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A combined experimental and theoretical study of transition matrix elements ofaﬁEj&Ss 23, tran-
sition in atomic Cs is reported. Measurements of the polarization-dependent two-photon excitation spectrum
associated with the transition were made in=aB00 cni ! range on the low-frequency side of the %,
—6p 2Py, resonance. The measurements depend parametrically on the relative transition matrix elements, but
also are sensitive to far-off-resonancezsl,zenp2Pj—>83 23, transitions. In addition, as the measured
guantities are ratios of polarization-dependent intensities at a single-excitation frequency, they are quite insen-
sitive to a variety of common-mode systematic effects; matrix-element ratios may then be determined to high
accuracy. In the past, the matrix-element dependence has yielded a generalized sum rule, the value of which is
dependent on sums of relative two-photon transition matrix elements. In the present case, best available
determinations from other experiments are combined with theoretical matrix elements to extract the ratio of
transition matrix elements for thqo6’3Pj—>83 23,,, (j=1/2,3/2) transition. The resulting experimental value of
1.4232) is in excellent agreement with the theoretical value, calculated using a relativistic all-order method, of
1.4252).
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[. INTRODUCTION rates can be quite significant in atoms and because the fluo-
rescence signature of the excitation is nearly background-
Although some of the earliest experiments in atomicfree. These advantages translate typically into a fractional
physics were measurements of atomic lifetimes and oscillameasurement uncertainty on the order of 10
tor strengthg1,2], precise determination of atomic transition  In spite of the fact that many experimenf8l-13,2§ and
matrix elements remains a demanding enterpfi3e6].  theoretical[27—32 approaches have been applied to deter-
Some perspective on this may be gained by noting that, imination of atomic properties of atomit*Cs, including
spite of the development of a wide array of sophisticatedifetimes or oscillator strengths and polarizabilities, only lim-
experimental techniques, measurements depending directied higher-precision experimental data are available for
on atomic transition matrix elements seldom have achieved many valence transition matrix elements in this atom. These
precision better than-0.5%, this being for the deeply stud- studies have been motivated in part by a serious need for
ied alkali-metal atom§3—16]. Measurements made for non- empirical data to extract more fundamental information from
alkali-metal atoms, often motivated by the need for data irprecise measurement of parity nonconservatii\C) in this
some other area of atomic physics resedfgh7—-2Q, have  atom[33], especially in light of the discrepancy reported in
typically cited even lower precision. Ref. [34] between values of the weak char@g, extracted
We have similarly been concerned with precise measureirom high-precision atomic physics experimé¢88] and the
ments in alkali-metal atoms, and we have a continuing exaccepted standard model value. In order to clarify the situa-
perimental program of precision measurement of relative antlon, recent experimental efforts have concentrated on mea-
absolute transition matrix elements in the one-electron atomsurement of transition matrix elements associated with the
[21-25. The main experimental approaches have beefs-6p and 6-7p multiplet transitiong12,13. However, the
based either on polarization-dependent Rayleigh and Ram&ip-7s and 7p-7s transitions, which are less experimentally
scattering in atomic Cs or on polarization-dependent twoaccessible, make similarly important contributions. The
photon spectroscopy applied to Na and Rb. In our approachavailability of high-precision experimental data for any tran-
the main measured quantities are ratios of intensities for twaitions between low-lying states of Cs is important for pro-
different polarization states of either detection or excitationviding additional information regarding the accuracy of the
Since the measurements are made at fixed excitation freheoretical calculations in Cs which is crucial for the accu-
guency, the ratios are insensitive to most experimental varirate analysis of Cs PNC experiment.
ables, and can be made with high accuracy. In addition, the In this paper we present results of our measurements of
precision is generally high, because two-photon transitionthe spectral and polarization dependence of th&S5,
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—np?P;—8s?S;, (j=1/2,3/2) two-color, two-photon
transition in *3Cs, wheren=6 is the dominant term. In an
earlier report[22] we described how such measurements
could be interpreted in terms of a type of sum rule related to
the scalar and vector transition probabilities. The sum rule is
evaluated by fitting experimental polarization-dependent
spectra to a generalized form containing, as fitting param-
eters, the relative two-photon transition matrix elements for
the contributing transitions, allowing extraction of the ratio
of the matrix elements in the dominant term. The contribu-
tions from far-off-resonance transitions are small but signifi-
cant for heavy atoms such as Cs and are evaluated theoreti-
cally. In the present paper we describe that approach as
applied to the Cs $2S,,,—8s2S,,, two-photon transition.

By combining the present measurements with precisely de-
termined &281,2—>6p2Pj resonance transition matrix ele-
ments, the § ?P; —8s2S,, relative excited-state matrix el-
ements are determined. We point out that the same combined
scheme can effectively be used to determine matrix elements
for the 6s2Sy,—7p ?P;—7, 8s%S, transitions which, be-
cause of their importance for analysis of the precision parity
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nonconservation measurements in Cs, remain interesting
cases to investigafel 3]. FIG. 1. Partial energy-level diagram for atomic Cs, showing the

In the following sections, we briefly review our experi- excitation scheme used in the experiment.
mental approach, with particular attention to aspects different
in the present study. This is followed by a description of oursjon of 102 cm™?, is used to determine,. The Ti:sapphire
experimental results and data analysis. We then describe theser is passively stabilized with a thin-thick etalon combi-
application of results of relativistic many-body calculationsnation and has a short-term linewidth on the order of a few
of the off-resonance terms, which allows the extraction of theviHz. Long-term drifts, on a time scale longer than a typical
desired two-photon transition matrix element ratios. Finally,data run of a few minutes, are dominated mainly by thermal
the relative ¢ ?P;—8s2S,, relative transition matrix ele- and mechanical noise, and have a negligible influence on the
ments are determined and compared with theoretical calcuxperimental results. The average poweri200 mW. The
lations. laser 1 output is strongly linearly polarized, which is further
purified by passing the beam through a Glan-Thompson
prism polarizer. The beam is then passed through an elec-
tronically controlled liquid-crystal retardatiofLCR) wave

The general experimental approach is described in previplate, which switches the linear polarization direction to one
ous reports[21,22,24,2% and so will only briefly be re- of two orthogonal linear polarization directions. The result-
viewed here. The basic experimental scheg@g] is illus- ing variable polarization beam is then directed to the Cs
trated in Fig. 1, which contains a partial energy-levelsample cell. The second excitation step is driven by the lin-
diagram for the lowest few levels of atomic Cs. A block early polarized output from an external cavity diode laser
diagram of the experimental apparatus is shown in Fig. 2. IEECDL, laser 2, which generates an average power of 8 mW
the experiment, atoms in thes6S,;, ground level are ex- in a short-term 1 s) bandwidth~1 MHz. The laser has a
cited by two-photon absorption to thes 8S,, final level. In
principle, all the intermediateszj levels, including con-
tinuum terms, contribute to the total excitation probability
[35]. In practice, and depending on the precision of the mea-
surements, significant contributions are limited to the first
few nearest-to-resonance terms. The first step of the excita
tion scheme is accomplished with an*Ataser pumped Ti:
sapphire laseflaser 1 tuned in a several hundred crh
energy range to the red side of the %,,—6p 2P; transi-
tion, which has a hyperfine-weighted transition frequency of
w3p=11732.31 cm? [36,38. With reference to Fig. 1, the
detuning from one-photon resonance is definedAasw,
— w3, Where the laser 1 frequency ds;. Although detun-

II. EXPERIMENTAL APPROACH
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FIG. 2. Schematic diagram of the experimental apparatus, show-
ings of magnitude greater than 200 thwere investigated, ing the layout of the main elements of the experiment. The Ti:sap-
useful data were obtained only fdA|<200 cmil. A phire laser is laser 1 and the diode laser is laser 2. The liquid-crystal
Michelson-inteferometer-type wavemeter, which has a preciretarder controller is labeled as the LCR controller.
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frequencyw, which nominally satisfies the two-photon reso- of the two lasers. The retardance of the LCR is controlled
nance conditionw;+ w,=wy, Where w, is the frequency with a specially written instrument driver that communicates
separation of hyperfine components of the?8,, and Wwith the LCR hardware via the computer parallel port. The
8s2S,,, levels. The degeneracy-weighted hyperfine averagetiequency of the ECDl(laser 2 is then shifted by piezoelec-
value of wy=24317.17 cm* [36]. The laser 2 frequency is trically scanning the ECDL cavity length; this is achieved by
determined from the detuning according ég=wo— wg, direct communication between the ECDL controller and the
—A. WhenA=0, the excited-state resonance frequency ignain experiment computer. The wavemeter reading is re-
w,=12584.82 cm* [36]. The commercial ECDL is piezo- corded again and the data cycle is repeated. This experimen-
electrically scannable over a range-ofl5 GHz around the tal protocol is very effective for determining the shape of the
two-photon resonance. The diode laser output beam is madgcitation line and for assessing the blending of different
to be nearly collinear with that from the Ti:sapphire laser andhyperfine components of the excitation line shape. An alter-
the two beams are weakly focused with 0.5 m focal lengtHlate data-taking protocol was also employed. In this, once a
lenses and overlapped in the central region of a sample ceifoper setting of laser 2 was determined, which minimized
assembly. the influence of hyperfine blending on the measured polar-
The Cs vapor cell is an evacuated and sealed Pyrex cefation, the laser 2 frequency was not scanned. Data were
having a length of about 7.5 cm and a diameter of 2.5 cmthen accumulated by switching the laser polarization until
Research grade windows are fused directly onto the cefulfficient statistics were obtained.
body, leaving about a 2.0 cm diameter undistorted central FOr each data run, the experimental signal is determined
region for transmission of the laser beams. The cell is prefor two different states of relative linear polarization of the
pared on an oil-free vacuum system and is evacuated to gxcitation lasers. Although the absolute intensities of these
base pressure of about 1Dmbar. A small amount of Cs Ccomponents depend on many experimental factors, including
metal is driven into the cell prior to removing it from the the laser IntenSItieS, Cs denSity, and the SenSitiVity of the
vacuum system. The cell temperature is varied by placing ifletection electronics, the intensity ratio is sensitive only to
in a resistively heated oven, which allows heating to a typicathe relative polarization state of the lasers and the two-
temperature of 375 K, Corresponding toaCs vapor density 0$h0t0n matrix elements. The main eXpeI’imental observable
about 2.6<10' cm™3. The cell temperature is stabilized to for detailed analysis is then the linear polarization degree
about+0.1 K using a thermocouple attached to the coolesflefined as
part of the cell; the thermocouple output is fed back to the
oven power supply. P, = S-St 1)
Two-photon resonance signals are monitored by measure- L S+S,’
ment of the p?P;—6s2S,,, cascade fluorescence at 455
nm and 459 nm. The fluorescence is collected at right angleghere $and S are the measured signal intensities when the
to the laser beams by a short focal length field lendaser beams are linearly polarized collinearly or perpendicu-
(~5 cm), which approximately collimates the fluorescencdarly, respectively.
light on the cathode of a red-light sensitive photomultiplier ~ The nuclear spin of'*Cs is I=7/2, and so both the
tube(PMT). The tube is protected from background light and6s 23,,, and 8&2S;, electronic states have hyperfine compo-
the intense laser beams by a combination of colored glassents of total angular momentuf=3, 4. The hyperfine
and narrow-band interference filters. Infrared transmittingsplitting in the ground 6°2S,, level is the international fre-
colored glass filters mounted on the entrances to the ovequency standarfi37], which is ~9.192 GHz, while the hy-
housing further reduce background light signals. The PMTperfine splitting in the 82S,,, level is about one-tenth this
output is amplified and the photon-counting rate measurestalue and is on the order of 0.9 GHz. Each of these splittings
with a commercial 100 MHz photon counter. Typical count-is larger than the one-photon Doppler width of several hun-
ing rates on two-photon resonance ar@¢0® s *. We point  dred MHz associated with the separa&?8,,,— 6p 2PJ- and
out that the operating temperature of 375 K turns out to beﬁszj—>85 23,,, transitions, and so partial resolution of the
optimal for this experiment. At lower temperatures the fluo-hyperfine splitting is expected even when the two excitation
rescence signals are weak, while at elevated temperaturdaser beams are copropagating through the sample cell. This
and correspondingly larger Cs atom density, the vapor bes illustrated in Fig. 3, which shows the spectral and relative
comes optically thick to the ﬁ’sz—>65 23,,, signal radia-  polarization dependence of the two-photon excitation rate at
tion. Then branching to thes?S,,, and & 2Dj levels(see A=-80.37 cm®. The main contribution to the spectral
Fig. 1) is enhanced, and signals in the observed decay chamidth is due to Doppler broadening, which is approximately
nel are correspondingly reduced. double that for a one-photon transition. On the other hand,
The various instruments are globally controlled or moni-for counterpropagating beams, nearly complete cancellation
tored by a computerized data acquisition and instrument corgef the Doppler width is expected, with a residual two-photon
trol program. To illustrate the experimental protocol, con-Doppler width~10 MHz. Such a typical scan is shown in
sider a typical experimental run, where laser 1 is set to &ig. 4, which corresponds to the=4—F’'=4 transition
nominal frequency, which is measured by the wavemetemnith A=—22.0 cmil. There it is seen that the spectral
which passes this value to the main control program. Sewidth of the line shape is<40 MHz, which corresponds
quentially, the photon-counting rate is measured alternatelyell to the combined residual Doppler width and the spectral
for collinear and perpendicular linear polarization directionswidth of the Ti:sapphire laser. It is also seen that the excita-
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FIG. 3. Experimental signal for frequency and polarization- FIG. 5. Experimental signal for frequency and polarization-
dependent two-photon excitation at a detuning-680.37 cm'* dependent two-photon excitation at a detuning-0£67.9 cm'*
from resonance. All four hyperfine transitions are shown, are defrom resonance. ThE=4—F'=3 andF=4—F’'=4 transitions
noted by €,F’), and are labeled by the vertical lines above eachare shown. The laser 2 offset is measured from a convenient starting
component. The laser 2 offset is measured from a convenient starnpoint, denoted by the origin of the graph. Copropagating laser
ing point, denoted by the origin of the graph. Copropagating beamseams.

tion spectrum depends significantly on the relative polarizaobtain reliable polarization measurements, the combined fre-
tion state of the two laser beams, giving in this case a largguency drift of the two lasers would need to be smaller than
linear polarization degree 6£0.78. a fraction of 1 MHz/s. Instead, we recorded the excitation
In spite of the evidently good signal to noise ratio for the spectrum for copropagating laser beams, for which the Dop-
data in Fig. 4, it proved difficult to achieve the desired re-pler width is large(several hundred MHzand for which the
producibility in the polarization measurements with the pascharacteristic laser frequency drift rates of a few MHz/s are
sively stabilized Ti:sapphire laser. The main reason for thisntirely acceptable. Note that variation of the polarization in
was that measurement of the two different polarization statethe few MHz range is totally negligible. The small penalty to
were made sequentially, and fluctuations in the laser frebe paid for this is that the polarization values need to be
quency on the switching time scale introduced unwantedletermined in the wings of the partially blended lines. How-
noise in the extracted polarization values. The reason for thigver, these determinations were made sufficiently far into the
is that when the lasers are counterpropagating through thgings that the other hyperfine transition made nearly negli-
interaction region of the cell, the Doppler width of the two- gible contribution to the polarization value. In addition, the
photon transition is greatly reduced, and is on the order ogignals were significantly less noisy than with counterpropa-
the natural width of the final 8level. In this case, in order to gating beams, making possible consistent and repeatable
measurements of the polarization at each detuning. A typical

14000 . higher-resolution data run is presented in Fig. 5, which cor-
C°““‘°1pr°pa§atmg Beams responds to theF=4—F’'=3, 4 transitions atA

12000 1 ®%® A=-220cm ——167.9 cm L.

10000 1 o S, vs. Offsct Finally, we have modeled the residual effect of blending
_ ° o Svs.Offset of the hyperfine lines on the measured polanzatlon \_/e_llues_. In
% 8000 - the model, we approximate each hyperfine transition line
8 . shape to be Gaussian and having the measured width deter-
w6000 1 . mined by the Doppler broadening of the two-photon transi-

tion. Using the known relative hyperfine transition probabili-
ties gives a polarization-dependent correction that ranges
2000 4 o® from 0.0005 to 0.00138polarization values reported here can
o ° oo range from—1 to +1). Even though these corrections are
0 {000000000NACBO0  PooBsnfincnnncacanpanand well within the statistical error associated with each mea-
0 50 100 150 200 250 300 sured polarization, the corrections are systematic and so are
Laser 2 Offset (MHz) made directly to the measured counting rates, prior to ex-

tracting P, values from the data through E@).
FIG. 4. Experimental signal for frequency and polarization-
dependent two-photon excitation at a detuning-622.00 cm!
from resonance. ThE=4—F'=4 transition is shown. The laser 2
offset is measured from a convenient starting point, denoted by the The variation of the linear polarization degree with detun-
origin of the graph. Counterpropagating laser beams. ing A of laser 1, and for each of the four electric dipole

4000 - [

Analysis and experimental results
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allowed hyperfine transitions, may be readily calculated in 1.5
terms of transition matrix elementshe general expression

may be found in Ref[35]). The dominant intermediate lev- 1.0
els for the two-photon transitions are thp %Pj levels, with
j=1/2, 3/2, but othenszj transitions, including the con- 0.5

tinuum, also contribute to the total transition probability, and
play an important role in the experiments reported here. FoiPL 0.0 -
the transitions whem\F=*+1, absorption of two photons
with collinear polarization directions is forbidden, and sothe 5
linear polarization degree is 1, independent of detuning.
However, for the other transition pair, whefdd==0, both 1.0 4
fine structure multiplet components contribute, leading to

strong spectral variations in the linear polarization degree. 5

Theoretical expressions for the intensities are given by 1000 800 600 400 2200 0 200
R 1 R Aem
| 1= 4] o3 — + — + —
W1T Wz W17 W1 W27 W3 FIG. 6. Model dependence of the variation of the linear polar-
1 2 ization degree with detuning from resonance for all four permitted
+—F+P], (2 hyperfine transitions. The matrix-element ratio is taken toRbe
W2 Wy =2, and contributions from far-off-resonance transitions are ne-
glected.
- R/2 1 R/2
170038 o —wy, 01— w1 Wy w3 where the matrix-element ratio is given by
2
—L 4o ” ~__(8s|d|np,Xnpy[d]6s) °
wy— W) MK (89]|d][6p1) (6Pl d]6s)
for the F=3—F'=3 transition and The total angular momentuir=1/2,3/2, whilek=1,2 la-
bels the frequency of the absorbed photons.
| :3_6| R N 1 N R An illustration of the variation of the polarization with
1715704 W1~ Wz W~ Wy W~ W3 detuningA is shown in Fig. 6 for each of the four hyperfine

transitions. In these plots we have takes2, correspond-

(4) ing to no relativistic modification of the reduced transition
dipole matrix elements, and=Q=0, which applies to the
case when only tha=6 intermediate levels are considered.

R/2 1 R/2 Among the critical features of the plots are the resonance

1) ="1oa values of the linear polarization degree for each hyperfine

transition. In the present case, these valuePare0.882 for

the F=4—F'=4 transition andP =0.811 for theF=3

—F'=3 transition. In addition, there is a detuning from

resonance where the polarizationHg= —1.0, correspond-

for the F=4—F'=4 transition. In these expressions, theing to the cases when the intensiy=0 for each hyperfine

overall intensity for each hyperfine transition is proportionaltransition. The location of this point generally depends on the

to Iorpr, While R, P, andQ are parameters that are propor- four main terms in Eqs2)—(8), and on the values fd? and

tional to ratios of reduced transition matrix elemef@8]. In Q.

the present case, Polarization measurements have been made in an

~200 cm ! range of detunings to the low-frequency side of
~ (8s]d[6psi)(6psidilEs) the atomic 62S,,—~6p?P; resonance transition. These
~ (8s]|d[|6p12)(6p1/7d]6S)’ measurements, which have a typical one standard deviation
uncertainty of 0.002, are presented in Fig. 7. The solid curves
whered is the electric dipole operator. The quantitsind in this figure are expanded versions of those in Fig. 6. Note

Q are given by that the error bars on the experimental data points are negli-

gible on the scale of the figure. It can be seen from the curves

2

1
+——+P
W= Wy

W17 W3p W1T Wy W™ W3
1 2
+—+Q|, 5
Wr— Wy

(6)

p— Z Mk 7) that there is significant discrepancy between the measure-
n>B6jk wk—wnpj' ments and the theoretical curvesith P=0, Q=0, andR
=2) for the F=4—F’=4 transition, for which we have
(—1)i+1 M ik taken the most extensive data. At the largest detuning, this

(8) amounts to about 20 standard deviations. The departure has
two main contributions, these being the fact that nonresonant

Q= X

_n>6,jk j+1/2 wk—wnpj'
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1.0 TABLE I. Energy and matrix elementME) used in calculating
o the contributions of far-off-resonance transitions to the measured
o |=A0ssmorba oo~ ¢ linear polarization spectrum. ME fon=10 are obtained from
Dirac-Hartree-Fock calculations.
00 np; level Energy (cm')  6s-np; (a.u)  8s-np; (a.u)
Fa
PL 04 4 /// 6P/ 11178.2 4.489 —1.027
% 6P 11732.4 6.32% —1.462
0.2 1 —— F=a-F=d Theng 7Pus 21732.4 0.276 —9.25¢
— — F=3-F =3 Theory
e F-4.F=4Experiment 7Psp 21765.7 0.588 —14.0¢
0.0 1 O  F=3-F =3 Experiment 8pus 25709.1 0.081 17.7¢
8pa» 25791.8 0.218 24.46
-0.2 . . . 9py, 27637.3 0.043 1.74%
-200 -150 -100 -50 0 9p3, 27682.0 0.12% 2.969'
A D) 10py/, 28727.1 0.047 0.634
10p3, 28753.9 0.114 1.158
FIG. 7. Measured linear polarization degree of the two-photonl1p,,, 29403.7 0.034 0.348
excitation rate as a function of detuning for the=3—F’'=3 and  11p,, 29421.1 0.085 0.667
F=4—F'=4 transitions. The solid curves represent the modellzpll2 20852.9 0.026 0.228
curves for a mgt_rix-element rati@=2, and neglecting far-off- 15, 20864.7 0.067 0.451
resonance transition®E Q=0). 13py 30166.0 0.021 0.165
transitions withn>6 make a significant contribution through 13Psz2 30174.5 0.055 0.334
nonzero values of andQ, and because the value Bfgen- ~ 14P12 30393.2 0.017 0.127
erally departs from the nonrelativistic valueRE 2. In pre-  14Ps 30399.5 0.046 0.262
vious work, the three parametels Q, andR were consid- 1501 30563.3 0.015 0.102
ered as constants, which is quite well justified by their weakl5ps: 30568.0 0.039 0.213

dependence on detuning. Fits to the detuning-dependent po-
larization data then yielded linear relationships among th%asafécet al.[12].

parameters; estimates Bfand Q further allowed extraction asilyev et al. [13].

of a quite precise value for the constant matrix-element ratigSafronovaet al. [30].

R. Although this is found to be insufficient for the precision “This work (all ordes.

of the data presented here, we report here our values, making

the same assumptions as in earlier work. That approac@iies associated with each intermediate level. For refer-
yieldsR=2.1068(36) 443.2(1.2P-362(362R, where the ence, it is found thaP and Q, calculated with these values,
uncertainty(in parenthesésin the numerical values repre- are fit very well by second order polynomials in detuning
sents one standard deviation. Note that although the coeffd =wi—w1o, and are given byP=—2.437x 10 *+3.257
cient of Q has an uncertainty on the order of its value, its X10 °A—3.8847< 10" *A? and by Q=3.260<10 °
value is correlated with that & andP, and so it cannot be —7.683x 10 °A+1.645<10 13A2, The detuningA is in
neglected. The final uncertainty Rderived from calculated vacuum cm® units. We estimate the total uncertainty fn
values ofP andQ shows that the correction due @is on  andQ to be on the order of 1%.

the order of the uncertainty iR. This equation represents the  To obtain the matrix-element ratio defined in E), a
equivalent sum rule to those presented in earlier reports ononlinear least-squares fit of the polarization data of Fig. 7 is

our measurements in Rb. made to the theoretical expressions, using the calculated val-
However,P andQ depend weakly on detuning, and so to ues ofP andQ for each detuning. The result of the fit &
obtain the highest precision it is desirable to calcuR&nd  =2.0024(24), where the dominant error R comes from the

Q as a function of detuning directly from the most accuratestatistical uncertainty in the measured polarization. The qual-
experimental and theoretical matrix elements. We use a conity of the fit is illustrated in Fig. 8. In the figure, measure-
bination of the most reliable experimental and theoreticaiments are compared to the deviation of the polarization from
values for dominant contributions with<9. For n=6, the values obtained wheR=2, P=Q=0; these are repre-
measured resonance line<£6) matrix elements of Rafac sented by the horizontal line passing through zero deviation.
et al.[12] are employed, while for the second resonance douThe experimental measurements, represented by the data
blet (n=7), we use the recently reported precision measurepoints, are seen to be in excellent agreement with the solid
ments of Vasilyewet al. [13]. Other values having<9 are  curve, this being calculated from the fitting parameters.
obtained from the relativistic all-order calculations of Sa- The ratio of excited-state dipole matrix elemeRg; ¢,
fronovaet al. [30]; these are listed in Table |. For multiplets = <8s||d|6p3,>/<8s|d||6p,,> may be obtained from
with n>9, which make only a small overall contribution to Eq. (6) by combining the measured valueRfwvith the high-

R, we use Dirac-Hartree-Fock matrix elemeh®8]; these precision @ resonance line matrix-element ratio of
values are also summarized in Table |, along with the enerl.40743) measured by Rafaet al. [11]. This gives the
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0.06 TABLE Il. Contributions to SD all-order electric dipoles&p
Fed.Fed matrix elements in Cs. Matrix elements are given in a.u.
0.05 - =4-b=
£ 004 4 — Fitted values for R, P, Q Contribution &-6py1p 8s-6pz2
g —— R=2,P=Q=0
= | E o Dua(F=4.F=4) DHF 1.0584 1.5145
2 a.08 z@ 0.0173 0.0177
£ om z© —-0.1122 —0.1606
< . T
= z@ 0.0938 0.1317
2 001 Zother —0.0084 —0.0108
Znorm —0.0228 —0.0308
L e T e e E— Total 1.0260 1.4618
-0.01 . . .
2200 -150 -100 -50 0

In this equation|®,) is the lowest-order atomic state
A(emly wave function, which is taken to be the frozen-core Dirac-
Hartree-Fock DHF) wave function of a state, andafr and

FIG. 8. Deviation of the measured linear polarization degree ofy, are creation and annihilation operators, respectively. The
the two-photon excitation rate as a function of detuning forEhe indicesa, b designate core electrons and indicgsn desig-
=4—F'=4 transition. The solid curve through the data points rep-nate any states above the core. The equations for excitations
resents the best fit to the experimental data, while the horizontal "n%oefficientSpma Pirw s Pmnabs @Nd pmma are obtained by

) v 1 ’

is the model curve result. Note that the vertical scale is magniﬁe%ubstituting the wave function?, into the many-body
20 times in comparison to Figs. 6 and 7. v

Schralinger equation

excited-state matrix-element ratio ORggg,=1.4232),

which has the uncertainty of about 0.15%, with roughly H|W,)=E[V,), (11
equal contributions from statistical uncertainty in the mea-

surements reported here and from the resonance line matristhere H is the relativisticno-pair Hamiltonian [29]. The
element ratio of Ref[11]. Finally, we point out that the equations are solved iteratively until the corresponding cor-
analysis may be reversed, if it is assumed that the bare tramelation energy for the state is sufficiently converged. The
sition matrix-element ratio is calculated precisely. Then, byresulting excitation coefficients are then used to calculate
recognizing that the off-resonance terms represented® by matrix elements. The one-body matrix element of the opera-
and Q contribute an average of about0.1091(37) to the tor Z given by

value of R, the measurements determine the much smaller

combination of dipole matrix elements in Eqg) and(8) to (V|2 W)
about 3%. As these terms are dominated by transitions wo = 2 (12
through the 8-7p and 6-8p multiplets, the measurements V(W W) (W, [P ,)
serve as a consistency check on existing measureriEsits
at that level. and is expressed in terms of excitation coefficients as

lll. RELATIVISTIC ALL-ORDER CALCULATION 7 +z7@4 +7®

o e
OF TRANSITION MATRIX ELEMENTS = (13

ZWU_ 1
V(1+N,)(1+Ny)

wherez,,, is the lowest-order DHF matrix element, the terms
Z® k=a---t are linear or quadratic functions of the exci-

In order to compare the experimental resRgsgp
=1.423(2) with the high-precision theoretical value, we
carry out relativistic all-order calculation of electric dipole

matrix elements n CS’.' In particular, We_calculate—aw P, tation coefficients, and normalization teriNs are quadratic
n:6_, .7'.8’ 9 electric dipole reduced_matrl_x elements using Junctions of the excitation coefficients. As a result, certain
reIat|V|st|_c qll—order method mqludmg single and doubleSets of many-body perturbation theofMIBPT) terms are
(SD) excitations([28]. T_he _resultlng \_/alues of thes&rp, summed to all orders. This method is shown to yield high-
8s-8p, anq &-9p electric dipole matrix elements were used accuracy results for the primary transition electric dipole ma-
to determineP and Q. . trix elements in alkali-metal atom9,30,27. The results
In the SD all-order method, the wave function of the va~¢, 16 requced electric dipole matrix elements fa@-@p,
lence electron is represented as an expansion, 8s-7p, 8s—8p, and &-9p transitions are listed in Table I.
1 Next, we investigate the effect of the correlation to the
|¥,)= 1+E pmaa;rnaa+ 5 E pmnaba;azabaa 8s-6p matrix elements to evaluate the uncertainty of their
ma mnab ratio. We find that the total correlation correction to the
8s-6p matrix elements is small, 3%. However, it actually
+ E meaLava E pmmaakalaaav |D,). results from severe cancellations of large contributions illus-
m mna trated in Table Il where we give the breakdown of the all-
(100  order SD calculation for both€86p transitions. The lowest-
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TABLE lIl. Electric dipole 8s-6p; reduced matrix elements in Cs calculated using different approxima-
tions: Dirac-Hartree-FockDHF), third-order many-body perturbation theofll ), single-double all-order
method(SD), single-double all-order method including partial triple contributié8®pT), and the corre-
sponding scaled valueRgg 6, is the ratio of the 8-6ps, and &-6p,;, matrix elements. Absolute values of
the matrix elements in a.u. are given.

Ab initio Scaled
Level DHF I SD SDpT Il SDx. SDpTy.
j=1/2 1.0584 1.0231 1.0260 1.0321 1.0315 1.0223 1.0327
j=3/2 1.5145 1.4519 1.4618 1.4709 1.4712 1.4556 1.4705
RgS_Gp 1.4309 1.4191 1.4247 1.4252 1.4262 1.4238 1.4240

order(DHF) value is listed in the first row of Table Il. Three omitted contributions. The results are summarized in Table
larger termsZ®, 2 andz(®, Ill. The lowest-order DHF values are listed in column la-
beled DHF. The results of the third-order many-body
perturbation-theory calculation, which includes higher-order
random-phase-approximation terms as described in Ref.
[31], are listed in column “lll.” The third-order values,
(©)_ . which include an estimate of the omitted fourth- and higher-
z —% Zwmpmv+% ZmyPmw> order Brueckner-orbita(see classification and formulas in
Ref.[31]) corrections obtained by the scaling procedure de-
scribed in Ref[31], are listed in column “IlL..” Single-
ZO=>" 7z ok oo (14)  double all-order data from Table | are listed in column “SD.”
mn The results obtained by including partial contribution of the
triple excitations are listed in column labeled “SDpT.” These
data are obtained by adding a triple-excitation valence term
~ _ _ (15) to Eqg. (10) and making corresponding corrections to corre-
Pwmoa™ Pwmwa™ Pwma lation energy and single-valence excitation coefficient equa-

are listed separately and all other terms are summed togethf"S pm, @s described in Ref$27,29,30. The pr,,, excita-

; : , - i Ve ri d
asZupe. The total normalization correctiaf,, defined as  tion coefficients give rise to the largest terds? andz(®,
and the dominant part dfl, .

Zoorm=Zwo—[Zyy + Z®+ - - - + 2] (16) All-order SD and SDpT calculations include a complete
third-order contributior(see[27] for a detailed comparison
is given separately. We find that two dominant ter$)  but omit some classes of higher-order terms starting from
andZ®, nearly cancel each other and their sum almost exfourth order. We have estimated some omitted correlation
actly cancels out the ter@®. corrections resulting from triple and higher excitations using
We note that while term&® andz(® contain third-order the scaling described, for example, in RE29]. Briefly,
terms as well as higher-order terfsee Ref[27] for detail  single-particle excitation coefficienys,,, are multiplied by
the Z( term, being quadratic in valence single-excitationthe ratio of the experimental and theoretical correlation en-
coefficientsp,,, , contains only terms starting from fifth or- ergies. The modified excitation coefficients are then used to
der. Out of the remaining terms, the largest contributionrecalculate matrix elements. Such scaling estimates only cer-
comes from the normalization correction. For these transitain classes of the omitted contributiofmeainly Brueckner-
tions, the dominant contribution 1§, in the denominator orbital contributions, see Ref29] for classification of the

Z(a)ZZ Zampwmua"_E Zmap:mwev
ma ma

where

of Eq. (13) comes from the term perturbation theory termsThe corresponding SD and SDpT
scaled values are listed in columns “§Dand “SDpT..”
s ok o (17) Ab initio and scaled values are grouped together.
L merme The third-order matrix elements do not differ significantly

from the all-order results indicating very accurate cancella-
This term contributes 97% to thégs value and 64% to the tion between large higher-order terms. The Brueckner-orbital
Ngp value. Again, this term is quadratic in single-excitation correction is dominant in a third-order calculation for both
coefficientsp,,, and can contain only MBPT terms starting transitions and is relatively more important for the-@p/,
from fifth order. Thus, 8-6p matrix elements present an transition, thus giving a ratio differing from more accurate
interesting case with large, but canceling, contributions fronSD all-order value by 0.6%. We note that the ratio of the
high orders in many-body perturbation theory. This cancellascaled third-order values, which includes an estimate of
tion occurs for both 8-6p4;, and 8&-6p3,», matrix elements.  higher-order Brueckner-orbital terms, agrees with the all-
To evaluate the uncertainty in the theoretical rakis,  order result. As one can see from Table lll, the total correla-
we also calculate 86p;, and &-6p,, electric dipole ma-  tion correction contribution to the ratigs ¢, is very small,
trix elements in different approximations and estimate som®.4%, owing to the cancellation of dominant terms. The dif-
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ference between all-order data in different approximations isevel atomic structure calculations. Nevertheless, there is a
only 0.1%. As the largest contributions to these matrix elesignificant sensitivity in the experimental measurements to
ments contain valence single-excitation coefficignts the  other dipole transitions, and these transitions depend signifi-
inclusion of the partial triple contributions and the scalingcantly on relativistic contributions. Naturally, it would be of
described above should give a good estimate of the omittethterest to measure the absolute oscillator strengths of the
higher-order terms as both these methods are aimed at cdndividual multiplet transitions, in order to make direct com-
recting p,,, . We recommend the SBb initio value Rgg.6, parison of the matrix-element values reported here. Such
=1.425(2) as the final theoretical value for the ratio. Themeasurements remain a significant challenge to experimental
uncertainty is obtained by combining the uncertainty of thetechnique. Finally, the excited-state transitions in atomic Cs
dominant terms, determined to be 0.1% based on the spreassociated with the ¥ doublet are of particular interest, as
of SD, SDpT, and scaled values, and the total uncertainty ithose second resonance line matrix elements show nearly a
all other, much smaller, contributions taken to be 0.1% not tdactor-of-2 departure from the expected line strength ratio
exceed the uncertainty of the dominant terms. of 2.
In conclusion, we have used precision two-photon polar-
IV. DISCUSSION OF RESULTS AND CONCLUSIONS ization spectroscopy to make measurements of the transition
_ _ _ . matrix element ratio associated with the %5,,—np?P;

Comparison of the theorethal matrlx.-element ratioRof —8s2S,, transition in atomic Cs. The measurements are
=1.4252), and thecorresponding experimental resultRf  combined with other experimental data and calculations in
=1.423(2) shows excellent agreement. This is remarkableyrder to extract the ratio of excited-state matrix elements.
given the various contributing theoretical and experimentairhe experimental value is found to be in excellent agreement

factors that significantly affect the final result in each case. liyjth the ratio of reduced matrix elements calculated using a
is interesting to reiterate that many of the two-photon transiye|ativistic all-order method.

tion matrix elements in heavy alkali-metal atoms show sig-

nificant relativistic modification. For example, thes%5,,,

—5p ?P;—5d %Dy, transition in Rb shows such variations ACKNOWLEDGMENTS

at a level of nearly 7%. At the same time, other ratios, such

as that measured in the present case, show significantly The financial support of the National Science Foundation
smaller relativistic modification, and yet in each case suciGrant No. NSF-PHY-0099587and Central Michigan Uni-
modifications are generally well described by the highestversity is greatly appreciated.
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