 in analogy with the

circular region of convergence of Taylor-series expansions. +9ot700d "+ GoWriod INT + Gothrod (N
As shown above, the nearest singularities of the Fock expan- 713
sion appear to occur in thé,, term at— /2 and . The +0o7s0d ‘INT), (49

inverse transformations of Eg&9) and(40) map these sin-
gularities to+ 3. Therefore, the coefficients, decrease like  ¢3=C1(Usia01d 2+ Yathaord >+ Usthaord * + Gathanad “Inv
R™" with R=|z+\z?—1|=3+22~5.828. This estimate

5 5 6
is confirmed by the observed convergence behavior and is +092¢501d T 92511 7 IN T+ 91 is0rd
useful when analyzing matrix element evaluation in Sec. V. +91¢61166|nr+91¢621d'6|n2r+go¢7old'7

IV. BASIS SET +Qoth711d INT +doth721d 'IN%r), (50)

From the considerations of the preceding section, we haved,(z?): Col Ustaoad *+ G2 ts0ad 5+ 01 e0ad ©+ G te1od EIN T
at our disposal all the terms of the Fock expansion through 0
any desired order. We note, however, that we cannot simply + Qo¥702d "+ Gothriag INT), (51
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¢(3?3: C3(93¥a0ad *+ 925030 >+ 01 ¥s03d °+ G te1ad °In T

+ Qo703 '+ Gothraad 'Int),
¢E173: Ca(91604d °+ oth0ad 1),
¢§73= Cs(91¥0sd °+ Gotbrosd ).

7
¢((),1): CoE(Us 2001 2+ Gatraoot >+ 93thacor

4 5 5
+ 93tha100 "INT +Gothsgod 7+ Gotbsi007INT
6 6 6),2
+ 91%600d " T 916101 INT + 16004 " INT

7 7 712
+ Jot700d '+ o710t INT+ Gothro0a INT),

7
¢(1,£: C1E(93ta011 *+ 9othsond °+ 91 Peor1r ®

6 7 7
+ 916110 INT +Gothroat "+ Jothraar INT),

d’(zq = C2E(91 Y6021 °+ Gotro21 ),

¢(39: C3E(91 Y6031 °+ Gothrost 1),

¢(()?2): CoE2(Q3ta00d *+ 9atharod “INT + Yathspod

+ 0215108 °INT + 91 the00d °*+ 91107 CINT

+dothr00d "+ Goth7104 INT),

(172):ClEz(Qlllﬂesold'e+ O1t6112 °IN T+ Qothr01d

+0ot7114 InT),

¢§)73):C0E3(91¢6003r6+ U1t10d °IN T+ Gothr00d

+Jot710d InT).

(52
(53

(59

(59

(56)

(57)

(58)

(59

(60)

(61)

PHYSICAL REVIEW 49, 022504 (2004
In this procedure, the enerdy may be input as an approxi-
mation or treated as a nonlinear variational parameter. The

only remaining nonlinear variational parameters are con-
tained inf (¢, ) which we choose to obey the condition

exp(—byr;—boro—bor)=exd —rf(& )], (68

so that
1
f(&n)= ECOE{ g) cos( g)
n
+ (2b12+ bl_ bz)tar( E

+ bz)tar(g
e 7

(by+by)+(2by,— by

} . (69

We now add the Fock functions in hyperspherical coordi-
nates to the primary basis set consisting of products of La-
guerre polynomials in perimetric coordinates in order to ob-
tain the compact representation of the full wave function.
Using a mixed coordinate notation, we have

V= Ign Cl,m,nUI,m,n(qliqZ’Q12)+ % Cm,n(lsgrlf%(rvfi 7),
(70

where

Uj mn(d1,092,012) =U(21;01)Un(82;02)Un(212;012),
(72)

with the unnormalized Laguerre basis functions defined by
u(a;x)=exp(—ax/2)L,(ax). (72

The Laguerre length scales, a,, anda;, combine with the
Fock length scale®,, b,, and b, to total six nonlinear

The functional dependencies have been ignored in Eqsariational parameters. However, the dimensionality is re-
(49—(61) in order to save space. Thig | n, are determined duced from six to four by recognizing tha must be the
by the solution to Eq(29). There are 13 basis functions for same as, , andb; must be the same ds since the elec-
K=6 andK=7. Similar analysis yields 7 basis functions for trons are indistinguishable. Further simplifications, such as
K=4 and K=5, and 3 basis functions foK=2 and K
=3. The basis set may be compacted further by combiningre helpful when fine tuning the optimizations.

¢>§Tﬂ with the same value ofn. For K=7, this procedure

yields the basis set

B4 = ph0+ ESbI T EXGh3+ B3,

~(T)_ (7
P4 = 043,
~(7 7
¢ =54

(62
(63
(64)
(65
(66)

(67)

assuming a hydrogenic exponential falloff for each electron,

V. MATRIX ELEMENT EVALUATION

The matrix elements containing only Laguerre functions
in perimetric coordinates have been reported previously
[23,24. The matrix elements containing the Fock functions
can be evaluated using Gaussian quadrdi38gin the three
coordinates, &, andzn. We use Gauss-Legendre quadrature
for the Pluvinage angular integrations

N

fl f(z)dz:kE1 wi f(z) +En(f), (73
1 =

where the nodeg, are theN zeros of the Legendre polyno-
mial Py and the weightsv, are given by

022504-6
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2[1-(20?] d a9 9z 9
= , 74 —=—t— (80)
(N+1)2[ Py 4(20) 12 7 der

Wi da  da dz,'

with the errorEy, dependent on the singularitiesfofWe use ~ When operating on any of the weight functions. The deriva-
Gauss-Laguerre quadrature for the hyperspherical radial irflVeS 0fc with respect tax can be obtained by differentiat-

tegrations ing the node condition
. N L (29 =0 (81)
f z%exp( —2)f(2)dz= >, w,f(z)+EN(f), (79
0 k=1 to get
where the nodeg, are theN zeros of the Laguerre polyno- (@)
mial L{® and the weightsv, are given by 9z _ _|9n (D)l 9a 82)
da wL\(2)lz],
I'(N+a+1)z,
W= (a) (76)

By construction, the Fock basis functions are truncated at
order K. In the present workK=7 was the highest value
with the errorEy again dependent on the singularitief.at ~ considered. Since the highest power of the logarithm of the
was shown in Sec. Il that the terms of the Chebyshev exhyperspherical radius is equal #/2 for evenK, and K
pansion decrease like ¢32/2) " wheren is the order of —1)/2 for oddK, the Fock functions will contain up to three
the Chebyshev polynomial. Therefore, a twenty term Chebypowers of the logarithm, and the corresponding integrals will
shev expansion will provide double precisior {0 1) and  contain up to six powers of the logarithm. Because the modi-
a forty term Chebyshev expansion will provide quadruplefied Gauss-Laguerre quadratui) requiresm+ 1 modified
precision (~1039. Since the Gaussian quadrature rule ex-weights, the total number of modified weights #r=7 will
actly integrates a polynomial of orderN2-1, we can be 27. Avery convenient way to compute these weights was
achieve double precision for the angular integrals uding to symbolically differentiate the standard weighi#®) with
=10 and quadruple precision usitg=20. These estimates respect tox andz and define each derivative as a new func-
for N should be doubled when computing inner products oftion. The new derivative functions were then differentiated
basis functions. The singularities introduced into the angulawith respect too andz to define further new functions. We
integrations by the exponential facti, ) in Eq.(69 may  proceed in this way until new functions of all the required
be moved in the complex plarisee Fig. 1 beyond the near- combinations of the six derivatives with respectdacand z
est singularities of the Fock expansion by choosing approprihave been defined. Once all the differentiation has been com-
ate values for the variational parametbis b,, andb,. pleted, the nodes, and the value ok is substituted into the

The Gauss-Laguerre quadratures for the integrands whighewly defined functions making them numerical arrays.
contain logarithms need to be modified in order to achieve In order to use the quadrature rules outlined above, the
the desired accuracy. The modification is obtained by differmatrix element integrands need to be separated into pieces
entiating the standard Gauss-Laguerre quadrature rule withich contain no logarithms, pieces which contain one

respect toa on both sides of the equal sign. The modified power of the logarithm, pieces which contain two powers of
Gauss-Laguerre rule is the logarithm, and so on. For the Gram matrix elements this
separation procedure is no problem, but for the Hamiltonian

NN+ D)L (2012

o . matrix elements the separation becomes more difficult due to
fo [In(2)]"z%exp(—2)f(2)dz the various derivatives involved. The difficulties with differ-
entiating and separating the Fock function integrands may be
m [N " m reduced if a symbolic manipulation program is used. The
=> | > Wi —f(z)+ —En(H) ], (77)  Hamiltonian derivative operations and logarithmic separation
n=0| k=1 9z da procedures were performed by considering the function

where U(r. & m) =exd —rf (£, TURr &) +URNr &)
gz, d +U@(r e, +UR(r,&m)], 83
Wﬁ'{)nzwﬁf)—l,n—1£+ﬁwﬁﬁ)—1,m (78) K (r,é,m) K (rém)] (83
where
with
K
wy for m=n=0, UNr&m=2 fird &’ (84)
wil) = (79 =
mh 10 for n<0 or m<n.
K
Since the welght.fun_ctlons all depend arandz,, we must U&l)(r,g, )= Z fra(€, mrkinr, (85)
use the total derivative operator k=2
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K be differentiated with respect toa total of six times due to
Uff)(r,g,n E f (&, mr )yr¥in?r, (86)  the six powers of the logarithm. We again ugepLE to

k=4 separate the logarithmic terms and perform the differentia-
tions with respect t@. We also usediAPLE to write out a
FORTRAN code[34].

K
U&3)<r,§,n>=k§6 fis(£&,7)rkindr. 87)

o . . VI. RESULTS
The angularf coefficients in Eqs(84)—(87) are arbitrary

functions that are to be determined by the Fock basis func- The singlet and triplet eigenvalues may be computed with
tion of interest. The functiotJ is separated in the above @ single Laguerre basis set representation of the form given
manner in order to allow the Gram and potential-energy main Eg. (71). In this case, the number of functions is

trix elements to be correctly separated at the outset. The
kinetic-energy operator will mix up the logarithmic depen-

|sum

dence, so a second separation procedure will be needed after =3 ,:Eo (sum= 1+ D (lsum=1+2)

the necessary derivatives have been completed. Using Pluvi-

nage hyperspherical angles, we break the problem into four 1. " 11

pieces: Uy, VUx, RUy, and LUy, where V is the = glsumt lsumt G tsumt 1, (93

potential-energy operatoR is the radial kinetic-energy op-

erator, and_ is the angular kinetic-energy operator. The de-where |4,,, equals the maximum sum of the three Laguerre
rivatives were performed byAPLE and the separation was indices. In the present work, we are mainly concerned with
enacted by collecting the coefficients of the logarithms. Wethe singlet ground state. Therefore, it is convenient to parti-
may now trealV Uy, RUy, andLUy simply as functions of tion the different symmetries. In this case, the number of
r, & and » that have a form similar to Eq83). After the  Laguerre basis functions is
differentiations were completed the exponential factor was

removed since it will be put in by the Gauss-Laguerre 1, 5, 17
guadrature rule. The anguléarcoefficients and their deriva- n=75! 3!
tives were given scalar variable names and saved for use in

the next step. With the Hamiltonian operations already perwhere the square brackets denote the nearest integer. The
formed, the next step is to perform the differentiations re-Fock functions were assembled and systematically added to

7
12 sum 8 sum 12|5Um+ 8 (94)

quired for the modified quadratut&?). If we let the Laguerre basis in order to see the effect on the conver-
_ gence rate. The total number of basis function®is-ng
z=rh(&n), (88) whereng equals the number of Fock functions. Tables | and

Il show the error in the ground-state energy as a function of
the optimized nonlinear variational parameters. Table | in-
cludes entries foK=0,2,4,6 corresponding to=0,3,7,13

tion. After the differentiations have been completed, the With |sumin the range 10-15. In Table I, the Fock functions

ith the same homogeneous solution were added together in
nodes are substituted into the new functions to produce nu¥!
merical arrays. The final step is to assemble the full |nteOrder to speed up the calculatigsee Eqs(62)—~(67)]. This

caused a significant decrease in the accuracy of the energy,
grands. The required integrands are of the type presumably due to the decreased flexibility of the Fock func-
11(2,& ) =W(Z, & DU| mn(z,E 7 Uk(z,€,5), (89  tions. It is worth noting that the optimizations were per-
o formed by trial and error and are not perfect. The tables are
1 2(2,&,7)=W(Z,& )V mn(z,& 7)HUK(2,€,7), (90) included to provide a starting point for future refinements in
o the optimization.
13(z,&m)=W(z,&,7)Uk(z,é,7)Uk(2,E,7), (9 Figure 2 shows the significant improvement in the rate of
convergence that can be obtained by adding Fock functions
l4(2,& ) =W(z,& 7)Ug(z,E,9)HU(z,€,7). (92)  to the basis set. ThiE=0 curve corresponds to an unmodi-
fied Laguerre basis set. It is easy to see that many more
In Egs.(89) and(90) it is assumed that the perimetric coor- Laguerre functions are required for this basis set to match the
dinates are expressed in terms of the hyperspherical coordiccuracy obtained in the other curves, which are obtained by
nates. ThdJ, andHU pieces in Eqs(89—(92) are avail- using Fock functions througKth order. Eventually, the im-
able through ordeK =7 using the methods described above.provement pattern we see by going to higher orders in the
In order to complete the requirements of the modifiedFock expansion begins to diminish. In fact, tke=7 curve
quadrature(77) it is necessary to also have available thewhich is not shown, shows an insignificant improvement
derivatives of the physical weight functiom and the La- over theK=6 curve. The reason that the improvement di-
guerre functionU, ., ,. For the integrand$; andl,, these minishes is that the cusp at the three-particle coalescence is
functions need to be differentiated with respect tototal of  handled well enough that other physical effects, such as ra-
three times due to the three powers of the logarithm. For theial “in-out” correlation, become more important. Figure 3
integrandd 5 andl 4, the physical weight functiow needs to  shows the optimized value of the nonlinear paramaigras

then we can perform the necessary differentiations with re-
spect toz. In analogy with the modified weight procedure,
we define each derivative with respectztto be a new func-
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TABLE |. Optimized nonlinear parameters for basis sets that 107 : . . . .

include ¢{),.

lsum K ng a a b, by Error

10 0 0 130 235 1.0210 8
10 2 3 120 240 1.00 0.00 8.x40?°
10 4 7 117 234 100 0.00 34404
10 6 13 110 220 1.01 000 8540 %
11 0 0 135 255 5.2910°°
11 2 3 120 240 100 0.00 44601°
11 4 7 120 240 100 0.00 7.820 %
11 6 13 110 220 1.00 0.00 1.820 '?
12 0 0 135 260 2.3210°°
12 2 3 125 250 1.00 0.00 1.y401°
12 4 7 125 250 1.00 0.00 2%xA0 '?
12 6 13 110 220 1.00 0.00 4x30 %
13 0 0 140 280 1.1810°°
13 2 3 130 260 100 0.00 6810
13 4 7 130 260 100 0.00 8890
13 6 13 119 239 1.07 0.04 9x30 %
14 0 0 145 290 5.0010 1°
14 2 3 130 260 1.00 0.00 3840
14 4 7 130 260 1.00 0.00 28903
14 6 13 120 240 100 0.01 9xa0 %
15 0 0 150 3.00 2.7%10°10
15 4 7 130 260 1.00 0.00 8880 "
15 6 13 125 250 1.00 0.02 28001'°

a function oflg,, for different values ofK. Because this

parameter is approximately equal to twice the valuaofit

determines the length scale of the Laguerre basis functionper, the remaining portion of configuration space may be

When Fock functions are included in the basis set, the valueasily represented.

of a;, decreases and the Laguerre functions are better able to Several useful numerical methods have been developed or

represent electronic behavior that is further away from the

nucleus.
The most accurate result obtained in this work was

—2.903724377034116 6 a.u. for the ground-state energy o

helium. This energy was computed usihg,=15 andK
=6, corresponding to a total of 457 basis functiomg (

=444

and

This

compares

well to

—2.9037243770341184 a.u. calculated by Bakemal.

[20] using a Frankowski-Pekeris basis set containing 476

functions. The best standard i52.903724 3770341195
a.u. calculated by several groufis,25—-3Q using substan-
tially larger basis sets.

TABLE II. Optimized nonlinear parameters for basis sets that

include (== E"¢{) .

l'sum K ng a, ap, b, bis Error

7 6 6 105 210 100 0.00 16107
8 6 6 105 210 100 0.00 8.%10°
9 6 6 104 208 100 0.00 5.6101°
10 6 6 113 213 1.00 0.00 1.xmo

PHYSICAL REVIEW A 69, 022504 (2004
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107 | E

FIG. 2. Error in the ground-state energy as a functiomggf;,.
The k=0 curve corresponds to an unmodified Laguerre basis set.
The k>0 curves include basis functions that reproduce the Fock
expansion throughkth order when the hyperradius tends to zero.

VII. CONCLUSIONS

The results of this work demonstrate that the convergence
rate of a nearly orthogonal basis set, such as the triple prod-
uct of Laguerre polynomials in perimetric coordinates, may
be substantially improved through the addition of a few spe-
cially designed basis functions. These so-called Fock func-
tions provide the exact analytic structure of the true wave
function when two electrons coalesce near the nucleus. Be-
cause the terms that are logarithmic in the hyperradius have
been explicitly treated by the methods described in this pa-

3.1 T T T

29

27

(&}

25

23

2.1 : ' :

FIG. 3. Optimized value of the nonlinear parametgp as a
function ofl¢,,. As more Fock functions are added to the basis set,
the value ofa;, decreases and the Laguerre functions are concen-
trated further away from the nucleus.
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employed in this work. The modified Gauss-Laguerrelacks mathematical foundation. While flexible basis sets have
quadrature allows an efficient and accurate numerical evalweertainly produced impressive benchmarks, they have cre-
ation of integrals containing logarithms of the hyperradius.ated a situation where theoretical understanding of conver-
The use of Pluvinage hyperangles provides a convenient cgence rates “lags well behind the power of available com-
ordinate system for the numerical evaluation of integrals anghuting machinery” [30]. It is hoped that the explicit

an efficient method33] for determining the angular coeffi- treatment of singularities, such as presented here in regard to

cients of the Fock expansion. the Fock expansion, may provide a useful step toward the

~ The convergence rate of the basis set described here ifevelopment of a rigorous theory of convergence rates for
similar to the Frankowski-Pekeris basis set used by Bakefiyo-electron systems.

et al. [20]. The principle advantage of the present represen-
tation is that it does not struggle with numerical linear de-
pendence problems due to the small number of Fock func-
tions and the fact that the Laguerre basis is close to
orthogonal. The major disadvantage of the present approach | would like to acknowledge and thank Professor Robert
is the need to compute matrix element integrals numericallyNyden Hill for introducing me to this problerf84] and for
Although the quadrature schemes described here are efficieptoviding many helpful comments and insights as well as a
and accurate, they are still quite slow compared to othecomputer code to generate the angular coefficients of the
basis set approaches that allow integrals of one or more dfock expansion. This work was initially supported by the
the coordinates to be evaluated analytically. National Science Foundation through a grant for the Institute
Finally, the present work allows the analytic behavior nearfor Theoretical Atomic, Molecular, and Optical Physics at
the three-particle coalescence point to be treated without thidarvard University and Smithsonian Astrophysical Observa-
need for invoking “flexibility” arguments. As Schwartz has tory. The final stages of the research were supported by the
recently pointed ouf30], flexibility is a vague concept that National Science Foundation Grant No. PHY-0244066.
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