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Compact representation of helium wave functions in perimetric and hyperspherical coordinates

Robert C. Forrey
Berks-Lehigh Valley College, Penn State University, Reading, Pennsylvania 19610-6009, USA

~Received 26 September 2003; published 9 February 2004!

Variational calculations of the ground-state energy of helium are performed using a basis set representation
that includes an explicit treatment of the Fock expansion in hyperspherical coordinates. The construction of
basis functions that have the correct cusp behavior at three-particle coalescence points and the evaluation of
integrals containing these functions is discussed. The basis set in hyperspherical coordinates is added to a basis
set consisting of products of Laguerre polynomials in perimetric coordinates. It is demonstrated that the use of
Fock basis functions provides a substantial improvement in the convergence rate of the basis set expansion.
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I. INTRODUCTION

A two-electron atomic system is an excellent testi
ground for new quantum theories since it is the simpl
system with enough complexity to contain the main featu
of a many-body theory. This complexity arises from t
electron-electron Coulomb energy which depends on the
terelectronic distancer 125urW12rW2u. Furthermore, the scale
Hamiltonian for infinite nuclear mass and chargeZ, given in
atomic units by

H52
1

2
~¹1

21¹2
2!2

1

r 1
2

1

r 2
1

1

Zr12
, ~1!

does not depend on any experimental constants whose v
change with improvements in measurement techniqu
Therefore, it provides a standard for theoretical calibrati
After the wave function belonging to this Hamiltonian h
been obtained, it is possible to compute perturbative cor
tions to the nonrelativistic energy. It has been established@1#
that relativistic and QED corrections to the energy levels
an atomic or molecular system require highly accurate n
relativistic wave functions. Rayleigh-Ritz variational calc
lations provide a wave function with relative error appro
mately proportional to the square root of the relative erro
the energy. Therefore, if nonrelativistic variational wa
functions are to be used for perturbative applications, an
the energies are used to estimate the quality of the w
functions, then it is necessary to calculate the nonrelativi
energies to far greater accuracy than would otherwise
needed.

The success of variational calculations depends upon
rate of convergence of the basis set expansion used to
struct the trial wave function. The convergence rate is c
trolled by the analytic structure of the exact wave functi
@2–7#. For problems in atomic or molecular physics, t
main consideration when constructing trial wave functions
the cusp behavior at two particle coalescences. This beha
is described by the Kato condition@2#

S ]Ĉ

]r i j
D

r i j 50

5m i j qiqjC~r i j 50!, ~2!
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wherem i j is the reduced mass of particlesi and j, qi andqj
are the charges of the two particles, and the caret over
wave function denotes a spherical average. A lesser but
very important consideration is the cusp behavior at thr
particle coalescences. This behavior is believed to be p
erly described by the Fock expansion@8–13#

C~r ,a,u!5 (
k50

`

(
l 50

[k/2]

ck,l~a,u!r k~ ln r ! l , ~3!

where use of the hyperspherical coordinatesr ,a, andu @de-
fined in Eqs.~18!–~20! below# reveals the presence of
logarithmic singularity as the hyperradius tends to zero. T
region is only a tiny part of the full configuration space a
is often neglected when constructing trial wave functions.
such cases, the convergence rate can be very slow, par
larly if the basis functions that must approximate the neig
borhood of the singularity are inflexible. A primary objectiv
of this work is to handle the logarithmic singularity direct
so that the remainder of the basis set is free to concentrat
regions of configuration space that are further away from
nucleus. If successful, this strategy should provide an
proved convergence rate for the basis set expansion
equivalently, a more compact representation of the heli
wave function.

Many different basis sets have been applied to the hel
Hamiltonian~1! with varying degrees of success. It is not th
intent of this work to provide a complete account of t
many contributions that have been reported in the literat
for this problem. However, we would like to benchmark t
present method, so it is useful to provide a brief review
some of the current standards. One very successful meth
to use a Hylleraas-type basis set@14# which effectively
handles the electron correlation through use ofr 12 as a coor-
dinate. A related method introduced by Drake@15,16# uses
‘‘doubled’’ basis sets in which two different exponenti
scale factors are used for each combination ofr 1

i r 2
j r 12

k . This
method, originally designed for states of high angular m
mentum @15#, has been successfully applied toS-states by
Drake @16# and also by Kleindienst, Lu¨chow, and Merckens
@17#. These basis sets build in the two-particle cusps due
the linear terms inr 1 , r 2, andr 12, but generally have diffi-
culty handling the three-particle cusp characterized by
logarithmic terms of the Fock expansion. Nevertheless, th
©2004 The American Physical Society04-1
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basis sets tend to be very flexible, particularly the doub
basis sets, so that the three-particle cusp may be adequ
approximated if enough functions are used. Another meth
introduced by Frankowski and Pekeris@18,19#, uses the basis
functions

fn,l ,m, j~s,t,u!5snt lum~ ln s! jexp~2s/2!3H cosh~ct!

sinh~ct!
~4!

in the Hylleraas coordinates

s5r 11r 2 , t5r 22r 1 , u5r 12,

subject to the constraints

l ,m>0,

and

H ~n1 l 1m!>2 j >0 if n>0,

~n1 l 1m!>2 j 12>0 if n,0.

This basis set provides the correct cusp structure at all t
particle coalescences due to linear terms inr 1 ,r 2, and r 12
and the correct singularity structure at the three-particle c
lescence since the logarithmic terms of the Fock expan
are expandable in powers ofs, ln(s), and (t/s). For the
ground state, the nonlinear variational parameterc is zero,
and it is required thatl be even in order to ensure that th
basis set has the proper symmetry under exchange of
ticles r 1↔r 2, or equivalently,t↔2t. For excited states,c is
used to build in the correlation that occurs when one elec
is close to the nucleus with the other electron far away. T
choice of cosh(ct) or sinh(ct) is made to give the basis func
tion the proper symmetry under exchange of particles. He
for singlet states cosh(ct) is used when the indexl is even
and sinh(ct) is used with odd values ofl. For triplet states the
situation is reversed. The Frankowski-Pekeris method
scribed above has been used by Baker, Freund, Hill,
Morgan @20# to calculate very accurate wave functions f
the low-lying S-states of helium using only several hundr
basis functions. The basis set was very successful in ap
cation to high-energy double photoionization@21# where a
proper description of electron correlation near the nucleu
essential. It can, however, be difficult to use in some ca
because of possible computational linear dependence p
lems as the size of the basis set increases.

Another successful method@22–25# is to use a Laguerre
basis in perimetric coordinates. This basis set is analytic
equivalent to Hylleraas-type basis sets. Therefore, it build
the two-particle cusps but fails to effectively model t
three-particle cusp characterized by the logarithmic term
the Fock expansion. The method, however, is very effici
since the matrix element integrals can be evaluated ana
cally. Also, since Laguerre polynomials are numerica
stable and since the relevant matrices are sparse, many
tions can be included in the basis set. In fact, Bu¨rgerset al.
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@25# have used better than ten thousand such function
order to obtain a benchmark nonrelativistic ground-state
ergy.

Large numbers of basis functions are now routinely be
used together with advances in computing power to prod
remarkable new benchmarks for the ground-state energ
helium @26–30#. Schwartz has likened this effort to the com
petition between mathematicians to compute ever more
its of the numberp @30#. Some of the recent calculation
most notably those of Korobov@27#, have achieved their
success using simple expansions that seem to ignore the
lytic structure of the wave function. Like the Laguerre ba
in perimetric coordinates@25#, the latest benchmarks@26–
30# require several thousands of basis functions. In
present work, we desire to utilize the insights provided
our current understanding of the analytic properties of
wave function, and find a basis which will cut down on th
number of functions needed to get good convergence. In
ing so, we remove the flexibility provided by other metho
and confirm the importance of the logarithmic singularity.

The present approach uses the Laguerre basis in peri
ric coordinates as a primary basis in order to build in t
correct two-particle cusps. A small number of functio
which exactly incorporate the first few terms of the Fo
expansion are then added to the primary Laguerre basis.
computational linear dependence problem that plagues s
methods is not an issue here since the Laguerre functions
close to orthogonal and the number of Fock functions
small. Furthermore, we expect that the number of Lague
functions will be considerably reduced as a consequenc
dealing with the three-particle cusp directly. In the followin
sections, we will show how these ‘‘Fock functions’’ can b
derived and also how the matrix element integrals contain
the Fock functions can be evaluated to 30 digits via Gaus
quadrature in three dimensions. We use the new basis s
variationally solve the Schro¨dinger equation for the Hamil-
tonian~1!. The optimized nonlinear parameters are given
the new basis sets, and the variational energies are comp
with well-known values obtained using the standard ba
sets described above.

II. COORDINATES AND NOTATION

The Hamiltonian ~1! contains six independent coord
nates. The most common set of six coordinates consist
the electronic spherical polar coordinatesr 1 , u1 , f1, and
r 2 , u2 , f2. The kinetic-energy operator in these coordina
is given by

2
1

2
~¹1

21¹2
2!52

1

2 (
n51

2 S ]2

]r n
2

1
2

r n

]

]r n
1

Ln

r n
2 D , ~5!

where

Ln5
1

sinun

]

]un
S sinun

]

]un
D1

1

sin2un

]2

]wn
2

. ~6!

In order to take account of the effects of electron-elect
correlation, it is convenient to use coordinate systems
4-2
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explicitly contain the interelectronic distancer 12. The most
common set isr 1 , r 2 , r 12, a, b, andg, wherea, b, andg
are the three Euler angles which specify the rotation from
space-fixed axes to the body-fixed axes. ForS states, the
Euler angles are ignorable and the kinetic-energy operato
given by

2
1

2
~¹1

21¹2
2!52

1

2 S 2

r 1

]

]r 1
1

2

r 2

]

]r 2
1

4

r 12

]

]r 12
1

]2

]r 1
2

1
]2

]r 2
2

12
]2

]r 12
2

1
r 1

22r 2
21r 12

2

r 1r 12

]2

]r 1]r 12

1
r 2

22r 1
21r 12

2

r 2r 12

]2

]r 2]r 12
D , ~7!

with the volume element

d t58p2~r 1r 2r 12!dr1dr2dr12. ~8!

The coordinatesr 1 , r 2, andr 12 are easily transformed to th
perimetric coordinates@22#

q152r 11r 21r 12, ~9!

q25r 12r 21r 12, ~10!

q125r 11r 22r 12, ~11!

with each coordinate having domain@0,̀ # as a consequenc
of the triangle condition forr 1 , r 2 , and r 12. The kinetic
energy in perimetric coordinates is

2
1

2
~¹1

21¹2
2!5~r 1r 2r 12!

21H ]

]q12
~Q11Q2!

]

]q12

1
]

]q2
P1

]

]q2
1

]

]q1
P2

]

]q1
2

]

]q12
Q1

]

]q2

2
]

]q2
Q1

]

]q12
2

]

]q12
Q2

]

]q1

2
]

]q1
Q2

]

]q12
J , ~12!

where

P152Q11Q1212q1q2q12, ~13!

P252Q21Q1212q1q2q12, ~14!

and

Q15q12
2 q21q12q2

2 , ~15!

Q25q12
2 q11q12q1

2 , ~16!

Q125q1
2q21q1q2

2 . ~17!
02250
e
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The conventional hyperspherical coordinatesr, a, andu are
obtained fromr 1 , r 2, andr 12 via the definitions

r 5Ar 1
21r 2

2, ~18!

a52 tan21S r 2

r 1
D , ~19!

u5cos21S r 1
21r 2

22r 12
2

2r 1r 2
D . ~20!

The kinetic-energy operator in hyperspherical coordinate
given by

2
1

2
~¹1

21¹2
2!52

1

2 S ]2

]r 2
1

5

r

]

]r D 2
2

r 2
L, ~21!

where

L5
]2

]a2
12 cot~a!

]

]a
1csc2~a!F ]2

]u2
1cot~u!

]

]uG .

~22!

Another set of hyperspherical angles that turned out to
very useful in the present context was first introduced
Pluvinage@31#. These angles are defined by

j5tan21F urW11rW2u~2r 11r 2!1r 12~r 11r 2!

urW11rW2u~r 11r 2!1r 12~r 12r 2!
G , ~23!

h5tan21F urW11rW2u~r 12r 2!1r 12~r 11r 2!

urW11rW2u~r 11r 2!1r 12~2r 11r 2!
G . ~24!

The angular kinetic-energy operator in Pluvinage coordina
is

L5w~j,h!21H ]

]j Fsin~2j!
]

]j G1
]

]h Fsin~2h!
]

]h G J ,

~25!

where

w~j,h!5@sin~2j!1sin~2h!#. ~26!

Using the Jacobian

]~r 1 ,r 2 ,r 12!

]~r ,j,h!
5

r 2

A2
cosS j1h

2 D , ~27!

together with Eqs.~8! and ~26!, gives the volume element

dt5p2r 5w~j,h!drdjdh. ~28!

III. FOCK EXPANSION

In order to construct basis functions that incorporate
Fock expansion, it is necessary to know the angular coe
cients ck,l in Eq. ~3!. The standard method for obtainin
these coefficients is to put the Fock expansion into
4-3
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Schrödinger equation to get the recursion relation

F2L2
1

4
k~k14!G uck,,&5~,11!~k12!uck,,11&1~,11!

3~,12!uck,,12&1
1

2 S r

r 1
1

r

r 2

2
r

Zr12
D uck21,,&1

1

2
Euck22,,&.

~29!

The inhomogeneous problem~29! was solved numerically by
Feagin, Macek, and Starace@32#. It has also been solve
independently by Hill@33# using hyperangles expressed
Pluvinage coordinates~23! and ~24!. The operatorL in
Pluvinage coordinates~25! is self-adjoint forj andh in the
interval@0,p/2# with the volume element~28!. The eigenval-
ues of L are given by2n(n12) with n a non-negative
integer, and the eigenvectors are given by@33,34#

fn,m~j,h!52mm!A~2m11!~n11!~n2m!!

p~n1m11!!
@cos~h

2j!#mPmFcos~h1j!

cos~h2j!GCn2m
m11@sin~h2j!#,

~30!

wherePm andCn
m are the Legendre and Gegenbauer poly

mials, respectively. The operator on the left-hand side of
~29! is singular if k52n. Therefore, the right-hand side o
Eq. ~29! must be orthogonal to all of the eigenvectors b
longing to thisn if solutions are to exist. If solutions do exis
they will contain linear combinations of homogeneous so
tions for each value of,. Apart from the,50 case, the
constants in these linear combinations can be uniquely de
mined if the right-hand side of Eq.~29! is made orthogona
to the eigenvectors for,21. The first few terms of the Fock
expansion have been worked out analytically@8,12,33#. The
result in Pluvinage coordinates isc0051 and

c105
A2

2Z
sinS h1j

2 D2A2 cosS h2j

2 D , ~31!

c205
1

6 S 22E1
1

2Z2D 2
2

3Z
~sinj1sinh!1sin~h1j!

3S p2j2h

3pZ D1
1

2
cos~h2j!S 11

1

3ZD1
1

3pZ
sin~h

2j!@F2d~j!2F2d~h!#1cos~h1j!H C2
1

2Z
ln 2

2
1

3Z
lnFcosS j

2
2

p

4 D cosS h

2
2

p

4 D G J , ~32!

c215
1

3Z S 2

p
21D cos~h1j!, ~33!
02250
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where C is the coefficient of the homogeneous solution
second order. The functionF2d(f) and its derivative are
defined by@33#

F2d~f!5
i

2
$Li2@11exp~2if!#2Li2@11exp~ ip12if!#%

1p ln@11exp~ if!#2
ip2

8
, ~34!

dF2d~f!

df
5

22f1p@12cos~f!#

sin~2f!
, ~35!

where Li2 is the dilogarithm function@35#. The first-order
poles in Eq.~35! indicate that the functionF2d(f) has loga-
rithmic branch-point singularities atf5np/2 for nÞ0 and
nÞ1. Although these singularities are outside the physi
range 0<f<p/2, they will nevertheless have an importa
impact on the convergence rate of the basis set expan
used to obtain the higher-order terms of the Fock expans
and ultimately on the effectiveness of the numerical meth
used to compute the matrix element integrals. To obtain
higher-order terms of the Fock expansion, the inhomo
neous problem~29! was solved numerically@33# using the
Schwinger-Levine variational principle

l5max
ux̃&

u^Cux̃&u2

^x̃uAux̃&
. ~36!

The maximum is achieved when

ux̃&5
c

A
uC&, ~37!

where c is an arbitrary constant. In the present case,A
52L2 1

4 k(k14) andC is equal to the right-hand side o
Eq. ~29!. For each combination ofk and,, a trial function of
the form

x̃~j,h!5 (
m50

N

(
n50

N

cm,nTm~x!Tn~y! ~38!

was used@33#, whereTm are Chebyshev polynomials of th
first kind with x andy related to the Pluvinage angles by

j5
p

4
~x11!, ~39!

h5
p

4
~y11!. ~40!

Rapid convergence of the trial function~38! is necessary in
order to devise an efficient quadrature scheme for ma
element evaluation~see Sec. V!. The convergence rate fo
Chebyshev expansions may be analyzed@36,37# by consid-
ering the expansion of an arbitrary analytic function
4-4
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f ~x!5 (
n50

`

cnTn~x!~12x2!21/4, ~41!

where

cn5
2

pE21

1

f ~x!Tn~x!~12x2!21/4dx ~42!

for n.0. The coefficientscn can be evaluated by using con
tour integration in the complexz plane. The result is@34#

cn5
22n

ip E
C

f ~z!~12z2!1/4~z21!2
2n21

3F1S n11,n1
1

2
;2n11;

2

12zDdz. ~43!

The contour is shown in Fig. 1. The large-n behavior ofcn is
dominated byR2n, whereR is the largest value such tha
(12z2)1/4f (z) is analytic within the ellipse@36,37#

Re~z!5 1
2 ~R1R21!cos~u!, ~44!

Im~z!5 1
2 ~R2R21!sin~u!, ~45!

with 0<u,2p. For R.1, the series~41! converges tof (z)
for all z inside the ellipse~see Fig. 1! in analogy with the
circular region of convergence of Taylor-series expansio
As shown above, the nearest singularities of the Fock exp
sion appear to occur in thec20 term at2p/2 andp. The
inverse transformations of Eqs.~39! and~40! map these sin-
gularities to63. Therefore, the coefficientscn decrease like
R2n with R5uz1Az221u5312A2'5.828. This estimate
is confirmed by the observed convergence behavior an
useful when analyzing matrix element evaluation in Sec.

IV. BASIS SET

From the considerations of the preceding section, we h
at our disposal all the terms of the Fock expansion thro
any desired order. We note, however, that we cannot sim

FIG. 1. The integration contourC and the ellipse of analyticity
for evaluating the coefficients of a Chebyshev expansion@37# of the
Fock expansion. The singularities that limit the size of the ellip
occur at63 and yield coefficientscn that decrease likeR2n with
R5312A2.
02250
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add the terms of the Fock expansion directly to our basis
since they do not falloff properly at large distances. We c
get around the problem by building in the exponential dec
at large distances and then removing the exponential eff
at small distances. The resulting function is

fK~r ,j,h!5 (
k50

K

(
l 50

[k/2]

gK2k~r ,j,h!ck,l~j,h!r k~ ln r ! l ,

~46!

where

gk~r ,j,h!5 (
m50

k
1

m!
@r f ~j,h!#mexp@2r f ~j,h!#. ~47!

The contribution from the functionf (j,h), which is needed
to provide the proper falloff at large distance, is removed
small r so thatfK reproduces the Fock expansion throu
order K. We note that the unknown energyE and the un-
known coefficientscm of the homogeneous solutions a
contained within the single functionfK . We could in prin-
ciple treat these unknown parameters as nonlinear variati
parameters and attempt to optimize them. A better appro
is to use the expansion

ck,l~j,h!5 (
m50

M

(
n50

N

cmEnck,l ,m,n~j,h!, ~48!

in order to break upfK into separate basis functions, an
then use the diagonalization to determine the values of
unknown parameters. This procedure uniquely defines
Fock functions which we denotefm,n

(K) . For example, forK
57, which is the largest value ofK considered in this work,
we obtain the basis functions

f0,0
(7)5c0~g7c00001g6c1000r 1g5c2000r

21g5c2100r
2ln r

1g4c3000r
31g4c3100r

3ln r 1g3c4000r
4

1g3c4100r
4ln r 1g3c4200r

4ln2r 1g2c5000r
5

1g2c5100r
5ln r 1g2c5200r

5ln2r 1g1c6000r
6

1g1c6100r
6ln r 1g1c6200r

6ln2r 1g1c6300r
6ln3r

1g0c7000r
71g0c7100r

7ln r 1g0c7200r
7ln2r

1g0c7300r
7ln3r !, ~49!

f1,0
(7)5c1~g5c2010r

21g4c3010r
31g3c4010r

41g3c4110r
4ln r

1g2c5010r
51g2c5110r

5ln r 1g1c6010r
6

1g1c6110r
6ln r 1g1c6210r

6ln2r 1g0c7010r
7

1g0c7110r
7ln r 1g0c7210r

7ln2r !, ~50!

f2,0
(7)5c2~g3c4020r

41g2c5020r
51g1c6020r

61g1c6120r
6ln r

1g0c7020r
71g0c7120r

7ln r !, ~51!

e

4-5



q

r
or

in

-
The
on-

di-
La-
b-
n.

y

re-

as
on,

ns
sly
ns

re

-

ROBERT C. FORREY PHYSICAL REVIEW A69, 022504 ~2004!
f3,0
(7)5c3~g3c4030r

41g2c5030r
51g1c6030r

61g1c6130r
6ln r

1g0c7030r
71g0c7130r

7ln r !, ~52!

f4,0
(7)5c4~g1c6040r

61g0c7040r
7!, ~53!

f5,0
(7)5c5~g1c6050r

61g0c7050r
7!, ~54!

f0,1
(7)5c0E~g5c2001r

21g4c3001r
31g3c4001r

4

1g3c4101r
4ln r 1g2c5001r

51g2c5101r
5ln r

1g1c6001r
61g1c6101r

6ln r 1g1c6201r
6ln2r

1g0c7001r
71g0c7101r

7ln r 1g0c7201r
7ln2r !,

~55!

f1,1
(7)5c1E~g3c4011r

41g2c5011r
51g1c6011r

6

1g1c6111r
6ln r 1g0c7011r

71g0c7111r
7ln r !,

~56!

f2,1
(7)5c2E~g1c6021r

61g0c7021r
7!, ~57!

f3,1
(7)5c3E~g1c6031r

61g0c7031r
7!, ~58!

f0,2
(7)5c0E2~g3c4002r

41g3c4102r
4ln r 1g2c5002r

5

1g2c5102r
5ln r 1g1c6002r

61g1c6102r
6ln r

1g0c7002r
71g0c7102r

7ln r !, ~59!

f1,2
(7)5c1E2~g1c6012r

61g1c6112r
6ln r 1g0c7012r

7

1g0c7112r
7ln r !, ~60!

f0,3
(7)5c0E3~g1c6003r

61g1c6103r
6ln r 1g0c7003r

7

1g0c7103r
7ln r !. ~61!

The functional dependencies have been ignored in E
~49!–~61! in order to save space. Theck,l ,m,n are determined
by the solution to Eq.~29!. There are 13 basis functions fo
K56 andK57. Similar analysis yields 7 basis functions f
K54 and K55, and 3 basis functions forK52 and K
53. The basis set may be compacted further by combin
fm,n

(K) with the same value ofm. For K57, this procedure
yields the basis set

f̃0
(7)5f0,0

(7)1Ef0,1
(7)1E2f0,2

(7)1E3f0,3
(7) , ~62!

f̃1
(7)5f1,0

(7)1Ef1,1
(7)1E2f1,2

(7) , ~63!

f̃2
(7)5f2,0

(7)1Ef2,1
(7) , ~64!

f̃3
(7)5f3,0

(7)1Ef3,1
(7) , ~65!

f̃4
(7)5f4,0

(7) , ~66!

f̃5
(7)5f5,0

(7) . ~67!
02250
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In this procedure, the energyE may be input as an approxi
mation or treated as a nonlinear variational parameter.
only remaining nonlinear variational parameters are c
tained in f (j,h) which we choose to obey the condition

exp~2b1r 12b2r 22b12r 12!5exp@2r f ~j,h!#, ~68!

so that

f ~j,h!5
1

A2
cosS j

2D cosS h

2 D F ~b11b2!1~2b122b1

1b2!tanS j

2D1~2b121b12b2!tanS h

2 D
1~b11b2!tanS j

2D tanS h

2 D G . ~69!

We now add the Fock functions in hyperspherical coor
nates to the primary basis set consisting of products of
guerre polynomials in perimetric coordinates in order to o
tain the compact representation of the full wave functio
Using a mixed coordinate notation, we have

C5 (
l ,m,n

cl ,m,nUl ,m,n~q1 ,q2 ,q12!1(
m,n

cm,nfm,n
(K) ~r ,j,h!,

~70!

where

Ul ,m,n~q1 ,q2 ,q12!5ul~a1 ;q1!um~a2 ;q2!un~a12;q12!,
~71!

with the unnormalized Laguerre basis functions defined b

un~a;x!5exp~2ax/2!Ln~ax!. ~72!

The Laguerre length scalesa1 , a2, anda12 combine with the
Fock length scalesb1 , b2, and b12 to total six nonlinear
variational parameters. However, the dimensionality is
duced from six to four by recognizing thata1 must be the
same asa2 , andb1 must be the same asb2 since the elec-
trons are indistinguishable. Further simplifications, such
assuming a hydrogenic exponential falloff for each electr
are helpful when fine tuning the optimizations.

V. MATRIX ELEMENT EVALUATION

The matrix elements containing only Laguerre functio
in perimetric coordinates have been reported previou
@23,24#. The matrix elements containing the Fock functio
can be evaluated using Gaussian quadrature@38# in the three
coordinatesr, j, andh. We use Gauss-Legendre quadratu
for the Pluvinage angular integrations

E
21

1

f ~z!dz5 (
k51

N

wkf ~zk!1EN~ f !, ~73!

where the nodeszk are theN zeros of the Legendre polyno
mial PN and the weightswk are given by
4-6
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wk5
2@12~zk!

2#

~N11!2@PN11~zk!#
2

, ~74!

with the errorEN dependent on the singularities off. We use
Gauss-Laguerre quadrature for the hyperspherical radia
tegrations

E
0

`

zaexp~2z! f ~z!dz5 (
k51

N

wkf ~zk!1EN~ f !, ~75!

where the nodeszk are theN zeros of the Laguerre polyno
mial LN

(a) and the weightswk are given by

wk5
G~N1a11!zk

N! @~N11!LN11
(a) ~zk!#

2
, ~76!

with the errorEN again dependent on the singularities off. It
was shown in Sec. III that the terms of the Chebyshev
pansion decrease like (312A2)2n wheren is the order of
the Chebyshev polynomial. Therefore, a twenty term Che
shev expansion will provide double precision (;10215) and
a forty term Chebyshev expansion will provide quadru
precision (;10230). Since the Gaussian quadrature rule e
actly integrates a polynomial of order 2N21, we can
achieve double precision for the angular integrals usingN
510 and quadruple precision usingN520. These estimate
for N should be doubled when computing inner products
basis functions. The singularities introduced into the angu
integrations by the exponential factorf (j,h) in Eq. ~69! may
be moved in the complex plane~see Fig. 1! beyond the near-
est singularities of the Fock expansion by choosing appro
ate values for the variational parametersb1 , b2, andb12.

The Gauss-Laguerre quadratures for the integrands w
contain logarithms need to be modified in order to achie
the desired accuracy. The modification is obtained by dif
entiating the standard Gauss-Laguerre quadrature rule
respect toa on both sides of the equal sign. The modifi
Gauss-Laguerre rule is

E
0

`

@ ln~z!#mzaexp~2z! f ~z!dz

5 (
n50

m F (
k51

N

wm,n
(k) ]n

]zk
n

f ~zk!1
]m

]am
EN~ f !G , ~77!

where

wm,n
(k) 5wm21,n21

(k) ]zk

]a
1

d

da
wm21,n

(k) , ~78!

with

wm,n
(k) 5H wk for m5n50,

0 for n,0 or m,n.
~79!

Since the weight functions all depend ona andzk , we must
use the total derivative operator
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da
5

]

]a
1

]zk

]a

]

]zk
, ~80!

when operating on any of the weight functions. The deriv
tives of zk with respect toa can be obtained by differentiat
ing the node condition

Ln
(a)~zk!50 ~81!

to get

]zk

]a
52F ]Ln

(a)~z!/]a

]Ln
(a)~z!/]z

G
z5zk

. ~82!

By construction, the Fock basis functions are truncated
order K. In the present work,K57 was the highest value
considered. Since the highest power of the logarithm of
hyperspherical radius is equal toK/2 for evenK, and (K
21)/2 for oddK, the Fock functions will contain up to thre
powers of the logarithm, and the corresponding integrals w
contain up to six powers of the logarithm. Because the mo
fied Gauss-Laguerre quadrature~77! requiresm11 modified
weights, the total number of modified weights forK57 will
be 27. A very convenient way to compute these weights w
to symbolically differentiate the standard weights~76! with
respect toa andz and define each derivative as a new fun
tion. The new derivative functions were then differentiat
with respect toa andz to define further new functions. We
proceed in this way until new functions of all the require
combinations of the six derivatives with respect toa and z
have been defined. Once all the differentiation has been c
pleted, the nodeszk and the value ofa is substituted into the
newly defined functions making them numerical arrays.

In order to use the quadrature rules outlined above,
matrix element integrands need to be separated into pi
which contain no logarithms, pieces which contain o
power of the logarithm, pieces which contain two powers
the logarithm, and so on. For the Gram matrix elements
separation procedure is no problem, but for the Hamilton
matrix elements the separation becomes more difficult du
the various derivatives involved. The difficulties with diffe
entiating and separating the Fock function integrands may
reduced if a symbolic manipulation program is used. T
Hamiltonian derivative operations and logarithmic separat
procedures were performed by considering the function

UK~r ,j,h!5exp@2r f ~j,h!#@UK
(0)~r ,j,h!1UK

(1)~r ,j,h!

1UK
(2)~r ,j,h!1UK

(3)~r ,j,h!#, ~83!

where

UK
(0)~r ,j,h!5 (

k50

K

f k,0~j,h!r k, ~84!

UK
(1)~r ,j,h!5 (

k52

K

f k,1~j,h!r kln r , ~85!
4-7
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UK
(2)~r ,j,h!5 (

k54

K

f k,2~j,h!r kln2r , ~86!

UK
(3)~r ,j,h!5 (

k56

K

f k,3~j,h!r kln3r . ~87!

The angularf coefficients in Eqs.~84!–~87! are arbitrary
functions that are to be determined by the Fock basis fu
tion of interest. The functionUK is separated in the abov
manner in order to allow the Gram and potential-energy m
trix elements to be correctly separated at the outset.
kinetic-energy operator will mix up the logarithmic depe
dence, so a second separation procedure will be needed
the necessary derivatives have been completed. Using P
nage hyperspherical angles, we break the problem into
pieces: UK , VUK , RUK , and LUK , where V is the
potential-energy operator,R is the radial kinetic-energy op
erator, andL is the angular kinetic-energy operator. The d
rivatives were performed byMAPLE and the separation wa
enacted by collecting the coefficients of the logarithms.
may now treatVUK , RUK , andLUK simply as functions of
r, j, andh that have a form similar to Eq.~83!. After the
differentiations were completed the exponential factor w
removed since it will be put in by the Gauss-Lague
quadrature rule. The angularf coefficients and their deriva
tives were given scalar variable names and saved for us
the next step. With the Hamiltonian operations already p
formed, the next step is to perform the differentiations
quired for the modified quadrature~77!. If we let

z5rh~j,h!, ~88!

then we can perform the necessary differentiations with
spect toz. In analogy with the modified weight procedur
we define each derivative with respect toz to be a new func-
tion. After the differentiations have been completed,
nodes are substituted into the new functions to produce
merical arrays. The final step is to assemble the full in
grands. The required integrands are of the type

I 1~z,j,h!5w~z,j,h!Ul ,m,n~z,j,h!UK~z,j,h!, ~89!

I 2~z,j,h!5w~z,j,h!Ul ,m,n~z,j,h!HUK~z,j,h!, ~90!

I 3~z,j,h!5w~z,j,h!UK~z,j,h!UK~z,j,h!, ~91!

I 4~z,j,h!5w~z,j,h!UK~z,j,h!HUK~z,j,h!. ~92!

In Eqs.~89! and ~90! it is assumed that the perimetric coo
dinates are expressed in terms of the hyperspherical co
nates. TheUK andHUK pieces in Eqs.~89!–~92! are avail-
able through orderK57 using the methods described abov
In order to complete the requirements of the modifi
quadrature~77! it is necessary to also have available t
derivatives of the physical weight functionw and the La-
guerre functionUl ,m,n . For the integrandsI 1 and I 2, these
functions need to be differentiated with respect toz a total of
three times due to the three powers of the logarithm. For
integrandsI 3 andI 4, the physical weight functionw needs to
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be differentiated with respect toz a total of six times due to
the six powers of the logarithm. We again useMAPLE to
separate the logarithmic terms and perform the differen
tions with respect toz. We also usedMAPLE to write out a
FORTRAN code@34#.

VI. RESULTS

The singlet and triplet eigenvalues may be computed w
a single Laguerre basis set representation of the form g
in Eq. ~71!. In this case, the number of functions is

nL5
1

2 (
l 50

l sum

~ l sum2 l 11!~ l sum2 l 12!

5
1

6
l sum
3 1 l sum

2 1
11

6
ł sum11, ~93!

where l sum equals the maximum sum of the three Lague
indices. In the present work, we are mainly concerned w
the singlet ground state. Therefore, it is convenient to pa
tion the different symmetries. In this case, the number
Laguerre basis functions is

nL5F 1

12
l sum
3 1

5

8
l sum
2 1

17

12
l sum1

7

8G , ~94!

where the square brackets denote the nearest integer.
Fock functions were assembled and systematically adde
the Laguerre basis in order to see the effect on the con
gence rate. The total number of basis functions isnL1nF
wherenF equals the number of Fock functions. Tables I a
II show the error in the ground-state energy as a function
the optimized nonlinear variational parameters. Table I
cludes entries forK50,2,4,6 corresponding tonF50,3,7,13
with l sum in the range 10–15. In Table II, the Fock function
with the same homogeneous solution were added togeth
order to speed up the calculation@see Eqs.~62!–~67!#. This
caused a significant decrease in the accuracy of the en
presumably due to the decreased flexibility of the Fock fu
tions. It is worth noting that the optimizations were pe
formed by trial and error and are not perfect. The tables
included to provide a starting point for future refinements
the optimization.

Figure 2 shows the significant improvement in the rate
convergence that can be obtained by adding Fock funct
to the basis set. TheK50 curve corresponds to an unmod
fied Laguerre basis set. It is easy to see that many m
Laguerre functions are required for this basis set to match
accuracy obtained in the other curves, which are obtained
using Fock functions throughKth order. Eventually, the im-
provement pattern we see by going to higher orders in
Fock expansion begins to diminish. In fact, theK57 curve
which is not shown, shows an insignificant improveme
over theK56 curve. The reason that the improvement
minishes is that the cusp at the three-particle coalescen
handled well enough that other physical effects, such as
dial ‘‘in-out’’ correlation, become more important. Figure
shows the optimized value of the nonlinear parametera12 as
4-8
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a function of l sum for different values ofK. Because this
parameter is approximately equal to twice the value ofa1, it
determines the length scale of the Laguerre basis functi
When Fock functions are included in the basis set, the va
of a12 decreases and the Laguerre functions are better ab
represent electronic behavior that is further away from
nucleus.

The most accurate result obtained in this work wa
22.903 724 377 034 116 6 a.u. for the ground-state energ
helium. This energy was computed usingl sum515 andK
56, corresponding to a total of 457 basis functions (nL
5444 and nF513). This compares well to
22.903 724 377 034 118 4 a.u. calculated by Bakeret al.
@20# using a Frankowski-Pekeris basis set containing 4
functions. The best standard is22.903 724 377 034 119 5
a.u. calculated by several groups@16,25–30# using substan-
tially larger basis sets.

TABLE I. Optimized nonlinear parameters for basis sets t
includefm,n

(K) .

l sum K nF a1 a12 b1 b12 Error

10 0 0 1.30 2.35 1.0231028

10 2 3 1.20 2.40 1.00 0.00 8.14310210

10 4 7 1.17 2.34 1.00 0.00 3.44310211

10 6 13 1.10 2.20 1.01 0.00 8.52310212

11 0 0 1.35 2.55 5.2931029

11 2 3 1.20 2.40 1.00 0.00 4.46310210

11 4 7 1.20 2.40 1.00 0.00 7.82310212

11 6 13 1.10 2.20 1.00 0.00 1.82310212

12 0 0 1.35 2.60 2.3231029

12 2 3 1.25 2.50 1.00 0.00 1.74310210

12 4 7 1.25 2.50 1.00 0.00 2.72310212

12 6 13 1.10 2.20 1.00 0.00 4.75310213

13 0 0 1.40 2.80 1.1831029

13 2 3 1.30 2.60 1.00 0.00 6.31310211

13 4 7 1.30 2.60 1.00 0.00 8.99310213

13 6 13 1.19 2.39 1.07 0.04 9.13310214

14 0 0 1.45 2.90 5.01310210

14 2 3 1.30 2.60 1.00 0.00 3.64310211

14 4 7 1.30 2.60 1.00 0.00 2.69310213

14 6 13 1.20 2.40 1.00 0.01 9.50310215

15 0 0 1.50 3.00 2.75310210

15 4 7 1.30 2.60 1.00 0.00 8.88310214

15 6 13 1.25 2.50 1.00 0.02 2.80310215

TABLE II. Optimized nonlinear parameters for basis sets t

include f̃m
(K)5(nEnfm,n

(K) .

l sum K nF a1 a12 b1 b12 Error

7 6 6 1.05 2.10 1.00 0.00 1.0131027

8 6 6 1.05 2.10 1.00 0.00 8.7231029

9 6 6 1.04 2.08 1.00 0.00 5.61310210

10 6 6 1.13 2.13 1.00 0.00 1.11310210
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VII. CONCLUSIONS

The results of this work demonstrate that the converge
rate of a nearly orthogonal basis set, such as the triple p
uct of Laguerre polynomials in perimetric coordinates, m
be substantially improved through the addition of a few s
cially designed basis functions. These so-called Fock fu
tions provide the exact analytic structure of the true wa
function when two electrons coalesce near the nucleus.
cause the terms that are logarithmic in the hyperradius h
been explicitly treated by the methods described in this
per, the remaining portion of configuration space may
easily represented.

Several useful numerical methods have been develope

t

t

FIG. 2. Error in the ground-state energy as a function ofl sum.
The k50 curve corresponds to an unmodified Laguerre basis
The k.0 curves include basis functions that reproduce the F
expansion throughkth order when the hyperradius tends to zero

FIG. 3. Optimized value of the nonlinear parametera12 as a
function of l sum. As more Fock functions are added to the basis s
the value ofa12 decreases and the Laguerre functions are conc
trated further away from the nucleus.
4-9
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employed in this work. The modified Gauss-Lague
quadrature allows an efficient and accurate numerical ev
ation of integrals containing logarithms of the hyperradi
The use of Pluvinage hyperangles provides a convenient
ordinate system for the numerical evaluation of integrals
an efficient method@33# for determining the angular coeffi
cients of the Fock expansion.

The convergence rate of the basis set described he
similar to the Frankowski-Pekeris basis set used by Ba
et al. @20#. The principle advantage of the present repres
tation is that it does not struggle with numerical linear d
pendence problems due to the small number of Fock fu
tions and the fact that the Laguerre basis is close
orthogonal. The major disadvantage of the present appro
is the need to compute matrix element integrals numerica
Although the quadrature schemes described here are effi
and accurate, they are still quite slow compared to ot
basis set approaches that allow integrals of one or mor
the coordinates to be evaluated analytically.

Finally, the present work allows the analytic behavior ne
the three-particle coalescence point to be treated without
need for invoking ‘‘flexibility’’ arguments. As Schwartz ha
recently pointed out@30#, flexibility is a vague concept tha
op

II

s.

s.

III
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lacks mathematical foundation. While flexible basis sets h
certainly produced impressive benchmarks, they have
ated a situation where theoretical understanding of con
gence rates ‘‘lags well behind the power of available co
puting machinery’’ @30#. It is hoped that the explicit
treatment of singularities, such as presented here in rega
the Fock expansion, may provide a useful step toward
development of a rigorous theory of convergence rates
two-electron systems.
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