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Entanglement and purity of two-mode Gaussian states in noisy channels
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We study the evolution of purity, entanglement, and total correlations of general two-mode continuous
variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von
Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial
conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and
entanglement, while it can help to preserve the mutual information between the modes.
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[. INTRODUCTION hopping in presence oflocal) nonclassical fluctuations of
the environment.

In recent years, it has been increasingly realized that We study the evolution of quantum and total correlations
Gaussian states and Gaussian channels are essential ingreafid the behavior of decoherence in noisy channels. Quantum
ents of continuous variable quantum informatjdh Indeed, —and total correlations of a state will be quantified by, respec-
entangled Gaussian states have been successfully exploité¥ely, its logarithmic negativity12] and its mutual informa-
in realizations of quantum key distributi@] and teleporta- tion, while the rates of decoherence will be determined by
tion [3] protocols. following the evolution of the purityconjugate to the linear

In such experimental settings, the entanglement of a bi€NrOPY and of the von Neumann entropy. We present ex-
partite state is usually distilled locally, and then distributedpl'c_It z_ma!ytlcal results, as well as _numencal .S.tUd'eS’ on the
over space, letting the entangled subsystems evolve indepeﬂpt'm'z"’ltlon of the relevant physical quantities along the

dently and move to separated spatial regions. In the course 61Pnun|tary evolution. Our analysis provides an answer to the

this process, interaction with the external environment is unguesnon whether possible effective schemes to mimic gen-

avoidable and must be properly understood. Therefore, theral Gaussian environmeritt3, 14 are able to delay the de-

vsis of th uti f lati dd gay of quantum coherence and correlations. We mention that,
analysis of the evolution of quantum correlations and decoy 4 sych schemes, the most interesting for applications to

herence of Gaussian states in noisy ch_annels is of Cr“Ci"l’Josonic fields is based on quantum nondemolii@ND)
interest, and has spurred several theoretical wptkslOl.  measurements and feedback dynaniit3,15. We finally

The evolution of fidelity of generic bosonic fields in noisy remark that the optimization of the quantities we are going to
channels has been addressed in Réf.Indeed, the relevant  study with respect to phenomenological parameters turns out
instance of initial two-mode squeezed vac(Eossessing to be particularly relevant at “small times,” before decoher-
nontrivial entanglement propertiebas drawn most of the ence has irreversibly corrupted the quantum features of the
attention in the field. Decoherence and entanglement degratate, crucial for applications in quantum information.
dation of such states in thermal baths have been analyzed in This paper is structured as follows. In Sec. Il we provide
Refs. [6,7], whereas phase damping and the effects ofa self-contained description of the general structure of two-
squeezed reservoirs are dealt with in R¢fs8,9. In Ref.  mode Gaussian states, including the characterization of their
[10] the author studies the evolution of a two-mode squeezethixedness and entanglement. In Sec. Il we review the evo-
vacuum in a common bath endowed with cross correlationdition of Gaussian states in general Gaussian environments.
and asymptotic entanglement. Decoherence and entanglb! Sec. IV we focus on the evolution of purity and entangle-
ment degradation in continuous variable systems have bedRent, determining the optimal regimes that can help preserve
experimentally investigated in Ref11]. these quantities from environmental corruption. Finally, in

In this paper we address the genera| case of an arbitrar§ec. V we summarize our results and discuss some outlook
two-mode Gaussian state dissipating in arbitrary local Gaus$n future research.
ian environments. The resulting dynamics is governed by a

two-mode master equation describing losses and thermal || TWO-MODE GAUSSIAN STATES: GENERAL
PROPERTIES
*Electronic address: serale@sa.infn.it Let us consider a two-mode continuous variable system,
TElectronic address: illuminati@sa.infn.it described by a Hilbert spade=H1<§'9H2 resulting from the
*Electronic address: matteo.paris@fisica.unimi.it tensor product of the Fock spacks's. We denote bya; the
SElectronic address: desiena@sa.infn.it annihilation operator acting on the spatg, and by x;
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=(a+a')/\2 andp;=(a;—a)/\/2 the quadrature phase op- g (12Xo ™ XT
- i - W(X)= ———, (4
erators related to the modeof the field. The corresponding (X) ~Delo]

phase-space variables will be denotedxbynd p; .
The set of Gaussian states is, by definition, the set of

; ; T : “WhereX stands for the vectorxg,p1,X,,p2) el’.
states with Gaussian characteristic functions and quasi— It is well known that for any covariance matrie there

oty tuions.Therire o Gatsta See s Ot sl canonicl ooy Sy, whih T
ments, which will be denoted, respectively, by the vector of 0'Ms @ 10 the so-called standard formy [19],

first momentsX=((X;),(P1),(X2),(P2)) and by the covari- a 0 ¢ O
ance matrixo: ] 0 a 0 o
1,22 A A ~ ~ S O-SIZUSfE c O b 0 (5)
0 = 7 (XX FXXi) = (Xi)(X}). @ !
0 c, 0 b

First moments can be arbitrarily adjusted by local unitary
operations, which do not affect any quantity related to en-States whose standard form fulfils=b are said to be sym-
tanglement or mixedness. Moreover, as we will see in Sednetric. Let us recall that any pure state is symmetric and
11, they do not influence the evolution of second moments infulfills ¢c;=—c,= Ja?—1/4. The correlations, b, ¢;, and
the instances we will deal with. Therefore they will be un-c, are determined by the four local symplectic invariants
important to our aims and we will set them to O in the fol- Deto=(ab— ci)(ab—cg), Deta=a?, DetB=b? Dety
lowing, without any loss of generality for our subsequent=c,c,. Therefore, the standard form corresponding to any
results. Throughout the paper, will stand both for the co- covariance matrix is unique.
variance matrix and the Gaussian statéself. Inequality (3) can be recast as a constraint on 81y,

It is convenient to exprese in terms of the three X 2 invariants Der and A (o) = Deta+ Det B+ 2 Dety:
matricese, 8, v

A(o)<3+4 dew. (6)
o
o=| . 7). (2 Finally, let us recall that a centered two-mode Gaussian
v B state can always be written f20,21]
Positivity of o qnd the can_onical commutation .relations. im- o=S"1S, (7
pose the following constraint far to be abona fidecovari-
ance matrix16]: where Se Sp, ) and v is the tensor product of thermal
states with covariance matrix
i
o+ 50=0, ©) v=diagn_,n_,n,,n,). (8)

The quantities- form the symplectic spectrum of the co-
variance matrixo. They can be easily computed in terms of
the Sp4) invariants:

where ) is the standard symplectic form

o o 0 0 1
0w “Tl-1 0 2n2=A(0) ¥ JA(0)?—4 Deto. (9)
Inequality (3) is a useful and elegant way to express HeisenThe symplectic eigenvalues- encode essential informa-
berg uncertainty principle. tions about the Gaussian state and provide powerful,

In the following, we will make use of the Wigner qua- simple ways to express its fundamental properties. For in-
siprobability representatiow, defined as the Fourier trans- stance, the Heisenberg uncertainty relati@hcan be recast
form of the symmetrically ordered characteristic functionin the compact, equivalent form
[17]. In Wigner phase-space picture, the tensor prodtict
=H,;®H, of the Hilbert spaces#i;’s of the two modes re- n-=s.
sults in the direct sumi'=I",®1I", of the associated phase , ) i
spaced’;’s. A symplectic transformation acting on the global A reIeyant subclass of Gaussian states we will make use of is
phase spacE corresponds to a unitary operator acting on theconsntuted by the two-mode squeezed thermal states. Let
global Hilbert spacé{ [18]. In what follows we will referto ~ S:=expGra;a,—srajal) be the two-mode squeezing opera-

a transformatior§ =S, @ S,, with eachS e Sp, ) actingon  tor with real squeezing parameterand letv, = 1/(2\/w)1
I';, as to a “local symplectic operation.” The corresponding be the tensor product of identical thermal states, where
unitary transformation is the local unitary transformation =Tr(o?) is the purity of the state. Then, for a two-mode

NI

(10

U,=U;®U,, with eachU; acting on’; . squeezed thermal stafg , we can Writegﬂ'rzsrvMST. The
The Wigner function of a Gaussian state can be written asovariance matrix o€, , is a symmetric standard form sat-
follows in terms of phase-space quadrature variables: isfying
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_cosh2 sinh 2 [(o)=f(a)+f(b)—f(n_)—f(n,). (17)

=—F= C=—C=—/——F—, (11
2\/ﬁ 2\/; One can make use of such a quantity to estimate the amount
and in the instance.=1 one recovers the pure two-mode giateq [25].

of total (quantum plus classicatorrelations contained in a
squeezed vacuum states. Two-mode squeezed states are en-
dowed with remarkable properties related to entanglement

[22,23; their dynamics in noisy channels will be analyzed in _ _
detail. We now review some properties of entanglement for two-

mode Gaussian states. The necessary and sufficient separa-
bility criterion for such states is positivity of the partially

transposed state (PPT criterion [16]. It can be easily seen
from the definition ofW(X) that the action of partial trans-
u[Sosition amounts, in phase space, to a mirror reflection of
one of the four canonical variables. In terms 8fo,
©Sp, invariants, this results in flipping the sign of Det

a

B. Characterization of entanglement

A. Characterization of mixedness

Let us briefly recall that the degree of purity of a quantum
state can be properly characterized either by the von Ne
mann entropys, or by the linear entrop$, . Such quantities
are defined as follows for continuous variable systems:

S=-Tr(elne), (12)  Therefore the invarianA (o) is changed intd\ (o) =A (o)
=Deta+ DetB—2 Dety. Now, the symplectic eigenvalues
§=1-Tr(e)=1-p, (13 n. of o read
where the puritye=Tr(¢?) has already been introduced. We g A(o)* (A(0)2— 4 Deto)}?
first point out thatu can be easily computed for Gaussian n:= 5 (19

states. In fact, in the Wigner phase-space picture the trace of

a product of operators corresponds to the integral of thghe ppT criterion then reduces to a simple inequality that
product of their Wigner representatiofighen eX|st|n_g over ust be satisfied by the smallest symplectic eigenvalue
the whole phase space. Because the representation of a stgiet :

of the partially transposed state,

o is just W, for ann-mode Gaussian state we have, taking
into account the proper normalization factor,

N

n_=

: (19

which is equivalent to

a
=—| WAd"xd"p= 14
u(o) o ) an =2 (14)

1
n/Deto’
For Gaussian states, the von Neumann entropy can be

computed as well, determining their symplectic spectra. For N€ above inequalities imply Dgt=c;c,<0 as a necessary
single-mode Gaussian states, one 28 condition for a two-mode Gaussian state to be entangled. The

quantityn_ encodes all the qualitative characterization of the
1+pu | entanglement for arbitrarfpure or mixed two-mode Gauss-
) : ian states. Note that_ takes a particularly simple form for
entangled symmetric states, whose standard formahkds:

A(0)<4 Deto+ 1. (20)

2

1+up)’ (19

1_
Sv(O')Zz—MM'n

whereu can be computed from E@l4) for n=1. Sy is in

this case an increasing function of the linear entropy, so that n_=(a—|cq|)(a—]cy|). (22)
both quantities provide the same characterization of mixed-

ness. This is no longer true for two-mode Gaussian states: in As for the quantification of entanglement, no fully satis-

this case the von Neumann entropy refi2i3,21] factory measure is known at present for arbitrary mixed two-
mode Gaussian states. However, a quantification of entangle-
Sy =f(h_(o)+f(n. (o)), (16) ment which can be computed for general two-mode Gaussian
states is provided by the negativity, introduced by Vidal
where and Werner for continuous variable systefhg]. The nega-

tivity of a quantum stat@ is defined as
f(x)=(x+3)In(x+3)— (x—HIn(x—3), -
-1
and the symplectic eigenvalues (o) are given by Eq(9). Me)= ”Q”; : (22)
Knowledge of the von Neumann entroiy, allows for
the determination of the mutual informatiordefined, for a
general bipartite quantum stat@, as 1(g)=Sy(01)

where is the partially transposed density matrix dfud;

=Tryo'o stands for the trace norm of an operatorThe
+Sy(e2)—Sy(e), wherep; refers to the reduced state ob- ) .
tained t2racing over the varliables of subsyste#i. The mu- quantity V(@) is equal to| %\, the modulus of the sum of

tual informationl (@) of a two-mode Gaussian statereads ~ the negative eigenvalues of and it quantifies the extent to
[21] which o fails to be positive. Strictly related td/ is the
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logarithmic negativityE ,;, defined a€ y=In|[g|l;. The nega- tive realizations of squeezed baths have been proposed in
tivity has been proved to be convex and monotone undefecent yearg13,14. In particular, in Ref[13] the authors
local operations and classical communicatif8], but fails ~ show that a squeezed environment can be obtained, for a
to be continuous in trace norm on infinite-dimensional Hil-mode of the radiation field, by means of feedback schemes
bert spaces. Anyway, this problem can be somehow elude@lying on QND “intracavity” measurements, capable of af-
by restricting to states with finite mean enef@f]. For two- ~ fecting the master equation of the system. More specifically,
mode Gaussian states it can be easily shown that the neg0 effective squeezed reservoir is shown to be the result of a
tivity is a simple function ofn_, which is thus itself an continuous homodyne monitoring of a field quadrature, with

; ; . : the addition of a feedback driving term, coupling the homo-
(increasing entanglement monotone; one has in feid] dyne output current with anoth%r field qugdrgture of the
— = mode.
Ex{)=max0,~In2n}. 239 Let 0;=S(ri,¢;)vnS(ri ,oi)T be the environmental
This is a decreasing functign of the smallest partially trans 5, ssian state of mode[32]. Hereﬁi denotes the mean
posed symplectic eigenvalue. , quantifying the amount by number of photons in the thermal staig. Its knowledge
which inequality (19) is violated. Thus, for our aims, the gjows us to determine the purity of the state via the relation
eigenvaluen _ completely qualifies and qgantifies the quan- , — 1/(2E+1)- The operator S(r,)=exp(re 12¢a2
tum entanglement of a two-mode Gaussian state —1irel?¢a?) is the one-mode squeezing operator. A more
We finally mention that, as far as symmetric states ar onvenient parametrization of the channel, endowed with a

concterr;efd, an:theEr mzeglsure Og ent?nglllement, ﬂ:e aeSntang rect phenomenological interpretation, can be achieved by
ment of Tormationtg [29], can be actua y compu @3] . expressind\; andM; in terms of the three real variables,
Fortunately, sinceEg turns out to be, again, a decreasmgr and¢; [33]:

[ 1 .

function of n_, it provides for symmetric states a quantifi-

cation of entanglement fully equivalent to the one provided 1

by the logarithmic negativitye ,,. Therefore, from now on Mmi= > = (25

we will adoptE (o) as the entanglement measure of Gauss- V2N +1)7-4]Mmj|

ian states, recalling that this quantity constitutes an upper 5 5

bound to thedistillable entanglementf quantum statefl 2]. cosh2rj) = V1+4uf|Mi|?, (26)
IIl. EVOLUTION IN GENERAL GAUSSIAN tan2¢;) = —tar(argM,). (27)

ENVIRONMENTS Note that the Gaussian state of the environment in bath

We now consider the local evolution of an arbitrary two- coincides with the asymptotic state of modethe global
mode Gaussian state in noisy channels, in the presence 8pymptotic state being an uncorrelated product of the states
arbitrarily squeezedphase-sensitijeenvironments. In gen- €i’S, irrespective of the initial state.
eral, the two channels related to the two different modes With standard techniques, it can be shown that the master
could be different from one another, each mode evolvingtquation(24) corresponds to a Fokker-Planck equation for
independently in its channel. We will refer to the channelthe Wigner function of the systef80]. In compact notation,
(bath in which modei evolves as to channébath i. The  One has
system is governed, in interaction picture, by the following

X . . r
master equatiofi30]: W(X,t) = E[(%(XTJ“?X o a;l’(]w(x’t)’ (28)
. r . T r_
Q:igzg'\'il—[ai letz(NiTDLaJe= 5 (MiDlaile  with ay=(0y,,9p,.7x,.7p,) and with a diffusion matrix

+M;D[a]e), (24) o 0 )

- (29)

O =01,D O'Zx:(
where the dot stands for time derivative and the Lindblad
superoperators are defined HyO]o=20p0"-0%0p
—00'0 and D[0]p=2000—-00p—00O0. The com-
plex parameteM; is the correlation function of bath it is

resulting from the tensor product of the asymptotic Gaussian
stateso.,’s, given by

usually referred to as the “squeezing” of the bafh; is 11N +ReM: Im M,
instead a phenomenological parameter related to the purity 0= 2 ' ' ' (30)
of the asymptotic stationary state. Positivity of the density Im M; 3+ N;—ReM;

matrix imposes the constraifitl;|?><N;(N;+ 1). At thermal

equilibrium; i.e., forM;=0, the parameteX; coincides with  For an initial Gaussian state of the form, E4), the Fokker-

the average number of thermal photons in bath Planck equatiori28) corresponds to a set of decoupled equa-
A squeezed environment, leading to the master equatiotions for the second moments and can be easily solved. Note

(24), may be modeled as the interaction with a bath of oscilthat the drift term always damps to 0 the first statistical mo-

lators excited in squeezed thermal std&H. Several effec- ments, and it may thus be neglected for our aims. The evo-
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lution in the bath preserves the Gaussian form of the initial A
condition and is described by the following equation for the 0 ‘25“‘{\‘\
covariance matrix4,33,34: 0.2 ‘\
L NN
RN
at)=0.(1—e H+a(0)e (31 O
LAY
.. . . . 0.1 Ty 2
This is a simple Gaussian completely positive map, ef(ij N \‘\
satisfies the uncertainty relation, E®), if and only if the 0.05 A ~
latter is satisfied by botler,, and o;y. The compliance otr., A
with inequality (3) is equivalent to the condition$M;| 0 0.05 0 -l}t 0.15 0.2
= Ni(Ni + 1) .

It is easy to see that E¢R1) describes the evolution of an FIG. 1. Time evolution of logarithmic negativity of a nonsym-
initial Gaussian statery in an arbitrary Gaussian environ- metric Gaussian state wita=2, b=1, ¢;=1, andc,=—1 in
mentao-. , which can in general be different from that defined several noncorrelated environments. The solid line refers to the case
by Eq. (29). It would be interesting to find systems whose n1=u,=1/2, r;=r,=0; the dashed line refers to the cage
dynamics could be effectively described by the dissipation in=1/2, u,=1/6, r;=r,=0; the dot-dashed line refers to the case
a correlated Gaussian environmdrecall that the instance #1=1/6, u,=1/2, r;=r,=0; the dotted line refers to the case
we are analyzing involves a completely uncorrelated envi#1=#2=1/2,r;=r,=1. In all cases the squeezing anglg=0.
ronmeny. Some perspectives in this direction, which lie out-All the plotted quantities are dimensionless.

side the scopes of the present paper, could come from feed- o o
back and conditional measurement schemes. tary evolution in the channel. However the explicit depen-

The initial Gaussian state is described, in general, by a sé€nce of such quantities on the nine parameters characteriz-
of ten covariances. To simplify the problem and to better9 the initial state and the environment is quite involved. We
point out the relevant features of the nonunitary evolutionProvide the explicit expressions in Appendix A. They give a
we will choose an initial state already brought in standardyStématic recipe to compute the evolution of mixedness,
form o= 0. With this choice the parametrization of the correlations, and entanglement for any given Gaussian state
initial state is completely determined by the four parameterdn Standard formfand, therefore, for any Gaussian sjate
a, b, c;, andc,, defined in Eq(5). This choice is not restric- e now investigate the duration and robustness of en-
tive as far as the dynamics of purity and entanglement argnglement during the evolution of the field modes in the

concerned. In fact, let us consider the most general initiaf@nnels. Let us consider an initial entangled stefevolv-
Gaussian stater evolving in the most general Gaussian un- N9 in the bath. Making use of the separability criterion, Eq.

correlated environment .., The states can always be (20), one finds that the staie. becomes separable at a cer-
put in standard form by means of some local transformatioff@in imet if

S=;S;. Under the same transformation, the state of the ue*4rt+ve’3rt+we’2“+ye*“+z:o_ 32
environment &;0’;,, remains uncorrelated, witho’;,,

=50,..S;. All the properties of entanglement and mixed- The coefficientsu, v, w, y, andz are functions of the nine
ness for the evolving state are invariant under local operaparameters characterizing the initial state and the channel
tions. Therefore, we can state that the evolution of the miX-(see Appendix A Equation(32) is an algebraic equation of
edness and the entanglement of any initial Gaussian etate fourth degree in the unknowk=e . The solutionke; of

in any uncorrelated Gaussian environment is equivalent  such an equation closest to one, and satisfyigg=1 can

to the evolution of the initial state in standard foBho'S in  be found for any given initial entangled state. Its knowledge
the uncorrelated Gaussian environm&ho..S, . promptly leads to the determination of the “entanglement

Finally, to further simplify the dynamics of the state with- time” t.,, of the initial state in the channel, defined as the
out loss of generality, we can set =0 ( corresponding to time interval after which the initial state becomes separable,
ImM;=0) as a “reference choice” for phase-space rota-
tions.

Quite obviously, the standard form of the state is not pre-
served in an arbitrary channel, as can be seen from(B0p.
and(31). The results of the numerical analysis of the evolution of
entanglement and mixedness for several initial states are re-
ported in Figs. 1-8. In general, one can see that, trivially, a
less mixed environment better preserves both purity and en-

Let us now consider the evolution of mixedness and enianglement by prolonging the entanglement time. More re-
tanglement of a generic state in standard fégparametrized markably, Fig. 1 shows that local squeezing of the two un-
by a, b, c;, andc,) in a generic channglparametrized by correlated channels does not help preserve quantum
M1, F1, wa, Iy, ande,). Knowledge of the exact evolution correlations between the evolving modes. Moreover, as can
of the state in the channel, given by H&1), allows us to  be seen from Fig. 1, states with greater uncertainties on, say,
apply the results reviewed in Sec. Il and to keep track of thenode 1 @>b) better preserves its entanglement if bath 1 is
quantitiesu(t), Sy(t), 1(t), andE(t) during the nonuni- more mixed than bath 24, <wu,). A quite interesting fea-

1
tent=— fln Kent- (33

IV. EVOLUTION OF MIXEDNESS AND ENTANGLEMENT
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FIG. 2. Time evolution of logarithmic negativity of a symmetric  F|G. 4. Time evolution of logarithmic negativity of a two-mode
Gaussian state with=1.5,b=1.5,¢,=1.2, andc,=—1.4insev-  gqueezed thermal state with initial purity=1/9, r=1 in several
eral noncorrelated environments. The solid line refers to the casggncorrelated environments. The solid line refers to the gase
m1=pup=1/2, r;=r,=0; the dashed line refers to the cage = ,,=1/2, r,=r,=0, ¢,=0; the dashed line refers to the case
=u=1/4, r;=r,=0; the dot-dashed line refers to the case  , =4 ;,=1,r,=r,=0, ¢,=0; the dot-dashed line refers to the
=up=12, r,=r,=1; the dotted line refers to the caga=wu,  caseu;=pu,=1/2, r,=r,=1, ,=0; the dotted line refers to the

=1/2,r;=0,1,=15. In all cases the squeezing angle=0. Al casey,=u,=1/2, r;=r,=1, ¢,=w/4. All the plotted quantities
the plotted quantities are dimensionless. are dimensionless.

ture is shown in Fig. 8: the mutual information is better
preserved in squeezed channels, especially at long tirm:“évant, because it gives a basic description of actual

This property ha§ been tgsted as weI_I on nonent_angled Stateeg(perimental settings involving, for instance, fiber-mediated
endowed only with classical correlations, see Fig. 8, and o mmunications
two-mode squeezed states, see Fig. 7, and seems to ho The purity u of the global quantum state turns out to be a

quite generally. In F|g. 2, the behf?“"_or of some initially sym- dtecreasing function dfl;’s at any given time. The symplec-
metric states is considered. In this instance we can see that, . ~ , . . ,
¢ eigenvaluen _ is also in general an increasing function of

in squeezed baths, the entanglement of the initial state id . X
s. Therefore, the entanglement of the evolving state is

better preserved if the squeezing of the two channels is bal¥i'S _ ; S .
anced. optimal for ideal vacuum environments, which is quite

The analytic optimization of the relevant quantities char-fvial, recalling the well-understood synergy between en-

acterizing mixedness and correlations in the channel turn odftnglement and purity for general quantum states.
to be difficult in the general case. Thus it is convenient to

mean photon numbeis;’s). This instance is particularly rel-

proceed with our analysis by dealing with particular in- B. Entanglement time of symmetric states
stances of major phenomenological interest. We have already provided a way of computing the en-
tanglement time of an arbitrary two-mode state in arbitrary
A. Standard form states in thermal channels channels. The expression of such a quantity is, unfortunately,

In this section, we deal with the case of states in generi(gather involved in the general case. However, focusing on

standard form{parametrized by,b,c;) evolving in two ther-

mal channels(parametrized by two—generally different— !
0.8
2
1.75H
1.5 AN 3
\ N
1. 25/ 0.4p
3\ A
Lil2 1 W \ 0.2 \& L eeee
0. 75H— I P T
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0.3 PN 0 2 4 6 8
., T~
0.25 AN Tt

0 0.1 0.2 0.3 0.4 0.50.6 0.7

Tt FIG. 5. Time evolution of the purity of two-mode squeezed

thermal states. The solid line refers to a two-mode squeezed

FIG. 3. Time evolution of logarithmic negativity of a two-mode vacuum state wittr=1 in an environment withu,=u,=1/2, r,
squeezed state with=1 in several noncorrelated environments. =r,=0; the dashed line shows the behavior of the same state for
The solid line refers to the cage, = u,=1/2,r;=r,=0, ¢,=0; pm1=puo=1/2, ry=r,=1. The dot-dashed line refers to a mixed
the dashed line refers to the cage=4, w,=1, r{=r,=0, ¢, state withu=1/9, r=1 in an environment withu,;=pu,=1/2, r;
=0; the dot-dashed line refers to the case=pu,=1/2, ry=r, =r,=0; the dotted line refers to the same state gigr p,=1/2,
=1, ¢,=0; the dotted line refers to the cagg=pwu,=1/2, ry r;=r,=1. The squeezing angle, has always been set to 0. All
=r,=1, ¢,=w/4. All the plotted quantities are dimensionless.  the plotted quantities are dimensionless.
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FIG. 8. Time evolution of the mutual information of Gaussian

FIG. 6. Time evolution of the von Neumann entropy of severalstates in an environment wifla, = u,= 1/3. The solid line refers to
Gaussian states in a thermal environment with=u,=1/3. the  state witha=2, b=c;=—c,=1 in a nonsqueezed environment;
solid line refers to a state with=1, b=c,=—c,=1; the dashed the dotted line refers to the same state in an environment iyith

line refers to a two-mode squeezed vacuum state witli; the =r,=1; the dashed line refers to a nonentangled state avittp
dot-dashed line refers to a squeezed thermal state pvitli/16, r =2, ¢;=—C,=1.5in a nonsqueezed environment; the dot-dashed
=1; the dotted line refers to a nonentangled state witth=2, line refers to the same state in a squeezed environment rwith
¢;=—Cc,=1.5. The squeezing angle, has always been setto 0. =r,=1. The squeezing anglg, has always been set to 0. All the
All the plotted quantities are dimensionless. plotted quantities are dimensionless.

symmetric stateéwhich satisfya=Db), some simple analytic

results can be found, thanks to the simple form takem by ¢ =1In
for these states. An initially symmetric entangled state main- ent
tains its symmetric standard form if evolving in equal, inde-
pendent environment&vith N;=N,=Ng). This is the in-
stance we will consider in the following.

Let us suppose thdt;|<|c,|, then Egs.(19) and (21)
provide the following bounds for the entanglement time:

1-e %

2\ uNg

1+ (35)

In particular, foru=1, one recovers the entanglement time
of a two-mode squeezed vacuum state in a thermal channel
[7,10,19. Note that two-mode squeezed vacuum states en-

1 compass all the possible standard forms of pure Gaussian
lcol —a+z states.

1+ Ng

<I'tgn=In

leal—a+ 3
|n( 1+N—B

(34)
C. Two-mode squeezed thermal states

Imposing the additional property; = —c, we obtain stan-
dard forms which can be written as squeezed thermal states As we have seen, two-mode squeezed thermal states con-
[see Eqs(11)]. For such states, inequalit@4) reduces to stitute a relevant class of Gaussian states, parametrized by
their purity u and by the squeezing parametexccording to
Egs. (12). In particular, two-mode squeezed vacuum states
(or twin beamg which can be defined as squeezed thermal
states withu=1, correspond to maximally entangled sym-
b metric states for fixed marginal purity. Therefore, they con-
2 stitute a crucial resource for possible applications of Gauss-
\\\ ian states in quantum information engineering.
&.:_\.\ ~. For squeezed thermal stat@hosen as initial conditions

= in the channe] it can be shown analytically that the partially

0 I > 3 7 transposed symplectic eigenvalne is at any time an in-

Tt creasing function of the bath squeezing angje “parallel”
squeezing in the two channels optimizes the preservation of
entanglement. Both in the instance of two equal squeezed
solid line refers to a pure state with=1 in a nonsqueezed envi- baths(i.e., withr,=r,=r) and of a thermal bath joined to a

ronment; the dotted line refers to the same state in an environmet;?lqu?ezed_One'e'f =T ar_ld r2=0), it can be S.,hown that
with r,=r,=1; the dashed line refers to a squeezed thermal stat8— IS an increasing function of. These analytical results
with #=1/16,r=1 in a nonsqueezed environment; the dot-dashecgree with those provided in Ref8] in the study of the

line refers to the same state in a squeezed environmentrwith Qqualitative degradation of entanglement for pure squeezed
=r,=1. The squeezing anglg, has always been set to 0. All the States. The proofs of the above statements are given in Ap-
plotted quantities are dimensionless. pendix B.

3.

U= U N Ul WU

e —~—

FIG. 7. Time evolution of the mutual information of two-mode
squeezed thermal states in an environment Witk w,=1/3. The
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Such analytical considerations, supported by direct nu-
merical analysis, clearly show that a local squeezing of the
environment faster degrades the entanglement of the initial
state. The same behavior occurs for purity. The time evolu-
tion of the logarithmic negativity of two-mode squeezed
states—thermal and pure—is shown in Figs. 3 and 4. The
evolution of the global purity is reported in Fig. 5, while the
evolutions of the von Neumann entropy and of the mutual
information are shown, respectively, in Figs. 6 and 7.

V. SUMMARY AND CONCLUSIONS

We studied the evolution of mixedness, entanglement, a”ﬂefining the sets of coefficients

mutual information of initial two-mode Gaussian states
evolving in uncorrelated Gaussian environments. We derived
exact general relations that allowed us to determine the time

evolution of such quantities, and provided analytical esti—24:a2b2+—2+—2—a2b

mates on the entanglement time. The optimal bath param-
eters for the preservation of quantum correlations and purity

have been determined for thermal baths and for two-mode

squeezed states in more general baths. A detailed numerical
analysis has been performed for the most general cases.

We found that, in general, a local squeezing of the baths
does not help to preserve purity and quantum correlations of
the evolving state, both at small timése., forI't<1) and
asymptotically. On the other hand, local squeezing of the
baths can improve the preservation of the mutual information
in uncorrelated channels. Besides, coherence and correlations
are better maintained in environments with lower average
number of photons.

The present study may be be extended to the case of
n-mode Gaussian states. This generalization would be desir-
able, since the practical implementation of quantum informa-
tion protocols usually requires some redundancy. For three-
mode Gaussian states, separability conditions analogous to
inequality (6) have been determind®5], and could be ex-
ploited to provide a qualitative picture of the evolution of
three-mode entanglement in noisy channels.
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APPENDIX A: EXPLICIT DETERMINATION
OF MIXEDNESS AND ENTANGLEMENT
IN THE GENERAL CASE

Here we provide explicit expressions which allow one to
determine the exact evolution in uncorrelated channels of a
generic initial state in standard form. The relevant quantities
E,u,Sv,l, as we have seen, are all functions of the four
Sp2r)® SRy iNvariants. Let us then write such quantities
as follows:

4
Deto= >, S, M1, (A1)
k=0

022318-8
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2

Deta= 2 e (A2)
k=0
2
Detg=2 Bie ", (A3)
k=0
Dety= 729_2n. (A4)
i ,ai ,Bi ,‘yi . Ol’le haS
a’? b? cosh 2, b2cosh 2,
-a
dus  4pg M2 M1
bcosh Z2,coshZ, coshZ,; coshZ,
_a —
Hakt2 Ayl 4udpy
cosh2, bcosh2;
+(c?+cd)| a +
(it 24, 24y
coshZ,cosh2, sinh2r,;sinh2,cos2p, )
- - —ab
Apgpr Apgpr
sinh2r,cos2p, sinh2r,
+(c3—c3 (a +b
( 1 2) 2,Uv2 2M1
sinh2r;cosh2, coshZ,sinh2r,cos 2@2)
Apapr Apapr
+c2ca+ , (A5)
16uips
a’ b*> cosh2, ,coshz;
=—2—-2—+a‘b +ab
4psy  Api M2 K1
cosh2,coshz, cosh 2 cosh 2,
—2ab +3a > >
Hik2 Apgps Apipmr
sinh 2r, cos 2p sinh 2r
2 2 2 2 1
—(ci—c5)| a +b
(e 2)( 242 21
sinh2r; cosh 2, 2cosh 2Z,sinh2r,cos 24:2)
Apgpr Apypr
cosh2, bcoshZ;
—(c?+ c2)< a +
e 245 24
coshZ,coshZ, sinh2r;sinh2,cos 2p,
-2 -2
Apypr Apapr
- (A6)
4pius’
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a?  b? cosh 2, cosh 2, cosh 2,
22:—2 + — +ab —3a 2
Apy  Api M1tz Apapr
cosh 2 cosh 2, cosh 2
—3b—— 2 —(c§+c§)<%
H1M2 M1t
sinh 2r; sinh 2rzcosZp2) I
+ —(ci—¢
Apapsr (1= c))
sinh2r; cosh2, cosh2,sinh2,cos2p,
Apapsr Apapr
+ ! (A7)
16uius’
coshz,;  cosh2, 1
2=+a 2 2 4 2 2 (A8)
Apapy Apips  Apips
Y ! (A9)
0= 5 o
16uiu;
cosha; 1
ar,=a“—a +—, (A10)
M1 YT
cosh 2, 1
aj=a —2—, (A11)
M1 Aug
ap=—>, (A12)
4us
, ,coshz, 1
B,=b"—b +—, (A13)
Bi=b cosh 2, ) 1 (A14)
' M2 4,u,§’
Bo=— (A15)
4ps
Y2=C1Cs. (A16)

The coefficients of Eq(32), whose solutiork,,; allows one

PHYSICAL REVIEW A 69, 022318 (2004

Z:EO_CYO_,B()'}‘%. (AZ].)

APPENDIX B: PROOFS FOR TWO-MODE
SQUEEZED STATES

In this appendix we consider a two-mode squeezed ther-
mal state of the form of Eq1l) as the initial input in the
noisy channels.

We first deal with the dependence of entanglement and
mixedness on the squeezing angle of bath 2. It can be
easily shown(see Appendix Athat A(o) does not depend
on ¢,, whereas Deir turns out to be a decreasing function
of cosg,. Therefore, since the symplectic eigenvatue in-
creases with Dedr, one has thap,=0 is the optimal choice
for maximizing both entanglement and purity of the evolving
state.

We now address the instance of two equally squeezed
baths, withN;=Ng, ri=rg, and ¢,=0. The time depen-
dent covariance matriw,,, can be written in the form

i 0 k o©

0 j. 0 -k
Tl k0 . o

0 -k 0 j.

with
cosh 2 _
== e "'+ (Ng+3)e"?e(1-e ),
y72
:sinhze_n.
2\u

The standard form o#r,,, is easily found just by squeezing
the field in the two modes of the same quantjty, /j _. The
result is a symmetric standard form, whose smallest partially

transposed symplectic eigenvaine can be computed ac-
cording to Eq.(21):

n_=(_—k(j.—k=dcoshZg+---,

where the terms that do not depend nare irrelevant to
our discussion and have thus been neglected. The coefficient

to determine the entanglement time of an arbitrary two-modg, i 4 positive function of, r, andNg, so that the best choice

Gaussian state, read

u=3,, (A17)
v=233, (A18)
w=3,—az— By~ 7al, (A19)
y=31-a1—Bi, (A20)

to maximize entanglement at any given time is givenrpy
=0. Quite obviouslyn_ turns out to be an increasing func-
tion of Ng as well.

Finally, we deal with the instance in which bath 1 is
squeezed while bath 2 is thermal, witb=0. For ease of
notation we define|o|=Deto. We recall that B?=A2A

—VA%—4|g]. Thus, for entangled stategor which n_
<1/2), one finds
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3(27%)> — 4d3(2n2)>0. 4(e''—1)cosha2n3+(3+cosh4)n,—(e"'+1)cosh 2.

The sign of the quantity 4 |o]—d, A for the case of the This second degree polynomial is positive for=N,+ 1/2

initial two-mode squeezed can be shown, after some algebrzs 1/2. This proves that the entanglement decreases as the
to be determined by squeezing of bath 1 increases.
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