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Optimal processing of quantum information via W-type entangled coherent states
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Optimized probabilistic teleportation and remote symmetric entangling of an arbitrary logical qubit are
studied using particular forms diV-type entangled coherent states. Of interest is the fact that, while the
teleportation can alternatively be performed by the GHZ-type entangled coherent states, the remote symmetric
entangling strictly requires those of th'é type.
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. INTRODUCTION the overlap betweefw) and|—«). The concrete value of
|| thus serves as a measure of nonorthogonality of the two
Quantum information can be carried by a quantum systengoherent states being used.

with a finite set of discrete states each of which is defined To process quantum information encoded in logical qubits

just by a single-quantum number. The simplest cases concenf the form (1) the so-called entangled coherent states

a two-level atomic system, a spin-half particle, or a photon(ECS’s [4] have proven very helpful. To date, however, only

with two kinds of polarization, etc. that form the unit of ECS’s of the GHZ typg5],

guantum information, a qubit. Quantum information can also

be coded in a state which is characterized by an infinite num-  |GHZ,a)1 _ n=Cila,e, ... @)1 N

ber of degrees of freedom. Examples are a position or mo-

mentum wave function of a microscopic particle or a state of

a field. The latter version constitutes the so-calledyith ¢, , the normalization coefficients, have been utilized
continuous-variable  quantum information[1]. The (see, e.g., Ref[6]). In this work, by two explicit applica-
continuous-variable approach promises to be more compaghns, we show that ECS'’s of thé/ type [7],

and more efficient in both coding and manipulating quantum

+C2|—a,—a,...,—a>1mN, (4)

information and thus has been developed rapidly during the W), n=ai|la,—a,...,—a)1 N
last few years from both theoretical and experimental point
of view (see, e.g., Refl2]). An intermediate, quite simple tayl—a,a, ..., ma)y Nt

but very useful, way 3] for coding is to utilize superposi-
tions of a finite number of macroscopically distinguishable
states each of which is however embedded in an unboundegi, a;, . n the normalization coefficients, are generally

vector space. In this approach, instead of qubits, one deal§sq yseful and, in particular, there exist tasks for which the
V\{|§h logical qublts.' A logical qublt is regardeq as a SUPerpo-GHz-type ECS’s are not suitable but tiétype ones are. In
sition of two continuous-variable states which are linearlyiyis connection. we also notice that whilstates have been
independent but not necessarily orthogonal to each othef,yoked to for several kinds of quantum information process-
Since coherent states are presently of practical use angdg in terms of qubitd8], none have been done for logical
readily available from laser sources, an elegant choice fog pits exploitingW-type ECS’s.
representing a logical qubit is to use two coherent states of The present paper is structured as follows. In Sec. Il we
an optical modéa) and| - a) with « the complex coherent  ¢onsider an optimized probabilistic protocol for Alice to tele-
amplitude. The logical qubit therefore lives in a two- nort an unknown logical qubit to Clare with the assistance of
dimensional subspace of the mode’s full Hilbert space oiggp when the three parties share a prior three-maegpe
infinite dimension, and reads ECS. In Sec. Ill we address a problem of how Alice can do
_ B her best with a given logical qubit in such a way that the
() =x|a)+y|-a), @ logical qubit is symmetrically entangled with a reference
state between two remote collaborators Bob and Clare. We
show that such a task can be accomplished by means of the
W type but not of the GHZ-type ECS. Sec. IV discusses on

tay|—a,—a,....a) N (5

where the coefficients, y (assumed to be real for simplicjty
obey the normalization condition

x2+y2+2xyz=1, 2 experiment efficiency due to photodetector imperfection of
the two protocols proposed in Secs. Il and lll. Finally, con-
with clusion is drawn in Sec. V.
z=(a| - a)=exp(—2|a|?) 3 IIl. TELEPORTATION

Let Alice be given an unknown logical qubit¥),
*Electronic address: nbaan@kias.re.kr =X|a)y+y|—a)y and share with two remote partié8ob
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FIG. 1. Teleportation setup. Alice, Bob, and Claire share a prio
W-type ECS |W,a)agc. BS's denote 50:50 beam splitters,
Dau s Photodetectors, anBc a phase shifter.

and Clairg a prior three-mod&\V-type ECS
|W, @) agc=2a1| @, — a,— a)pgct ol — a,@,— @) apct ag|
(6)

wherea; are some coefficient@ssumed to be real for sim-
plicity) obeying the normalization condition

_a'_a!a>ABC!

aj+as+a3+2z%(aa,+ayazt+aza;)=1.

()

Alice’s task is to telepor{¥), to either one of her two

remote collaborators. Without loss of generality, we assume
that Claire is the one who receives the teleported logical
qubit. Even so, Bob would not be left jobless. In fact, his
assistance is important in the following way. Bob prepares a

ancilla in state|a)g, and mixes it with his modd of the
shared statBW, @) agc by a 50:50 beam splitter. As for Alice,

she does similarly as Bob but between the unknown stat8_

| W), and her modeA of the state|W,a)agc (See Fig. L
After passing the beam splitters the initial total
state |W)y|a)g/|W, @) pgc becomes(here the action of a
50:50 beam splitter reads as|a)i|B);—|(a+B)/

V2)il(a—B)/\2); [9])
|®)yaerec=10)al|0)e|aV2)s® (arx|av2)y|— a)c

+agy|— a\2)yla)c) +ay| - a2)y
X|a\2)g/|0)s = a)c] +]0)y[|0)er|av2)g
@ (ayy|— a\2)al— a)c+agX| a\2) 4 a)c)
+aX| a2)alaV2)s [ 0)sl ~a)cl.  (®)

Inspecting Eq.(8) reveals that the coefficien®; and aj

should be related as, = * aj.

A a;=a
Let us first consider the situation with

a,=az=a’.

9

n
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Denoting byng/, ng, na, and ny the photon numbers
counted by detectorBg,, Dg, D, andDy (see Fig. 1,
respectively, and looking closer at E&) with the constraint
(9) we recognize that the above-posed task succeeds if

ng:=0, ng>0 (10
combined either with
na=0, ny=0,24..., (11
or with
ny=0, Nx=024... (12)

,and, fails otherwise. In case the outconi8) and(11) hap-

pen Claire gets a state which can easily be converted into
|¥)¢ by the action of the operatoPc(7) where Pj(¢)
=exp(—igaja) with a;_, g c being the annihilation opera-
tor of photon in modg. Alternatively, in case the outcomes
(10) and(12) happen the state at Claire’s location collapses
exactly into| V). without doing anythindor, as one could

say, by the action of the operaté@(O)]. Thetotal success
probability is calculated to be

H/

nzl mE:O lg:(0]g(n|a(0]u(2M| D) yap'Bc]*+{U A}

=2a'?exp— 2|a|?)[1—exp — 2| a|?)]cosh2| «|?)

a'’(1-2)(1+2).

(13

The above obtained probability of succdd$ does not
depend on the coefficients of the logical qubit to be tele-
ported, i.e., it is independent afandy. Yet, it does depends

n « [or, the same, oz due to Eq.(3)] and ona’. In the
limit |a|—o (i.e., z—0) I’ tends toa'? whereas in the
limit |a|—0 (i.e.,z—1) I1’ tends to O like 4’?|«|2. For a
given value ofa (or, the same, of) the quantum channel
state|W, a) agc could be tailored so as to maximit¥, i.e.,

to optimize the teleportation performance. Combining the
conditions(7) and (9) yields

= JA-2a,7?
2(1+7)

a'= (14

1+~

a

where A=2[2a3z*+ (1—a3)(1+2%)] and a3<(1+2%)/(1
+27°—27%). Figure 2a) displaysa’. anda’? as a function of
a, for a fixed value ofz. For each giverg, I1’ reaches a
maximal valuell/, proportional toa’? =a’2 .. which
corresponds to two values af:a,=a3"'<0 anda,=a3""
=—ad?">0. The pair{ad®',a’ .4 changes in accordance
with z as seen in Fig. (®). Figure 3 illustrates howl’ de-
pends simultaneously on bottanda, whena’ takes on the
value ofa’, (upper ploj and whena’ takes on the value of
a’ (lower ploy. At this moment it is worth noting that the
equally weightedV-type ECS witha, =a,=az does the job,
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O FIG. 4. The probability of successful teleportatidri as a func-
§ """"""" . tion of a, andz
+ -
% 27 Y L . . .
© " Under this situation the teleportation succeeds if the out-
L ; comes(10) occur together with either
_4 1 1 1 | |

060 02 04 06 08 1.0 n,=0, ny=135... (16)

or

FIG. 2. (@ a’, (thin solid curve, a’? (thick solid curve, a’
(thin dashed curye anda’? (thick dashed curyeas a function of ng=0, nNa=135..., (17
a, for z=0.6. The left(right) arrow indicates the value ais?' ) ) .
(a%P'=—a®y at which a/?=a’?, (a'’=a’% =a2_). (b andfails othgrwse. To get the teleported state Claire needs
@’y max=—a " max (sOlid ling) anda3?'=—a3"" (dashed lingvs z just to applyPc(7) or P-(0) to her modeC of the shared

W-type ECS depending on whether the outcorfd® and

of course. But such a symmetric entangled state leads to th@6) or (10) and(17) happen. The total success probability in
success probability equal to €1z)(1+2z%)/[3(1+22%)] this situation is
=<1/3 which is not optimal.

B.a.=—a "= > |&/(0|s(n|a(0]u(2m+1|®)yapscl?
1 3 n=1m=0
Now we consider the situation with
+{U—A}=2a"?expy —2|a|?)

X[1—exp(—2|a|?)]sinh(2|«|?)
=a"’(1-2)(1- 2%, (18

a;=—az=a". (15

which tends toa'2in the limit |a|— and quickly to zero

like 8a"2|a|* in the limit |a|—0. Combining the conditions
(7) and (15) yields

2
”L 1_ a2

2(1-7%) (19
with a2<1. Since, for any allowede[0,1], a"Zis uniquely
determined bya% and monotonically increased with decreas-
ing a3, the statgW,a)agc could be engineered so thaf
gets as small as possible in order to have as high as possible
the success probabilifyf”, which is, on account of Eq$18)
and(19), equal to (+a3)(1—z)/2. Figure 4 display$l” as
a simultaneous function of bo#n, andz

C. Discussion

FIG. 3. The upper plot is the probability of successful telepor- ~ AS is clear from above, the proposed teleportation proto-
tationI1’(a’,) and the lower one i$l’(a’), as a function ofa, col fully fails if ng=0. But what will happen if the outcomes

andz (10) occur but in Egs(11) and(12) the numbers 5 are
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odd or in Egs(16) and(17) the numbers, 5 are even? It is
quite interesting to note that these happenings do not imply a
full failure in the sense that Claire can still do something to
obtain a state which though is not an exact replica of but may
be very close t¢W¥ ). . In fact, under those circumstances the

state at Claire'after a proper action oP() or P¢(0)]
collapses intdW¥)c=x|a)c—y|— a)c. What Claire can do
further is either apply tdﬁf}c the displacement operator
Dc(y) =exphas—y*ac) with y=im/2a* or the “phase”
operatorf 10] 1157 () = exp(—id|— a)e{—al) with = to
obtain the state |¥)e=Dc(y)|W)e or [¥,)e

=11 ()| W), respectively. Making use of the condition
(2) the corresponding fidelities can be derived. As a result,

[ R .

2 FIG. 5. Remote symmetric entangling setup. Alice, Bob, and
F,= |C<«y1|q;>c|2:ex — _2) , (20) Claire share a prioW-type ECS|W,a)agc. BS is a 50:50 beam
4|a| splitter, D, y photodetectors, anBg ¢ phase shifters. The dashed
two-head arrow indicates a symmetric entanglement between Bob
Fo=|c(W,|¥)c|? and Claire.

— 2 2 2
=1-2exp—2|a|*)[x+y+2(x+y)%exp(—2al)]. symmetric entangled state either in the form

21

- |E ec=N,(|¥)gla)ct+|a)s|¥)c), (22
Although F; does not depend on the state to be teleported
whereasF, depends on it, botF, andF, are exponentially ~or in the form
becoming closer and closer to 1 whetj is growing. Hence,

|, »)c can be looked upon as approximate statefIofc . |E Yec=N_(|¥)g|—a)ct+|—a)s|¥)c), (23

The larger the value ofa| the smaller the difference be- o . _

tween| ¥, )¢ and|¥)c. where the normalization coefficients are determined by
In order to proceed correctly to obtain the exact replica of

| W) or its approximate statg¥; ,)c Claire should distin- N = 1 (24)

guish four possibilities of Alice’'s measurement outcomes o 2[1+(x+y2)?]

{nao=0,ny= odd/evenny=0n,= odd/eveh and two pos-
sibilities (Bob actually needs to count the photon number byzng
detector Dg only) of Bob’s measurement outcomgsig

=0;ng>0}. Therefore, the total classical communication 1
cost is three bits, i.e., the same cost as in the protocol using N_= = (25
GHZ-type ECS'Y9]. V2[1+(xz+Yy)<]

The upper bound of the success probability of the proto- ) , ,
col via W-type ECS's is IT/ =II"_=50% which is The task just mentioned may be called quantum symmetri-

achieved in the double IimitcT|aLoc m(?xe 2-.0) and a, zation which can be exploited as an efficient way to stabilize

; ; . logical-qubit-based quantum computation, similar to the

—0 [see Egs(13) and(18) or Figs. 3 and 4 as a visual did ) : ; .

This upper bound coincides with the maximally possible suc-'“'s_ual qubit chqnte|>_<|ﬁ(12]. Aht first thguglj:ht,d?(ne might tg'nkh()f. b
cess probability for teleportation performed via GHZ-typeuSIng something like a three-mode Fredkin gate to do the jo

ECS's[9]. So theW-type ECS is considered as an alternative[13]' This however requires a meeting together of all the

way to realize teleportation, especially in case of lack Ofcollaborgtors at one location Wh'Ch is not the case we are
GHZ-type ECS's(there is no need to distill GHZ type from addressing here. It is also verlflab!e that the GHZ-type ECS
W-type stateg11]). In the next section the W-type ECS ex- are not of any use for the symmetrization though they are for

hibits its full power in a task in which GHZ-types ECS's turn teleportation [9]. Interestingly enough, particulavtype
out to be useless. ECS’s come adequate as we shall demonstrate right now.

As in teleportation, let Alice, Bob, and Claire share be-
forehand a three-modé/-type ECS of the general forri6).
For the task of symmetric entangling no ancillas are needed,

This section is concerned with the remote symmetric enand all Bob and Claire must provide themselves with are
tangling problem which is formulated as follows. Supposephase shiftergi.e., operatorsPg c(¢) already defined be-
that Alice possesses a logical quplt), and she wishes to fore) which might be in use. The remote entangling scheme
create entanglement between two far away collaboratorés sketched in Fig. 5. After Alice mixes the logical qubit
Bob and Claire, in such a way that the latter two share a¥), with her modeA of the sharedV-type ECS by a 50:50

IIl. REMOTE SYMMETRIC ENTANGLING

022315-4
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beam splitter, the total system will be described by the state
|®)uasc Which is of the form 0.52

Zopt

|©)unec=|0)alarx|a2)y|— a)s| —a)c E
:n

+ayy|— av2)y|a)g| — a)c+agyl N O
—a\/§>u|_a>B|a>c]+|0>u[al)’| E’

— a2l — a)p|— a)c+aX|ay2)a| @)l — a)c

+agx|ay2)al — a)gla)cl. (26)

Inspecting Eq(26) reveals that the coefficients , 3 should
be related as-a;=2a,=2as.

opt

A. a1= 2a2= 2a3

Let us first consider the constraint

a;=2a,=2a;=2a (27) 10 05 00 05 10

X

with which Eq.(26) becomes
FIG. 6. (a) The probabilities of successful symmetric entangling

allo x| a2 | = adatv]—av2) |l a — nx,y; ,2)=IM(-x,y_,z), solid curve, andII(x,y_,z)=1II
{| ol | \/_>U| e y| \/_>U| >B)| Je (—x,y4 ,2), dashed curve, as a function pffor x=0.2. (b) The
+] = a)g(X|aV2)y|— a)ct+y|— av2)yla)e)] optimal value ofz=2z,, vs x.

+10)u[ (X|a2)a| @)a+ Y| — av2)al —@)e)| = @)c  If we do not care which one of statéa2) and (23) Bob and
B B _ Claire obtain, i.e., our purpose is just to make Bob and Claire
=@l a)ctyl=ay2)al—a)olk share the staté¥) in a symmetric manner, no matter it is
(28)  entangled with statge) or state|—«), then the two prob-

o ) abilities in Egs.(29) and (30) will add to give II=11,
To complete the quantum symmetrization Alice measures heg 1 _

output modes by detectoi3, , and analyzes the measure-

ment outcomes. In the case gi,=0 andny=1,3,5...} 1+ 72
or {ny=0 andn,=1,3,5...} the job fails. Yet, the two = ———[4+(Z-1)(x*+y?)]. (32
remaining possibilities of the measurement outcomes may 2(3+52°)

smile with a success. Namely, ifn,=0 and ny ) o
=0,2,4 ...} then, by application 0'53(77)®|5c(77), Bob As is followed from Eq.(32), I1 depends explicitly not onl_y
and Claire are ready to share the symmetric entangled sta@® || (throughz) but also onx,y. Hence, the symmetric

e . entangling we are considering is not universal in the sense
(22). The probability of success is given by that it works differently for different logical qubits. Then a
a2 a2 guestion can be asked: which logical qubit is optimal? Or, in
I, =—exp— 2|a|?)cosh2|al?) = —(1+ z?). other words, what are the values»qf/, andz that maximize
N7 T the success probabilitil? To answer that question we pay

(29 attention to the following peculiar feature inherent to a logi-
) i ) cal qubit: x andy are themselveg dependent due to the
Alternatively, if {ny=0 andn,=0,2,4 ...} then, without  ormalization condition2). For eachz, a possible value of
doing anything, Bob and Claire readily share the symmetng([ngll(l_zz)] is associated with a pair gf=y. = —xz

entangled stat€23) with the success probability equal to JI=x%+x%Z2 which depends not only oxbut also orz.

Curious is the fact that for a fixed value »tthere exists an
n =a—2exp(—2|a|2)cosr(2|a|2)= a’ (1+729) optimal z=z,,, with which the success probability becomes
T ON? 2 ' maximalll=11,,,>1/2, as is illustrated by an arrow in Fig.
(30)  6(a), say, forx=0.2. The dependence gf,; onxis drawn in

Fig. 6b).
To satisfy both conditiong7) and (27) simultaneously the
quantitya is found to be B. —a,=2a,=2a,
1 Now we turn to choose
a2=—2. (3D -
2(3+5z%) —a;=2a,=2a3=2a, (33

022315-5
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075 T ﬁ(x,yt ,2)=11(X,y= ,z) which hold for anyze[0,1]. In

order for Bob and Claire to correctly decide whether or not
they should apply the operatofg(7)® Pc(7), two bits
need to be publicly announced by Alice about her measure-
ment outcomes. A remarkable thing to be noted here is that
the equally weightediV-type ECS witha,;=a,=a; does not
suit the job of remote symmetric entangling though it does
(though nonoptimally for teleportation as demonstrated in
the preceding section.

IV. EXPERIMENT EFFICIENCY

As a common matter associated with almost all schemes
based on passive optics elements and photodetectors, it is of
essence to reliably distinguish between neighboring numbers
of detected photons. The fact why evenness and oddness are
z so decisive can be explicitly seen by rewriting the formulas
in terms of (unnormalized even/odd coherent statés, =)
=|a)*=|—a). For instance, under the conditiort8) and
(10), Eq. (8) reduces to a form that can be cast into

0.45 n 1 L 1 " 1 " 1 1
00 02 04 06 08 1.0

FIG. 7. The probabilities of successful symmetric entangling

ﬁ(x,y+ ,z)=f[(—x,y, ,2), solid curve, and ﬁ(x,y, ,z)=ﬁ
(—x%,y+ ,2), dashed curve, as a function ofor x=0.2.

. ) o~ |P)uaersc—Q)uasact|Q)ausem (37)
which together with Eq(7) determinesa as
where
- 1 )
al=———. (34 |Q)uasrec=322"|0)u|0)e/|B)s(|B,+)al ¥)c
6(1—2%) -
. . _ +1B8,—)al¥)e) (38
The choiceg33) can be rewritten ag; +a,+a;=0 the qubit
version of which was investigated in RgfLl4] where the and
associated state was called zero sum amplitude entangled ~
state. Under this situation the sta®6) turns out to be |Q) angrec=132"|0)al0)e/| B)s(| B, + )uPc(m)|¥)c
a{|0)al (—X|e\2)y| — a@)g+y|— aV2)yla)e)| — a)c 18, = )uPe(mW)e), (39
+] = a)g(— x| a2)y| — a)ety|— av2)yla)o)] with 8= @\/2. The entanglement between ma@land mode

A (U) which now may be either in an even st$ﬁ3+)A(U)
+[0)u[ (X @\2)al @)g— Y| — @\2)al — @)p)| — @)c or in an odd statéB, — ) clearly indicates the necessity

of distinguishing between evenness and oddness of the
+]— a)a(X| a\2)al @)= Y|~ ay2)al — @)o)]} counted photon number. This job is generally difficult but
(35 can be done in principle by quantum-nondemolition schemes
_ _ [9,15].
The symmetric entangling succeeds {ifi,=0 and ny So far it would have deemed all right if the photodetectors
=1,3,5...} followed by additional application oPg() were perfect. However, though high-quantum-efficiency pho-

®Pc(m) or, if {ny=0 andn,=1,3,5...} The total prob- ton counting systems exip6], perfect photodetectors have

ability of success equals not been available yet in reality. We shall therefore study the
problem of how experiment efficiency is sensitive to photo-
f=1[4+ (22— 1)(x2+y))]. (36) detector imperfection. The unavoidable imperfection may be

due to several reasons such as dark counts and/or losses, etc.
At variant with the previous subsection, here both!n what follows we shall take into account the effect due to
losses. Let us assume that all our detectors have the same
efficiency »<1. Such an imperfect detector could be mod-
eled [17] by a perfect detectofwith »=1) to be placed
behind a lossless beam splitter B& transmittivity T= » at
which the beam under consideration is superimposed on an
Two forms of W-type ECS’s with their coefficients pre- ancilla mode prepared in the vacuum state. The part of the
pared so as to meet the conditio27) or (33) have been beam that is transmitte@vith probability ») travels towards
shown to accomplish the symmetric entangling between rethe perfect detector. The other part that is refledt@ih
mote locations. For a better performance the condi(@8)  probability 1— #) is assumed to be fully absorbed by the
seems perhaps advantageous because of the relatiomgvironment. This implies that the state of the transmitted

fI(x,y. ,z) increase monotonically witlz and the highest
success probability can approach 2/3 whkenl (see Fig. 7.

C. Discussion

022315-6
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mode (which is of our interegtshould be described by a peam splitter B§. ,, before entering a respective perfect de-
reduced density matrix which is obtained by tracing out overector. For convenience, their transmitted modes are also
the reflected mode. We now consider the teleportation wheoalled mode#\ andB, respectively. After tracing out over the
the condition(9) is met[the case with the conditiofi5) can  reflected modes the stalf ) agsc becomes mixed and is
be treated similarly and will not be presented Hehe case characterized by the following reduced density matiix

no photons of modet) andB’ are registered, we need to accordance with the action of the beam splitter;B:

deal with Eq.(38). Each of mode#\ andB is now spliton a  |a)|8)m—|Vra+ V1= 76)|V1— na—V56)m):

|
puasrec=12"%0)y(0|®10)e (0@ [V7B)e( V0Bl [|W)c(W|@ (| nBYA(\ 78]
+aNnBYA(— 1Bl +al = V1B AN 0Bl + | = VnBYa(— 1B + | T) (T
@ (1B AN 18— alN 18) a{ = V18— al = VnBYaA(N 1B+ = VnB)a(—VnBl)
+ W) (T (N 2B) (N 1Bl = Al NnBYa(— 1Bl +al =V 1B) A\ nB]
~[=VnB)a(— VBN +1¥) (W[ @ (V7B AN 18I+ AN 7B) Al — V18]~ Al = VnBYa(\ 18]
== nB)a(—nB1, (40)

where the important parameter of a pure state as in the case of perfect detectors, a statistical
mixture of two unequally-weighted states, one which is de-

sired (W)¢ or Pc()|¥)c) and the other which is undes-

depends not only on degree of the coherent state nonorthoged ((W)c or Pe(m)[¥)c). Of course, for nearly perfect
nality but also on degree of detector imperfection. The probdetectors (+ <1, q=1), detection of an even photon
ability P_. that the perfect detectors behind the beam splitter§umber seems good enough because in this case the prob-
BSr_, register a nonzero photon number of mdgland an  ability for getting| ¥ )¢ (or Pc()|¥)c) is much higher than
even/odd photon number of modeare derived in the form {4t for gettingj@)c (or lsc(ﬂ)ﬁ’)c)- In the limit 7— 1, we

haveq—1, 2P, —II' [see Eq.(13)] and p¢c . —|¥)c(¥|
(which is the right pure stateas it should be.

If an even/odd photon number is detected, the state of mode We can go along the same “technical” line as above to

C turns out to be a mixed state which is characterized by th@.tUdy the e_ffect of detector imperfection for_ remote symmet-
density matrix ric entangling. Below we only present the final result for the

case when the coefficients satisfy the conditi@Y) and

q=2z?4"" (42)

P.=1%a'?(1-z")(1+27?7). (42)

1+q 17ql~\ ~ whenny=0 andn,=0,2,4 ... aredetected. Then, instead
pcy+=T|\If}c<\If + T\If> (W|. (43)  of I1_ given by Eq.(30), one has
C
In case no photons of modes and B’ are registered, we nl —>Ea2 1+g 1-q (1+227) (45)
need to deal with Eq(39). By doing similar calculations as -4 N2 N2 ’

for Eq. (38) we get the following result. The probability that

ng:>0 andny is even/odd is given by the same formula 1, N2 =1[2(xz—y)?], while Bob and Claire, instead of

(42). But in this case, if an even/odd photon number of mod - ) .
U is detected, the state of modeis described by the fol- e;ﬂg EqL:)r((éder;g?gled StaffE ) defined by Eq/(23), obtain

lowing density matrix:

1+q. . E dpc— _ita, )
pe+=—5Pc(m)|[¥)(¥[Pc(m) S-/BCTPBC-TTR T I=-/BC
— 1-q|~ ~
1%q. ~ = a = = =i
to P W) (TIPE(m). (44 ><<~ ~>BC<~|, (46)

Hence, up to the action d?c(7), the density matrippc . where |§,)BC:N,(|\T’)B|—a>c+|—a>B|\Tf)C). Transpar-
results with the total probability R.. . We see that, either an ently, the result$45) and (46) recover those of perfect de-
even or odd photon number is detected, Claire gets, insteadctors which are respectively given by E¢30) and(23).
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A common message followed from Eg€3), (44), and \ . ! . _
(46) is that in both teleportation and symmetric entanglingwhich, for a fixed»<1, increases witfz. Extension to the

the

weightsw=(1+q)/2 andw=(1—q)/2 of the desired

PHYSICAL REVIEW A 69, 022315 (2004

of processing quantum information encoded in logical qubits
of the form of a linear superposition of two antiphased co-
herent states. The first task is teleportation which can also be
done via states of the GHZ type. The second task is remote
symmetric entangling which strictly requires useWftype
states. For each task the coefficients of WWéype entangled
coherent state should be properly prepared so as to satisfy
certain constraints, apart from the normalization condition.
An optimal performance can be achieved by adjusting values
of the conditioned coefficients. The effect of detector imper-
fection is also taken into account. While perfect detectors
allow to get (probabilitically) an exact replica of the tele-
ported state as well as a pure desired symmetric entangled
state, imperfection of detectors results in a mixture between
the desired state and its “complementarigindesired one.
Detailed calculations signal that a given degree of detector
imperfection (p<1) could be “tolerated” by using en-
tangled coherent states with a higher valuezafo as the
resulting (mixed) state would better resemble the desired
(pure state. This result can simply be gained by observing
that the experiment efficiency defined by the differemce

—Ww coincides exactly with the single parametgr z2(*~7)

case of an arbitrary number of remote collaborators is

state and the undesired state, respectively, are solely detéitraightforward. What remains problematic and is presently
mined by the parametey. In Fig. 8 we plot those weights in
dependence on bothand %. This figure shows that, for a
given degree of detector imperfectiop<1, the experiment

efficiency (in this work we define experiment efficiency by
the differencev—w: w—w=1 means obtaining the desired

pure state antv—w=0 corresponds to a maximally mixed
statg increases witle. Also, as it is, forp=1 (perfect de-

tectorg, one identically hasv=1 and w=0, irrespective

of z

V. CONCLUSION

in progress is how to generate an appropridteype en-
tangled coherent state in practice. Although generation
schemes folW-states[18] and GHZ-type statefl9] exist,
those forW-type entangled coherent states have still to wait
to be discovered.
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