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Entanglement and purity of two-mode Gaussian states in noisy channels
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We study the evolution of purity, entanglement, and total correlations of general two-mode continuous
variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von
Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial
conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and
entanglement, while it can help to preserve the mutual information between the modes.
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I. INTRODUCTION

In recent years, it has been increasingly realized t
Gaussian states and Gaussian channels are essential in
ents of continuous variable quantum information@1#. Indeed,
entangled Gaussian states have been successfully exp
in realizations of quantum key distribution@2# and teleporta-
tion @3# protocols.

In such experimental settings, the entanglement of a
partite state is usually distilled locally, and then distribut
over space, letting the entangled subsystems evolve inde
dently and move to separated spatial regions. In the cours
this process, interaction with the external environment is
avoidable and must be properly understood. Therefore,
analysis of the evolution of quantum correlations and de
herence of Gaussian states in noisy channels is of cru
interest, and has spurred several theoretical works@4–10#.

The evolution of fidelity of generic bosonic fields in nois
channels has been addressed in Ref.@4#. Indeed, the relevan
instance of initial two-mode squeezed vacua~possessing
nontrivial entanglement properties! has drawn most of the
attention in the field. Decoherence and entanglement de
dation of such states in thermal baths have been analyze
Refs. @6,7#, whereas phase damping and the effects
squeezed reservoirs are dealt with in Refs.@5,8,9#. In Ref.
@10# the author studies the evolution of a two-mode squee
vacuum in a common bath endowed with cross correlati
and asymptotic entanglement. Decoherence and entan
ment degradation in continuous variable systems have b
experimentally investigated in Ref.@11#.

In this paper we address the general case of an arbit
two-mode Gaussian state dissipating in arbitrary local Ga
ian environments. The resulting dynamics is governed b
two-mode master equation describing losses and the
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hopping in presence of~local! nonclassical fluctuations o
the environment.

We study the evolution of quantum and total correlatio
and the behavior of decoherence in noisy channels. Quan
and total correlations of a state will be quantified by, resp
tively, its logarithmic negativity@12# and its mutual informa-
tion, while the rates of decoherence will be determined
following the evolution of the purity~conjugate to the linear
entropy! and of the von Neumann entropy. We present e
plicit analytical results, as well as numerical studies, on
optimization of the relevant physical quantities along t
nonunitary evolution. Our analysis provides an answer to
question whether possible effective schemes to mimic g
eral Gaussian environments@13,14# are able to delay the de
cay of quantum coherence and correlations. We mention t
among such schemes, the most interesting for application
bosonic fields is based on quantum nondemolition~QND!
measurements and feedback dynamics@13,15#. We finally
remark that the optimization of the quantities we are going
study with respect to phenomenological parameters turns
to be particularly relevant at ‘‘small times,’’ before decohe
ence has irreversibly corrupted the quantum features of
state, crucial for applications in quantum information.

This paper is structured as follows. In Sec. II we provi
a self-contained description of the general structure of tw
mode Gaussian states, including the characterization of t
mixedness and entanglement. In Sec. III we review the e
lution of Gaussian states in general Gaussian environme
In Sec. IV we focus on the evolution of purity and entang
ment, determining the optimal regimes that can help prese
these quantities from environmental corruption. Finally,
Sec. V we summarize our results and discuss some out
on future research.

II. TWO-MODE GAUSSIAN STATES: GENERAL
PROPERTIES

Let us consider a two-mode continuous variable syste
described by a Hilbert spaceH5H1^ H2 resulting from the
tensor product of the Fock spacesHi ’s. We denote byai the
annihilation operator acting on the spaceHi , and by x̂i
©2004 The American Physical Society18-1
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5(ai1ai
†)/A2 andp̂i5(ai2ai

†)/A2 the quadrature phase op
erators related to the modei of the field. The corresponding
phase-space variables will be denoted byxi andpi .

The set of Gaussian states is, by definition, the se
states with Gaussian characteristic functions and qua
probability distributions. Therefore a Gaussian state is co
pletely characterized by its first and second statistical m
ments, which will be denoted, respectively, by the vector
first momentsX̄[(^ x̂1&,^ p̂1&,^x̂2&,^ p̂2&) and by the covari-
ance matrixs:

s i j [
1
2 ^x̂i x̂ j1 x̂ j x̂i&2^x̂i&^x̂ j&. ~1!

First moments can be arbitrarily adjusted by local unita
operations, which do not affect any quantity related to
tanglement or mixedness. Moreover, as we will see in S
III, they do not influence the evolution of second moments
the instances we will deal with. Therefore they will be u
important to our aims and we will set them to 0 in the fo
lowing, without any loss of generality for our subseque
results. Throughout the paper,s will stand both for the co-
variance matrix and the Gaussian state% itself.

It is convenient to expresss in terms of the three 232
matricesa,b,g:

s[S a g

gT b
D . ~2!

Positivity of % and the canonical commutation relations im
pose the following constraint fors to be abona fidecovari-
ance matrix@16#:

s1
i

2
V>0, ~3!

whereV is the standard symplectic form

V[S v 0

0 v
D , v[S 0 1

21 0D .

Inequality~3! is a useful and elegant way to express Heis
berg uncertainty principle.

In the following, we will make use of the Wigner qua
siprobability representationW, defined as the Fourier trans
form of the symmetrically ordered characteristic functi
@17#. In Wigner phase-space picture, the tensor producH
5H1^ H2 of the Hilbert spacesHi ’s of the two modes re-
sults in the direct sumG5G1% G2 of the associated phas
spacesG i ’s. A symplectic transformation acting on the glob
phase spaceG corresponds to a unitary operator acting on
global Hilbert spaceH @18#. In what follows we will refer to
a transformationSl5S1% S2, with eachSiPSp(2,R) acting on
G i , as to a ‘‘local symplectic operation.’’ The correspondi
unitary transformation is the local unitary transformati
Ul5U1^ U2, with eachUi acting onHi .

The Wigner function of a Gaussian state can be written
follows in terms of phase-space quadrature variables:
02231
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W~X!5
e2(1/2)Xs21XT

pADet@s#
, ~4!

whereX stands for the vector (x1 ,p1 ,x2 ,p2)PG.
It is well known that for any covariance matrixs there

exists a local canonical operationSl5S1% S2 which trans-
forms s to the so-called standard formss f @19#,

Sl
TsSl5ss f[S a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b

D . ~5!

States whose standard form fulfillsa5b are said to be sym-
metric. Let us recall that any pure state is symmetric a
fulfills c152c25Aa221/4. The correlationsa, b, c1, and
c2 are determined by the four local symplectic invarian
Dets5(ab2c1

2)(ab2c2
2), Deta5a2, Detb5b2, Detg

5c1c2. Therefore, the standard form corresponding to a
covariance matrix is unique.

Inequality ~3! can be recast as a constraint on theSp(4,R)
invariants Dets andD(s)5Deta1Detb12 Detg:

D~s!< 1
4 14 dets. ~6!

Finally, let us recall that a centered two-mode Gauss
state can always be written as@20,21#

s5STnS, ~7!

where SPSp(4,R) and n is the tensor product of therma
states with covariance matrix

n5diag~n2 ,n2 ,n1 ,n1!. ~8!

The quantitiesn7 form the symplectic spectrum of the co
variance matrixs. They can be easily computed in terms
the Sp(4,R) invariants:

2n7
2 5D~s!7AD~s!224 Dets. ~9!

The symplectic eigenvaluesn7 encode essential informa
tions about the Gaussian states and provide powerful,
simple ways to express its fundamental properties. For
stance, the Heisenberg uncertainty relation~3! can be recast
in the compact, equivalent form

n2> 1
2 . ~10!

A relevant subclass of Gaussian states we will make use
constituted by the two-mode squeezed thermal states.

Sr5exp(12ra1a22
1
2ra1

†a2
†) be the two-mode squeezing oper

tor with real squeezing parameterr, and letnm51/(2Am)1
be the tensor product of identical thermal states, wherem
5Tr(%2) is the purity of the state. Then, for a two-mod
squeezed thermal statejm,r we can writejm,r5SrnmS†. The
covariance matrix ofjm,r is a symmetric standard form sa
isfying
8-2
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a5
cosh 2r

2Am
, c152c25

sinh 2r

2Am
, ~11!

and in the instancem51 one recovers the pure two-mod
squeezed vacuum states. Two-mode squeezed states a
dowed with remarkable properties related to entanglem
@22,23#; their dynamics in noisy channels will be analyzed
detail.

A. Characterization of mixedness

Let us briefly recall that the degree of purity of a quantu
state can be properly characterized either by the von N
mann entropySV or by the linear entropySl . Such quantities
are defined as follows for continuous variable systems:

SV[2Tr~% ln % !, ~12!

Sl[12Tr~%2![12m, ~13!

where the puritym[Tr(%2) has already been introduced. W
first point out thatm can be easily computed for Gaussi
states. In fact, in the Wigner phase-space picture the trac
a product of operators corresponds to the integral of
product of their Wigner representations~when existing! over
the whole phase space. Because the representation of a
% is just W, for an n-mode Gaussian state we have, taki
into account the proper normalization factor,

m~s!5
p

2nER2n
W2dnxdnp5

1

2nADets
. ~14!

For Gaussian states, the von Neumann entropy can
computed as well, determining their symplectic spectra.
single-mode Gaussian states, one has@24#

SV~s!5
12m

2m
lnS 11m

12m D2 lnS 2m

11m D , ~15!

wherem can be computed from Eq.~14! for n51. SV is in
this case an increasing function of the linear entropy, so
both quantities provide the same characterization of mix
ness. This is no longer true for two-mode Gaussian state
this case the von Neumann entropy reads@20,21#

SV~s!5 f „ñ2~s!…1 f „ñ1~s!…, ~16!

where

f ~x![~x1 1
2 !ln~x1 1

2 !2~x2 1
2 !ln~x2 1

2 !,

and the symplectic eigenvaluesn7(s) are given by Eq.~9!.
Knowledge of the von Neumann entropySV allows for

the determination of the mutual informationI defined, for a
general bipartite quantum state%, as I (%)5SV(%1)
1SV(%2)2SV(%), where% i refers to the reduced state o
tained tracing over the variables of subsystemj Þ i . The mu-
tual informationI (s) of a two-mode Gaussian states reads
@21#
02231
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I ~s!5 f ~a!1 f ~b!2 f ~n2!2 f ~n1!. ~17!

One can make use of such a quantity to estimate the am
of total ~quantum plus classical! correlations contained in a
states @25#.

B. Characterization of entanglement

We now review some properties of entanglement for tw
mode Gaussian states. The necessary and sufficient se
bility criterion for such states is positivity of the partiall
transposed states̃ ~PPT criterion! @16#. It can be easily seen
from the definition ofW(X) that the action of partial trans
position amounts, in phase space, to a mirror reflection
one of the four canonical variables. In terms ofSp2,R
% Sp2,R invariants, this results in flipping the sign of Detg.
Therefore the invariantD(s) is changed intoD̃(s)5D(s̃)
5Deta1Detb22 Detg. Now, the symplectic eigenvalue
ñ7 of s̃ read

ñ75AD̃~s!7„D̃~s!224 Dets…

1/2

2
. ~18!

The PPT criterion then reduces to a simple inequality t
must be satisfied by the smallest symplectic eigenvalueñ2

of the partially transposed state,

ñ2> 1
2 , ~19!

which is equivalent to

D̃~s!<4 Dets1 1
4 . ~20!

The above inequalities imply Detg5c1c2,0 as a necessar
condition for a two-mode Gaussian state to be entangled.
quantityñ2 encodes all the qualitative characterization of t
entanglement for arbitrary~pure or mixed! two-mode Gauss-
ian states. Note thatñ2 takes a particularly simple form fo
entangled symmetric states, whose standard form hasa5b:

ñ25A~a2uc1u!~a2uc2u!. ~21!

As for the quantification of entanglement, no fully sati
factory measure is known at present for arbitrary mixed tw
mode Gaussian states. However, a quantification of entan
ment which can be computed for general two-mode Gaus
states is provided by the negativityN, introduced by Vidal
and Werner for continuous variable systems@12#. The nega-
tivity of a quantum state% is defined as

N~% !5
i%̃i121

2
, ~22!

where%̃ is the partially transposed density matrix andi ôi1

[TrAô†ô stands for the trace norm of an operatorô. The
quantityN(%) is equal tou( il i u, the modulus of the sum o
the negative eigenvalues of%̃, and it quantifies the extent to
which %̃ fails to be positive. Strictly related toN is the
8-3
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logarithmic negativityEN , defined asEN[ lni%̃i1. The nega-
tivity has been proved to be convex and monotone un
local operations and classical communications@26#, but fails
to be continuous in trace norm on infinite-dimensional H
bert spaces. Anyway, this problem can be somehow elu
by restricting to states with finite mean energy@28#. For two-
mode Gaussian states it can be easily shown that the n
tivity is a simple function ofñ2 , which is thus itself an
~increasing! entanglement monotone; one has in fact@12#

EN~s!5max$0,2 ln 2ñ2%. ~23!

This is a decreasing function of the smallest partially tra
posed symplectic eigenvalueñ2 , quantifying the amount by
which inequality ~19! is violated. Thus, for our aims, th
eigenvalueñ2 completely qualifies and quantifies the qua
tum entanglement of a two-mode Gaussian states.

We finally mention that, as far as symmetric states
concerned, another measure of entanglement, the enta
ment of formationEF @29#, can be actually computed@23#.
Fortunately, sinceEF turns out to be, again, a decreasi
function of ñ2 , it provides for symmetric states a quanti
cation of entanglement fully equivalent to the one provid
by the logarithmic negativityEN . Therefore, from now on
we will adoptEN(s) as the entanglement measure of Gau
ian states, recalling that this quantity constitutes an up
bound to thedistillable entanglementof quantum states@12#.

III. EVOLUTION IN GENERAL GAUSSIAN
ENVIRONMENTS

We now consider the local evolution of an arbitrary tw
mode Gaussian state in noisy channels, in the presenc
arbitrarily squeezed~phase-sensitive! environments. In gen-
eral, the two channels related to the two different mod
could be different from one another, each mode evolv
independently in its channel. We will refer to the chann
~bath! in which modei evolves as to channel~bath! i. The
system is governed, in interaction picture, by the followi
master equation@30#:

%̇5 (
i 51,2

G

2
NiL@ai

†#%1
G

2
~Ni11!L@ai #%2

G

2
~M̄ iD@ai #%

1MiD@ai
†#% !, ~24!

where the dot stands for time derivative and the Lindb
superoperators are defined byL@O#%[2O%O†2O†O%
2%O†O and D@O#%[2O%O2OO%2%OO. The com-
plex parameterMi is the correlation function of bathi; it is
usually referred to as the ‘‘squeezing’’ of the bath.Ni is
instead a phenomenological parameter related to the p
of the asymptotic stationary state. Positivity of the dens
matrix imposes the constraintuMi u2<Ni(Ni11). At thermal
equilibrium; i.e., forMi50, the parameterNi coincides with
the average number of thermal photons in bathi.

A squeezed environment, leading to the master equa
~24!, may be modeled as the interaction with a bath of os
lators excited in squeezed thermal states@31#. Several effec-
02231
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tive realizations of squeezed baths have been propose
recent years@13,14#. In particular, in Ref.@13# the authors
show that a squeezed environment can be obtained, f
mode of the radiation field, by means of feedback schem
relying on QND ‘‘intracavity’’ measurements, capable of a
fecting the master equation of the system. More specifica
an effective squeezed reservoir is shown to be the result
continuous homodyne monitoring of a field quadrature, w
the addition of a feedback driving term, coupling the hom
dyne output current with another field quadrature of t
mode.

Let % i5S(r i ,w i)n n̄i
S(r i ,w i)

† be the environmenta

Gaussian state of modei @32#. Here n̄i denotes the mean
number of photons in the thermal staten n̄i

. Its knowledge
allows us to determine the purity of the state via the relat

m i51/(2n̄i11). The operator S(r ,w)5exp(1
2 re2 i2wa2

2 1
2 r ei2wa2) is the one-mode squeezing operator. A mo

convenient parametrization of the channel, endowed wit
direct phenomenological interpretation, can be achieved
expressingNi andMi in terms of the three real variablesm i ,
r i , andw i @33#:

m i5
1

A~2Ni11!224uMi u2
, ~25!

cosh~2r i !5A114m i
2uMi u2, ~26!

tan~2w i !52tan~argMi !. ~27!

Note that the Gaussian state of the environment in bai
coincides with the asymptotic state of modei, the global
asymptotic state being an uncorrelated product of the st
% i ’s, irrespective of the initial state.

With standard techniques, it can be shown that the ma
equation~24! corresponds to a Fokker-Planck equation
the Wigner function of the system@30#. In compact notation,
one has

Ẇ~X,t !5
G

2
@]XXT1]X s` ]X

T#W~X,t !, ~28!

with ]X[(]x1
,]p1

,]x2
,]p2

) and with a diffusion matrix

s`5s1` % s2`5S s1` 0

0 s2`
D , ~29!

resulting from the tensor product of the asymptotic Gauss
statessi`’s, given by

si`5S 1
2 1Ni1ReMi Im Mi

Im Mi
1
2 1Ni2ReMi

D . ~30!

For an initial Gaussian state of the form, Eq.~4!, the Fokker-
Planck equation~28! corresponds to a set of decoupled equ
tions for the second moments and can be easily solved. N
that the drift term always damps to 0 the first statistical m
ments, and it may thus be neglected for our aims. The e
8-4
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lution in the bath preserves the Gaussian form of the ini
condition and is described by the following equation for t
covariance matrix@4,33,34#:

s~ t !5s`~12e2Gt!1s~0!e2Gt. ~31!

This is a simple Gaussian completely positive map, ands(t)
satisfies the uncertainty relation, Eq.~3!, if and only if the
latter is satisfied by boths` ands0. The compliance ofs`

with inequality ~3! is equivalent to the conditionsuMi u
<Ni(Ni11).

It is easy to see that Eq.~31! describes the evolution of a
initial Gaussian states0 in an arbitrary Gaussian environ
ments` , which can in general be different from that defin
by Eq. ~29!. It would be interesting to find systems who
dynamics could be effectively described by the dissipation
a correlated Gaussian environment~recall that the instance
we are analyzing involves a completely uncorrelated en
ronment!. Some perspectives in this direction, which lie ou
side the scopes of the present paper, could come from f
back and conditional measurement schemes.

The initial Gaussian state is described, in general, by a
of ten covariances. To simplify the problem and to bet
point out the relevant features of the nonunitary evoluti
we will choose an initial state already brought in stand
form s05ss f . With this choice the parametrization of th
initial state is completely determined by the four paramet
a, b, c1, andc2, defined in Eq.~5!. This choice is not restric-
tive as far as the dynamics of purity and entanglement
concerned. In fact, let us consider the most general in
Gaussian states evolving in the most general Gaussian u
correlated environment% isi` . The states can always be
put in standard form by means of some local transforma
Sl5 % iSi . Under the same transformation, the state of
environment % is i`8 remains uncorrelated, withs i`8
5Si

Tsi`Si . All the properties of entanglement and mixe
ness for the evolving state are invariant under local ope
tions. Therefore, we can state that the evolution of the m
edness and the entanglement of any initial Gaussian stas
in any uncorrelated Gaussian environments` is equivalent
to the evolution of the initial state in standard formSl

TsSl in
the uncorrelated Gaussian environmentSl

Ts`Sl .
Finally, to further simplify the dynamics of the state with

out loss of generality, we can setw150 ~ corresponding to
Im M150) as a ‘‘reference choice’’ for phase-space ro
tions.

Quite obviously, the standard form of the state is not p
served in an arbitrary channel, as can be seen from Eqs.~30!
and ~31!.

IV. EVOLUTION OF MIXEDNESS AND ENTANGLEMENT

Let us now consider the evolution of mixedness and
tanglement of a generic state in standard form~parametrized
by a, b, c1, andc2) in a generic channel~parametrized by
m1 , r 1 , m2 , r 2, andw2). Knowledge of the exact evolution
of the state in the channel, given by Eq.~31!, allows us to
apply the results reviewed in Sec. II and to keep track of
quantitiesm(t), SV(t), I (t), andEN(t) during the nonuni-
02231
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tary evolution in the channel. However the explicit depe
dence of such quantities on the nine parameters charact
ing the initial state and the environment is quite involved. W
provide the explicit expressions in Appendix A. They give
systematic recipe to compute the evolution of mixedne
correlations, and entanglement for any given Gaussian s
in standard form~and, therefore, for any Gaussian state!.

We now investigate the duration and robustness of
tanglement during the evolution of the field modes in t
channels. Let us consider an initial entangled statese evolv-
ing in the bath. Making use of the separability criterion, E
~20!, one finds that the statese becomes separable at a ce
tain time t if

ue24Gt1ve23Gt1we22Gt1ye2Gt1z50. ~32!

The coefficientsu, v, w, y, andz are functions of the nine
parameters characterizing the initial state and the cha
~see Appendix A!. Equation~32! is an algebraic equation o
fourth degree in the unknownk5e2Gt. The solutionkent of
such an equation closest to one, and satisfyingkent<1 can
be found for any given initial entangled state. Its knowled
promptly leads to the determination of the ‘‘entangleme
time’’ tent of the initial state in the channel, defined as t
time interval after which the initial state becomes separa

tent52
1

G
ln kent . ~33!

The results of the numerical analysis of the evolution
entanglement and mixedness for several initial states are
ported in Figs. 1–8. In general, one can see that, trivially
less mixed environment better preserves both purity and
tanglement by prolonging the entanglement time. More
markably, Fig. 1 shows that local squeezing of the two u
correlated channels does not help preserve quan
correlations between the evolving modes. Moreover, as
be seen from Fig. 1, states with greater uncertainties on,
mode 1 (a.b) better preserves its entanglement if bath 1
more mixed than bath 2 (m1,m2). A quite interesting fea-

FIG. 1. Time evolution of logarithmic negativity of a nonsym
metric Gaussian state witha52, b51, c151, and c2521 in
several noncorrelated environments. The solid line refers to the
m15m251/2, r 15r 250; the dashed line refers to the casem1

51/2, m251/6, r 15r 250; the dot-dashed line refers to the ca
m151/6, m251/2, r 15r 250; the dotted line refers to the cas
m15m251/2, r 15r 251. In all cases the squeezing anglew250.
All the plotted quantities are dimensionless.
8-5
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ture is shown in Fig. 8: the mutual information is bett
preserved in squeezed channels, especially at long tim
This property has been tested as well on nonentangled st
endowed only with classical correlations, see Fig. 8, and
two-mode squeezed states, see Fig. 7, and seems to
quite generally. In Fig. 2, the behavior of some initially sym
metric states is considered. In this instance we can see
in squeezed baths, the entanglement of the initial stat
better preserved if the squeezing of the two channels is
anced.

The analytic optimization of the relevant quantities ch
acterizing mixedness and correlations in the channel turn
to be difficult in the general case. Thus it is convenient
proceed with our analysis by dealing with particular i
stances of major phenomenological interest.

A. Standard form states in thermal channels

In this section, we deal with the case of states in gen
standard form~parametrized bya,b,ci) evolving in two ther-
mal channels~parametrized by two—generally different—

FIG. 2. Time evolution of logarithmic negativity of a symmetr
Gaussian state witha51.5, b51.5, c151.2, andc2521.4 in sev-
eral noncorrelated environments. The solid line refers to the c
m15m251/2, r 15r 250; the dashed line refers to the casem1

5m251/4, r 15r 250; the dot-dashed line refers to the casem1

5m251/2, r 15r 251; the dotted line refers to the casem15m2

51/2, r 150, r 251.5. In all cases the squeezing anglew250. All
the plotted quantities are dimensionless.

FIG. 3. Time evolution of logarithmic negativity of a two-mod
squeezed state withr 51 in several noncorrelated environmen
The solid line refers to the casem15m251/2, r 15r 250, w250;
the dashed line refers to the casem154, m251, r 15r 250, w2

50; the dot-dashed line refers to the casem15m251/2, r 15r 2

51, w250; the dotted line refers to the casem15m251/2, r 1

5r 251, w25p/4. All the plotted quantities are dimensionless.
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mean photon numbersNi ’s!. This instance is particularly rel
evant, because it gives a basic description of act
experimental settings involving, for instance, fiber-media
communications.

The puritym of the global quantum state turns out to be
decreasing function ofNi ’s at any given time. The symplec
tic eigenvalueñ2 is also in general an increasing function
Ni ’s. Therefore, the entanglement of the evolving state
optimal for ideal vacuum environments, which is qui
trivial, recalling the well-understood synergy between e
tanglement and purity for general quantum states.

B. Entanglement time of symmetric states

We have already provided a way of computing the e
tanglement time of an arbitrary two-mode state in arbitra
channels. The expression of such a quantity is, unfortuna
rather involved in the general case. However, focusing

se

FIG. 4. Time evolution of logarithmic negativity of a two-mod
squeezed thermal state with initial puritym51/9, r 51 in several
noncorrelated environments. The solid line refers to the casem1

5m251/2, r 15r 250, w250; the dashed line refers to the ca
m154, m251, r 15r 250, w250; the dot-dashed line refers to th
casem15m251/2, r 15r 251, w250; the dotted line refers to the
casem15m251/2, r 15r 251, w25p/4. All the plotted quantities
are dimensionless.

FIG. 5. Time evolution of the purity of two-mode squeez
thermal states. The solid line refers to a two-mode squee
vacuum state withr 51 in an environment withm15m251/2, r 1

5r 250; the dashed line shows the behavior of the same state
m15m251/2, r 15r 251. The dot-dashed line refers to a mixe
state withm51/9, r 51 in an environment withm15m251/2, r 1

5r 250; the dotted line refers to the same state form15m251/2,
r 15r 251. The squeezing anglew2 has always been set to 0. A
the plotted quantities are dimensionless.
8-6
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symmetric states~which satisfya5b), some simple analytic
results can be found, thanks to the simple form taken byñ2

for these states. An initially symmetric entangled state ma
tains its symmetric standard form if evolving in equal, ind
pendent environments~with N15N2[NB). This is the in-
stance we will consider in the following.

Let us suppose thatuc1u<uc2u, then Eqs.~19! and ~21!
provide the following bounds for the entanglement time:

lnS 11
uc1u2a1 1

2

NB
D<Gtent< lnS 11

uc2u2a1 1
2

NB
D .

~34!

Imposing the additional propertyc152c2 we obtain stan-
dard forms which can be written as squeezed thermal st
@see Eqs.~11!#. For such states, inequality~34! reduces to

FIG. 6. Time evolution of the von Neumann entropy of seve
Gaussian states in a thermal environment withm15m251/3. the
solid line refers to a state witha51, b5c152c251; the dashed
line refers to a two-mode squeezed vacuum state withr 51; the
dot-dashed line refers to a squeezed thermal state withm51/16, r
51; the dotted line refers to a nonentangled state witha5b52,
c152c251.5. The squeezing anglew2 has always been set to 0
All the plotted quantities are dimensionless.

FIG. 7. Time evolution of the mutual information of two-mod
squeezed thermal states in an environment withm15m251/3. The
solid line refers to a pure state withr 51 in a nonsqueezed env
ronment; the dotted line refers to the same state in an environm
with r 15r 251; the dashed line refers to a squeezed thermal s
with m51/16, r 51 in a nonsqueezed environment; the dot-das
line refers to the same state in a squeezed environment witr 1

5r 251. The squeezing anglew2 has always been set to 0. All th
plotted quantities are dimensionless.
02231
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lnS 11

12 e22r

2AmNB
D . ~35!

In particular, form51, one recovers the entanglement tim
of a two-mode squeezed vacuum state in a thermal cha
@7,10,19#. Note that two-mode squeezed vacuum states
compass all the possible standard forms of pure Gaus
states.

C. Two-mode squeezed thermal states

As we have seen, two-mode squeezed thermal states
stitute a relevant class of Gaussian states, parametrize
their puritym and by the squeezing parameterr according to
Eqs. ~11!. In particular, two-mode squeezed vacuum sta
~or twin beams!, which can be defined as squeezed therm
states withm51, correspond to maximally entangled sym
metric states for fixed marginal purity. Therefore, they co
stitute a crucial resource for possible applications of Gau
ian states in quantum information engineering.

For squeezed thermal states~chosen as initial conditions
in the channel!, it can be shown analytically that the partial

transposed symplectic eigenvalueñ2 is at any time an in-
creasing function of the bath squeezing anglew2: ‘‘parallel’’
squeezing in the two channels optimizes the preservatio
entanglement. Both in the instance of two equal squee
baths~i.e., with r 15r 25r ) and of a thermal bath joined to
squeezed one~i.e., r 15r and r 250), it can be shown tha
ñ2 is an increasing function ofr. These analytical results
agree with those provided in Ref.@8# in the study of the
qualitative degradation of entanglement for pure squee
states. The proofs of the above statements are given in
pendix B.

l

nt
te
d

FIG. 8. Time evolution of the mutual information of Gaussia
states in an environment withm15m251/3. The solid line refers to
state witha52, b5c152c251 in a nonsqueezed environmen
the dotted line refers to the same state in an environment withr 1

5r 251; the dashed line refers to a nonentangled state witha5b
52, c152c251.5 in a nonsqueezed environment; the dot-das
line refers to the same state in a squeezed environment witr 1

5r 251. The squeezing anglew2 has always been set to 0. All th
plotted quantities are dimensionless.
8-7
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Such analytical considerations, supported by direct
merical analysis, clearly show that a local squeezing of
environment faster degrades the entanglement of the in
state. The same behavior occurs for purity. The time evo
tion of the logarithmic negativity of two-mode squeez
states—thermal and pure—is shown in Figs. 3 and 4.
evolution of the global purity is reported in Fig. 5, while th
evolutions of the von Neumann entropy and of the mut
information are shown, respectively, in Figs. 6 and 7.

V. SUMMARY AND CONCLUSIONS

We studied the evolution of mixedness, entanglement,
mutual information of initial two-mode Gaussian stat
evolving in uncorrelated Gaussian environments. We deri
exact general relations that allowed us to determine the t
evolution of such quantities, and provided analytical e
mates on the entanglement time. The optimal bath par
eters for the preservation of quantum correlations and pu
have been determined for thermal baths and for two-m
squeezed states in more general baths. A detailed nume
analysis has been performed for the most general cases

We found that, in general, a local squeezing of the ba
does not help to preserve purity and quantum correlation
the evolving state, both at small times~i.e., for Gt&1) and
asymptotically. On the other hand, local squeezing of
baths can improve the preservation of the mutual informa
in uncorrelated channels. Besides, coherence and correla
are better maintained in environments with lower avera
number of photons.

The present study may be be extended to the cas
n-mode Gaussian states. This generalization would be d
able, since the practical implementation of quantum inform
tion protocols usually requires some redundancy. For th
mode Gaussian states, separability conditions analogou
inequality ~6! have been determined@35#, and could be ex-
ploited to provide a qualitative picture of the evolution
three-mode entanglement in noisy channels.
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APPENDIX A: EXPLICIT DETERMINATION
OF MIXEDNESS AND ENTANGLEMENT

IN THE GENERAL CASE

Here we provide explicit expressions which allow one
determine the exact evolution in uncorrelated channels
generic initial state in standard form. The relevant quanti
EN ,m,SV ,I, as we have seen, are all functions of the fo
Sp(2,R) % Sp(2,R) invariants. Let us then write such quantitie
as follows:

Dets5 (
k50

4

Ske
2kGt, ~A1!
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Deta5 (
k50

2

ake
2kGt, ~A2!

Detb5 (
k50

2

bke
2kGt, ~A3!

Detg5g2e22Gt, ~A4!

defining the sets of coefficientsS i ,a i ,b i ,g i . One has

S45a2b21
a2

4m2
2

1
b2

4m1
2

2a2b
cosh 2r 2

m2
2ab2

cosh 2r 1

m1

1ab
cosh 2r 1 cosh 2r 2

m1m2
2a

cosh 2r 1

4m1m2
2

2b
cosh 2r 2

4m1
2m2

1~c1
21c2

2!S a
cosh 2r 2

2m2
1

bcosh 2r 1

2m1

2
cosh 2r 1 cosh 2r 2

4m1m2
2

sinh 2r 1 sinh 2r 2 cos 2w2

4m1m2
2abD

1~c1
22c2

2!S a
sinh 2r 2 cos 2w2

2m2
1b

sinh 2r 1

2m1

2
sinh 2r 1 cosh 2r 2

4m1m2
2

cosh 2r 1 sinh 2r 2 cos 2w2

4m1m2
D

1c1
2c2

21
1

16m1
2m2

2
, ~A5!

S3522
a2

4m2
2

22
b2

4m1
2

1a2b
cosh 2r 2

m2
1ab2

cosh 2r 1

m1

22ab
cosh 2r 1 cosh 2r 2

m1m2
13a

cosh 2r 1

4m1m2
2

13b
cosh 2r 2

4m1
2m2

2~c1
22c2

2!S a
sinh 2r 2 cos 2w2

2m2
1b

sinh 2r 1

2m1

22
sinh 2r 1 cosh 2r 2

4m1m2
22

cosh 2r 1 sinh 2r 2 cos 2w2

4m1m2
D

2~c1
21c2

2!S a
cosh 2r 2

2m2
1

b cosh 2r 1

2m1

22
cosh 2r 1 cosh 2r 2

4m1m2
22

sinh 2r 1 sinh 2r 2 cos 2w2

4m1m2
D

2
1

4m1
2m2

2
, ~A6!
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S25
a2

4m2
2

1
b2

4m1
2

1ab
cosh 2r 1 cosh 2r 2

m1m2
23a

cosh 2r 1

4m1m2
2

23b
cosh 2r 2

4m1
2m2

2~c1
21c2

2!S cosh 2r 1 cosh 2r 2

4m1m2

1
sinh 2r 1 sinh 2r 2 cos 2w2

4m1m2
D2~c1

22c2
2!

3S sinh 2r 1 cosh 2r 2

4m1m2
1

cosh 2r 1 sinh 2r 2 cos 2w2

4m1m2
D

1
1

16m1
2m2

2
, ~A7!

S151a
cosh 2r 1

4m1m2
2

1b
cosh 2r 2

4m1
2m2

2
1

4m1
2m2

2
, ~A8!

S05
1

16m1
2m2

2
, ~A9!

a25a22a
cosh 2r 1

m1
1

1

4m1
2

, ~A10!

a15a
cosh 2r 1

m1
22

1

4m1
2

, ~A11!

a05
1

4m1
2

, ~A12!

b25b22b
cosh 2r 2

m2
1

1

4m2
2

, ~A13!

b15b
cosh 2r 2

m2
22

1

4m2
2

, ~A14!

b05
1

4m2
2

, ~A15!

g25c1c2 . ~A16!

The coefficients of Eq.~32!, whose solutionkent allows one
to determine the entanglement time of an arbitrary two-m
Gaussian state, read

u5S4 , ~A17!

v5S3 , ~A18!

w5S22a22b22ug2u, ~A19!

y5S12a12b1 , ~A20!
02231
e

z5S02a02b01 1
4 . ~A21!

APPENDIX B: PROOFS FOR TWO-MODE
SQUEEZED STATES

In this appendix we consider a two-mode squeezed th
mal state of the form of Eq.~11! as the initial input in the
noisy channels.

We first deal with the dependence of entanglement
mixedness on the squeezing anglew2 of bath 2. It can be
easily shown~see Appendix A! that D(s) does not depend
on w2, whereas Dets turns out to be a decreasing functio
of cosw2. Therefore, since the symplectic eigenvalueñ2 in-
creases with Dets, one has thatw250 is the optimal choice
for maximizing both entanglement and purity of the evolvi
state.

We now address the instance of two equally squee
baths, withNi[NB , r i[r B , and w250. The time depen-
dent covariance matrixs2m can be written in the form

s2m5S j 2 0 k 0

0 j 1 0 2k

k 0 j 2 0

0 2k 0 j 1

D ,

with

j 75
cosh 2r

2Am
e2Gt1~NB1 1

2 !e72r B~12e2Gt!,

k5
sinh 2r

2Am
e2Gt.

The standard form ofs2m is easily found just by squeezin
the field in the two modes of the same quantityAj 1 / j 2. The
result is a symmetric standard form, whose smallest parti
transposed symplectic eigenvalueñ2 can be computed ac
cording to Eq.~21!:

ñ25~ j 22k!~ j 12k!5d cosh 2r B1•••,

where the terms that do not depend onr B are irrelevant to
our discussion and have thus been neglected. The coeffic
d is a positive function oft, r, andNB , so that the best choice
to maximize entanglement at any given time is given byr B

50. Quite obviously,ñ2 turns out to be an increasing func
tion of NB as well.

Finally, we deal with the instance in which bath 1
squeezed while bath 2 is thermal, withr 250. For ease of
notation we defineusu5Dets. We recall that 2ñ2

2 5D̃

2AD̃224usu. Thus, for entangled states~for which ñ2

,1/2), one finds
8-9



b the

SERAFINI et al. PHYSICAL REVIEW A 69, 022318 ~2004!
] usu~2ñ2
2 !.24]D̃~2ñ2

2 !.0.

The sign of the quantity 4] r 1
usu2] r 1

D̃ for the case of the
initial two-mode squeezed can be shown, after some alge
to be determined by
H.

ev

ys

in

02231
ra,

4~eGt21!cosh 2rn2
21~31cosh 4r !n22~eGt11!cosh 2r .

This second degree polynomial is positive forn2[N211/2
>1/2. This proves that the entanglement decreases as
squeezing of bath 1 increases.
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