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We describe a broad dynamical-algebraic framework for analyzing the quantum control properties of a set of
naturally available interactions. General conditions under which universal control is achieved over a set of
subspaces/subsystems are found in terms of the representation theory of thé/groupllowed quantum
evolutions. In some cases universal control can be achieved in all the state-space sectors carrying an irreducible
action of U, . All known physical examples of universal control on subspaces/systems are related to the
framework developed here. Implications for quantum-information processing are discussed.
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[. INTRODUCTION able transformations. Several applications to physical sys-
tems relevant for quantum information processing will be
The ability to manipulate information in an arbitrary fash- pointed out.
ion is a key requirement for both classical and quantum-
information processingQIP) [1]. Once information is suit- Il. PRELIMINARIES
ably encoded one must be able to perform, at least
approximately, any transformation over the state space of the LetZa={H(\)}, c »CEnd(H) denotes the set of * natu-
physical medium supporting the encoding. When this goal igally” available interactions acting over the quantum state
realized one says that universal control is achieved. spaceH. M is the set of control parameters. We assume that
In the prototype case of QIP the physical system supportone is able to enact all the quantum evolutions governed by
ing the encoding is provided by a set of two-level systemsthe time-dependent Hamiltoniams(\ (t)) where\ belongs
i.e., qubits, in which both external and mutual interactionsto the setP, of M-valued functionspaths of time corre-
are supposed to be controllable to a very high degree o$ponding to the physically realizable control processes. We
accuracy. In this case the state space of the systems is givefess that we are not assuming that these latter can be arbi-
by the tensor product{=(C?)®N (N-qubit space It is an trary ones. We are also implicitly assuming that no other
important, and by-now standard result in QIP that almost anyuncontrollablg interactions, e.g., coupling with an environ-
pair of two-qubit gates are universd,3]. Moreover the re- ment, but the ones i, are present. In other words we are
alizability of all single-qubit, i.e., S(2) gates along with an working in anoiselesscenario.
(arbitrary entangling two-qubit gates suffices to achieve uni- Thepair (Za,Pa) describes the physical resources avail-
versality[4]. able in the given experimental situation; associated with
On the other hand in many experimental situations therét one has a set of allowed quantum evolutiobg\)
are operational constraints that force one to consider & Texd—ifgH(\(t))dt](N eP,), where T denotes the
smaller set of transformations as the actually available oneghronological ordering operator.
For example all naturally available interactions could be We will assume that it) is an allowed evolution, thed "
commuting with some observable, e.g., total spin, whosés allowed as well; we also assume that the trivial, ilé.,
value cannot then be changed. This lack of resources typi=1, evolution is an allowed one. It follows that set of unitary
cally results in the impossibility of achieving universality in transformations one can generate by resorting to interactions
the full state spac@(. It is then a very natural and practically in Z, and control processes iR, has the structure agub-
important question whether there exists a subsghoé H  group U, of the full groupZ/(’H) of unitary transformations
over which the restricted set of naturally available interac-over M. If U, is dense ir{(H) one says thatiniversalityis
tions allows universality. When such an “encoding” is found achieved: an arbitrary unitary transformation ofercan be
one obtains the so-callezhcoded universalitj5—9]. realized to an arbitrary accuracy by means of the available
In this paper we shall analyze the problem of encodedesources.
universality from a general control-theoretic perspective. It is useful now to recall a well-known result in quantum
Broad conditions under which universal control over set ofcontrol theory. Wherti) one can drive the control parameters
subspaces/subsystems can be achieved will be stated withireébong arbitrary paths io\1 and (i) Z,={=;\;H;}, one has
powerful algebraic framework. Our main results are pre-
sented in the form of three propositions, whose ingredients Up=e*A, D
will be the representation theory of dynamical groups and
algebras associated with the allowed interactions. A crucialvhere byL, we denoted the Lie algebra generated by the set
role will be played by the symmetry properties of the realiz-of operatorsZ,, i.e., the linear span of all possible multiple
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commutators of elements @f,. This result generallgoes  evolution and return to it just at the end. An instance of this
not hold when a restricted set of pati#, is considered: in ~ Situation is provided by the obvious fact that #,(, P») is C
this casef ,C e“A. universal then, for any subspa€éCC, there exists a subset
For example, in holonomic quantum computatjd®] Z, ~ PACPa such that a,P,) isC’ universal. The elements of
comprises a set of isodegenerate Hamiltonians Badis ~ Ua Will generally temporarily draw states out ¢f’; the
given by adiabatidoops around a\ye M. From the adia- states in ¢’)* play the the role ofauxiliary intermediate
batic theorem it follows that, if one start from an initial state States that do not have to appear at the beginning and at the
lying in a eigenspace dfi(\,), any evolutions obtained by end of the control process. The QIP literature provides a
driving the control parameter adiabatically along a loop inmultitude of illustrations of this state of affairs, i.e., the use
M will result in a final state in the same eigenspace. Thigf ancillze . Another possibility consists in generating from
means that the state space is dynamically decoupled in othe interactions ir, (which do not leave’ invariany a set
thogonal sectors corresponding to the eigenprojectors offf\” of effective interactiongwhich do leaveC invarian.
H(\g). This decoupling is clearly an obstruction to univer- Now the main question isggiven the available sei/, of
sality. operations, can some encoded universality be achieved?
Before moving to the main part of the paper let us notice To see whether a suitable encoding exists, i.e., a subspace
that the control-theoretic perspective adopted in this paper i€ for whichi{, is C universal, it is useful to resort to the tools
somewhat different from the one of some recent quantunof group representation theof{3] Let us consider the de-
control papers, e.gl11]. There the control by laser pulses of composition ofH into thei/, irreducible representation
a multilevel indecomposable systems have been analyzed.
On the contrary our focus is mostly cnnuluparutequantum_ H=o,(NeH, @)
systemgthe ones ultimately relevant to quantum information
processing and the on the control of many-body,

e.g., N . : .
Heisenberg, couplings. TheC™" factors in the Eq(3) above simply take into account

that theJth irreducible representatiok;, with dimension
d;, appears with multiplicityn;. The appearance of these
factors amounts to the existencesyimnmetriegor the set of

Suppose that there exist a set of invariant subspacedlowed transformationg/,. We observe in passing that

I1Il. ENCODED UNIVERSALITY

CCH(i=1,... M) of Uy, such that symmetries forl, are not necessarily symmetries fog,
whereas the converse holds true.
Z/IAICi=Z/I(Ci), (i=1,...M). (2 Let us now then suppose that admits a nontrivial group

of symmetriegj, i.e.,ge G=[g,Z5,]=0. A paradigmatic in-

(Here the bar denotes topological closyude. this case, we stance is given when one is dealing with a quantum system
say thatl, is C; universal. TheC;'s will be referred to as consisting ofN copies of an elementary one, e.g., one qubit,
codes. Wheid{, is H universal we will simply say that it is and cannot discriminate the different subsystems. Permuta-
universal. Note that in order to attai} universality the tions of these latter are therefore symmetries of the allowed
groupl, has to be arinfinite one. Finite groups cannot be interactions ¢ is given by the symmetric grougy). This
dense on the set of unitary transformationsCpn kind of situation is often encountered in decoherence free

Example 1The most favorable case of holonomic quan-subspaces(DFS) [14] and noiseless subsystem theory
tum computation occurs when there is an irreducible conned-15,16,8. whereZ, is the set of system operators coupled
tion[10]. In this case, one hd# = & ,U(H,) whereH, isthe  with the environment. The associative algebra generated by
rth eigenspace afi(\,) with dimensionn, . Since for non-  Z, is the basic algebraic object underlying all the quantum
trivial H(\) one hasXZ.n?<(Z,n,)?, it follows thatl/, is  noise avoidance, correction, and suppression schemes devel-
strictly contained if/(#). Herel, allows only for, uni- ~ oped to datg16,12. In the following given a groug we
versality. will denote byCg its group algebr@l7], moreover given the

Example 2.Let H=C(?®(? be a two-qubit space arfl,  algebraA we will denote byA":={X/[.A,X]=0} its com-
={*® o+ V®dY,0°® Y- 0Y®0*,0’°®1—1®c? (here Mmutant.
the ¢®'s denote the Pauli matricesUnder the assumptions  In Eq. (3) now theC™ factors represent the-irreducible
for the validity of Eq.(1) it is easy to see that this set is representations and, their multiplicities. In this case uni-
H,-universal, wheréi, is the linear span of01) and|10)  Vversality is obviously prevented becausgC (CG) =&l
[8]. This is easily seen by noticing thaf{)=su(2);conse- ®U(d;): different J sectors are never coupled by the al-
quently 7 splits according the €8) irreducible representa- lowed operations irif,. In order to better illustrate these
tion in a doublet t;) and two singlets %, notions let us go back to example 2; here one can choose as
=sparf|00),|11)}). The decomposition of the entire two- symmetry groupG={1,0°® 2}=2Z,. Its commutant is then
qubit space is obtained by considerifig={c*®0*—0¥ given by (CG)'=spaql,c’®1,1®c?%0**? 0@ c”(a,B
Rd¥, @'+ d’®c*,0*®1+1® d%}. In this case, the role =X,y)}. This algebra contains both the(8ls mentioned
of Hy and’H, are interchanged. above and it allows one to operaenultaneoushover H,

It is important to realize that in the general case the codeand H;.
do not have to beZ, invariant subspaces; in other words, one  The groupl, acts irreducibly over the subspac€s
can temporarily leave the coding subspace during the time=|¢)®H;, where|¢) is an arbitrary vector in the multiplic-
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ity factor C™ in Eq. (3). It is elementary, yet important to universal for allC=|¢)®H;, whereH; is a K-irreducible
keep in mind that irreducibility on itself does not imply that representation space ahd) e C™ [n; is the multiplicity of
all the unitaries oveC are realized as group elemeritee the Jth irreducible representation, see decompost®)h
Proposition below The most general of such transforma-  proof. Under the current assumptions one ha
tions, as written above, is given by a suitabfeear combi- =expl,, but for genericZ,C CK one hag2] the Lie alge-
nationof elements froni{, . Technically this is expressed by prg generated by the allowed interactions is wiele alge-
saying that the group of unitaries overis given by the 5 of anti-Hermitian elements of the group-algebiig i.e.,
restriction toC of the unita_ry partUCl,| . of th_e group al- U(CK). Thusily.=expu(CK)|.=UCK|.. But it is a basic
gebraof (/5. One can easily prove the following. ,  factof group representation theory that the unitary part of the
Proposition 1.Let U, be a Lie group. If leA|CJ:d‘] group-algebra restricted to an irreducible representation-
thenl, is C; universal where; is anyd,; dimensional sub-  space amounts theholeunitary group over that space. For-

space of the forni) @7, ,(| #) e C™). . mally UCK|.=2(C); this relation along with the preceding
Proof. From Eq.(3) it is clear that any of the; is an  gne completes the proof.
irreducible representation spacelgf and it is thereforé/{, Example 4Let H=(2, the X=SU(2) fundamental rep-

invariant. Moreover 'undzer the current assumptions the Ligesentation spacne irreducible representation with multi-
groupli, has d|men.s|omiJ , this means that it coincides with plicity one). A generic Hamiltonian ir:SU(2) has the form
the whole set of unitary transformations ovar. H=>S A o®. This latter set is universal oveéy

. . . . . . a=X,yz"'ta . "

This proposition provides in principle a protocol for de- thisypoint it is worthwhile to emphasize that, even if
termining 'wheth.er a set of Hamﬂtomaﬁi allows for en- both Propositions 1 and 2 have been formulated in terms of
cogjeo! unlyersallty(l) Determine the group/, of allowgzd subspace€’s, simply by tracing out thé¢) vectors one gets
unltangs,(u) Decompose .F'he total state-spak,ieaccordlng conditions under which universal control is achieved over
thequlrredumble sectorg(jii ) compute for allJ’s, the num- the factorsH, in Eq. (3). The'H, factors correspond to “vir-

—di =0; i i A
bers d; d'muA_|_CJ 0; those equal zt_aro gwe .r|se o tual” subsystems in which one can decompose the systems
parameter families of codes over whigfj is universal. Of = 5.cording to the given available operational resoufd&
course all the steps above are in general not trivial and répryiq ing of quantum subsystem generalizes the noiseless
;?;erﬁgi:dcfﬁklllggg;g nctc)hr?ézticé)vr\:gl ;?etsletu\?;ll?dr;tgeé? SE(ijT)eWhghbsystem@lS] that form the basis of general error correc-
P . : y 0 }ion or avoidance strategi¢46,12. It is also interesting to
hold. In this case everything can be formulated in terms ol ote that Proposition 2 provides us with an example of a

the Lie algebral, . In several instances of interest one has . . .
. : . group, i.e.,UCK for which Propositon lalwaysholds true
that £, is the image of a known Lie algebrd, e.g., sqL) (note thatvJ, dimUt(jIC=|IC|>d§).

through afaithful, i.e., zero kernel, irreducible representation An instance of Proposition 2 is the well-known caseNof

pa- In this case _dlmﬁ”Ah?J_dlmﬁ’ so itis Sl_m'c'em o spin 1/2 systems coupled by exchange interactiafs In
check thedy’s against a single number, e.g., dini2)=4. this case the naturally allowed Hamiltonians are actually
Example 3.Let us consider. bosonic modes{b;,b/]  members of the symmetric grouy, (and so area fortiori
=3, (1,j=1,...L). The set of controllable interactions is elements of its group algebraAs a result, universality can
given byZy={blb;/i,j=1, ... L}. Itis a standard matter to be generically achieved in any irreducible subspace of the
see that the biIineal‘szbi span an algebr&, isomorphic to  permutation group. For example, fof=3 one has one to-
u(L). The Fock spacé{r=hZ" (h. is the state-space of a tally symmetric irreducible representati¢corresponding to
single quantum oscillatpsplits in syL)-invariant subspaces the maximal spid=3/2) and a two-dimensiond; irreduc-
Hy with dimensiongdy, = ("*1 1) corresponding to the ei- ible representatioicorresponding to twd=1/2 SU?2) irre-
genvaluesN of the total number operat(ﬁjzlb;‘bj . Typi- ducible represeptatiohsSo one has a two-param(_ater family
cally d,>L?=dimu(L) and therefore £, is not of encoded qubits over which the exchange Hamiltonians are

Hy-universal. WherN=1, with L arbitrary, one obtains the Universal. _ _ _
fundamental irreducible representation for whith =L. Example SLet us consider ak the simplest non-Abelian
’ group: the dihedral group; [13], i.e., the group of spatial

rigid symmetries of a trianglénotice thatD ;=S3). D5 has
IV. GROUP ALGEBRA UNIVERSALITY order six and is generated by arf3 rotationR and a reflec-

H H ) : 3_p2_
We illustrate now another general route to encoded unilion P satisfying the relation&®®=PpP“=RPRP=1. A three-

versality; particular instances of this scheme have alreadgimensional representation is provided W¥(z;,2z;,25)
found explicit important applications in spin-based QIP=(z3,2;,2,), P(21,2,23)=(2,.,21,23) (z € C). Thisis a re-
[7,5,6) and fault-tolerant computation over DF$&]. In the  ducible representatiori:® splits in a two-dimensional reduc-
following we will adopt the standard mathematical usage ofible representatiod=spaf=?>_,e? ™*i|j),(k=1,2)} and a
the termgeneric always but for zero-measure set. one-dimensional reducible representation |s)
Proposition 2.Suppose that the allowed interactions have= 1/@213:1|j>_ The two-dimensional reducible representa-
the form H=ZX, H; with completely controllable\;’s and  tion can encode for a qubit. Now it is easy to check that
happen to belong to the group algebra of a non-AbeliarP|.= ¢, moreover R—R™1)|. is proportional tos?. The
group K, i.e., Z,CCK. Then the grougf, is genericallyC  controllability of generic Hermitian element @¢iD5, e.g.,
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H()\l,)\z)z)\lPJr)\zRJrsz*l then suffices for universal Hamiltonians inCSy (which supports aSy irreducible rep-

control overC. resentation The crucial point is now that the Sd)-singlet
sector of H®N strictly includes C®". Since exchange
V. TENSOR PRODUCT STRUCTURE Hamiltonians allow generically for universality on the

former (Proposition 2, one getsC®" universality as well.

Above, it was shown generically how universal quantumThjs, in the qubit case=2, has been constructively shown
control can be obtained over subspaces/subsystems. To relgteRef. [5].
these results to quantum computat[dr, we investigate the Even the tensorized form of Example 1 falls in our
subcase of quantum control in which the control space posscheme. Here, the code is titensor power ofthe trivial
sesses a teng%r produ_ct structure._We then C(_)nsider a St"ﬂlreeducible representation of group generatedeb?’z"zg“’z.
spaceHy =7 " " associated t% %op|es of a ba§|c one. We The commutant of this group—besides all the transforma-
assume thaMACZT{(HN)Dy(H) IS Iocallx universal, in tions needed for one-qubit gates—contains elements of the
Zt/?e sense tga,\} It contains a SUbgroL jg. SUCQ Mthat form ofo{,,, which are used to enact an entangling two-

nloc CU(H) is C universal for someCCH® "Y(n qubit gate[8].

=N/M eN). In other words we assume that there exists a
local encoding, involving a cluster d¥l basic subsystems,
for which universality is achieved; l&t(") is the code corre- VI. CONCLUSIONS

sponding to theth cluster. Example 1 above provides an | this paper we have formulated the problem of universal
instance of this situation in _whlch two phyS|_caI qubits arequantum control and quantum-information processing on
used to encode a single logical one over which the allowednspaces/subsystems within a general algebraic-dynamical
operations are universal. Now what one wants is to be Uniframework. All physical examples known so far fit in this
versal over the global cod&=C®". By the results in uni-  framework. Constructions have been given providing general
versality contained in Refi4] the following formal result  congitions under which encoded-universality can be estab-

follows. _ lished. This has been done by exploiting the algebraic for-
Proposition 3.Let U, be locally universal such that for malism introduced to describe in a unified fashion all known
any pairi,j=1,... n it existsX el such thati) X acts as  grror correction or avoidance schenj@s,16,13. This uni-

the identity in all the clusters but thigh and thejth; (i) fication is on the one hand pretty remarkable in view of the
cWec) is anX-invariant subspace andis an entangling  apparent sharp diversity of the initial physical problems: on
operator over it. The, is Cy universal. the other hand, the existence of fundamental connection be-
The DFS theory14] provides once again a clear example tween diverse error compensation schemes is not totally sur-
of this result. LetH/=C" and suppose that one is able just to prising once one realizes tidality between the task of “not
turn on and off exchange Hamiltonians between the differengjlowing many bad things to happen” in error correction and
factors inH ® M. In this case the available interactions lie in “making as many as good things happen as possible” in
CSy - The commutant of the latter is given by tiv-fold quantum control.
tensor representation of St)(. For M =2d the state space
contains a two-dimensional Sd-singlet sector C, i.e.,
states inC that are invariant under all the St transforma-
tions. This logical qubit—which requires a cluster ofd2 P.zZ. gratefully acknowledges financial support by
physical qudits—supports &,-irreducible representation Cambridge-MIT Institute Limited and by the European
[13]. Now we considen=N/M clusters coupled together by Union project TOPQIRContract No. IST-2001-39215
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