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Graphical description of the action of local Clifford transformations on graph states
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We translate the action of local Clifford operations on graph states into transformations on their associated
graphs, i.e., we provide transformation rules, stated in purely graph theoretical terms, which completely
characterize the evolution of graph states under local Clifford operations. As we will show, there is essentially
one basic rule, successive application of which generates the orbit of any graph state under local unitary
operations within the Clifford group.
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[. INTRODUCTION stated 11]—since the quantification of multipartite pure-state
entanglement is far from being understood and a treatise of
Stabilizer states and, more particularly, graph states, antiie subject in its whole is extremely complex, it is appropri-
(local) unitary operations in the Clifford group have beenate to restrict oneself to a more easily manageable yet nev-
studied extensively and play an important role in numerougrtheless interesting subclass of physical states, as are the
applications in quantum information theory and quantumstabilizer states. The ultimate goal of this research is to char-
computing. A stabilizer state is a multiqubit pure state whichacterize the LU-equivalence classes of stabilizer states, by
is the unique simultaneous eigenvector of a complete set dfnding suitable representatives within each equivalence class
commuting observables in the Pauli group, the latter consis@nd/or constructing a complete and minimal set of local in-
ing of all tensor products of Pauli matrices and the identityvariants which separate the stabilizer state orbits under the
(with an additional phase factorGraph states are special action of local unitaries. We believe that the result in this
cases of stabilizer states, for which the defining set of compaper is the first significant step in this direction.
muting Pauli operators can be constructed on the basis of a In Sec. IV, we will show that the orbit of any graph state
mathematical graph. The Clifford group consists of all uni-under local unitary operations within the Clifford group is
tary operators which map the Pauli group to itself undergenerated by repeated application of essentially one basic
conjugation. As the closed framework of stabilizer theorygraph transformation rule. The main tool for proving this
plus the Clifford group turns out to have a relatively simpleresult will be the representation of the stabilizer formalism
mathematical description while maintaining a sufficiently and the(local) Clifford group in terms of linear algebra over
rich structure, it has been employed in various fields of quanGH2), where n-qubit stabilizer states are represented as
tum information theory and quantum computing. In then-dimensional linear subspaces @" which are self-
theory of quantum error-correcting codes, the stabilizer fororthogonal with respect to a symplectic inner prodit]
malism is used to construct so-called stabilizer codes whicland where Clifford operations are the symplectic transforma-
protect quantum systems from decoherence effddigraph  tions on§“ [4,7].
states have been used in multipartite purification sché@&les This paper is organized as follows. In Sec. Il, we start by
and a measurement-based computational model has been deealling the notions of stabilizer states, graph states, and the
signed which uses a particular graph state, namely, the cluglocal) Clifford group and the translation of these concepts
ter state, as a universal resource for quantum computation-to the binary framework. In Sec. I, we then shdeon-
the one-way quantum compuféd]; (a quotient group ofthe  structively that each stabilizer state is equivalent to a graph
Clifford group has been used to construct performant mixedstate under local Clifford operations, thereby rederiving a
state entanglement distillation protocd]; most recently, result of Schlingemanif8]. Continuing within the class of
graph states were considered in the context of multiparticlgraph states, in Sec. IV we introduce our elementary graph
entanglement: in Ref.5] the entanglement in graph states theoretical rules which correspond to local Clifford opera-
was quantified and characterized in terms of the Schmidtions and prove that these operations generate the orbit of
measure. any graph state under local Clifford operations.
The goal of this paper is to translate the action of local
Clifford operations on graph states into transformations on
their associated graphs, that is, to derive transformation Il. PRELIMINARIES
rules, stated in purely graph theoretical terms, which com-
pletely characterize the evolution of graph states under local
Clifford operations. The main reason for this research is to
provide a tool for studying the local unitaiy.U) equiva- Let G, denote the Pauli group am qubits, consisting of
lence classes of stabilizer states or, equivalently, of graphll 4x4" n-fold tensor products of the formv,®v,® - - -
®uv,, Whereae{x1,=i} is an overall phase factor and the
2X2-matricew; (i=1, ... n) are either the identity, or
*Electronic address:; maarten.vandennest@esat.kuleuven.ac.be one of the Pauli matrices

A. Stabilizer states, graph states, and thélocal)
Clifford group
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The Clifford groupC, is the normalizer ofj, in U(2"), i.e.,
it is the group of unitary operators satisfying UG,U"
=G,. We shall be concerned with the local Clifford group It is well known[1,6,1Q that the stabilizer formalism can
C'n, which is the subgroup of, consisting of alln-fold be translated into a binary framework, which essentially ex-
tensor products of elements 4. ploits the homomorphism betweey,- and 73,+ which

An n-qubit stabilizer statgy) is defined as a simulta- maps og= 000, oy=0¢y—>01, 0,=019—>10, anday
neous eigenvector with eigenvalue 1 mfcommuting and =g, +—>11. InZ3 addition is to be performed modulo 2. The
independenit12] Pauli group elementd!; . Then eigenvalue  generalization tan qubits is defined DYy, © - @0y,
equationsM;| ) =) define the statfy) completely(up to 5n* ne
an arbitrary phase The setS:={MeG,|M|4)=|¢)} is
called the stabilizer of the stafey). It is a group of 2
commuting Pauli operators, all of which have a real overal
phase+ 1 and then operatoraVl; are called generators &f

as eachM e S can be written adl=M*---M", for some

1 0 lently, none of the points is connected to itself with a line.
B P From this point on, we will only consider graph states which
are associated with simple graphs.

B. The binary picture

=0 (uyugfoq ) (Ugs Uplvg--vn) 75", where

u; ,v; €{0,1}. Thus, ann-fold tensor product of Pauli matri-
cces is represented as a-Bimensional binary vector. Note
that with this encoding one loses the information about the
overall phases of Pauli operators. For now, we will altogether

n’ . disregard these phases and we will come back to this issue
x;€10,1}. The so-called graph statg3,2] constitute an im-  |5¢er in this paper.
portant subclass of the stabilizer states. A gre®hs a pair In the binary language, two Pauli operatars and o,

G=(V,E) of sets, whereV is a finite subset ofN and the
elements o are 2-element subsets \gf The elements of
are called the vertices of the graghand the elements @&
are its edges. Usually, a graph is pictured by drawir(taa
beled dot for each vertex and joining two dotandj by a
line if the corresponding pair of vertices,j}eE. For a
graph with |V|=n vertices, the adjacency matri& is the
symmetric binarynxn matrix whereé;;=1 if {i,j} e E and

where a,be75", commute iff a'"Pb=0, where the
2nx2n—matrix P=[?}] defines a symplectic inner product
on the spacé’s”. The stabilizer of a stabilizer state then
corresponds to am-dimensional linear subspace @%“
which is its own orthogonal complement with respect to this
symplectic inner product. Given a set of generators of the
stabilizer, we assemble their binary representations as the

6;;=0 otherwise. Note that there is a one-to-one corresporcolumns of a full rank 2xn-matrix S which satisfies

T _ . .
dence between a graph and its adjacency matrix. Now, giveﬁhps_(_) fromb_tl_he syn;plecnc self-_orthogonal\_llty prope[)t_y.
an n-vertex graphG with adjacency matrixd one defines T N en;lri Sta :IZGI’ subspace C?nsi:Stsl orall linear c;]om Ina-
commuting Pauli operators tions of the columns of5 i.e., of all elementsSx, where

xe75. The matrix S, which is referred to as a generator
n matrix for the stabilizer, is of course nonunique. A change of
K=o [T (a{9)%, generators amounts to multiplying to the right with an
k=1 invertiblen < n matrix, which performs a basis change in the
M ) 0 ) ) binary subspgce. Note that a gr_aph state which corresp_onds
whereay”, 0y’ 03’ are the Pauli operators which have, re- 15 5 graph with adjacency matrig has a generator matrix
spectively,o,,ay,0, on theith position in the tensor prod- Sz[f]. Finally, it can be showii4,7] that, as we disregard

uct and the identity elsewhere. The graph stat€, . o phases, Clifford operations are just the symplectic

|¢u1#z--~/_tn(G)>’ where '“i_e{o'l}' is then the stabilizer transformations o3", which preserve the symplectic inner
state defined by the equations product, i.e., they are thenx 2n—matricesQ which satisfy
u _ QTPQ=P. As local Clifford operations act on each qubit
(=1 JK]|¢/’“1M2"'Mn(G)>_|¢”1M2"'Mn(G)>' separately, they have the additional block structure

_ _ o Q=[2 2], where thexx n—blocksA,B,C,D are diagonal. In
Since one can easily show that the" Zigenstates thjs case, the symplectic property @fis equivalent to stat-

|lflﬂ1”2,,,ﬂn(G)> are equal up to local unitaries in the Clif- jng that each submatrix

ford group, it suffices for our purposes to choose one of them

as a representative of all graph states associatedGviEol- Aii  Bii
lowing the literature[5], we denote this representative by Ci D/’

|G):=|tg0...0(G)). Furthermore, if the adjacency matrices

of two graphsG and G’ differ only in their diagonal ele- which acts on théth qubit, is invertible. The group of all
ments, the statel$s) and|G’) are equal up to a local Clif- suchQ will be denoted byC'.

ford operation, which allows for aa priori reduction of the Thus, in the binary stabilizer framework, two stabilizer
set of graphs which needs to be considered in the problem aftates|) and |¢') with generator matrice$ and S’ are
local unitary equivalence. The most natural choice is to conequivalent under the local Clifford group ifi.3] there is a
sider the clas$®) C75"" of adjacency matrices which have Qe C' and an invertibleRe 7" such that

zeros on the diagonal. These correspond to so-called simple

graphs, which have no edges of the fofmi} or, equiva- QSR=S'. (1)
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Note that the physical operation which transforfys into Si
|} is entirely determined by; the right matrix multipli- S=| ol
cation withR is just a basis change within the stabilizer of S;

the target state. . o 5. . _
the propertyS,R,= 0 then implies thas; is also invertible:

for, suppose that there existe 73 ¥ such that §2)"x=0;

then then-dimensional vectoo :=(0, . ..,0x) satisfiesSIv
In this section we show that, under the transformations=0 and therefore =R,y for somey e Z5. This last equa-

S— QSR each stabilizer generator mati$can be brought tion reads

into a (nonunique standard form which corresponds to the

IIl. REDUCTION TO GRAPH STATES

generator matrix of a graph state. 0 RL RL
" . . X xY
Theorem 1Each stabilizer state is equivalent to a graph = S|¥Y=| 5 |-
state under local Clifford operations. X R Ry

Proof. Consider an arbitrary stabilizer with generator ma- 1 o N o
trix S=[%]. The result is obtained by proving the existenceSInceR; is by construction invertibleR,y =0 implies that
of a local Clifford operatiorQ e C' such that y2=0, yielding x=R\y=0. This proves the invertibility of

Sl
z’ In a final step, we perform a Hadamard transformation

QSZ[X’} [ %] on the qubitk+1, ... n. It is now easy to verify that

this operation indeed yields an invertible lowex n block
in the new generator matrix, thereby proving the resull.

This proposition is a special case of a result by Schlinge-
v 1 mann[8], who showed, in a more general contextdekvel
systems rather then qubits, that each stabilizer code is
I } equivalent to a graph code.
Remark: overall phaseSheorem 1 implies that our dis-

whereZ’X’ ~1 is symmetric from the propertg’' TPS' =0;  regard of the overall phases of the stabilizer elements is jus-
furthermore, the diagona' entries zfx’71 can be put to tified. Indeed, this result states that each stabilizer state is

zero by additionally applying the operati¢y 1] to the ap- ~€quivalent to some graph stafg, ..., (G)), for some
propriate qubits, since this operation flips ttte diagonal ;. As such a state is equivalent to the st&®, there is no
entry of Z' X'~ when applied on théth qubit. Eventually need to keep track of the phases.
we end up with a graph state generator matrix of the desired Theorem 1 shows that we can restrict our attention to
standard form. graph states when studying the local equivalence of stabilizer
We now construct a local Clifford operati@p that yields ~ states. Note that in general the image of a graph state under
an invertible lower block<’. We start by performing a basis a local Clifford operatiorQ=[¢ 3] need not again yield an-
change in the original stabilizer in order to briigjin the  other graph state, as this transformation maps

form
y
—Q | =

for 6 @. The image in Eq(2) is the generator matrix of a
such thaR, is a full ranknx k matrix, wherek=rankX; the ~ graph state if and only ifa) the matrixC6+ D is nonsingu-
blocks R,, S, have dimensionsixk, nx(n—k), respec- lar and (b) the matrix 6':=(A6+B)(C6+D) * has zero
tively. The symplectic self-orthogonality of the stabilizer im- diagonal. Then
plies thatSIszo. Furthermore, sinc&, has full rank, it
follows that the column space &, and the column space of
R, are each other’s orthogonal complement. Q

Now, asR, has rankk, it has an invertible&k Xk subma-
trix. Without loss of generality, we assume that the matrixis the generator matrix for a graph state with adjacency ma-
consisting of the firsk rows of R, is invertible, i.e., trix 6’ € ©. Note that we need not impose the constraint that

0' be symmetric, since this is automatically the case, as

1 0!
I
where the uppekxk—block R} is invertible andR? has

dimensions (—Kk) X k. PartitioningS, similarly in akX(n is the image of a stabilizer generator matrix under a Clifford
—k)—block S and an 6—k) X (n—k)—block S, i.e., operation, and thus

has an invertible lower blockK’. Then

S':=QSXi=

0
|

A6+B
Co+D

2

—

R, &
R, 0]

!

6
l}(CG—FD)_l:L

Ry
R}

Ry=
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These considerations lead us to introduce, for €etC', a
domain of definition dom@), which is the set consisting of
all # e ® which satisfy the condition&) and (b). Seen as a
transformation of the spad® of all graph state adjacency
matrices,Q then mapst e dom(Q) to

4 3

FIG. 1. Application of the graph operatign to the GHZ graph.
Q(#)=(A6+B)(Co+D) L. (3
IV. LOCAL CLIFFORD OPERATIONS AS GRAPH
In this setting, it is of course a natural question to ask how TRANSFORMATIONS
the operationg3) affect the topology of the graph associated

. ; . . ; In this section, we investigate how the transformati@)s
with 6. We tackle this problem in the following section. g &

can be translated as graph transformations. First we need
Lome graph theoretical notions: two vertideandj of a
graphG=(V,E) are called adjacent vertices, or neighbors, if
{i,j} € E. The neighborhoot(i)CV of a vertexi is the set

of all neighbors ofi. A graphG'=(V',E") which satisfies
V'CV andE’'CE is a subgraph o6 and one write&s’' C G.

For a subsetACV of vertices, the induced subgraph
G[A]CG is the graph with vertex se&& and edge sef{i,j}
eEli,j e A}. If G has an adjacency matrig, its comple-
mentG°€ is the graph with adjacency matrik+ 1, wherel is
the nXn matrix which has all ones, except for the diagonal
entries which are zero.

which we will need later on in the paper.

Lemma llet e ® andC,D be diagonal matrices such
that Co+D is invertible. Then there exists a uniqug
:=[28]eC!, whereA,B are diagonal matrices, such that
e dom(Q).

Proof. Note that, sinc&€ 8+ D is invertible, we only need
to look for aQ such thatQ(#) has zero diagonal in order for
0 to be in the domain o). First we will prove the unique-
ness ofA and B: suppose there exist two pairs of diagonal
matricesA,B andA’,B’ such that

A B A B’ Definition 1.For eachi=1, ... n, the graph transforma-
Q:z{ , Q= } cC! tion g; sends am-vertex graphG to the graptg;(G), which
c D c D is obtained by replacing the subgra@iN(i)], i.e., the in-

duced subgraph of the neighborhood of tkie vertex ofG,

and fe dom(QQ), fe dom(Q’). Denoting 92‘:A701+ B. by its complement. In terms of adjacency matricgsmaps
0,:=A"0+B’, andd,:=C6+D, we haveQ(0)= 60,0, ~and 4. @ to

Q'(A)=6.6,". Now, denoting byz|,z' ,x{ the rows of,

respectivelyd,, 0, ,0,, the crucial observation is that either gi(0)=0+6A;0+A,
zl=2" orzl=z'+x/ for all i=1,... n, which is a direct

consequence of the fact th&,Q’ have the same lower whereAj has a 1 on theth diagonal entry and zeros else-
blocksC,D. Now, if the latter of the two possibilities is the Where andA is a diagonal matrix such as to yield zeros on
case for somd, the igth diagonal entries of(§) and  the diagonal of;(6). . . _
Q'(6) must be different, sinceQ’(6) ; =z (61, The transformationg; are obviously their own inverses.
o — ' “tolo NS ‘o Note that in general differeng; and g; do not commute;
=7, (0 )iyt X (6x )ip=Q(0)ii,+ 1, with (6,7, the  however, if #e® has 6;=0, it holds that gig;(6)
ioth column of 6, 1. As bothQ(#) and Q'(#) have zero =g;gi(6), as one can easily verify.
diagonal, this yields a contradiction and we have proven the Example.Consider the 5-vertex grap@ with adjacency
uniqueness ofA and B. To prove existence, note that for matrix 6;;=1 for alli+j and 6;;=0 for all i (i.e., the com-
everyi, there are exactly two couples;(b;) such that plete graph which is the defining graph for the
Greenberger-Horne-ZeilingdiGHZ) state. The application
of the elementary local Clifford operatian to this graph is
shown in Fig. 1.
The operationg); can indeed be realized as local Clifford
is invertible. It follows from the above argument that we canoperations(3). This is stated in Theorem 2 and was found
always tune &; ,b;) such that A6+B)(C6+D) ! has zero independently by Heiet al. [5]

a b
Ci Dy

diagonal, where we takeA;=a, and B;=b; for i Theorem 2Let g; be defined as before artte ®. Then
=1,...,n. Since each X2 matrix
gi(0)=Q;(0),
Aii B
Ci D where
is invertible, the matrixQ=[2 8] is an element o€', which Q-=[ I diag(6) cC
proves the result. [ Y I ’
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where diag@);) is the diagonal matrix which hag; on the
jth diagonal entry, foj=1, ... n.

Proof. The result can be shown straightforwardly by cal-
culating Q;(8)=[ #+diag(8;)](A;6+1) ! and noting that
the matrixA;#+1 is its own inverse for any.

PHYSICAL REVIEW A 69, 022316 (2004

Case 2If the conditions for case 1 are not fulfilled, apply
the following sequence of three operations. First, fixpa
such thatrj0j0=0 and applyfjo. It can easily be seen that

then diagR) —diag(R) +R;,, whereR;_is thejgth column

The remainder of this section is dedicated to proving thaf R and diagR) is the diagonal oR. SinceR is invertible,

the operationg); in fact generate the entire orbit of a graph Ri, has some nonzero element, say on Kath position

state under local Clifford operations, that is to say, two graph

state§G),|G’) are equivalent under the local Clifford group
iff there exists a finite sequencg; , - .. Ji, such that

i, ~gi1(G)=G’. This result completely translates the ac-

koio— 1- Therefore, the application d)fo has put a 1 on the

koth diagonal entry of the resultinﬁ. Now we appnyko,
turning thekyth row into eIO as in case 1. Furthermore, this

tion of local Clifford operations on graph states into a corre-S€cond operation has_plq%ko on thejoth diagonal entry and,
sponding action on their graphs. In order to prove the resulfrom the symmetry oR, it holds thatrjokoz rkoiozl' There-

we need the following lemma.
Lemma 2 Define the matrix clas§C 75" by

T={C6+D|#c® and C,D are diagonal
and C#+D is invertible

and consider an elemeRe T. Choosef,C,D such thatR
=C0+D. Define the transformatiorf; of T by f;(X)
=X(AiX+XiAj+1), for XeT, and denote fj(-)
=f;f,f;(-). Then (i) there exists a finite sequence fyfs
andfj’s such that

fiaku* figk fiy o fi (R=1, 4
where all the indices in the sequence are differénk;there
exists a unique

Qoz{

such thatd e dom(Q,) and

Ao Bo
c D

eC',

Ojyky -« 9igk, iy - 9i,(0)=Qo(0),

wheregjc(-)=9;9kg;(-)-

Proof. First, straightforward calculation shows thét
maps the class of matrices of the fo@w+ D to itself. Fur-
thermore, for eaclX e T' the matrixA; X+ X;; A;+1 is invert-
ible, which implies thaf; maps invertible matrices to invert-
ible matrices. Therefore eadhis indeed a transformation of
T. Now, statementi) is proven by applying the algorithm
below, where the idea is to successively make a#thow
of R equal to theith canonical basis vectcafiTz[O~ --010
---0], by applying the correct;’s in each step. The image

of R throughout the consecutive steps will be denoted by th(?\I

same symb0§=(rij). Now, the algorithm consists of re-

peatedly performing one of the two following sequences of

operations orR.
Case 1If R has a diagonal entry; ; =1 (and theigth

row of R is not yet equal to the basis vectef%), applyfio.
It is easy to verify that, in this situatiorf,-0 transforms the

ioth row of R into the basis vectoe; .

fore, by again applyingjo, we obtain areJ-T0 on thejoth row
of the resultinﬁ Finally, we note that after performing this

sequence of operations, we end up with Rrwhich will
again satisfy the conditions for case 2.

Repetition of these elementary steps will eventually yield
the identity matrix, which concludes the proof of statement
().

Statementii) is proven by induction on the length of the
sequence of;’'s andfj,’s. As it turns out, the easiest way to
do this is to consider thg's andf’s as two different types
of elementary blocks in the sequen@®. The proof will
therefore consist of two partd and B, part A dealing with
the f;'s and partB with the f;,’'s.

Part A. in the basis step of the induction we haféR)
=1, whereReT. Any suchR satisfiesR=A;R+R;A;+1
and therefore must be of the form

1

X1 Xi-1 1 X1 Xn

1

for somex;. Then any¢,C,D which satisfyR=C6+D
must satisfy6;;=x; and D=1; moreover, ifC;;=1 for |
#1 then thejth row of # must be equal to zero and @;;
=0 theith row of # must be to zero. It is now easy to see
thatg;(#) =Q(6), with Q=[¢p].

In the induction step, we suppose that the statement holds
for all sequencef;il, cen 'fiN of fixed lengthN and prove that

this implies that the statement is true for sequences of length
+1. We start from the given that

fi- - fi, fi(R)=1

for somef; ’fil' cen ’fiN and ReT and we choos#,C,D
such thatC 6+ D =R. Note that it follows from case 1 in the
algorithm in part(i) of the lemma that we may takg;; =1

=Dj;, as a singlef; (as opposed to afy;) is only applied
whenR;;= 1. Furthermore, we will denote hy the set of all

022316-5
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je{l,...n} such thatC;;=1. As R s invertible, this im-
plies thatD,,=1 for ke w®. Now, denotingR’:=f;(R), we

havefiN~ . -fil(R’):I, which allows us to use the result for

lengthN: for any 6’,C’,D’ that satisfyC' 8’ + D’ =R’ there
exists aQ’ e C' which hasC’,D’ as its lower blocks such
that §' e dom(Q’) and
gi, - 9i,(6)=Q'(8). )
We make the following choices fat',C’,D":
0,:gi(0)1
C,:C"_Ai y
"=D+diag 6,),,,

where diagf;),, is the diagonal matrix which ha; on the

jth diagonal entry ifj e » and zeros elsewhere. This choice

for 6',C',D’ indeed yieldsC' ¢’ +D’=R"; we will how-

PHYSICAL REVIEW A9, 022316 (2004

! diag g:(6)2)
Qo= A 1A, |

where g1(6),=(1,0,013+ 053, ... ,01,+ 65,) is the second
column ofg;(6). A simple calculation reveals that

| diag 6;)
A, .

Qo=

C D

Ag+Ay, T+A;+A,

which proves the basis of the induction.

In the induction step, we again follow an analogous rea-
soning to partA: we suppose that the statement is true for
sequenceéjlkl, o ’ijkN of length N and prove that this

implies the statement for lengti+ 1. Our starting point is
now

ijkN. . fjlklfjk(R):l

for somef 'fjlkl' cen ’ijkN andReT. Note that again we
haveR;;=0=R,, andR;,=1 as in the basis step. As from

ever omit the calculation since it is straightforward. Now, this point on the strategy is identical as in partand all

using the definition o’ and Theorem 2, Eq5) becomes
iy -+ 9i,9i(6)=(Q'Q)(0). (6)

It is now again straightforward to show th@t=Q’ Q; hasC

andD as its lower blocks. Uniqueness follows from Lemma
1. This proves the induction step, thereby concluding the

proof of partA.
Part B. The proof of this part is analogous to pakt

calculations are straightforward, we will only give a sketch:
first we denoteR’=f(R); for §,C,D such thatR=C¢
+D, we define

0" =gjk(0),
C,:C+A]+Ak,
D/:D"FAJ"'FAK.

though a bit more involved. The basis step now readst then straightforward to show th& =C’ ¢’ +D’. The in-

fik(R)=1. Now case 2 in the algorithm in paft) of the
lemma implies thaR;;=0=Ry, andR;,=1, as only if this
is the casef;, is applied in the algorithm. For simplicity, but
without losing generality, we takie=1, j=2. ThenR must
be of the form

where the ¢, are (h—2)-dimensional column vectors.
Choosing8,C,D such thatR=C#+D, the matrix # must
satisfy

where ¢ is a symmetric (—2)X (n—2) matrix with zero
diagonal; furthermord;=0=D,,, Djj=1, C;;=1=Cy
and |f Cj+2,j+2:1 then 01]:02J:¢kJ:O, fOI’ ],k
=1,...nh—2. We will give the proof forC;,;,,=0, the

duction yields aQ’ e C' with lower blocksC’,D’ such that
Uik " 9ik (67)=Q"(6").

Using Theorem 2, we calculat®;  such that g(6)
=Q]k(0) Then

Oj k" 951k, Jik(0) =(Q" Q) (6)

and a last calculation shows th&,:=Q’'Qj, has lower
blocks C and D. Uniqueness again follows from Lemma 1.
This proves part B of the lemma. |

The main result of this paper is now an immediate corol-
lary of Lemmas 1 and 2.

Theorem 3.Let #®. Then the operationg,, . .. ,d,
generate the orbit of under the actiori3) of the local Clif-
ford groupC'.

Proof. LetQ=[2 5] C' such thathe dom(Q). Now, as
Co0+D is an invertible element of', Lemma Zii) can be
applied, yielding a unique

Ao Bo

|
c DeC

Qo=

other cases are similar. Thus, we have to show that ther@nd sequence @ji's andgj's such thatf e dom(Q,) and

exists aQqe C' with lower blocksC,D such thatg;,(6)
=Qo(0). To prove this, we use theorem 2, yielding

Uik Yisk, iy 9i,(0)=Qo(6).
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As Q andQq have the same lower blockdandD and 6 is  number of operations is exponential in the number of qubits,
in both of their domains, it follows from Lemma 1 th@X, in the majority of cases this algorithm gives a quick re-

=Q and the result follows. [ | sponse, as for largethe system of equations is highly over-
determined and therefore generically has a small space of
V. DISCUSSION solutions. Note that, when equivalence occurs, the algorithm

) - ~ provides an expliciQ which performs the transformation.
The result in Theorem 3 of course facilitates generating

the equivalence class of a given graph state under local Clif-
ford operations, as one only needs to successively apply the
rule to an initial graph. Note that Lemma 2 implies that one In this paper, we have translated the action of local uni-
only needs to consider sequenggsy,, - - -9k, 9, " 9i, of  tary operations within the Clifford group on graph states into
limited length. Furthermore, the translation of the operationdransformations of their associated graphs. We have shown
(3) into sequences of elementary graph operations gets rid dhat there is essentially one elementary graph transformation
annoying technical domain questions. It is important to notgule, successive application of which generates the orbit of
that we havenot proven that eaclQ e C' corresponds di- any graph state under the action of local Clifford operations.
rectly to a sequence af's, since, in Theorem 3, the decom- This result is a first step towards characterizing the LU-

VI. CONCLUSION

position intogi’s depends both o as well asé. equivalence classes of stabilizer states.
In a final note, we wish to point out that testing whether
two stabilizer states with generator matri&$§’ are equiva- ACKNOWLEDGMENTS
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