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Universal control of quantum subspaces and subsystems

Paolo Zanardi1,2 and Seth Lloyd1
1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Institute for Scientific Interchange (ISI) Foundation and Istituto Nazionale per la Fisica della Materia (INFM),
Viale Settimio Severo 65, I-10133 Torino, Italy

~Received 2 May 2003; published 20 February 2004!

We describe a broad dynamical-algebraic framework for analyzing the quantum control properties of a set of
naturally available interactions. General conditions under which universal control is achieved over a set of
subspaces/subsystems are found in terms of the representation theory of the groupUA of allowed quantum
evolutions. In some cases universal control can be achieved in all the state-space sectors carrying an irreducible
action of UA . All known physical examples of universal control on subspaces/systems are related to the
framework developed here. Implications for quantum-information processing are discussed.
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I. INTRODUCTION

The ability to manipulate information in an arbitrary fas
ion is a key requirement for both classical and quantu
information processing~QIP! @1#. Once information is suit-
ably encoded one must be able to perform, at le
approximately, any transformation over the state space of
physical medium supporting the encoding. When this goa
realized one says that universal control is achieved.

In the prototype case of QIP the physical system supp
ing the encoding is provided by a set of two-level system
i.e., qubits, in which both external and mutual interactio
are supposed to be controllable to a very high degree
accuracy. In this case the state space of the systems is g
by the tensor productH>(C2) ^ N (N-qubit space!. It is an
important, and by-now standard result in QIP that almost
pair of two-qubit gates are universal@2,3#. Moreover the re-
alizability of all single-qubit, i.e., SU~2! gates along with an
~arbitrary! entangling two-qubit gates suffices to achieve u
versality @4#.

On the other hand in many experimental situations th
are operational constraints that force one to conside
smaller set of transformations as the actually available o
For example all naturally available interactions could
commuting with some observable, e.g., total spin, wh
value cannot then be changed. This lack of resources t
cally results in the impossibility of achieving universality
the full state spaceH. It is then a very natural and practicall
important question whether there exists a subspaceC of H
over which the restricted set of naturally available inter
tions allows universality. When such an ‘‘encoding’’ is foun
one obtains the so-calledencoded universality@5–9#.

In this paper we shall analyze the problem of encod
universality from a general control-theoretic perspecti
Broad conditions under which universal control over set
subspaces/subsystems can be achieved will be stated wit
powerful algebraic framework. Our main results are p
sented in the form of three propositions, whose ingredie
will be the representation theory of dynamical groups a
algebras associated with the allowed interactions. A cru
role will be played by the symmetry properties of the real
1050-2947/2004/69~2!/022313~5!/$22.50 69 0223
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able transformations. Several applications to physical s
tems relevant for quantum information processing will
pointed out.

II. PRELIMINARIES

Let IA5$H(l)%lPM,End(H) denotes the set of ‘‘ natu
rally’’ available interactions acting over the quantum sta
spaceH. M is the set of control parameters. We assume t
one is able to enact all the quantum evolutions governed
the time-dependent HamiltoniansH„l(t)… wherel belongs
to the setPA of M-valued functions~paths! of time corre-
sponding to the physically realizable control processes.
stress that we are not assuming that these latter can be
trary ones. We are also implicitly assuming that no oth
~uncontrollable! interactions, e.g., coupling with an environ
ment, but the ones inIA are present. In other words we a
working in anoiselessscenario.

The pair (IA ,PA) describes the physical resources ava
able in the given experimental situation; associated w
it one has a set of allowed quantum evolutionsU(l)
5Texp@2i*RH„l(t)…dt#(lPPA), where T denotes the
chronological ordering operator.

We will assume that ifU is an allowed evolution, thenU†

is allowed as well; we also assume that the trivial, i.e.,U
51, evolution is an allowed one. It follows that set of unita
transformations one can generate by resorting to interact
in IA and control processes inPA has the structure ofsub-
group UA of the full groupU(H) of unitary transformations
overH. If UA is dense inU(H) one says thatuniversalityis
achieved: an arbitrary unitary transformation overH can be
realized to an arbitrary accuracy by means of the availa
resources.

It is useful now to recall a well-known result in quantu
control theory. When~i! one can drive the control paramete
along arbitrary paths inM and ~ii ! IA5$( il iHi%, one has

UA5eLA, ~1!

where byLA we denoted the Lie algebra generated by the
of operatorsIA , i.e., the linear span of all possible multip
©2004 The American Physical Society13-1
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commutators of elements ofIA . This result generallydoes
not hold when a restricted set of pathsPA is considered: in
this caseU A,eLA.

For example, in holonomic quantum computation@10# IA
comprises a set of isodegenerate Hamiltonians andPA is
given by adiabaticloops around al0PM. From the adia-
batic theorem it follows that, if one start from an initial sta
lying in a eigenspace ofH(l0), any evolutions obtained by
driving the control parameter adiabatically along a loop
M will result in a final state in the same eigenspace. T
means that the state space is dynamically decoupled in
thogonal sectors corresponding to the eigenprojectors
H(l0). This decoupling is clearly an obstruction to unive
sality.

Before moving to the main part of the paper let us not
that the control-theoretic perspective adopted in this pape
somewhat different from the one of some recent quan
control papers, e.g.,@11#. There the control by laser pulses
a multilevel indecomposable systems have been analy
On the contrary our focus is mostly onmultipartitequantum
systems~the ones ultimately relevant to quantum informati
processing! and the on the control of many-body, e.g
Heisenberg, couplings.

III. ENCODED UNIVERSALITY

Suppose that there exist a set of invariant subspa
Ci,H( i 51, . . . ,M ) of UA , such that

UAuCi
5U~Ci !, ~ i 51, . . . ,M !. ~2!

~Here the bar denotes topological closure.! In this case, we
say thatUA is Ci universal. TheCi ’s will be referred to as
codes. WhenUA is H universal we will simply say that it is
universal. Note that in order to attainCi universality the
groupUA has to be aninfinite one. Finite groups cannot b
dense on the set of unitary transformations onCi .

Example 1.The most favorable case of holonomic qua
tum computation occurs when there is an irreducible conn
tion @10#. In this case, one hasUA5 % rU(Hr) whereHr is the
r th eigenspace ofH(l0) with dimensionnr . Since for non-
trivial H(l0) one has( rnr

2,(( rnr)
2, it follows that UA is

strictly contained inU(H). HereUA allows only forHr uni-
versality.

Example 2.Let H5C2
^ C2 be a two-qubit space andIA

5$sx
^ sx1sy

^ sy,sx
^ sy2sy

^ sx,sz
^ 121^ sz% ~here

the sa’s denote the Pauli matrices!. Under the assumption
for the validity of Eq. ~1! it is easy to see that this set
H1-universal, whereH1 is the linear span ofu01& and u10&
@8#. This is easily seen by noticing that (LA)>su(2); conse-
quently H splits according the su~2! irreducible representa
tion in a doublet (H1) and two singlets (H0
5span$u00&,u11&%). The decomposition of the entire two
qubit space is obtained by consideringI A85$sx

^ sx2sy

^ sy,sx
^ sy1sy

^ sx,sz
^ 111^ sz%. In this case, the role

of H0 andH1 are interchanged.
It is important to realize that in the general case the co

do not have to beIA invariant subspaces; in other words, o
can temporarily leave the coding subspace during the t
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evolution and return to it just at the end. An instance of t
situation is provided by the obvious fact that if (IA ,PA) is C
universal then, for any subspaceC 8,C, there exists a subse
P A8,PA such that (IA ,P A8 ) is C 8 universal. The elements o
UA will generally temporarily draw states out ofC 8; the
states in (C 8)' play the the role ofauxiliary intermediate
states that do not have to appear at the beginning and a
end of the control process. The QIP literature provides
multitude of illustrations of this state of affairs, i.e., the u
of ancillæ . Another possibility consists in generating fro
the interactions inIA ~which do not leaveC invariant! a set
I A

e f f of effective interactions~which do leaveC invariant!.
Now the main question is:given the available setUA of

operations, can some encoded universality be achieved?
To see whether a suitable encoding exists, i.e., a subs

C for whichUA is C universal, it is useful to resort to the too
of group representation theory@13# Let us consider the de
composition ofH into theUA irreducible representation

H> % JC
nJ^ HJ ~3!

TheCnJ factors in the Eq.~3! above simply take into accoun
that theJth irreducible representationHJ , with dimension
dJ , appears with multiplicitynJ . The appearance of thes
factors amounts to the existence ofsymmetriesfor the set of
allowed transformationsUA . We observe in passing tha
symmetries forUA are not necessarily symmetries forIA ,
whereas the converse holds true.

Let us now then suppose thatIA admits a nontrivial group
of symmetriesG, i.e.,gPG⇒@g,IA#50. A paradigmatic in-
stance is given when one is dealing with a quantum sys
consisting ofN copies of an elementary one, e.g., one qub
and cannot discriminate the different subsystems. Perm
tions of these latter are therefore symmetries of the allow
interactions (G is given by the symmetric groupSN). This
kind of situation is often encountered in decoherence f
subspaces~DFS! @14# and noiseless subsystem theo
@15,16,6#. whereIA is the set of system operators coupl
with the environment. The associative algebra generated
IA is the basic algebraic object underlying all the quant
noise avoidance, correction, and suppression schemes d
oped to date@16,12#. In the following given a groupG we
will denote byCG its group algebra@17#, moreover given the
algebraA we will denote byA 8ª$X/@A,X#50% its com-
mutant.

In Eq. ~3! now theCnJ factors represent theG-irreducible
representations anddJ their multiplicities. In this case uni-
versality is obviously prevented becauseUA,(CG)8> % J1nJ

^ U(dJ): different J sectors are never coupled by the a
lowed operations inUA . In order to better illustrate thes
notions let us go back to example 2; here one can choos
symmetry groupG5$1,sz^ 2%>Z2. Its commutant is then
given by (CG)85span$1,sz

^ 1,1^ sz,sz^ 2,sa
^ sb (a,b

5x,y)%. This algebra contains both the su~2!’s mentioned
above and it allows one to operatesimultaneouslyover H0
andH1.

The group UA acts irreducibly over the subspacesCJ
5uf& ^ HJ , whereuf& is an arbitrary vector in the multiplic-
3-2



at

a-

y

L
h

e-

re
h

o
a

on

is

a
s
-

n
ad
IP

o

ve

lia

the
ion-
r-
g

i-

if
s of

er

ems

less
c-

f a

lly

the

ly
are

l

-

a-
at

UNIVERSAL CONTROL OF QUANTUM SUBSPACES AND . . . PHYSICAL REVIEW A69, 022313 ~2004!
ity factor CnJ in Eq. ~3!. It is elementary, yet important to
keep in mind that irreducibility on itself does not imply th
all the unitaries overC are realized as group elements~see
Proposition below!. The most general of such transform
tions, as written above, is given by a suitablelinear combi-
nationof elements fromUA . Technically this is expressed b
saying that the group of unitaries overC is given by the
restriction toC of the unitary partUCUAuC of the group al-
gebraof UA . One can easily prove the following.

Proposition 1.Let UA be a Lie group. If dimUAuCJ
5dJ

2

thenUA is CJ universal whereCJ is anydJ dimensional sub-
space of the formuf& ^ HJ ,(uf&PCnJ).

Proof. From Eq. ~3! it is clear that any of theCJ is an
irreducible representation space ofUA and it is thereforeUA
invariant. Moreover under the current assumptions the
groupUA has dimensiondJ

2 , this means that it coincides wit
the whole set of unitary transformations overCJ .

This proposition provides in principle a protocol for d
termining whether a set of HamiltoniansIA allows for en-
coded universality.~i! Determine the groupUA of allowed
unitaries,~ii ! Decompose the total state-spaceH according
theUA irreducible sectors,~iii ! compute for allJ’s, the num-
bers dJ

22dimUAuCJ
>0; those equal zero give rise to anJ

parameter families of codes over whichIA is universal. Of
course all the steps above are in general not trivial and
resent a challenge on their own. The situation gets somew
simplified when the conditions for the validity of Eq.~1!
hold. In this case everything can be formulated in terms
the Lie algebraLA . In several instances of interest one h
that LA is the image of a known Lie algebraL, e.g., su~L!
through afaithful, i.e., zero kernel, irreducible representati
rA . In this case dimLAuHJ

5dimL, so it is sufficient to

check thedJ
2’s against a single number, e.g., dimu(2)54.

Example 3.Let us considerL bosonic modes,@bi ,bj
†#

5d i j , (i , j 51, . . . ,L). The set of controllable interactions
given byIA5$bj

†bi / i , j 51, . . . ,L%. It is a standard matter to
see that the bilinearsbj

†bi span an algebraLA isomorphic to
u(L). The Fock spaceHF5h`

^ L (h` is the state-space of
single quantum oscillator! splits in su~L!-invariant subspace
HN with dimensionsdN,L5(L21

N1L21) corresponding to the ei
genvaluesN of the total number operator( j 51bj

†bj . Typi-
cally dN,L

2 .L25dimu(L) and therefore LA is not
HN-universal. WhenN51, with L arbitrary, one obtains the
fundamental irreducible representation for whichd1,L5L.

IV. GROUP ALGEBRA UNIVERSALITY

We illustrate now another general route to encoded u
versality; particular instances of this scheme have alre
found explicit important applications in spin-based Q
@7,5,6# and fault-tolerant computation over DFS’s@6#. In the
following we will adopt the standard mathematical usage
the termgeneric: always but for zero-measure set.

Proposition 2.Suppose that the allowed interactions ha
the form H5(l i

Hi with completely controllablel i ’s and
happen to belong to the group algebra of a non-Abe
groupK, i.e., IA,CK. Then the groupUA is genericallyC
02231
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universal for allC5uf& ^ HJ , whereHJ is a K-irreducible
representation space anduf&PCnJ @nJ is the multiplicity of
the Jth irreducible representation, see decompostion~3!#.

Proof. Under the current assumptions one hasUA

5expLA , but for genericIA,CK one has@2# the Lie alge-
bra generated by the allowed interactions is thewholealge-
bra of anti-Hermitian elements of the group-algebraCK, i.e.,
u(CK). ThusUAuC5expu(CK)uC5UCKuC . But it is a basic
fact of group representation theory that the unitary part of
group-algebra restricted to an irreducible representat
space amounts thewholeunitary group over that space. Fo
mally UCKuC5U(C); this relation along with the precedin
one completes the proof.

Example 4.Let H>C2, the K5SU(2) fundamental rep-
resentation space~one irreducible representation with mult
plicity one!. A generic Hamiltonian inCSU(2) has the form
H5(a5x,yzlasa. This latter set is universal overH.

At this point it is worthwhile to emphasize that, even
both Propositions 1 and 2 have been formulated in term
subspacesC’s, simply by tracing out theuf& vectors one gets
conditions under which universal control is achieved ov
the factorsHJ in Eq. ~3!. TheHJ factors correspond to ‘‘vir-
tual’’ subsystems in which one can decompose the syst
according to the given available operational resources@18#.
This kind of quantum subsystem generalizes the noise
subsystems@15# that form the basis of general error corre
tion or avoidance strategies@16,12#. It is also interesting to
note that Proposition 2 provides us with an example o
group, i.e.,UCK for which Propositon 1alwaysholds true
~note that;J, dimUCK5uKu.dJ

2).
An instance of Proposition 2 is the well-known case ofN

spin 1/2 systems coupled by exchange interactions@7#. In
this case the naturally allowed Hamiltonians are actua
members of the symmetric groupSN ~and so area fortiori
elements of its group algebra!. As a result, universality can
be generically achieved in any irreducible subspace of
permutation group. For example, forN53 one has one to-
tally symmetric irreducible representation~corresponding to
the maximal spinJ53/2) and a two-dimensionalS3 irreduc-
ible representation~corresponding to twoJ51/2 SU~2! irre-
ducible representations!. So one has a two-parameter fami
of encoded qubits over which the exchange Hamiltonians
universal.

Example 5.Let us consider asK the simplest non-Abelian
group: the dihedral groupD3 @13#, i.e., the group of spatia
rigid symmetries of a triangle~notice thatD3>S3). D3 has
order six and is generated by a 2p/3 rotationR and a reflec-
tion P satisfying the relationsR35P25RPRP51. A three-
dimensional representation is provided byR̂(z1 ,z2 ,z3)
5(z3 ,z1 ,z2), P̂(z1 ,z2 ,z3)5(z2 ,z1 ,z3) (ziPC). This is a re-
ducible representation:C3 splits in a two-dimensional reduc
ible representationC>span$( j 51

3 e2ip/3k ju j &,(k51,2)% and a
one-dimensional reducible representation us&
51/A3( j 51

3 u j &. The two-dimensional reducible represent
tion can encode for a qubit. Now it is easy to check th
PuC5sx, moreover (R2R21)uC is proportional tosz. The
controllability of generic Hermitian element ofCD3, e.g.,
3-3
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H(l1 ,l2)5l1P1l2R1l̄2R21 then suffices for universa
control overC.

V. TENSOR PRODUCT STRUCTURE

Above, it was shown generically how universal quantu
control can be obtained over subspaces/subsystems. To r
these results to quantum computation@1#, we investigate the
subcase of quantum control in which the control space p
sesses a tensor product structure. We then consider a
spaceHN5H ^ N associated toN copies of a basic one. W
assume thatUA,U(HN).U(H) ^ N is locally universal, in
the sense that it contains a subgroupUA,loc

^ n , such that
UA,loc,U(H) ^ M is C universal for someC,H ^ M(n
5N/MPN). In other words we assume that there exist
local encoding, involving a cluster ofM basic subsystems
for which universality is achieved; letC ( i ) is the code corre-
sponding to thei th cluster. Example 1 above provides a
instance of this situation in which two physical qubits a
used to encode a single logical one over which the allow
operations are universal. Now what one wants is to be u
versal over the global codeCN5C ^ n. By the results in uni-
versality contained in Ref.@4# the following formal result
follows.

Proposition 3.Let UA be locally universal such that fo
any pairi , j 51, . . . ,n it existsXPUA such that~i! X acts as
the identity in all the clusters but thei th and thej th; ~ii !
C ( i )

^ C ( j ) is anX-invariant subspace andX is an entangling
operator over it. ThenUA is CN universal.

The DFS theory@14# provides once again a clear examp
of this result. LetH>Cd and suppose that one is able just
turn on and off exchange Hamiltonians between the differ
factors inH ^ M. In this case the available interactions lie
CSM . The commutant of the latter is given by theM-fold
tensor representation of SU(d). For M52 d the state space
contains a two-dimensional SU(d)-singlet sector C, i.e.,
states inC that are invariant under all the SU(d) transforma-
tions. This logical qubit—which requires a cluster of 2d
physical qudits—supports aSM-irreducible representation
@13#. Now we considern5N/M clusters coupled together b
ur

on

2;

ev
,

A
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Hamiltonians inCSN ~which supports aSN irreducible rep-
resentation!. The crucial point is now that the SU(d)-singlet
sector of H ^ N strictly includes C ^ n. Since exchange
Hamiltonians allow generically for universality on th
former ~Proposition 2!, one getsC ^ n universality as well.
This, in the qubit cased52, has been constructively show
in Ref. @5#.

Even the tensorized form of Example 1 falls in o
scheme. Here, the code is the~tensor power of! the trivial
irreducible representation of group generated byieip/2 sz

^ sz
.

The commutant of this group—besides all the transform
tions needed for one-qubit gates—contains elements of
form s j

zs j 11
z , which are used to enact an entangling tw

qubit gate@8#.

VI. CONCLUSIONS

In this paper we have formulated the problem of univer
quantum control and quantum-information processing
subspaces/subsystems within a general algebraic-dynam
framework. All physical examples known so far fit in th
framework. Constructions have been given providing gene
conditions under which encoded-universality can be es
lished. This has been done by exploiting the algebraic
malism introduced to describe in a unified fashion all kno
error correction or avoidance schemes@15,16,12#. This uni-
fication is on the one hand pretty remarkable in view of t
apparent sharp diversity of the initial physical problems;
the other hand, the existence of fundamental connection
tween diverse error compensation schemes is not totally
prising once one realizes theduality between the task of ‘‘not
allowing many bad things to happen’’ in error correction a
‘‘making as many as good things happen as possible’’
quantum control.
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