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Optimal processing of quantum information via W-type entangled coherent states

Nguyen Ba An*
School of Computational Sciences, Korea Institute for Advanced Study, 207-43 Cheongryangni 2-dong, Dongdaemun-gu

Seoul 130-722, Republic of Korea
~Received 14 September 2003; revised manuscript received 15 October 2003; published 23 February 2004!

Optimized probabilistic teleportation and remote symmetric entangling of an arbitrary logical qubit are
studied using particular forms ofW-type entangled coherent states. Of interest is the fact that, while the
teleportation can alternatively be performed by the GHZ-type entangled coherent states, the remote symmetric
entangling strictly requires those of theW type.
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I. INTRODUCTION

Quantum information can be carried by a quantum sys
with a finite set of discrete states each of which is defin
just by a single-quantum number. The simplest cases con
a two-level atomic system, a spin-half particle, or a pho
with two kinds of polarization, etc. that form the unit o
quantum information, a qubit. Quantum information can a
be coded in a state which is characterized by an infinite n
ber of degrees of freedom. Examples are a position or
mentum wave function of a microscopic particle or a state
a field. The latter version constitutes the so-cal
continuous-variable quantum information@1#. The
continuous-variable approach promises to be more com
and more efficient in both coding and manipulating quant
information and thus has been developed rapidly during
last few years from both theoretical and experimental po
of view ~see, e.g., Ref.@2#!. An intermediate, quite simple
but very useful, way@3# for coding is to utilize superposi
tions of a finite number of macroscopically distinguishab
states each of which is however embedded in an unboun
vector space. In this approach, instead of qubits, one d
with logical qubits. A logical qubit is regarded as a superp
sition of two continuous-variable states which are linea
independent but not necessarily orthogonal to each ot
Since coherent states are presently of practical use
readily available from laser sources, an elegant choice
representing a logical qubit is to use two coherent state
an optical modeua& andu2a& with a the complex coheren
amplitude. The logical qubit therefore lives in a tw
dimensional subspace of the mode’s full Hilbert space
infinite dimension, and reads

uC&5xua&1yu2a&, ~1!

where the coefficientsx, y ~assumed to be real for simplicity!
obey the normalization condition

x21y212xyz51, ~2!

with

z5^au2a&5exp~22uau2! ~3!
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the overlap betweenua& and u2a&. The concrete value o
uau thus serves as a measure of nonorthogonality of the
coherent states being used.

To process quantum information encoded in logical qub
of the form ~1! the so-called entangled coherent sta
~ECS’s! @4# have proven very helpful. To date, however, on
ECS’s of the GHZ type@5#,

uGHZ,a&1 . . .N5c1ua,a, . . . ,a&1 . . .N

1c2u2a,2a, . . . ,2a&1 . . .N, ~4!

with c1,2 the normalization coefficients, have been utiliz
~see, e.g., Ref.@6#!. In this work, by two explicit applica-
tions, we show that ECS’s of theW type @7#,

uW,a&1 . . .N5a1ua,2a, . . . ,2a&1 . . .N

1a2u2a,a, . . . ,2a&1 . . .N1•••

1aNu2a,2a, . . . ,a&1 . . .N, ~5!

with a1,2, . . . ,N the normalization coefficients, are genera
also useful and, in particular, there exist tasks for which
GHZ-type ECS’s are not suitable but theW-type ones are. In
this connection, we also notice that whileW states have been
invoked to for several kinds of quantum information proce
ing in terms of qubits@8#, none have been done for logica
qubits exploitingW-type ECS’s.

The present paper is structured as follows. In Sec. II
consider an optimized probabilistic protocol for Alice to tel
port an unknown logical qubit to Clare with the assistance
Bob when the three parties share a prior three-modeW-type
ECS. In Sec. III we address a problem of how Alice can
her best with a given logical qubit in such a way that t
logical qubit is symmetrically entangled with a referen
state between two remote collaborators Bob and Clare.
show that such a task can be accomplished by means o
W type but not of the GHZ-type ECS. Sec. IV discusses
experiment efficiency due to photodetector imperfection
the two protocols proposed in Secs. II and III. Finally, co
clusion is drawn in Sec. V.

II. TELEPORTATION

Let Alice be given an unknown logical qubituC&U
5xua&U1yu2a&U and share with two remote parties~Bob
©2004 The American Physical Society15-1
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NGUYEN BA AN PHYSICAL REVIEW A 69, 022315 ~2004!
and Claire! a prior three-modeW-type ECS

uW,a&ABC5a1ua,2a,2a&ABC1a2u2a,a,2a&ABC1a3u

2a,2a,a&ABC , ~6!

whereaj are some coefficients~assumed to be real for sim
plicity! obeying the normalization condition

a1
21a2

21a3
212z2~a1a21a2a31a3a1!51. ~7!

Alice’s task is to teleportuC&U to either one of her two
remote collaborators. Without loss of generality, we assu
that Claire is the one who receives the teleported log
qubit. Even so, Bob would not be left jobless. In fact, h
assistance is important in the following way. Bob prepares
ancilla in stateua&B8 and mixes it with his modeB of the
shared stateuW,a&ABC by a 50:50 beam splitter. As for Alice
she does similarly as Bob but between the unknown s
uC&U and her modeA of the stateuW,a&ABC ~see Fig. 1!.
After passing the beam splitters the initial tot
state uC&Uua&B8uW,a&ABC becomes„here the action of a
50:50 beam splitter reads asua& i ub& j→u(a1b)/
A2& i u(a2b)/A2& j @9#…

uF&UAB8BC5u0&A@ u0&B8uaA2&B^ ~a1xuaA2&Uu2a&C

1a3yu2aA2&Uua&C)1a2yu2aA2&U

3uaA2&B8u0&Bu2a&C] 1u0&U@ u0&B8uaA2&B

^ ~a1yu2aA2&Au2a&C1a3xuaA2&Aua&C)

1a2xuaA2&AuaA2&B8u0&Bu2a&C]. ~8!

Inspecting Eq.~8! reveals that the coefficientsa1 and a3
should be related asa156a3.

A. a1Äa3

Let us first consider the situation with

a15a35a8. ~9!

FIG. 1. Teleportation setup. Alice, Bob, and Claire share a p
W-type ECS uW,a&ABC . BS’s denote 50:50 beam splitter
DA,U,B,B8 photodetectors, andPC a phase shifter.
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Denoting by nB8 , nB , nA , and nU the photon numbers
counted by detectorsDB8 , DB , DA , and DU ~see Fig. 1!,
respectively, and looking closer at Eq.~8! with the constraint
~9! we recognize that the above-posed task succeeds if

nB850, nB.0 ~10!

combined either with

nA50, nU50,2,4, . . . , ~11!

or with

nU50, nA50,2,4, . . . ~12!

and, fails otherwise. In case the outcomes~10! and~11! hap-
pen Claire gets a state which can easily be converted
uC&C by the action of the operatorP̂C(p) where P̂j (w)
5exp(2iwâj

1âj) with â j 5A,B,C being the annihilation opera
tor of photon in modej. Alternatively, in case the outcome
~10! and ~12! happen the state at Claire’s location collaps
exactly into uC&C without doing anything@or, as one could
say, by the action of the operatorP̂C(0)]. The total success
probability is calculated to be

P85 (
n51

`

(
m50

`

uB8^0uB^nuA^0uU^2muF&UAB8BCu21$U↔A%

52a82 exp~22uau2!@12exp~22uau2!#cosh~2uau2!

5a82~12z!~11z2!. ~13!

The above obtained probability of successP8 does not
depend on the coefficients of the logical qubit to be te
ported, i.e., it is independent ofx andy. Yet, it does depends
on a @or, the same, onz due to Eq.~3!# and ona8. In the
limit uau→` ~i.e., z→0) P8 tends toa82, whereas in the
limit uau→0 ~i.e., z→1) P8 tends to 0 like 4a82uau2. For a
given value ofa ~or, the same, ofz) the quantum channe
stateuW,a&ABC could be tailored so as to maximizeP8, i.e.,
to optimize the teleportation performance. Combining t
conditions~7! and ~9! yields

a85a68 5
6AD22a2z2

2~11z2!
, ~14!

where D52@2a2
2z41(12a2

2)(11z2)# and a2
2<(11z2)/(1

1z222z4). Figure 2~a! displaysa68 anda68
2 as a function of

a2 for a fixed value ofz. For each givenz, P8 reaches a
maximal valuePmax8 proportional toa1max82 5a2max82 which
corresponds to two values ofa2 :a25a21

opt,0 anda25a22
opt

52a21
opt.0. The pair$a21

opt ,a1max8 % changes in accordanc
with z as seen in Fig. 2~b!. Figure 3 illustrates howP8 de-
pends simultaneously on bothz anda2 whena8 takes on the
value ofa18 ~upper plot! and whena8 takes on the value o
a28 ~lower plot!. At this moment it is worth noting that the
equally weightedW-type ECS witha15a25a3 does the job,

r
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of course. But such a symmetric entangled state leads to
success probability equal to (12z)(11z2)/@3(112z2)#
<1/3 which is not optimal.

B. a1ÄÀa3

Now we consider the situation with

a152a35a9. ~15!

FIG. 2. ~a! a18 ~thin solid curve!, a18
2 ~thick solid curve!, a28

~thin dashed curve!, anda28
2 ~thick dashed curve! as a function of

a2 for z50.6. The left ~right! arrow indicates the value ofa21
opt

(a22
opt52a21

opt) at which a18
25a1max82 (a28

25a2max82 5a1max82 ). ~b!
a1max8 52a2max8 ~solid line! anda21

opt52a22
opt ~dashed line! vs z.

FIG. 3. The upper plot is the probability of successful telep
tation P8(a18 ) and the lower one isP8(a28 ), as a function ofa2

andz.
02231
he

Under this situation the teleportation succeeds if the o
comes~10! occur together with either

nA50, nU51,3,5, . . . ~16!

or

nU50, nA51,3,5, . . . , ~17!

and fails otherwise. To get the teleported state Claire ne
just to applyP̂C(p) or P̂C(0) to her modeC of the shared
W-type ECS depending on whether the outcomes~10! and
~16! or ~10! and~17! happen. The total success probability
this situation is

P95 (
n51

`

(
m50

`

uB8^0uB^nuA^0uU^2m11uF&UAB8BCu2

1$U↔A%52a92 exp~22uau2!

3@12exp~22uau2!#sinh~2uau2!

5a92~12z!~12z2!, ~18!

which tends toa92in the limit uau→` and quickly to zero
like 8a92uau4 in the limit uau→0. Combining the conditions
~7! and ~15! yields

a925
12a2

2

2~12z2!
~19!

with a2
2<1. Since, for any allowedzP@0,1#, a92is uniquely

determined bya2
2 and monotonically increased with decrea

ing a2
2, the stateuW,a&ABC could be engineered so thata2

2

gets as small as possible in order to have as high as pos
the success probabilityP9, which is, on account of Eqs.~18!
and~19!, equal to (12a2

2)(12z)/2. Figure 4 displaysP9 as
a simultaneous function of botha2 andz.

C. Discussion

As is clear from above, the proposed teleportation pro
col fully fails if nB50. But what will happen if the outcome
~10! occur but in Eqs.~11! and ~12! the numbersnU,A are

-

FIG. 4. The probability of successful teleportationP9 as a func-
tion of a2 andz.
5-3
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odd or in Eqs.~16! and~17! the numbersnU,A are even? It is
quite interesting to note that these happenings do not imp
full failure in the sense that Claire can still do something
obtain a state which though is not an exact replica of but m
be very close touC&C . In fact, under those circumstances t
state at Claire’s@after a proper action ofP̂C(p) or P̂C(0)]

collapses intouC̃&C5xua&C2yu2a&C . What Claire can do

further is either apply touC̃&C the displacement operato
D̂C(g)5exp(gâC

12g* âC) with g5 ip/2a* or the ‘‘phase’’

operator@10# P̂C
(2)(f)5exp(2ifu2a&CĈ 2au) with f5p to

obtain the state uC1&C5D̂C(g)uC̃&C or uC2&C

5P̂C
(2)(p)uC̃&C , respectively. Making use of the conditio

~2! the corresponding fidelities can be derived. As a resu

F15uC^C1uC&Cu25expS 2
p2

4uau2
D , ~20!

F25uC^C2uC&Cu2

5122exp~22uau2!@x1y12~x1y!2exp~22uau2!#.

~21!

Although F1 does not depend on the state to be telepor
whereasF2 depends on it, bothF1 andF2 are exponentially
becoming closer and closer to 1 whenuau is growing. Hence,
uC1,2&C can be looked upon as approximate states ofuC&C .
The larger the value ofuau the smaller the difference be
tweenuC1,2&C and uC&C .

In order to proceed correctly to obtain the exact replica
uC&C or its approximate statesuC1,2&C Claire should distin-
guish four possibilities of Alice’s measurement outcom
$nA50,nU5 odd/even;nU50,nA5 odd/even% and two pos-
sibilities ~Bob actually needs to count the photon number
detector DB only! of Bob’s measurement outcomes$nB
50;nB.0%. Therefore, the total classical communicati
cost is three bits, i.e., the same cost as in the protocol u
GHZ-type ECS’s@9#.

The upper bound of the success probability of the pro
col via W-type ECS’s is Pmax8 5Pmax9 550% which is
achieved in the double limituau→` ~i.e., z→0) and a2
→0 @see Eqs.~13! and~18! or Figs. 3 and 4 as a visual aid#.
This upper bound coincides with the maximally possible s
cess probability for teleportation performed via GHZ-ty
ECS’s@9#. So theW-type ECS is considered as an alternat
way to realize teleportation, especially in case of lack
GHZ-type ECS’s~there is no need to distill GHZ type from
W-type states@11#!. In the next section the W-type ECS e
hibits its full power in a task in which GHZ-types ECS’s tu
out to be useless.

III. REMOTE SYMMETRIC ENTANGLING

This section is concerned with the remote symmetric
tangling problem which is formulated as follows. Suppo
that Alice possesses a logical qubituC&U and she wishes to
create entanglement between two far away collaborat
Bob and Claire, in such a way that the latter two shar
02231
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symmetric entangled state either in the form

uJ1&BC5N1~ uC&Bua&C1ua&BuC&C), ~22!

or in the form

uJ2&BC5N2~ uC&Bu2a&C1u2a&BuC&C), ~23!

where the normalization coefficients are determined by

N15
1

A2@11~x1yz!2#
~24!

and

N25
1

A2@11~xz1y!2#
. ~25!

The task just mentioned may be called quantum symme
zation which can be exploited as an efficient way to stabil
logical-qubit-based quantum computation, similar to t
usual qubit context@12#. At first thought, one might think of
using something like a three-mode Fredkin gate to do the
@13#. This however requires a meeting together of all t
collaborators at one location which is not the case we
addressing here. It is also verifiable that the GHZ-type E
are not of any use for the symmetrization though they are
teleportation @9#. Interestingly enough, particularW-type
ECS’s come adequate as we shall demonstrate right now

As in teleportation, let Alice, Bob, and Claire share b
forehand a three-modeW-type ECS of the general form~6!.
For the task of symmetric entangling no ancillas are need
and all Bob and Claire must provide themselves with
phase shifters~i.e., operatorsP̂B,C(w) already defined be-
fore! which might be in use. The remote entangling sche
is sketched in Fig. 5. After Alice mixes the logical qub
uC&U with her modeA of the sharedW-type ECS by a 50:50

FIG. 5. Remote symmetric entangling setup. Alice, Bob, a
Claire share a priorW-type ECSuW,a&ABC . BS is a 50:50 beam
splitter, DA,U photodetectors, andPB,C phase shifters. The dashe
two-head arrow indicates a symmetric entanglement between
and Claire.
5-4
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beam splitter, the total system will be described by the s
uQ&UABC which is of the form

uQ&UABC5u0&A@a1xuaA2&Uu2a&Bu2a&C

1a2yu2aA2&Uua&Bu2a&C1a3yu

2aA2&Uu2a&Bua&C] 1u0&U@a1yu

2aA2&Au2a&Bu2a&C1a2xuaA2&Aua&Bu2a&C

1a3xuaA2&Au2a&Bua&C]. ~26!

Inspecting Eq.~26! reveals that the coefficientsa1,2,3 should
be related as6a152a252a3.

A. a1Ä2a2Ä2a3

Let us first consider the constraint

a152a252a352a ~27!

with which Eq.~26! becomes

a$u0&A@~xuaA2&Uu2a&B1yu2aA2&Uua&B)u2a&C

1u2a&B~xuaA2&Uu2a&C1yu2aA2&Uua&C)]

1u0&U@~xuaA2&Aua&B1yu2aA2&Au2a&B)u2a&C

1u2a&B~xuaA2&Aua&C1yu2aA2&Au2a&C)] %.

~28!

To complete the quantum symmetrization Alice measures
output modes by detectorsDA,U and analyzes the measur
ment outcomes. In the case of$nA50 andnU51,3,5, . . . %
or $nU50 and nA51,3,5, . . . % the job fails. Yet, the two
remaining possibilities of the measurement outcomes m
smile with a success. Namely, if$nA50 and nU

50,2,4, . . . % then, by application ofP̂B(p) ^ P̂C(p), Bob
and Claire are ready to share the symmetric entangled
~22!. The probability of success is given by

P15
a2

N1
2

exp~22uau2!cosh~2uau2!5
a2

2N1
2 ~11z2!.

~29!

Alternatively, if $nU50 and nA50,2,4, . . . % then, without
doing anything, Bob and Claire readily share the symme
entangled state~23! with the success probability equal to

P25
a2

N2
2

exp~22uau2!cosh~2uau2!5
a2

2N2
2 ~11z2!.

~30!

To satisfy both conditions~7! and ~27! simultaneously the
quantitya is found to be

a25
1

2~315z2!
. ~31!
02231
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If we do not care which one of states~22! and~23! Bob and
Claire obtain, i.e., our purpose is just to make Bob and Cla
share the stateuC& in a symmetric manner, no matter it i
entangled with stateua& or stateu2a&, then the two prob-
abilities in Eqs. ~29! and ~30! will add to give P5P1

1P2 ,

P5
11z2

2~315z2!
@41~z221!~x21y2!#. ~32!

As is followed from Eq.~32!, P depends explicitly not only
on uau ~throughz) but also onx,y. Hence, the symmetric
entangling we are considering is not universal in the se
that it works differently for different logical qubits. Then
question can be asked: which logical qubit is optimal? Or
other words, what are the values ofx,y, andz that maximize
the success probabilityP? To answer that question we pa
attention to the following peculiar feature inherent to a lo
cal qubit: x and y are themselvesz dependent due to the
normalization condition~2!. For eachz, a possible value of
x@x2<1/(12z2)# is associated with a pair ofy5y652xz
6A12x21x2z2 which depends not only onx but also onz.
Curious is the fact that for a fixed value ofx there exists an
optimal z5zopt with which the success probability becom
maximalP5Pmax.1/2, as is illustrated by an arrow in Fig
6~a!, say, forx50.2. The dependence ofzopt onx is drawn in
Fig. 6~b!.

B. Àa1Ä2a2Ä2a3

Now we turn to choose

2a152a252a352ã, ~33!

FIG. 6. ~a! The probabilities of successful symmetric entangli
P(x,y1 ,z)5P(2x,y2 ,z), solid curve, and P(x,y2 ,z)5P
(2x,y1 ,z), dashed curve, as a function ofz for x50.2. ~b! The
optimal value ofz5zopt vs x.
5-5
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which together with Eq.~7! determinesã as

ã25
1

6~12z2!
. ~34!

The choice~33! can be rewritten asa11a21a350 the qubit
version of which was investigated in Ref.@14# where the
associated state was called zero sum amplitude entan
state. Under this situation the state~26! turns out to be

ã$u0&A@~2xuaA2&Uu2a&B1yu2aA2&Uua&B)u2a&C

1u2a&B~2xuaA2&Uu2a&C1yu2aA2&Uua&C)]

1u0&U@~xuaA2&Aua&B2yu2aA2&Au2a&B)u2a&C

1u2a&B~xuaA2&Aua&C2yu2aA2&Au2a&C)] %.

~35!

The symmetric entangling succeeds if$nA50 and nU

51,3,5, . . . % followed by additional application ofP̂B(p)
^ P̂C(p) or, if $nU50 andnA51,3,5, . . . % The total prob-
ability of success equals

P̃5 1
6 @41~z221!~x21y2!#. ~36!

At variant with the previous subsection, here bo
P̃(x,y6 ,z) increase monotonically withz and the highest
success probability can approach 2/3 whenz→1 ~see Fig. 7!.

C. Discussion

Two forms of W-type ECS’s with their coefficients pre
pared so as to meet the condition~27! or ~33! have been
shown to accomplish the symmetric entangling between
mote locations. For a better performance the condition~33!
seems perhaps advantageous because of the rela

FIG. 7. The probabilities of successful symmetric entangl

P̃(x,y1 ,z)5P̃(2x,y2 ,z), solid curve, and P̃(x,y2 ,z)5P̃
(2x,y1 ,z), dashed curve, as a function ofz for x50.2.
02231
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P̃(x,y6 ,z)>P(x,y6 ,z) which hold for anyzP@0,1#. In
order for Bob and Claire to correctly decide whether or n
they should apply the operatorsP̂B(p) ^ P̂C(p), two bits
need to be publicly announced by Alice about her measu
ment outcomes. A remarkable thing to be noted here is
the equally weightedW-type ECS witha15a25a3 does not
suit the job of remote symmetric entangling though it do
~though nonoptimally! for teleportation as demonstrated
the preceding section.

IV. EXPERIMENT EFFICIENCY

As a common matter associated with almost all schem
based on passive optics elements and photodetectors, it
essence to reliably distinguish between neighboring numb
of detected photons. The fact why evenness and oddnes
so decisive can be explicitly seen by rewriting the formu
in terms of~unnormalized! even/odd coherent statesua,6&
5ua&6u2a&. For instance, under the conditions~9! and
~10!, Eq. ~8! reduces to a form that can be cast into

uF&UAB8BC→uV&UAB8BC1uV&AUB8BCp, ~37!

where

uV&UAB8BC5 1
2 a8u0&Uu0&B8ub&B~ ub,1&AuC&C

1ub,2&AuC̃&C) ~38!

and

uV&AAB8BCp5 1
2 a8u0&Au0&B8ub&B~ ub,1&UP̂C~p!uC&C

1ub,2&UP̂C~p!uC̃&C), ~39!

with b5aA2. The entanglement between modeC and mode
A ~U! which now may be either in an even stateub,1&A(U)
or in an odd stateub,2&A(U) clearly indicates the necessit
of distinguishing between evenness and oddness of
counted photon number. This job is generally difficult b
can be done in principle by quantum-nondemolition schem
@9,15#.

So far it would have deemed all right if the photodetecto
were perfect. However, though high-quantum-efficiency p
ton counting systems exist@16#, perfect photodetectors hav
not been available yet in reality. We shall therefore study
problem of how experiment efficiency is sensitive to pho
detector imperfection. The unavoidable imperfection may
due to several reasons such as dark counts and/or losses
In what follows we shall take into account the effect due
losses. Let us assume that all our detectors have the s
efficiencyh,1. Such an imperfect detector could be mo
eled @17# by a perfect detector~with h51) to be placed
behind a lossless beam splitter BST of transmittivityT5h at
which the beam under consideration is superimposed on
ancilla mode prepared in the vacuum state. The part of
beam that is transmitted~with probabilityh) travels towards
the perfect detector. The other part that is reflected~with
probability 12h) is assumed to be fully absorbed by th
environment. This implies that the state of the transmit
5-6
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mode ~which is of our interest! should be described by
reduced density matrix which is obtained by tracing out o
the reflected mode. We now consider the teleportation w
the condition~9! is met@the case with the condition~15! can
be treated similarly and will not be presented here#. In case
no photons of modesU and B8 are registered, we need t
deal with Eq.~38!. Each of modesA andB is now split on a
og
ob
te

o
th

t
la
d

n
te

02231
r
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beam splitter BST5h before entering a respective perfect d
tector. For convenience, their transmitted modes are
called modesA andB, respectively. After tracing out over th
reflected modes the stateuV&UAB8BC becomes mixed and is
characterized by the following reduced density matrix~in
accordance with the action of the beam splitter BST5h :
ua& l ud&m→uAha1A12hd& l uA12ha2Ahd&m):
rUAB8BC5 1
4 a82u0&U^0u ^ u0&B8^0u ^ uAhb&B^Ahbu ^ @ uC&C^Cu ^ ~ uAhb&A^Ahbu

1quAhb&A^2Ahbu1qu2Ahb&A^Ahbu1u2Ahb&A^2Ahbu!1uC̃&C^C̃u

^ ~ uAhb&A^Ahbu2quAhb&A^2Ahbu2qu2Ahb&A^Ahbu1u2Ahb&A^2Ahbu!

1uC&C^C̃u ^ ~ uAhb&A^Ahbu2quAhb&A^2Ahbu1qu2Ahb&A^Ahbu

2u2Ahb&A^2Ahbu!1uC̃&C^Cu ^ ~ uAhb&A^Ahbu1quAhb&A^2Ahbu2qu2Ahb&A^Ahbu

2u2Ahb&A^2Ahbu!#, ~40!
tical
e-
-

t
n
prob-

to
et-
he

d

f

-

where the important parameter

q5z2(12h) ~41!

depends not only on degree of the coherent state nonorth
nality but also on degree of detector imperfection. The pr
ability P6 that the perfect detectors behind the beam split
BST5h register a nonzero photon number of modeB and an
even/odd photon number of modeA are derived in the form

P65 1
2 a82~12zh!~16z2h!. ~42!

If an even/odd photon number is detected, the state of m
C turns out to be a mixed state which is characterized by
density matrix

rC,65
16q

2
uC&CK CU1 17q

2 UC̃L
C

^C̃u. ~43!

In case no photons of modesA and B8 are registered, we
need to deal with Eq.~39!. By doing similar calculations as
for Eq. ~38! we get the following result. The probability tha
nB8.0 and nU is even/odd is given by the same formu
~42!. But in this case, if an even/odd photon number of mo
U is detected, the state of modeC is described by the fol-
lowing density matrix:

rC,68 5
16q

2
P̂C~p!uC&C^CuP̂C

1~p!

1
17q

2
P̂C~p!uC̃&C^C̃uP̂C

1~p!. ~44!

Hence, up to the action ofP̂C(p), the density matrixrC,6
results with the total probability 2P6 . We see that, either a
even or odd photon number is detected, Claire gets, ins
o-
-

rs

de
e

e

ad

of a pure state as in the case of perfect detectors, a statis
mixture of two unequally-weighted states, one which is d
sired (uC&C or P̂C(p)uC&C) and the other which is undes

ired (uC̃&C or P̂C(p)uC̃&C). Of course, for nearly perfec
detectors (12h!1, q.1), detection of an even photo
number seems good enough because in this case the
ability for gettinguC&C ~or P̂C(p)uC&C) is much higher than

that for gettinguC̃&C ~or P̂C(p)uC̃&C). In the limit h→1, we
haveq→1, 2P1→P8 @see Eq.~13!# and rC,1→uC&C^Cu
~which is the right pure state!, as it should be.

We can go along the same ‘‘technical’’ line as above
study the effect of detector imperfection for remote symm
ric entangling. Below we only present the final result for t
case when the coefficients satisfy the condition~27! and
whennU50 andnA50,2,4, . . . aredetected. Then, instea
of P2 given by Eq.~30!, one has

P2→ 1

4
a2S 11q

N2
2

1
12q

Ñ2
2 D ~11z2h!, ~45!

with Ñ2
2 51/@2(xz2y)2#, while Bob and Claire, instead o

the pure entangled stateuJ2&BC defined by Eq.~23!, obtain
the mixed state

uJ2&BC→rBC,25
11q

2
uJ2&BC

3 K J2U1 12q

2 UJ̃2L
BC

^J̃2u, ~46!

where uJ̃2&BC5Ñ2(uC̃&Bu2a&C1u2a&BuC̃&C). Transpar-
ently, the results~45! and ~46! recover those of perfect de
tectors which are respectively given by Eqs.~30! and ~23!.
5-7
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A common message followed from Eqs.~43!, ~44!, and
~46! is that in both teleportation and symmetric entangli
the weightsw5(11q)/2 and w̃5(12q)/2 of the desired
state and the undesired state, respectively, are solely d
mined by the parameterq. In Fig. 8 we plot those weights in
dependence on bothz and h. This figure shows that, for a
given degree of detector imperfectionh,1, the experiment
efficiency ~in this work we define experiment efficiency b
the differencew2w̃: w2w̃51 means obtaining the desire
pure state andw2w̃50 corresponds to a maximally mixe
state! increases withz. Also, as it is, forh51 ~perfect de-
tectors!, one identically hasw51 and w̃50, irrespective
of z.

V. CONCLUSION

In this work W-type entangled coherent states have b
touched upon for the first time to perform two explicit tas

FIG. 8. Solid ~dashed! curves represent the weightw (w̃) of

uC&C and uJ2&BC (uC̃&C anduJ̃2&BC) in rC,2 andrBC,2 , respec-
tively, as a function ofz for various values ofh51, 0.95, 0.9, 0.85,
and 0.8 counted from top~bottom!.
-

.

r,

02231
er-

n

of processing quantum information encoded in logical qub
of the form of a linear superposition of two antiphased c
herent states. The first task is teleportation which can also
done via states of the GHZ type. The second task is rem
symmetric entangling which strictly requires use ofW-type
states. For each task the coefficients of theW-type entangled
coherent state should be properly prepared so as to sa
certain constraints, apart from the normalization conditi
An optimal performance can be achieved by adjusting val
of the conditioned coefficients. The effect of detector imp
fection is also taken into account. While perfect detect
allow to get ~probabilitically! an exact replica of the tele
ported state as well as a pure desired symmetric entan
state, imperfection of detectors results in a mixture betw
the desired state and its ‘‘complementary’’~undesired! one.
Detailed calculations signal that a given degree of dete
imperfection (h,1) could be ‘‘tolerated’’ by using en-
tangled coherent states with a higher value ofz so as the
resulting ~mixed! state would better resemble the desir
~pure! state. This result can simply be gained by observ
that the experiment efficiency defined by the differencew

2w̃ coincides exactly with the single parameterq5z2(12h)

which, for a fixedh,1, increases withz. Extension to the
case of an arbitrary number of remote collaborators
straightforward. What remains problematic and is presen
in progress is how to generate an appropriateW-type en-
tangled coherent state in practice. Although generat
schemes forW-states@18# and GHZ-type states@19# exist,
those forW-type entangled coherent states have still to w
to be discovered.
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Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pa
P. van Loock, N. Korolkova, and G. Leuchs, Phys. Rev. A68,
012319~2003!.

@3# P.T. Cochrane, G.J. Milburn, and W.J. Munro, Phys. Rev. A59,
2631~1999!; D. Gottesman, A. Kitaev, and J. Preskill,ibid. 64,
012310 ~2001!; T.C. Ralph, W.J. Munro, and G.J. Milburn
Proc. SPIE4917, 1 ~2002!; H. Jeong and M.S. Kim, Phys. Rev
A 65, 042305~2001!.

@4# B.C. Sanders, Phys. Rev. A45, 6811 ~1992!; B.C. Sanders,
K.S. Lee, and M.S. Kim,ibid. 52, 735 ~1995!; W.J. Munro,
G.J. Milburn, and B.C. Sanders,ibid. 62, 052108~2000!; J.
5-8



l
rn
n

.
d

-

A

:

,

.
Y.

sa,

N.

l.

,
s,

n-

t

OPTIMAL PROCESSING OF QUANTUM INFORMATION . . . PHYSICAL REVIEW A69, 022315 ~2004!
Clausen, L. Kno¨ll, and D.-G. Welsch,ibid. 66, 062303~2002!;
H. Jeong and M.S. Kim, Quantum Inf. Comput.2, 208~2002!.

@5# We call states~4! GHZ-type ECS’s because of their forma
resemblance with the discrete-variable Greenberger-Ho
Zeilinger state, i.e., GHZ-state, introduced by D. M. Gree
berger, M.A. Horne, and A. Zeilinger, inBell’s Theorem,
Quantum Theory, and Conceptions of the Universe, edited by
M. Kafatos~Kluwer, Dordrecht, 1989!, p. 69.

@6# S.J. van Enk and O. Hirota, Phys. Rev. A64, 022313~2001!;
X. Wang, ibid. 64, 022302~2001!; H. Jeong, M.S. Kim, and J
Lee, ibid. 64, 052308~2001!; T.J. Johnson, S.D. Bartlett, an
B.C. Sanders,ibid. 66, 042326~2002!.

@7# We call states~5! W-type ECS’s because of their formal resem
blance with the discrete-variable Wolfgang state, i.e.,W state,
introduced by W. Dur, G. Vidal, and J.I. Cirac, Phys. Rev.
62, 062314~2000!.

@8# V.N. Gorbachev, A.I. Trubilko, and A.I. Zhiliba, J. Opt. B
Quantum Semiclassical Opt.3, S25 ~2001!; B.S. Shi and A.
Tomita, Phys. Lett. A296, 161 ~2002!; J. Joo and Y.J. Park
ibid. 300, 324~2002!; V.N. Gorbachev, A.I. Trubilko, and A.A.
Rodichkina, Opt. Spectrosc.94, 706 ~2003!; J. Joo, J. Lee, J
Jang, and Y.J. Park, e-print quant-ph/0204003; J. Joo,
Park, S. Oh, and J. Kim, New J. Phys.5, 136 ~2003!.

@9# Nguyen Ba An, Phys. Rev. A68, 022321~2003!.
02231
e-
-

J.

@10# D.A. Rice, G. Jaeger, and B.C. Sanders, Phys. Rev. A62,
012101~2000!.

@11# O. Cohen and T.A. Brun, Phys. Rev. Lett.84, 5908~2000!.
@12# A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Joz

and C. Macchiavello, SIAM J. Comput.26, 1541~1997!.
@13# V. Buzek and M. Hillery, Phys. Rev. A62, 022303~2000!.
@14# A.K. Pati and Pramana, J. Phys.59, 217 ~2002!.
@15# M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, and

Zagury, Phys. Rev. A45, 5193~1992!.
@16# S. Takeuchi, J. Kim, Y. Yamamoto, and H.H. Hogue, App

Phys. Lett.74, 1063~1999!.
@17# M. Paternostro, M.S. Kim, and B.S. Ham, Phys. Rev. A67,

023811~2003!.
@18# G.P. Guo, C.F. Li, J. Li, and G.C. Guo, Phys. Rev. A65,

042102~2002!; G.C. Guo and Y.S. Zhang,ibid. 65, 054302
~2002!; X.B. Zou, K. Pahlke, and W. Mathis,ibid. 66, 044302
~2002!; T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto
ibid. 66, 064301~2002!; X. Wang, M. Feng and B.C. Sander
ibid. 67, 022302~2003!; L.F. Santos,ibid. 67, 062306~2003!;
G.Y. Xiang, Y.S. Zhang, J. Li, and G.C. Guo, J. Opt. B: Qua
tum Semiclassical Opt.5, 208 ~2003!.

@19# B.C. Sanders and D.A. Rice, Phys. Rev. A61, 013805~1999!;
X. Wang and B.C. Sanders,ibid. 65, 012303~2002!; X. Wang,
J. Phys. A35, 165 ~2002!; S.J. van Enk, Phys. Rev. Lett.91,
017902 ~2003!; Nguyen Ba An and J. Kim, e-prin
quant-ph/0303149.
5-9


