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Faithful remote state preparation using finite classical bits and a nonmaximally entangled state
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We present many ensembles of states that can be remotely prepared by using minimum classical bits from
Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in
two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully
prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled
state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled
state.
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I. INTRODUCTION

The question ‘‘What tasks may be accomplished usin
given physical resource?’’ is of fundamental importance
many areas of physics@1,2#. Remote state preparation~RSP!
@3# and quantum teleportation@4# answer partly this question
Both protocols use classical communication and the pr
ously shared entangled state to prepare a quantum state
remote place. The differences between them are as follo
First, in RSP the sender~Alice! knows the state she wan
Bob to prepare while in quantum teleportation Alice need
know the state she wants to send. Second, in RSP, the
quired resource can be traded off between classical com
nication cost and entanglement cost while in quantum t
portation, two bits of forward classical communication a
one ebit of entanglement~a maximally entangled pair of qu
bits! per teleported qubit are both necessary and suffici
and neither resource can be traded off against the other@5#.
Lo has shown that for some special ensembles of states,
requires less asymptotic classical communication than qu
tum teleportation@3#. Bennettet al. have shown that in the
high-entanglement limit the asymptotic classical commu
cation cost of remotely preparing a general qubit is one
which is also necessary by causality@5#. Recently, Berry
et al. have shown it is possible to remotely prepare an
semble of noncommutative mixed states by using comm
cation that is equal to the Holevo information for this e
semble@6#. Bennettet al. @5# and Devetaket al. @7# have also
investigated low-entanglement remote state prepara
which uses more classical bits but less entanglement
The results were achieved asymptotically.

Different from the above mentioned researchers, so
others investigated faithful and nonasymptotic remote s
preparation@8–11#. Pati has shown that a qubit chosen fro
equatorial or polar great circles on a Bloch sphere can
remotely prepared with one classical bit from Alice to Bob
they share one ebit of entanglement@8#. Leung and Shor
have proved that if faithful RSP protocols without back co
municating can transmit generic ensembles and are obliv
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to Bob, they can be modified to become protocols oblivio
to Alice. This indicates that they use at least as much cla
cal communication as that in quantum teleportation@9#.

In this paper we generalize Pati’s RSP protocol@8# to
nonmaximally entanglement and higher-dimensional case
Sec. II, we present a necessary and sufficient condition
general RSP protocol, similar to that proposed by Leung
Shor@9# and that by Hayashiet al. @12#. Then, we investigate
RSP protocols using minimum classical bits. In Sec. III, w
investigate RSP protocols that do not use minimum class
bits, and prove that any pure quantum state can be remo
prepared by using finite classical bits and the previou
shared nonmaximally entangled state. In Sec. IV, we s
summarize and draw some conclusions.

II. RSP ACHIEVED BY USING MINIMUM
CLASSICAL BITS

A general Pati RSP protocol is characterized as follow
Alice and Bob share an entangled state in twod-dimensional
systems

uCAB&5 (
i 50

d21

a i u i &u i &, a i.0, (
i 50

d21

a i
251, ~1!

where$u i &% i 50
d21 forms an orthonormal basis ofd-dimensional

Hilbert space. Alice wants Bob to prepare a stateuF& which
is known to her. She performs a positive operator valu
measurement~POVM! measurement on her systemA with
measurement operators that depend on the stateuF&. When
Alice gets the resultm with the probabilitypm(F), Bob’s
system B will be in the staterm(F)5uFm&^Fmu. Alice
sends the measurement resultm to Bob and Bob performs
the corresponding unitary operationum , which change his
system into the stateuF& (umuFm&5uF&). It is necessary
thatum is independent ofuF& and thatrm(F) is a pure state.
For Bob, before he receives the resultm, his system is

(
m50

n21

pm~F!uFm&^Fmu5 (
i 50

d21

a i
2u i &^ i u. ~2!

SubstitutingumuFm&5uF& into Eq. ~2!, we can obtain
©2004 The American Physical Society10-1
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(
m50

n21

pm~F!um
† uF&^Fuum5 (

i 50

d21

a i
2u i &^ i u. ~3!

Equation~3! is a necessary condition for such RSP protoco
It is also a sufficient condition@9,12#, because Alice only
needs to apply a measurement on her systemA with POVM
operators

H Mm5pm~F!S (
i 50

d21
1

a i
u i &^ i u D rm

T ~F!S (
i 50

d21
1

a i
u i &^ i u D J

m50

n21

,

whererm
T (F) is the transposition ofrm(F). To prove this

we need to verify three things. First, eachMm is a positive
operator and(m50

n21 Mm5I d . This is obvious from Eq.~3!.
Second, when Alice implements this POVM measurem
the probability of an outcomem is pm(F). This probability
is calculated as follows.̂CABuMmuCAB&5pm(F)trrm

T (F)
5pm(F). Third, when the outcome ism the resultant state o
system B is rm(F). This state is calculated as follow
1/pm(F)trA(MmuCAB&^CABu)5rm(F).

Given the unitary operations$um%m50
n21 , we can find an

ensemble of states that satisfy Eq.~3!. If the number of states
in the ensemble is less thann the RSP protocol is useless. W
are interested in what ensemble of states can be remo
prepared by using a given shared entanglement resou
When we say an ensemble of states can be remotely
pared, we mean that we can find a set of operators$um%m50

n21

that satisfy Eq.~3! for any state in this ensemble.
In Eq. ~3!, it is obvious thatn>slantd must be satisfied

We have investigated RSP protocols withn5d. These are
faithful RSP protocols using minimum classical bits.

Theorem 1.Suppose Alice and Bob have shared an
tangled state in Eq.~1!. The ensemble of states

H uF&5 (
j 50

d21

a je
iw j u j &, ; w j J ~4!

can be remotely prepared by using lnd bits from Alice to
Bob and their previously shared entangled state, wh
$a j% j 50

d21 and$w j% j 50
d21 are known to Alice. Particularly, if Al-

ice and Bob share a maximally entangled state, we get
same results as those in Refs.@8,11#.

Proof. We present an explicit method in which Alice pr
pared the ensemble of states. Suppose the state Alice w
Bob to prepare is

uF&5 (
j 50

d21

a je
iw j u j &, ~5!

where $w j% j 50
d21 is known to Alice. First, Alice transforms

locally the shared entangled state into

uCAB&5 (
i 50

d21

a ie
iw iu i &u i &, a i.0, (

i 50

d21

a i
251, ~6!

and then she performs a projective measurement on her
tem A with the measurement operators
02231
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H Pm5
1

d S (
j 50

d21

ei (2p/d)m ju j & D S (
j 50

d21

e2 i (2p/d)m j^ j u D J
m50

d21

.

~7!

The measurement result,~supposed to bem), will be sent to
Bob. When Bob receives the messagem, he performs the
corresponding unitary operation

um5 (
j 50

d21

ei (2p/d)m ju j &^ j u ~8!

on his systemB to transform the systemB into state~5!.
Q.E.D.

Obviously we have the following corollary.
Corollary. Suppose Alice and Bob have shared an e

tangled state in Eq.~1!. The ensemble of states

H vuF&5vS (
j 50

d21

a je
iw j u j & D , ;w j J

can be remotely prepared by using logd bits from Alice to
Bob and their previously shared entangled state, wherev is
an arbitrary unitary operators ind-dimensional Hilbert space

In the two-dimensional case the corollary shows that
bits chosen from the same circle with radiusA12(a0

22a1
2)2

on a Bloch sphere can be remotely prepared by using
classical bit from Alice to Bob and their previously shar
entangled state. Theorem 2 proves that we have found al
ensembles in the two-dimensional case.

Theorem 2.Suppose Alice and Bob have shared an e
tangled state

uCAB&5a0u0&u0&1a1u1&u1&, a0 ,a1.0, a0
21a1

251.
~9!

If there is an ensemble of states that can be remotely
pared by using one bit from Alice to Bob and their prev
ously shared entangled state, this ensemble must be in
form

$vuF&5v~a0u0&1a1eiwu1&),; w%, ~10!

where v is a unitary operator in two-dimensional Hilbe
space.

Proof. If a state uF& can be remotely prepared, the
should be unitary operatorsu0 and u1, and probabilities
p0(F) andp1(F) which satisfy the necessary and sufficie
condition of RSP. From Eq.~3! we have

p0~F!u0
†uF&^Fuu01p1~F!u1

†uF&^Fuu1

5a0
2u0&^0u1a1

2u1&^1u. ~11!

From Eq.~11! we can find that

Ap0(F)S 1

a0
u0&^0u1

1

a1
u1&^1u Du0

†uF&

and
0-2



ra

t

at

n

l
ed
o

ot
re
ing
To

led

n-

ef.

by

ed

can
ns-
ate

d

ir

end
e-
tate

te
bits
s

pre-
ce
ns

rel

n-

FAITHFUL REMOTE STATE PREPARATION USING . . . PHYSICAL REVIEW A69, 022310 ~2004!
Ap1(F)S 1

a0
u0&^0u1

1

a1
u1&^1u Du1

†uF&

form an orthonormal basis. So we can get

^Fuu0S 1

a0
2

u0&^0u1
1

a1
2

u1&^1u D u1
†uF&50. ~12!

It is the same as

trF S 1

a0
2

u0&^0u1
1

a1
2

u1&^1u D u1
†u0~u0

†uF&^Fuu0!G50.

~13!

We assume that

u1
†u05cos

u0

2
I 22 isin

u0

2
~x0sx1y0sy1z0sz! ~14!

and

u0
†uF&^Fuu05 1

2 ~ I 21xsx1ysy1zsz!, ~15!

wheresx ,sy , andsz are Pauli operators.
Substituting Eqs.~14! and ~15! into Eq. ~13!, we get

cos
u0

2
1z~a1

22a0
2!cos

u0

2
1~a1

22a0
2!~x0y2y0x!sin

u0

2
50,

~16!

sin
u0

2
@~a1

22a0
2!z01x0x1y0y1z0z#50. ~17!

BecauseuF& is a pure state, so

x21y21z251. ~18!

The common solutions of Eqs.~16!–~18! represent the
ensemble of states that can be remotely prepared. Gene
Eqs.~16! and ~17! represent two planes and Eq.~18! repre-
sents a sphere. If Eqs.~16! and ~17! represent two differen
planes there are at most two common solutions of Eqs.~16!–
~18!, which are trivial. So we should seek the appropri
u1

†u0, which ensures that Eqs.~16! and ~17! represent the
same plane. The requirement that Eqs.~16! and ~17! repre-
sent the same plane leads to the following results:

u05p, x05y050, z5a0
22a1

2 , when a0Þa1 ,
~19!

u05p, x0x1y0y1z0z50, when a05a1 . ~20!

Equations~15!, ~19!, and ~20! show that qubits chose
from the same circle with radiusA12(a0

22a1
2)2 on a Bloch

sphere can be remotely prepared by using one classica
from Alice to Bob and their previously shared entangl
state. This result is the same as the corollary in tw
dimensional case. Q.E.D.
02231
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III. REMOTE PREPARATION OF A GENERAL PURE
QUANTUM STATE

Now we turn to investigate RSP protocols which do n
use minimum classical bits. We will show that any pu
quantum state can be faithfully remotely prepared by us
finite classical bits and a nonmaximally entangled state.
prove this result, we first prove the following lemma.

Lemma.Suppose Alice and Bob have shared an entang
state in Eq.~1!. The ensemble of states

S5H uF&5 (
j 50

d21

b je
iw j u j &, ; w j ,~a j

2! j 50
d21a~b j

2! j 50
d21J

~21!

known to Alice can be remotely prepared by using logd
1m bits from Alice to Bob and their previously shared e
tangled state, wherem is equal to logd when they initially
shared a maximal entangled state, otherwisem is equal to
logd!. The symbola has the same meaning as that in R
@1#.

Proof.We can accomplish our remote state preparation
two steps.

Step 1.Alice and Bob transform their shared entangl
state into

uCAB&5 (
i 50

d21

b i u i &u i &, b i>0, (
i 50

d21

b i
251 ~22!

by usingm bits from Alice to Bob@1#. For the final entangled
state has the same Schmidt basis as the original one, Bob
only perform permutative operation to accomplish the tra
formation, which indicates Bob need not know the final st
@13#. The total number of such operation isd!, i.e., m
5 logd! will be enough. Especially when the initially share
entangled state in Eq.~1! is a maximal one,m5 logd will be
enough@3#.

Step 2.According to Theorem 1, Alice and Bob use the
new shared entangled state in Eq.~22! to prepare the state

uF&5 (
j 50

d21

b je
iw j u j & ~23!

by using logd bits from Alice to Bob. Note that Alice does
not receive classical message from Bob, Alice can s
logd1m bits together to Bob and Bob performs the corr
sponding unitary operation to accomplish the remote s
preparation. Q.E.D.

In the above we have presented an ensemble of staS
that can be remotely prepared by using finite classical
communication. If we can find finite unitary operation
$ui% i 51

m such thatuF&Pø i 51
m (uiS) for any pure stateuF&,

then we can claim that any pure state can be remotely
pared by using finite classical bits communication from Ali
to Bob. Fortunately there exist such finite unitary operatio
satisfying the condition. This result relies on Heine-Bo
theorem@14#.

Theorem 3.Suppose Alice and Bob have shared an e
tangled state in Eq.~1!. Any pure state of dimensiond can be
0-3
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remotely prepared by using finite classical bits from Alice
Bob and their previously shared entangled state.

Proof. From Heine-Borel theorem@14# we can conclude
that the setA5$xPCduixi51% is compact@15#. Because the
set F5$B(x0 ,r )ux0PA% is an open cover ofA, where
B(x0 ,r )5$xPCduix2x0i,r %, so F admits a finite sub-
cover. This means, for anyr .0, there exists a finitenrPN
such that the setG5$B(xi ,r )ùAuxiPA,i 51, . . . ,nr% is a
cover ofA. That is to sayø i 51

nr $B(xi ,r )ùA%5A. Since uni-
tary operations preserve the norm, any two elements oG
can be connected by a unitary operation. There is a bijec
map between the setA and the set of all pure state of dime
sion d which maps the state( i 50

d21a ie
iw iu i & to the point

(a0eiw0, . . . ,ad21eiwd21). So we can regard the state setS
presented in the lemma as a subset ofA. We assume thatu0
is the image of the stateu0&. It can be easily verified tha
when 0,r ,min(a0, . . . ,ad21), the setB(u0 ,r )ùA is a
subset ofS. This means that there is a coverG of A which
has finite element and each element can be generated
unitary operation performed on the subsetB(u0 ,r )ùA of S.
Note thatA represent all pure states andS represent the stat
set we given in the lemma, we can finish our proof. Q.E.

IV. DISCUSSION AND SUMMARY

In Sec. II, we have discussed the RSP protocols by us
minimum classical bits and we have found many ensem
of states that can be remotely prepared by using minim
classical bits and the previously shared entangled state.
two such ensembles are connected by a unitary operatio
some special cases, we can find more ensembles of s
that can be remotely prepared by using the same reso
and the connection between them is not necessarily a un
operation. For example, when Alice and Bob share the
tangled state
n,

d

.

d
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uCAB&5au00&1bu11&1au22&1bu33&, ~24!

the ensemble of states

$uF&5au0&1eiw1bu1&1aeiw2u2&1beiw3u3&,

; w j , j 51,2,3% ~25!

and the ensemble of states

$uF&5au0&1eiwbu1&, ; w% ~26!

can both be remotely prepared by using two classical
from Alice to Bob and their previously shared entangl
state. But these two ensemble of states can not be conne
by a unitary operation. Actually we can get the ensemble
states in Eq.~26! by performing a quantum measureme
@16# with measurement operators

E05u0&^0u1u1&^1u, E15u0&^2u1u1&^3u ~27!

on the ensemble of states

$uF&5au0&1eiwbu1&1eic~au2&

1beiwu3&), ; w, ; c,% ~28!

In Sec. III, we have proved that any pure quantum st
can be remotely prepared by using finite classical bits
the previously shared nonmaximally entangled qubit stat
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