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Faithful remote state preparation using finite classical bits and a nonmaximally entangled state
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We present many ensembles of states that can be remotely prepared by using minimum classical bits from
Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in
two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully
prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled
state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled
state.

DOI: 10.1103/PhysRevA.69.022310 PACS nuntder03.67.Hk, 03.65.Ud

[. INTRODUCTION to Bob, they can be modified to become protocols oblivious
to Alice. This indicates that they use at least as much classi-
The question “What tasks may be accomplished using &al communication as that in quantum teleporta{iah

given physical resource?” is of fundamental importance in In this paper we generalize Pati's RSP protof®) to
many areas of physid4,2]. Remote state preparati¢RSP nonmaximally entanglement and higher-dimensional case. In
[3] and quantum teleportatigd] answer partly this question. Sec. Il, we present a necessary and sufficient condition of a
Both protocols use classical communication and the previgeneral RSP protocol, similar to that proposed by Leung and
ously shared entangled state to prepare a quantum state inS&0r[9] and that by Hayaslet al.[12]. Then, we investigate
remote place. The differences between them are as follow&SP protocols using minimum classical bits. In Sec. Ill, we
First, in RSP the senddAlice) knows the state she wants investigate RSP protocols that do not use minimum classical
Bob to prepare while in quantum teleportation Alice need no®its, and prove that any pure quantum state can be remotely
know the state she wants to send. Second, in RSP, the rerepared by using finite classical bits and the previously
quired resource can be traded off between classical comm@ghared nonmaximally entangled state. In Sec. 1V, we shall
nication cost and entanglement cost while in quantum telesummarize and draw some conclusions.
portation, two bits of forward classical communication and
one ebit of entanglemerta maximally entangled pair of qu- II. RSP ACHIEVED BY USING MINIMUM
bits) per teleported qubit are both necessary and sufficient, CLASSICAL BITS
and neither resource can be traded off against the ¢&er ) ] ]
Lo has shown that for some special ensembles of states, RSP A general Pati RSP protocol is characterized as follows.
requires less asymptotic classical communication than quarflice and Bob share an entangled state in theimensional
tum teleportatior{3]. Bennettet al. have shown that in the SyStéms
high-entanglement limit the asymptotic classical communi-
cation cost of remotely preparing a general qubit is one bit, -
which is also necessary by causal(ty]. Recently, Berry WAB):i:EO ai|i)]i),  a;>0, iZO af=1, ()
et al. have shown it is possible to remotely prepare an en-
semble of noncommutative mixed states by using communiwhere{“)}id;()l forms an orthonormal basis dfdimensional

cation that is equal to the Holevo information for this en- yipert space. Alice wants Bob to prepare a s which
semble[6]. Bennettet al.[5] and Devetalet al.[7] have alsO js known to her. She performs a positive operator valued
mv_estlgated Iow-entangleme_nt remote state preparat'_theasuremen(POVM) measurement on her systefwith
which uses more classical bits but less entanglement bit$,o5surement operators that depend on the Blate When

The Iresults were achieved asympt_otically. Alice gets the resulm with the probabilityp,,,(®), Bob’s
Different from the above mentioned researchers, SOMEystem B will be in the statep,(®)=|® )P, Alice
m m mi-

others investigated faithful and nonasymptotic remote stat€ands the measurement resmitto Bob and Bob performs
preparatiof8-11]. Pati has shown that a qubit chosen fromthe corresponding unitary operatian,, which change his

equatorial or polar great circles on a Bloch sphere can bgystem into the stathb) (Un|®,)=|®)). It is necessary

remotely prepared with one classical bit from Alice to Bob if thatu.. is inde ;

. pendent dfd®) and thatp,,(P) is a pure state.
they share one ebit of entanglemd8i. Leung and Shor g ; ult hi ;
have proved that if faithful RSP protocols without back com-For Bob, before he receives the resuithis system is

municating can transmit generic ensembles and are oblivious n—1 d—1

2 P @) Pr) (Pl = 2, afi)il. @

d-1 d-1

*Electronic address: yshzhang@ustc.edu.cn
Electronic address: gcguo@ustc.edu.cn Substitutingu | ®,) = |P) into Eq. (2), we can obtain
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d-1 d-1

(2 ei(27r/d)mj<j|)] .
=0 m=0

7

Equation(3) is a necessary condition for such RSP protocols. @)

It is also a sufficient conditiof9,12], because Alice only The measurement resulsupposed to ben), will be sent to
needs to apply a measurement on her systenith POVM  Bob. When Bob receives the messagehe performs the
operators corresponding unitary operation

n—1 d-1 1 d-1
2, Pl @)up] PH(Plun= 2, afli)il. &) {Pm:a( JZO el 2riaymi| )

d-1

1 d-1 1 n—-1 d—1
Mm=pm<c1>>(2 ;|i><i|)pln<q>>(2 ;|i><i|)] , Up= 3 eCmOmj) | ®
i i j=0

1=0 =0 m=0

wherep [ (®) is the transposition op,,(®). To prove this on his systenB to transform the systerB into state(5).
we need to verify three things. First, eabh, is a positive Q.E.D.
operator andE!_tM=14. This is obvious from Eq(3). Obviously we have the following corollary.
Second, when Alice implements this POVM measurement Corollary. Suppose Alice and Bob have shared an en-
the probability of an outcomen is p,,(®). This probability — tangled state in E¢(1). The ensemble of states
is calculated as follows(W og|M | ¥ ag) = Pm(P®)trp, (D) d-1
=pn(®). Third, when the outcome i® the resultant state of _ AT _
systemB is p,(®). This state is calculated as follows. {v|®> U(Jzo € J|J>)’ VQD’]
Upm(PYraA(M | W ap) W gl) = pm( D). _ _ _

Given the unitary operationsu,n %, we can find an can be remotely prepared by using thyits from Alice to
ensemble of states that satisfy E8). If the number of states Bob and their previously shared entangled state, wheie
in the ensemble is less tharthe RSP protocol is useless. We an arbitrary unitary operators gkdimensional Hilbert space.
are interested in what ensemble of states can be remotely In the two-dimensional case the corollary shows that qu-
prepared by using a given shared entanglement resourckits chosen from the same circle with radiqﬁi;—(aoz—alz)2
When we say an ensemble of states can be remotely pren a Bloch sphere can be remotely prepared by using one
pared, we mean that we can find a set of operdtogg"_+  classical bit from Alice to Bob and their previously shared

that satisfy Eq(3) for any state in this ensemble. entangled state. Theorem 2 proves that we have found all the
In Eq. (3), it is obvious than=slantd must be satisfied. €nsembles in the two-dimensional case.
We have investigated RSP protocols witk-d. These are Theorem 2.Suppose Alice and Bob have shared an en-
faithful RSP protocols using minimum classical bits. tangled state
Theorem 1.Suppose Alice and Bob have shared an en- 5
tangled state in Eq1). The ensemble of states |Wap)=@0[0)[0) + a1 1)|1), ag,a;>0, ag+ 0‘1:%-9)
d-1
|D)= > ajei‘Pj|j>, VY g, (4) If there is an ensemble of states that can be remotely pre-
j=0 pared by using one bit from Alice to Bob and their previ-

) _ ) ously shared entangled state, this ensemble must be in the
can be remotely prepared by usingdliits from Alice to  torm

Bob and their previously shared entangled state, where

{o}925 and{¢;}?_3 are known to Alice. Particularly, if Al- {v|®)=0v(ag|0)+ a €'1)),V o}, (10)
ice and Bob share a maximally entangled state, we get the
same results as those in Ref8,11]. wherev is a unitary operator in two-dimensional Hilbert

Proof. We present an explicit method in which Alice pre- Space.
pared the ensemble of states. Suppose the state Alice wantsProof. If a state|®) can be remotely prepared, there
Bob to prepare is should be unitary operators, and u,, and probabilities
po(P) andp,(®) which satisfy the necessary and sufficient

-t _ condition of RSP. From Eq3) we have
@)= 2 a;elj), (5
)= Po(®)ud| @) (P[ug+ py(P)u| @) (P[u,
Where{<pj}?;01 is known to Alice. First, Alice transforms :a§|0><0|+a§|1><1|. (11)
locally the shared entangled state into
d-1 d-1 From Eq.(11) we can find that

(Wagh= 2, @e“li)li), @>0, X af=1, (6 1 1
= = Vpo(®)| -10)(0]+ 1)1 ug|®)

and then she performs a projective measurement on her sys-
tem A with the measurement operators and
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Jpl(cl>)<aio|0><0|+ ail|1><1|)u1|<b>

form an orthonormal basis. So we can get

1 1

<d>|uo(—2|0><0|+—2|1><1|>u1|<1>>=0. (12)
%) ag

It is the same as
1 1 T t
tr| | —[0)(0[+ —[1)(1| | ujuo(ug|®){P[ug) | =0.
o%0) a;
(13

We assume that

N b . . b
uluozcosfI2—|sm?(x0(rx+yooy+zooz) (14

and
ug|<b><<b|u0=%(I2+XUx+yay+ng), (15

whereo, ,0,, ando, are Pauli operators.
Substituting Eqs(14) and (15) into Eq. (13), we get

0 0 6
cosE0 +2z(af— ag)COS?O + (ad— ad)(xoy — yox)sinE0 =0,

(16)
. 00 2 2
sm;[(al—ao)zo+x0x+yoy+zoz]=0. (17)
Becausd®) is a pure state, so
X2 +y?+7°=1. (18

The common solutions of Eq$16)—(18) represent the

ensemble of states that can be remotely prepared. Generally,

Egs. (16) and(17) represent two planes and EHd.8) repre-

sents a sphere. If Eq§l6) and(17) represent two different

planes there are at most two common solutions of B
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IIl. REMOTE PREPARATION OF A GENERAL PURE
QUANTUM STATE

Now we turn to investigate RSP protocols which do not
use minimum classical bits. We will show that any pure
guantum state can be faithfully remotely prepared by using
finite classical bits and a nonmaximally entangled state. To
prove this result, we first prove the following lemma.

Lemma.Suppose Alice and Bob have shared an entangled
state in Eq(1). The ensemble of states

d-1
S=| |<I>>=j§0 Bie9li), V¥ ¢ ,(af)?:&<(ﬁf)?:g]
(21)

known to Alice can be remotely prepared by using dog
+m bits from Alice to Bob and their previously shared en-
tangled state, wherm is equal to logl when they initially
shared a maximal entangled state, otherwrsé equal to
logd!. The symbol< has the same meaning as that in Ref.
[1].

Proof.We can accomplish our remote state preparation by
two steps.

Step 1.Alice and Bob transform their shared entangled
state into

d-1

d-1
[Wae)= 2 BIDN), Bi=0. 2 pi=1 (22

by usingm bits from Alice to Bob[1]. For the final entangled
state has the same Schmidt basis as the original one, Bob can
only perform permutative operation to accomplish the trans-
formation, which indicates Bob need not know the final state
[13]. The total number of such operation @, i.e., m
=logd! will be enough. Especially when the initially shared
entangled state in Eql) is a maximal onem=logd will be
enough[3].

Step 2According to Theorem 1, Alice and Bob use their
new shared entangled state in E22) to prepare the state

d-1

@)= 2, el (23

(18), which are trivial. So we should seek the appropriateby using logd bits from Alice to Bob. Note that Alice does

u{uo, which ensures that Eq$16) and (17) represent the
same plane. The requirement that Eqs) and (17) repre-
sent the same plane leads to the following results:

2

= aé— aq, When le0¢ aq,

(19

Oo=m, Xo=Yo=0,

Oo=m, XoX+Yoy+2zoz=0, when ag=a;. (20

Equations(15), (19), and (20) show that qubits chosen

from the same circle with radiugl — (aoz_ 0121)2 on a Bloch

not receive classical message from Bob, Alice can send
logd+m bits together to Bob and Bob performs the corre-
sponding unitary operation to accomplish the remote state
preparation. Q.E.D.

In the above we have presented an ensemble of Sate
that can be remotely prepared by using finite classical bits
communication. If we can find finite unitary operations
{ui; such that|®)e U™, (u;S) for any pure stated),
then we can claim that any pure state can be remotely pre-
pared by using finite classical bits communication from Alice
to Bob. Fortunately there exist such finite unitary operations

sphere can be remotely prepared by using one classical ksatisfying the condition. This result relies on Heine-Borel
from Alice to Bob and their previously shared entangledtheorem[14].

state. This result is the same as the corollary in two-

dimensional case. Q.E.D.

Theorem 3.Suppose Alice and Bob have shared an en-
tangled state in EJ1). Any pure state of dimensiothcan be
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remotely prepared by using finite classical bits from Alice to |W ag) = a|00)+ B|11) + a|22) + B|33), (24)
Bob and their previously shared entangled state.

Proof. From Heine-Borel theorerfil4] we can conclude the ensemble of states
that the seA={x e CY||x||=1} is compac{15]. Because the
set F={B(xo,r)d|xoeA} is an open cover ofA, where
B(Xg,r)={xeCq||x—Xg||<r}, so F admits a finite sub- .
ccgvgr. Zl'hl{s mear|1”s, for0|:|;1ny>}0, there exists a finite, e N Ve =123 (29
such that the seB={B(x; ,r)NA[xieAi=1,... N} isa gnd the ensemble of states
cover ofA. That is to sayJ i”;l{B(xi ,F)NA}=A. Since uni- _
tary operations preserve the norm, any two element§ of {|®)=al0)+e'¢B|1), V ¢} (26)

can be connected by a unitary operation. There is a bijective both b el db ing t lassical bit
map between the sétand the set of all pure state of dimen- can both be remotely prépared by using two classical bits
1 from Alice to Bob and their previously shared entangled

. . d ) l(Pi . .
sion d which maps the stat&i_,a;e'“i) to the point state. But these two ensemble of states can not be connected

i(Po i(Pd—
(o€ ted i ":ﬁflle ). So Webcaerj;\r%gard the Stat‘:]iu&t by a unitary operation. Actually we can get the ensemble of
presented in the lemma as a SUbsenoive assume 0 states in Eg.26) by performing a quantum measurement
is the image of the stat®). It can be easily verified that [16] with measurement operators

when O0<r<min(ag, . . .,aq_1), the setB(ug,r)NA is a
subset ofS This means that there is a cov@rof A which Eo=|0)(0|+|1)(1|, E;=]0)(2|+|1)(3| (27)
has finite element and each element can be generated by a

unitary operation performed on the subBéti,,r)NA of S on the ensemble of states

Note thatA represent all pure states aSdepresent the state _ i v

set we given in the lemma, we can finish our proof. Q.E.D. {|®)=al0)+e'*B|1)+e"(al2)

+Be'¢(3)), Ve, Vuy) (28

i ) In Sec. lll, we have proved that any pure quantum state
In Sec. Il, we have discussed the RSP protocols by using,, 1 remotely prepared by using finite classical bits and

minimum classical bits and we have found many ens_er_nbleﬁm previously shared nonmaximally entangled qubit states.
of states that can be remotely prepared by using minimum

classical bits and the previously shared entangled state. Any
two such ensembles are connected by a unitary operation. In
some special cases, we can find more ensembles of statesWe thank Z. W. Zhou, Y. C. Wu, Y. J. Han, and Y. Hu for
that can be remotely prepared by using the same resourdkeir helpful advice. This work was funded by the National
and the connection between them is not necessarily a unitaffundamental Research Program (Program No.

operation. For example, when Alice and Bob share the en2001CB309300) National Natural Science Foundation of

{|®)=a|0)+€e'¢18]|1) + ae'2|2) + Be'#33),

IV. DISCUSSION AND SUMMARY
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