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Graphical description of the action of local Clifford transformations on graph states
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We translate the action of local Clifford operations on graph states into transformations on their associated
graphs, i.e., we provide transformation rules, stated in purely graph theoretical terms, which completely
characterize the evolution of graph states under local Clifford operations. As we will show, there is essentially
one basic rule, successive application of which generates the orbit of any graph state under local unitary
operations within the Clifford group.
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I. INTRODUCTION

Stabilizer states and, more particularly, graph states,
~local! unitary operations in the Clifford group have be
studied extensively and play an important role in numer
applications in quantum information theory and quant
computing. A stabilizer state is a multiqubit pure state wh
is the unique simultaneous eigenvector of a complete se
commuting observables in the Pauli group, the latter cons
ing of all tensor products of Pauli matrices and the iden
~with an additional phase factor!. Graph states are speci
cases of stabilizer states, for which the defining set of co
muting Pauli operators can be constructed on the basis
mathematical graph. The Clifford group consists of all u
tary operators which map the Pauli group to itself und
conjugation. As the closed framework of stabilizer theo
plus the Clifford group turns out to have a relatively simp
mathematical description while maintaining a sufficien
rich structure, it has been employed in various fields of qu
tum information theory and quantum computing. In t
theory of quantum error-correcting codes, the stabilizer
malism is used to construct so-called stabilizer codes wh
protect quantum systems from decoherence effects@1#; graph
states have been used in multipartite purification scheme@2#
and a measurement-based computational model has bee
signed which uses a particular graph state, namely, the c
ter state, as a universal resource for quantum computatio
the one-way quantum computer@3#; ~a quotient group of! the
Clifford group has been used to construct performant mix
state entanglement distillation protocols@4#; most recently,
graph states were considered in the context of multipart
entanglement: in Ref.@5# the entanglement in graph stat
was quantified and characterized in terms of the Schm
measure.

The goal of this paper is to translate the action of lo
Clifford operations on graph states into transformations
their associated graphs, that is, to derive transforma
rules, stated in purely graph theoretical terms, which co
pletely characterize the evolution of graph states under lo
Clifford operations. The main reason for this research is
provide a tool for studying the local unitary~LU! equiva-
lence classes of stabilizer states or, equivalently, of gr
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states@11#—since the quantification of multipartite pure-sta
entanglement is far from being understood and a treatis
the subject in its whole is extremely complex, it is approp
ate to restrict oneself to a more easily manageable yet n
ertheless interesting subclass of physical states, as are
stabilizer states. The ultimate goal of this research is to c
acterize the LU-equivalence classes of stabilizer states
finding suitable representatives within each equivalence c
and/or constructing a complete and minimal set of local
variants which separate the stabilizer state orbits under
action of local unitaries. We believe that the result in th
paper is the first significant step in this direction.

In Sec. IV, we will show that the orbit of any graph sta
under local unitary operations within the Clifford group
generated by repeated application of essentially one b
graph transformation rule. The main tool for proving th
result will be the representation of the stabilizer formalis
and the~local! Clifford group in terms of linear algebra ove
GF~2!, where n-qubit stabilizer states are represented
n-dimensional linear subspaces ofZ2

2n which are self-
orthogonal with respect to a symplectic inner product@6,1#
and where Clifford operations are the symplectic transform
tions of Z2

2n @4,7#.
This paper is organized as follows. In Sec. II, we start

recalling the notions of stabilizer states, graph states, and
~local! Clifford group and the translation of these concep
into the binary framework. In Sec. III, we then show~con-
structively! that each stabilizer state is equivalent to a gra
state under local Clifford operations, thereby rederiving
result of Schlingemann@8#. Continuing within the class of
graph states, in Sec. IV we introduce our elementary gr
theoretical rules which correspond to local Clifford oper
tions and prove that these operations generate the orb
any graph state under local Clifford operations.

II. PRELIMINARIES

A. Stabilizer states, graph states, and the„local…
Clifford group

Let Gn denote the Pauli group onn qubits, consisting of
all 434n n-fold tensor products of the formav1^ v2^ •••

^ vn , whereaP$61,6 i % is an overall phase factor and th
232 –matricesv i ( i 51, . . . ,n) are either the identitys0 or
one of the Pauli matrices
©2004 The American Physical Society16-1
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sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D .

The Clifford groupCn is the normalizer ofGn in U(2n), i.e.,
it is the group of unitary operatorsU satisfying UG nU†

5Gn . We shall be concerned with the local Clifford grou
C n

l , which is the subgroup ofCn consisting of alln-fold
tensor products of elements inC1.

An n-qubit stabilizer stateuc& is defined as a simulta
neous eigenvector with eigenvalue 1 ofn commuting and
independent@12# Pauli group elementsMi . Then eigenvalue
equationsMi uc&5uc& define the stateuc& completely~up to
an arbitrary phase!. The set Sª$MPGnuM uc&5uc&% is
called the stabilizer of the stateuc&. It is a group of 2n

commuting Pauli operators, all of which have a real ove
phase61 and then operatorsMi are called generators ofS,
as eachMPS can be written asM5M1

x1
•••Mn

xn , for some
xiP$0,1%. The so-called graph states@3,2# constitute an im-
portant subclass of the stabilizer states. A graph@9# is a pair
G5(V,E) of sets, whereV is a finite subset ofN and the
elements ofE are 2-element subsets ofV. The elements ofV
are called the vertices of the graphG and the elements ofE
are its edges. Usually, a graph is pictured by drawing a~la-
beled! dot for each vertex and joining two dotsi and j by a
line if the corresponding pair of vertices$ i , j %PE. For a
graph with uVu5n vertices, the adjacency matrixu is the
symmetric binaryn3n matrix whereu i j 51 if $ i , j %PE and
u i j 50 otherwise. Note that there is a one-to-one corresp
dence between a graph and its adjacency matrix. Now, g
an n-vertex graphG with adjacency matrixu one definesn
commuting Pauli operators

K j5sx
( j ))

k51

n

~sz
(k)!uk j,

wheresx
( i ) ,sy

( i ) ,sz
( i ) are the Pauli operators which have, r

spectively,sx ,sy ,sz on thei th position in the tensor prod
uct and the identity elsewhere. The graph st
ucm1m2•••mn

(G)&, where m iP$0,1%, is then the stabilizer
state defined by the equations

~21!m jK j ucm1m2•••mn
~G!&5ucm1m2•••mn

~G!&.

Since one can easily show that the 2n eigenstates
ucm1m2•••mn

(G)& are equal up to local unitaries in the Cli
ford group, it suffices for our purposes to choose one of th
as a representative of all graph states associated withG. Fol-
lowing the literature@5#, we denote this representative b
uG&ªuc00•••0(G)&. Furthermore, if the adjacency matrice
of two graphsG and G8 differ only in their diagonal ele-
ments, the statesuG& and uG8& are equal up to a local Clif-
ford operation, which allows for ana priori reduction of the
set of graphs which needs to be considered in the problem
local unitary equivalence. The most natural choice is to c
sider the classQ#Z2

n3n of adjacency matrices which hav
zeros on the diagonal. These correspond to so-called sim
graphs, which have no edges of the form$ i ,i % or, equiva-
02231
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lently, none of the points is connected to itself with a lin
From this point on, we will only consider graph states whi
are associated with simple graphs.

B. The binary picture

It is well known @1,6,10# that the stabilizer formalism can
be translated into a binary framework, which essentially
ploits the homomorphism betweenG1 ,• and Z2

2 ,1 which
maps s05s00°00, sx5s01°01, sz5s10°10, and sy

5s11°11. InZ2
2 addition is to be performed modulo 2. Th

generalization ton qubits is defined bysu1v1
^ •••^ sunvn

5s (u1•••unuv1•••vn)°(u1•••unuv1•••vn)PZ2
2n , where

ui ,v iP$0,1%. Thus, ann-fold tensor product of Pauli matri
ces is represented as a 2n-dimensional binary vector. Note
that with this encoding one loses the information about
overall phases of Pauli operators. For now, we will altoget
disregard these phases and we will come back to this is
later in this paper.

In the binary language, two Pauli operatorssa and sb ,
where a,bPZ2

2n , commute iff aTPb50, where the
2n32n–matrix P5@ I 0

0 I # defines a symplectic inner produc
on the spaceZ2

2n . The stabilizer of a stabilizer state the
corresponds to ann-dimensional linear subspace ofZ2

2n

which is its own orthogonal complement with respect to t
symplectic inner product. Given a set of generators of
stabilizer, we assemble their binary representations as
columns of a full rank 2n3n–matrix S, which satisfies
STPS50 from the symplectic self-orthogonality propert
The entire stabilizer subspace consists of all linear comb
tions of the columns ofS, i.e., of all elementsSx, where
xPZ2

n . The matrix S, which is referred to as a generato
matrix for the stabilizer, is of course nonunique. A change
generators amounts to multiplyingS to the right with an
invertiblen3n matrix, which performs a basis change in th
binary subspace. Note that a graph state which correspo
to a graph with adjacency matrixu has a generator matrix
S5@ I

u#. Finally, it can be shown@4,7# that, as we disregard
overall phases, Clifford operations are just the symplec
transformations ofZ2

2n , which preserve the symplectic inne
product, i.e., they are the 2n32n–matricesQ which satisfy
QTPQ5P. As local Clifford operations act on each qub
separately, they have the additional block structu
Q5@C D

A B #, where then3n–blocksA,B,C,D are diagonal. In
this case, the symplectic property ofQ is equivalent to stat-
ing that each submatrix

F Aii Bii

Cii Dii
G ,

which acts on thei th qubit, is invertible. The group of al
suchQ will be denoted byCl .

Thus, in the binary stabilizer framework, two stabiliz
statesuc& and uc8& with generator matricesS and S8 are
equivalent under the local Clifford group iff@13# there is a
QPCl and an invertibleRPZ2

n3n such that

QSR5S8. ~1!
6-2
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Note that the physical operation which transformsuc& into
uc8& is entirely determined byQ; the right matrix multipli-
cation with R is just a basis change within the stabilizer
the target state.

III. REDUCTION TO GRAPH STATES

In this section we show that, under the transformatio
S→QSR, each stabilizer generator matrixS can be brought
into a ~nonunique! standard form which corresponds to th
generator matrix of a graph state.

Theorem 1.Each stabilizer state is equivalent to a gra
state under local Clifford operations.

Proof. Consider an arbitrary stabilizer with generator m
trix S5@X

Z#. The result is obtained by proving the existen
of a local Clifford operationQPCl such that

QS5F Z8

X8
G

has an invertible lower blockX8. Then

S8ªQSX8215FZ8X821

I G ,
whereZ8X821 is symmetric from the propertyS8TPS850;
furthermore, the diagonal entries ofZ8X821 can be put to
zero by additionally applying the operation@0 1

1 1# to the ap-
propriate qubits, since this operation flips thei th diagonal
entry of Z8X821 when applied on thei th qubit. Eventually
we end up with a graph state generator matrix of the des
standard form.

We now construct a local Clifford operationQ that yields
an invertible lower blockX8. We start by performing a basi
change in the original stabilizer in order to bringS in the
form

S→FRz Sz

Rx 0 G ,
such thatRx is a full rankn3k matrix, wherek5rankX; the
blocks Rz , Sz have dimensionsn3k, n3(n2k), respec-
tively. The symplectic self-orthogonality of the stabilizer im
plies thatSz

TRx50. Furthermore, sinceSz has full rank, it
follows that the column space ofSz and the column space o
Rx are each other’s orthogonal complement.

Now, asRx has rankk, it has an invertiblek3k subma-
trix. Without loss of generality, we assume that the mat
consisting of the firstk rows of Rx is invertible, i.e.,

Rx5FRx
1

Rx
2G ,

where the upperk3k–block Rx
1 is invertible andRx

2 has
dimensions (n2k)3k. PartitioningSz similarly in a k3(n
2k) –block Sz

1 and an (n2k)3(n2k) –block Sz
2 , i.e.,
02231
s
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Sz5FSz
1

Sz
2G ,

the propertySz
TRx50 then implies thatSz

2 is also invertible:
for, suppose that there existxPZ2

n2k such that (Sz
2)Tx50;

then then-dimensional vectorvª(0, . . . ,0,x) satisfiesSz
Tv

50 and thereforev5Rxy for someyPZ2
k . This last equa-

tion reads

F0

xG5FRx
1

Rx
2Gy5FRx

1y

Rx
2y

G .

SinceRx
1 is by construction invertible,Rx

1y50 implies that
y50, yielding x5Rx

2y50. This proves the invertibility of
Sz

2 .
In a final step, we perform a Hadamard transformat

@1 0
0 1# on the qubitsk11, . . . ,n. It is now easy to verify that

this operation indeed yields an invertible lowern3n block
in the new generator matrix, thereby proving the result.j

This proposition is a special case of a result by Schlin
mann@8#, who showed, in a more general context ofd-level
systems rather then qubits, that each stabilizer code
equivalent to a graph code.

Remark: overall phases.Theorem 1 implies that our dis
regard of the overall phases of the stabilizer elements is
tified. Indeed, this result states that each stabilizer stat
equivalent to some graph stateucm1m2•••mn

(G)&, for some

m i . As such a state is equivalent to the stateuG&, there is no
need to keep track of the phases.

Theorem 1 shows that we can restrict our attention
graph states when studying the local equivalence of stabil
states. Note that in general the image of a graph state u
a local Clifford operationQ5@C D

A B # need not again yield an
other graph state, as this transformation maps

Fu

I G→QFu

I G5F Au1B

Cu1DG ~2!

for uPQ. The image in Eq.~2! is the generator matrix of a
graph state if and only if~a! the matrixCu1D is nonsingu-
lar and ~b! the matrix u8ª(Au1B)(Cu1D)21 has zero
diagonal. Then

QFu

I G~Cu1D !215Fu8

I G
is the generator matrix for a graph state with adjacency m
trix u8PQ. Note that we need not impose the constraint t
u8 be symmetric, since this is automatically the case, as

Fu8

I G
is the image of a stabilizer generator matrix under a Cliffo
operation, and thus
6-3
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@u8TI #PFu8

I G50.

These considerations lead us to introduce, for eachQPCl , a
domain of definition dom(Q), which is the set consisting o
all uPQ which satisfy the conditions~a! and (b). Seen as a
transformation of the spaceQ of all graph state adjacenc
matrices,Q then mapsuPdom(Q) to

Q~u!ª~Au1B!~Cu1D !21. ~3!

In this setting, it is of course a natural question to ask h
the operations.~3! affect the topology of the graph associat
with u. We tackle this problem in the following section.

To conclude this section we state and prove a lem
which we will need later on in the paper.

Lemma 1.Let uPQ andC,D be diagonal matrices suc
that Cu1D is invertible. Then there exists a uniqueQ
ª@C D

A B #PCl , whereA,B are diagonal matrices, such thatu
Pdom(Q).

Proof. Note that, sinceCu1D is invertible, we only need
to look for aQ such thatQ(u) has zero diagonal in order fo
u to be in the domain ofQ. First we will prove the unique-
ness ofA and B: suppose there exist two pairs of diagon
matricesA,B andA8,B8 such that

QªF A B

C DG , Q8ªFA8 B8

C D GPCl

and uP dom(Q), uPdom(Q8). Denoting uzªAu1B,
uz8ªA8u1B8, anduxªCu1D, we haveQ(u)5uzux

21 and

Q8(u)5uz8ux
21 . Now, denoting byzi

T ,z̄i
T ,xi

T the rows of,
respectively,uz ,uz8 ,ux , the crucial observation is that eithe

z̄i
T5zi

T or z̄i
T5zi

T1xi
T for all i 51, . . . ,n, which is a direct

consequence of the fact thatQ,Q8 have the same lowe
blocksC,D. Now, if the latter of the two possibilities is th
case for somei 0, the i 0th diagonal entries ofQ(u) and
Q8(u) must be different, sinceQ8(u) i 0i 0

5 z̄i 0
T (ux

21) i 0

5zi 0
T (ux

21) i 0
1xi 0

T (ux
21) i 0

5Q(u) i 0i 0
11, with (ux

21) i 0
the

i 0th column of ux
21 . As both Q(u) and Q8(u) have zero

diagonal, this yields a contradiction and we have proven
uniqueness ofA and B. To prove existence, note that fo
every i, there are exactly two couples (ai ,bi) such that

F ai bi

Cii Dii
G

is invertible. It follows from the above argument that we c
always tune (ai ,bi) such that (Au1B)(Cu1D)21 has zero
diagonal, where we takeAii 5ai and Bii 5bi for i
51, . . . ,n. Since each 232 matrix

F Aii Bii

Cii Dii
G

is invertible, the matrixQ5@C D
A B # is an element ofCl , which

proves the result. j
02231
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IV. LOCAL CLIFFORD OPERATIONS AS GRAPH
TRANSFORMATIONS

In this section, we investigate how the transformations~3!
can be translated as graph transformations. First we n
some graph theoretical notions: two verticesi and j of a
graphG5(V,E) are called adjacent vertices, or neighbors
$ i , j %PE. The neighborhoodN( i )#V of a vertexi is the set
of all neighbors ofi. A graphG85(V8,E8) which satisfies
V8#V andE8#E is a subgraph ofG and one writesG8#G.
For a subsetA#V of vertices, the induced subgrap
G@A##G is the graph with vertex setA and edge set$$ i , j %
PEu i , j PA%. If G has an adjacency matrixu, its comple-
mentGc is the graph with adjacency matrixu1I, whereI is
the n3n matrix which has all ones, except for the diagon
entries which are zero.

Definition 1.For eachi 51, . . . ,n, the graph transforma
tion gi sends ann-vertex graphG to the graphgi(G), which
is obtained by replacing the subgraphG@N( i )#, i.e., the in-
duced subgraph of the neighborhood of thei th vertex ofG,
by its complement. In terms of adjacency matrices,gi maps
uPQ to

gi~u!5u1uL iu1L,

whereL i has a 1 on thei th diagonal entry and zeros else
where andL is a diagonal matrix such as to yield zeros
the diagonal ofgi(u).

The transformationsgi are obviously their own inverses
Note that in general differentgi and gj do not commute;
however, if uPQ has u i j 50, it holds that gigj (u)
5gjgi(u), as one can easily verify.

Example.Consider the 5-vertex graphG with adjacency
matrix u i j 51 for all iÞ j andu i i 50 for all i ~i.e., the com-
plete graph!, which is the defining graph for the
Greenberger-Horne-Zeilinger~GHZ! state. The application
of the elementary local Clifford operationg1 to this graph is
shown in Fig. 1.

The operationsgi can indeed be realized as local Cliffor
operations~3!. This is stated in Theorem 2 and was foun
independently by Heinet al. @5#

Theorem 2.Let gi be defined as before anduPQ. Then

gi~u!5Qi~u!,

where

Qi5F I diag~u i !

L i I GPCl ,

FIG. 1. Application of the graph operationg1 to the GHZ graph.
6-4
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where diag(u i) is the diagonal matrix which hasu i j on the
j th diagonal entry, forj 51, . . . ,n.

Proof. The result can be shown straightforwardly by c
culating Qi(u)5@u1diag(u i)#(L iu1I )21 and noting that
the matrixL iu1I is its own inverse for anyu. j

The remainder of this section is dedicated to proving t
the operationsgi in fact generate the entire orbit of a grap
state under local Clifford operations, that is to say, two gra
statesuG&,uG8& are equivalent under the local Clifford grou
iff there exists a finite sequencegi 1

, . . . ,gi N
such that

gi N
•••gi 1

(G)5G8. This result completely translates the a
tion of local Clifford operations on graph states into a cor
sponding action on their graphs. In order to prove the res
we need the following lemma.

Lemma 2.Define the matrix classT#Z2
n3n by

T5$Cu1DuuPQ and C,D are diagonal

and Cu1D is invertible%

and consider an elementRPT. Chooseu,C,D such thatR
5Cu1D. Define the transformationf i of T by f i(X)
5X(L iX1Xii L i1I ), for XPT, and denote f jk(•)
ª f j f kf j (•). Then ~i! there exists a finite sequence off i ’s
and f jk’s such that

f j MkM
••• f j 1k1

f i N
••• f i 1

~R!5I , ~4!

where all the indices in the sequence are different;~ii ! there
exists a unique

Q05FA0 B0

C D GPCl ,

such thatuPdom(Q0) and

gj MkM
•••gj 1k1

gi N
•••gi 1

~u!5Q0~u!,

wheregjk(•)ªgjgkgj (•).
Proof. First, straightforward calculation shows thatf i

maps the class of matrices of the formCu1D to itself. Fur-
thermore, for eachXPT the matrixL iX1Xii L i1I is invert-
ible, which implies thatf i maps invertible matrices to invert
ible matrices. Therefore eachf i is indeed a transformation o
T. Now, statement~i! is proven by applying the algorithm
below, where the idea is to successively make eachi th row
of R equal to thei th canonical basis vectorei

T5@0•••010
•••0#, by applying the correctf j ’s in each step. The imag
of R throughout the consecutive steps will be denoted by
same symbolR̄5(r i j ). Now, the algorithm consists of re
peatedly performing one of the two following sequences
operations onR̄.

Case 1.If R̄ has a diagonal entryr i 0i 0
51 ~and thei 0th

row of R̄ is not yet equal to the basis vectorei 0
T ), apply f i 0

.

It is easy to verify that, in this situation,f i 0
transforms the

i 0th row of R̄ into the basis vectorei 0
T .
02231
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Case 2.If the conditions for case 1 are not fulfilled, app
the following sequence of three operations. First, fix aj 0
such thatr j 0 j 0

50 and applyf j 0
. It can easily be seen tha

then diag(R̄)→diag(R̄)1R̄j 0
, whereR̄j 0

is the j 0th column

of R̄ and diag(R̄) is the diagonal ofR̄. SinceR̄ is invertible,
R̄j 0

has some nonzero element, say on thek0th position

r k0 j 0
51. Therefore, the application off j 0

has put a 1 on the

k0th diagonal entry of the resultingR̄. Now we apply f k0
,

turning thek0th row into ek0

T as in case 1. Furthermore, th

second operation has putr j 0k0
on thej 0th diagonal entry and,

from the symmetry ofR̄, it holds thatr j 0k0
5r k0 j 0

51. There-

fore, by again applyingf j 0
, we obtain anej 0

T on the j 0th row

of the resultingR̄. Finally, we note that after performing thi
sequence of operations, we end up with anR̄ which will
again satisfy the conditions for case 2.

Repetition of these elementary steps will eventually yie
the identity matrix, which concludes the proof of stateme
~i!.

Statement~ii ! is proven by induction on the length of th
sequence off i ’s and f jk’s. As it turns out, the easiest way t
do this is to consider thef i ’s and f jk’s as two different types
of elementary blocks in the sequence~4!. The proof will
therefore consist of two partsA and B, part A dealing with
the f i ’s and partB with the f jk’s.

Part A. in the basis step of the induction we havef i(R)
5I , whereRPT. Any suchR satisfiesR5L iR1Rii L i1I
and therefore must be of the form

R53
1

�

1

x1 xi 21 1 xi 11 xn

1

�

1

4 ← i

for some xj . Then anyu,C,D which satisfy R5Cu1D
must satisfyu i j 5xj and D5I ; moreover, if Cj j 51 for j
Þ i then thej th row of u must be equal to zero and ifCii
50 the i th row of u must be to zero. It is now easy to se
that gi(u)5Q(u), with Q5@C

•

D
• #.

In the induction step, we suppose that the statement h
for all sequencesf i 1

, . . . ,f i N
of fixed lengthN and prove that

this implies that the statement is true for sequences of len
N11. We start from the given that

f i N
••• f i 1

f i~R!5I

for some f i , f i 1
, . . . ,f i N

and RPT and we chooseu,C,D

such thatCu1D5R. Note that it follows from case 1 in the
algorithm in part~i! of the lemma that we may takeCii 51
5Dii , as a singlef i ~as opposed to anf i j ) is only applied
whenRii 51. Furthermore, we will denote byv the set of all
6-5
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j P$1, . . . ,n% such thatCj j 51. As R is invertible, this im-
plies thatDkk51 for kPvc. Now, denotingR8ª f i(R), we
havef i N

••• f i 1
(R8)5I , which allows us to use the result fo

lengthN: for anyu8,C8,D8 that satisfyC8u81D85R8 there
exists aQ8PCl which hasC8,D8 as its lower blocks such
that u8P dom(Q8) and

gi N
•••gi 1

~u8!5Q8~u8!. ~5!

We make the following choices foru8,C8,D8:

u85gi~u!,

C85C1L i ,

D85D1diag~u i !v ,

where diag(u i)v is the diagonal matrix which hasu i j on the
j th diagonal entry ifj Pv and zeros elsewhere. This choic
for u8,C8,D8 indeed yieldsC8u81D85R8; we will how-
ever omit the calculation since it is straightforward. No
using the definition ofu8 and Theorem 2, Eq.~5! becomes

gi N
•••gi 1

gi~u!5~Q8Qi !~u!. ~6!

It is now again straightforward to show thatQªQ8Qi hasC
andD as its lower blocks. Uniqueness follows from Lemm
1. This proves the induction step, thereby concluding
proof of partA.

Part B. The proof of this part is analogous to partA,
though a bit more involved. The basis step now rea
f jk(R)5I . Now case 2 in the algorithm in part~i! of the
lemma implies thatRj j 505Rkk andRjk51, as only if this
is the case,f jk is applied in the algorithm. For simplicity, bu
without losing generality, we takei 51, j 52. ThenR must
be of the form

where the u i are (n22)-dimensional column vectors
Choosingu,C,D such thatR5Cu1D, the matrixu must
satisfy

wheref is a symmetric (n22)3(n22) matrix with zero
diagonal; furthermoreD11505D22, D j j 51, C11515C22
and if Cj 12,j 1251 then u1 j5u2 j5fk j50, for j ,k
51, . . . ,n22. We will give the proof forCj 12,j 1250, the
other cases are similar. Thus, we have to show that th
exists aQ0PCl with lower blocksC,D such thatg12(u)
5Q0(u). To prove this, we use theorem 2, yielding
02231
,

e

s

re

Q05F • •

L1 I GF I diag~g1~u!2!

L2 I GF I diag~u1!

L1 I G ,
where g1(u)25(1,0,u131u23, . . . ,u1n1u2n) is the second
column ofg1(u). A simple calculation reveals that

Q05F • •

L11L2 I 1L11L2
G5F • •

C DG ,
which proves the basis of the induction.

In the induction step, we again follow an analogous re
soning to partA: we suppose that the statement is true
sequencesf j 1k1

, . . . ,f j NkN
of length N and prove that this

implies the statement for lengthN11. Our starting point is
now

f j NkN
••• f j 1k1

f jk~R!5I

for somef jk , f j 1k1
, . . . ,f j NkN

andRPT. Note that again we

haveRj j 505Rkk andRjk51 as in the basis step. As from
this point on the strategy is identical as in partA and all
calculations are straightforward, we will only give a sketc
first we denoteR85 f jk(R); for u,C,D such thatR5Cu
1D, we define

u85gjk~u!,

C85C1L j1Lk ,

D85D1L j1Lk .

It then straightforward to show thatR85C8u81D8. The in-
duction yields aQ8PCl with lower blocksC8,D8 such that

gj NkN
•••gj 1k1

~u8!5Q8~u8!.

Using Theorem 2, we calculateQjk such that gjk(u)
5Qjk(u). Then

gj NkN
•••gj 1k1

gjk~u!5~Q8Qjk!~u!

and a last calculation shows thatQ0ªQ8Qjk has lower
blocks C and D. Uniqueness again follows from Lemma
This proves part B of the lemma. j

The main result of this paper is now an immediate cor
lary of Lemmas 1 and 2.

Theorem 3.Let uPQ. Then the operationsg1 , . . . ,gn
generate the orbit ofu under the action~3! of the local Clif-
ford groupCl .

Proof.Let Q5@C D
A B #PCl such thatuP dom(Q). Now, as

Cu1D is an invertible element ofT, Lemma 2~ii ! can be
applied, yielding a unique

Q05FA0 B0

C D GPCl

and sequence ofgi ’s andgjk’s such thatuPdom(Q0) and

gj MkM
•••gj 1k1

gi N
•••gi 1

~u!5Q0~u!.
6-6
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As Q andQ0 have the same lower blocksC andD andu is
in both of their domains, it follows from Lemma 1 thatQ0
5Q and the result follows. j

V. DISCUSSION

The result in Theorem 3 of course facilitates generat
the equivalence class of a given graph state under local C
ford operations, as one only needs to successively apply
rule to an initial graph. Note that Lemma 2 implies that o
only needs to consider sequencesgj MkM

•••gj 1k1
gi N

•••gi 1
of

limited length. Furthermore, the translation of the operatio
~3! into sequences of elementary graph operations gets r
annoying technical domain questions. It is important to n
that we havenot proven that eachQPCl corresponds di-
rectly to a sequence ofgi ’s, since, in Theorem 3, the decom
position intogi ’s depends both onQ as well asu.

In a final note, we wish to point out that testing wheth
two stabilizer states with generator matricesS,S8 are equiva-
lent under the local Clifford group is an easily implemen
able algorithm when one uses the binary framework. Inde
one has equivalence iff there exists aQPCl such that

STQTPS850, ~7!

as this expression states that the stabilizer subspaces g
ated by the matricesS8 andQS are orthogonal to each othe
with respect to the symplectic inner product. Since any s
bilizer subspace is its own symplectic orthogonal comp
ment, the spaces generated byS8 and QS must be equal,
which implies the existence of an invertibleR such thatS8
5QSR. Equation~7! is a system ofn2 linear equations in
the 4n entries ofQ5@C D

A B #, with n additional quadratic con
straints Aii Dii 1Bii Cii 51 which state thatQPCl ; these
equations can be solved numerically by first solving the
ear equations and disregarding the constraints and
searching the solution space for aQ which satisfies the con
straints. Although we cannot exclude that the worst c
v.

tra

0.
e

02231
g
if-
he

s
of
e

r

d,

ner-

-
-

-
en

e

number of operations is exponential in the number of qub
in the majority of cases this algorithm gives a quick r
sponse, as for largen the system of equations is highly ove
determined and therefore generically has a small spac
solutions. Note that, when equivalence occurs, the algori
provides an explicitQ which performs the transformation.

VI. CONCLUSION

In this paper, we have translated the action of local u
tary operations within the Clifford group on graph states in
transformations of their associated graphs. We have sh
that there is essentially one elementary graph transforma
rule, successive application of which generates the orbi
any graph state under the action of local Clifford operatio
This result is a first step towards characterizing the L
equivalence classes of stabilizer states.
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