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Monogamy of quantum entanglement and other correlations
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It has been observed by numerous authors that a quantum system being entangled with another one limits its
possible entanglement with a third system: this has been dubbed the “monogamous nature of entanglement.”
In this paper we present a simple identity which captures the trade off between entanglement and classical
correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs
of a monogamy nature for other entanglement measures and secret and total correlation measures.
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I. INTRODUCTION Il. ENTANGLEMENT VERSUS CLASSICAL
CORRELATION

One of the fundamental differences between classical cor-

relations and quantum correlations is in their sharability,¢ inarite entanglement. It connects an arbitrary bipartite
among many partlles. Clgssmal correlations can be shared,;o pag OVer systemA and B to a standard bipartite state
among many parties, .whlle guantum ones cannot be freeln01>_|10>)/ﬁ which we call a singlet. Suppose that we
shared. For example, if a pair of two—levgl guantum system%am to preparen pairs of systems in statpS! by local

A andB have_ a perfect quantum correlation, namely, if theyoperations and classical communicati@®CC), using a re-
are in a maximally entangled stat¥ ~)=(|01)—|10))/v2,  source ofm singlets. The entanglement cdSt of pag i
then the systenA cannot be entangled to a third syst€in  gefined as the infimum of the ratim/n in the asymptotic
This indicates that there is a limitation in the distribution of limit n—oo, under the condition that the errors in the prepa-
entanglement, and many researches have been devotedf8ion should vanish in the same limit. It was sholéh that
capture this unique property, dubbed the “monogamy ofE. is equal to the regularized entanglement of formafign
quantum entanglement,” in a quantitative wdy-4]. On the  [7], namely,
other hand, the above example also suggests a slightly dif-

ferent limitation on the two types of correlations. Note that

systemA cannot even be classically correlated to sys@&ih

AB is maximally entangled. Here a perfect quantum correla-

tion excludes the possibility of classical correlations to otherThe entanglement of formatidg; is defined by
systems. One can also see that a perfect classical correlation
betweenA andB will forbid systemA from being entangled

to other systems.

In this paper, we first showSec. I) that this mutually
exclusive property can be cast into a simple equality. ThavhereS(p) is the von Neumann entropy of density operator
derivation is straightforward once we choose suitable meap and the minimum is taken over all ensemblegs,|#;)}
sures for the quantum correlatiggntanglement cosaind for  satisfying =;p;| #/){ ;| = pag. The entanglement cost does
the classical correlatiofione-way distillable common ran- not depend on whether the classical communication is al-
domness The equality also indicates a close connection belowed in both directions or restricted to one direction.
tween the two(apparently differentmeasures. We may say A convincing operational measure of the classical corre-
that the two measures are complementary to each other. lation inherent in a bipartite quantum state has been proposed
particular, the question of additivity of one measure can benly recently by Devetak and Wint¢B] (but see also the
reduced to that of the other. We also derive an inequalityecent work of Oppenheim and Horoded®i based on a
describing a limitation on the distribution of entanglement.thermodynamical idea, as well as Ref$0] and[11] which
Then, in Sec. Ill, we explore mutual limitations betweenadopt an approach via secret key rat@hey consider the
more general measures of correlation: entanglement costptimum amount of the perfect classical correlation that can
general distillable entanglement, “squashed entanglementbe extracted from a bipartite stafe,g, measured in the
[5], and distillable secret key. number of maximally correlated classical bitshits). One

problem in this approach is that if no communication is al-

lowed, there is no way to produce a perfect correlation even
*Electronic address: koashi@soken.ac.jp if we weaken the restriction to an “almost perfect” correla-
"Electronic address: a.j.winter@bris.ac.uk tion in the asymptotic sense. They thus considered the case

Entanglement co$6] is an operationally defined measure

rm L en
Ec(pas) = Im—E¢(pap)-

n—o

Ei(pag)= lim 2 piS(Tral| i) (wil]), (1)
{pi iyt !
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whereC rhbits are extracted from,g via R bits of noiseless  neglect systen, this implies that if we applyM;} on state
classical communication betwe#randB. Noting thatR bits ;.. the outcome occurs with probabilityp; , leaving the

of noiseless classical communication can prodaaits of  state ofA in Tra[|#;)(¢i|]. From the definition off —, we
classical correlation by itself, the net contribution of the stateygye

pag is (C—R) rbits. This quantity should be optimized over

R and over various protocols. Considering thetatespyg ,

an asymptotic measure of distillable common randomness I{_(pAB’)ZS(pA)_Ei PiS(Tral )il D)
Cp is thus defined as the supremum @ R)/n in the limit
n—oo. Devetak and Winter have derived the formula &y =S(pa) —E¢(pap)- (4)

when the classical communication is restricted in one direc-
tion. When the direction is frorB to A, the distillable com-  Conversely, take a measuremént;} on systemB’ achiev-
mon randomnes€;, is given by ing the maximum in the definition ofl~, namely,
I " (pag)=S(pa) — ZipiS(p;i). The rank of the operatdvl,
may be larger than one in general, so take a decomposition
M;=ZX;M;; into rank-1 nonnegative operatoid;;. This
gives a new measuremefiM;;} on systemB’. Let p;
Here the functionl, which was proposed by Henderson =T (1a®M;j)pag]l and  p;;=Trg[(Ia®Mjj) pasl/pij -
and Vedral[12], is defined by These are related t@; and p; as p;=2;p; and pip;
=2 pjjpi; - From the concavity of the von Neumann en-
. tropy, we have S(pa) —Zi;pi;S(pij)=S(pa) — ZipiS(pi)
' (pAB):ma{S(PA)_g PxS(px) | =:maxI (X;A), =1"(pag'). The definition of 1= leads to the opposite
M inequality, and we thus haveS(pa)—Zi;pi;jS(pij)
where the maximum is taken over all the measurements! (Pa/)- Suppose that the measuremgid; ; is applied
{M,} applied on systenB, p,=Tr[(I,®M,)pas] is the to the pure stat@apg - The probability of the outcomg
probability of the outcome, p,=Trg[(1x&M ) pagl/p, is IS 9iven by p;; defined above. When the outcolme|j|sthe
the state of systenA when the outcome was, and p,  State OfAB becomes a pure staley;), sinceM;; is rank-1.
—Trs(pap). The right-hand side in the first line is the We thus obtain an ensemblgp,|¢;)} satisfying
Holevo quantity, for which the second line introduces a no->iiPiil ¢ij){(ijl = pag - If we neglect systen, the situation
tation. This measure is asymmetric, an@;(pag) is |d§nt|cal to the case whe{/;;} is applied topg: . This
#Cp (pag) in general; in the classical case however, theyMPlies that Thl| ¢i)(¢ij| 1= pij - Therefore,
coincide and are equal to the mutual informatjas].
In order to connect the above two measures, let us intro- Ef(PAB)>Z pi S(Tral| i) ¢ 1)
duce a duality relation among bipartite states. We say that the i
statep,p’ is the B complement tgp,g when there exists a
tripartite pure stat@agg Such that Tg(pags)=pas and = piSpij)
Tre:(page’) = pag- AS is obvious from the definitiorg g/ i
is the B complement topag if and only if pag is the B’
complement topsp . The stateB complement topag is
unique up to local unitary operations on systBm namely,
any two statep g and p;B, that areB complement to the
same stat@,g are connected by a unitary operatiog, on
systemB’ aSpAB/2(1A®UB/)p;\B,(lA®U;,). Now we can
prove the following.

1
Cp (pag) = lim =1 (pap).

n—o

=S(pa) 1" (pae’)- ®)

Equation(2) is proved by combining Eq94) and (5). In
order to derive Eq(3), note thatpfi’g, is theB complement to

pab becausep,pg is a purification of either of the states.
Therefore, by the additivity of von Neumann entropy,

Theorem 1Whenpug: is theB complement tgag, Ef(,p%g)JrI_H(Pig’):s(p?n):hs(p‘\)' Dividing by n and
taking the limitn—oo, we obtain Eq(3). [ |
E¢(pa)+1 " (pag)=S(pa) 2) In order to represent the mutually exclusive property of
classical and quantum correlations, let us consider a general
and tripartite mixed statg,gc. We can always find a pure state
pagcp ON the four systems, such thaty(pagcp) =pasc-
Ec(pas) +Cp (pas)=S(pa), (3)  Regarding system€ andD as a single systerB’, we can
apply theorem 1 to obtai&¢(pag) + 1" (pacp)) =S(pa)- It
wherepa=Trg(pag) = Trs'(pas')- - is straightforward to show ™ (pacp))=!"(pac) from the
Proof. Let pagpr be the pure state satisfyingglpase’)  definition of | ~. We thus obtain the following corollary.
=pag and Ti/(pape) =pas- Take an ensemblp;,|¢)} Corollary 2. For any tripartite statpagc,
achieving the minimum in Eq(1). Since =;p;| ;) (i
=pag, there exists a measuremdiM;} on systenB’ such Ef(pag) 1 (pac)=<S(pa) (6)

that, if applied on stat@,gg , the outcome occurs with
probability p;, leaving the state oA andB in |;). If we  and
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Ec(pap)+Cp (pac)<S(pp). (7) complement tQ)Aij. Indeed, a similar relation holds f@&

and Cy . The problem of thgsupejadditivity of the one-

The equality in each of the relations holdpifgc is pureM  way distillable common randomness is thus dual to the prob-

This corollary will be interpreted as follows. The local lem of the (subadditivity of entanglement cost or entangle-
entropy S(p,) represents the effective size of the systdm ment of formation. In particular, we can export the known
measured in qubits. This view is justified by the existence otesults[15] about the additivity of entanglement of formation
a compression schem#4] that transfers the contents of sys- and cost to that of distillable common randomness through
temA into S(p,) qubits per copy while retaining any corre- the duality ofB-complement states.
lation to other systems asymptotically faithfully. This size  One may wonder why a symmetric measiiig and an
will be understood as the capacity of systénto make cor-  asymmetric measur€y are connected as in E). Let us
relations to other systems. Here we are asking how one cafroduce the one-way entanglement cBst(pag), Which is
correlate system to systemB and to systenC at the same  gefined as the entanglement cost when we restrict the classi-
time, under the condition that the size of systans limited 5| communication to be one way frofnto B. Then, we can

to S(pA) qubits. The corollary states that the quantum corréyegard Eq. (3) as resulting from the two equations
lation to one system and the classical correlation to the Othqu(pAB) +C5 (pas)=S(pa) and Eg (pas)=ES (pas)

system must use up this limited capacity of syst&rin a ~ _g _(, y The former connects two asymmetric measures
mutually exclusive way, namely, the two correlations cannot,q 5ne would expect, and the latter refers to a symmetry

share the same fragtion of the capacity. In qther words, th?ying in the quantum theory. Due to the presence of this
existence of a certain amount of quan_t(mfassma) correla- Symmetry, Eq(3) happens to take an anomalous form. We
tion to one system is sufficient to restrict the classiqalan- 3 5150 state this symmetry in terms of one-way distillable

. . X e Eommon randomness, in the following corollary that is easily
curious property stated in the corollary is that it is also neCyearived from theorem 1

essary to restrict the correlations to other systems. This re-
sults from the fact that the inequalities are saturated when-

everpagc is pure. Forming a quantuiiclassical correlation S(pg)—Cp (pas)=S(pe')—Cp (pas’)-
to systemA is the only way to assure that the classigplan-

tum) correlation betweeA and other systems is smaller than This is because both the left- and the right-hand sides are
is available by the size of systefa equal toEc(pgg’). ]

The last property gives us an operational definition of the  The mutual exclusiveness between classical and quantum
amount of entanglement in reference to classical resourcegorrelations is by itself a property that is symmetric between
rather than to quantum ones such as singlets. Consideringie two types of correlations. The difference between the two
that what we can directly “perceive” is only the classical correlations—the classical correlations can be freely shared,
quantity, it is natural to seek a tighter connection betweerput the quantum ones cannot—arises from the following
entanglement and classical correlations. Bell's inequa"tieﬁsymmetry_ The two systems can have classical correlations
may serve as a tool for that purpose, but we do not know yefithout having any quantum correlations, but the converse is
how to measure the amount of violation of Bell's inequalitiesnot true. It would be interesting to find an inequality repre-
in a satisfactory way, nor how to use Bell's inequalities tosenting the converse property, namely, to find an upper
distinguish the states with bound entanglement from théound on the amount of quantum correlations for a given
separable ones. Here we can define the amount of entanglgmount of classical correlations. Combined with Ed),
ment in a bipartite statpag as follows. Consider any puri- such an inequality will give us a general inequality express-
fication pagc Of pag. The entanglement is defined as theing the monogamy of entanglement. As an example, here we
difference between two values of one-way distillable com-prove the following inequality.
mon randomness asE(pag)=Cp (parc) —Cb (Pac). Proposition 4
where Cp, (paec)) represents the one-way distillable com-
mon randomness betweénand the combined system 8f Cp (pas)=Ep (pas), (8)
andC, andCp (pac) represents the one betweénand C. _ o
The amouniC; (pawc) — Cp (pac) corresponds to the re- WhereEp (pag) is the one-way distillable entanglement of
duction in the amount of distillable classical correlationsStatepag- _ o
caused by the omission of systeB Since C5 (paec)) Namely, consider any purificatidiy) age Of pag, and any
=S(p,), it follows from Eq. (3) that E(pag) = Ec(pap)- measurement oB which will result in a random variabl¥
Thus the two measures coincide, but note 8§t g) is in and post-measurement statesfoandE. Then clearly,
the unit ofrbits, while Ec(pag) is in the unit ofebits. . . .

Since the von Neumann entropy satisfies the additivity HXGA)Z X A) = 1(XE).
S(p@p')=S(p)+S(p’), theorem 1 implies that the sum of
E¢(pag) @andl ~(pag/) is additive. Thus the additivity of one
implies that of the other, namelyE(pa g, ®pa,s,)

Corollary 3. Whenpag: is theB complement tqag,

But according to Ref8] the maximum of the left-hand side
over all measurementsegularized equalsCy (pag), While

_ 1P the same maximuntregularizedl of the right-hand side is
=Ei(pa,8,) T Ei(pa,e,) holds if and only if I"(pas;  the secret key distillable by one-way discussioil]
®pAzB§):"_(PAlBi)H‘_(PAZBg)’ where PaB/ is the B; Ceecrel ¥agp)- (In secret key capacities, the indices, in this
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order, represent the first legitimate party, the second legititive protocols withA and send hetA) their classical mes-
mate party, and the eavesdropp@n the other hand, it is sages. Clearly, themA can complete the distillation of en-
obvious thatC,..« ¥ase) =Ep (pag) Since one can create tanglement between her aidby a local unitaryl, leaving
one bit of secret key from one ebit of distilled entanglementthe whole system irfa high-fidelity approximation ofthe
(It is also directly obtained by looking at the formulas de-state |®)as®|W¥)arce. After this, she could reverse the
rived in Ref.[11].) Putting together these estimates givesaction of U by applyingU %, and apply another local uni-
Eq. (8). [ | tary V, to complete the distillation of entanglement between
Combining Eq.(8) of proposition 4 with Eq(7) of corol-  her andC, leaving the whole system ifa high-fidelity ap-
lary 2, we obtain a new inequality describing the monogamyproximation of the statgd ®, )4c®|®)age. Of course, after

of entanglement. this naive protocol, we could not find the stafey) g any-
Theorem 5 where. Observe, however, that since after the first As
disentangled from the rest of the worM ™! could as well

Ec(pas) +Ep (pac)=<S(pa), (9 be applied with a “dummy state[d)ax (totally in the pos-

session ofA) instead of|®y)ag, with the same resulting

for any statepagc- B haximally entangled stale, )ac betweenA andC. Thus,A
can extract both maximally entangled states vidtand C at
Iil. OTHER CORRELATIONS the same time. This operational argument proves the follow-

In the previous section, an inequalftig. (9)] describing N9 inequality.
the monogamy of entanglement has been derived from a 1heorem 6
close connection between two measures of bipartite correla- ~ _ .
tions. In this section, we approach the monogamy of en- Ep (pae) +Ep (pac)<Ep (pacrc): (1D
tanglement through completely different arguments. We are

particularly interested in a family of inequalities in the form for any statepagc. _ .
This inequality can also be derived using a formula for

E(pas) t E(pac)<E(pa@rc): (10 Ep (pap), Which has recently been established by proving

. . the “hashing inequality’[11]. Let us define the quantity
whereE(pag) is a measure of correlation between systéms

and B. In the following, we prove that the above form of

inequality is true for the one-way distillable entanglement, Es V(pas)=supX, pilS(pk)—S(pp)],
the one-way distillable secret key, and the squashed en- !
tanglement.

| where the supremum is taken over all the local instruments

the entanglement measures satisfy the inequélidy. In par- carrie_d out byB. T_he quantityp_i is the propability_ of having
ticular, it does not hold for the entanglement cost, as seen b@lassmal OL(Ji'gcgme when the mstrumept is applied on state
the following example. Consider the purification of the to- Pas» @ndpag is the state left by the instrument. Then, the

Before doing so, it will be worthwhile noting that not al

tally antisymmetric state on a two-qutrit system formula is written as
1 E5 (pag) = lim ~ E5 V(pg2
[#ase= 51123132 +(23) ~[219 +[312—|328). o (Pag)= M Ep " (Pas)-

Note that all its two-party restriction@n particular toAB  From the strong subadditivityl17], we have

and toAC) are isomorphic to the totally antisymmetric state,

for which the entanglement of formation and entanglement S(pa)—S(pag) + S(pa) — S(pac)=S(pa) — S(pasc)-

cost are known to be 1ebit [16]. Hence we have

Ec(paic)) =S(pa) =109, 3<1+1=Ec(pag) +Ec(pac)- This  Then, the derivation of Eq11) is straightforward by noting

counterexample also implies that the monogamy inequalityhat carrying out a local instrument dhand another orC

(9) derived in the previous section cannot be superseded bgan be regarded together as a local instrumer86n N

an inequality of the forn{10). Following the analogy between entanglement and shared
An inequality in the form(10) has a natural interpretation secret key(such as the monogamy, observed by numerous

when the measurk represents the optimal yield of distilla- authors: a good sample is provided by R¢18,11,19), it is

tion protocols. If an optimal protocol betweénandB and  possible to apply a similar argument to the case of the one-

an optimal protocol betweeA and C can be carried out way distillable secret key. Before that, a few remarks will be

simultaneously without interference, the combined protocohelpful regarding the relation between the distillable secret

gives an yieldE(pag) + E(pac), and hence the inequality key and the entanglement. The secret KaY. . ¥agg) dis-

(10) holds. This is indeed true for the one-way distillable tillable from the pure stat&))age by public (two-way) dis-

entanglement. The argument is as follows: Let us introduce assion betweenA and B against an eavesdroppde

purification of the statp,zc On a systenie, such that we can can be regarded as a function of the marginal sistg

phrase everything in terms of a global pure st&eandC =Tre(|#){¢|age). This function is easily checked to be a

can both independently perform their halves of their respecproper entanglement monotone, hence can be regarded as a
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measure of entanglement. This measure lies between the disith
tillable entanglement and the entanglement cost, namely, )
Coetred pase)=ma{ | (X;A) ~1(X;E)],

Ep(pas)=<Csecret ¥ase) <Ec(pas)-
where the maximum is taken over all measurement8 at

The lower bound is obvious, and the upper bound comegresultX). Then, the left-hand side of EGL?) is (the regu-
from the fact that the entanglement of formation grization of the maximum of

(1n)E;(pxg) can be shown to be an upper bound by the

following operational argument. An eavesdropper holding [TOGA)Y=TOGE) ] +[I(Y;A) —1(Y;BE) ]

the E part of n copies of| /) age Can, by a suitable measure-

ment, effect any pure state decomposition of the state sharéwyer all measurements Bt(resultX) and measurements @t
betweenA andB and will only help them by announcing her (resultY). On the other hand, we have

measurement result; hence the distillable key length is upper

bounded by the average of the distillable key lengths for (X:A)—1OGE)+I(Y;A)—1(Y;BE)

these pure states, which is easily seen to be equal to their <I(X;A) = 1(XE)+I(Y;AX) =1 (Y;EX)
respective entropy of entanglement. Observe that this upper =10GA) +1(Y:AX) = 1(XE) = 1(Y:E|X)
bound was recently improved in Rdf19], where it was
shown thatCegredS in fact upper bounded by the regularized =1(XY;A)—1(XYE),

relative entropy of entanglemeriagainst separable stafes where the last line, again by the formula, is upper bounded

[20]. The technique is very interesting in the present contextby Cionelpawoe). the righthand side of Eq12). -

the key point is expressing secret key distillation as a distil- A o fEdL? deri
lation problem involving LOCC. With these remarks the fol- S a special case o 12, we can derive a monogamy
relation involving common randomness and secret key. By

lowing should not come as too big a surprise. ) . . )
We prove that an inequality of the forf10) is true for setting systentt as a trivial ongland by swapping notations
B andC), we obtain

E(pa@) = Csecre ¥acye), Namely,

Theorem 7 CeecretPrc) T Cp (pPac) <Cp (pac))-
Coecref ¥as(cE) T Coecref ¥aceE)) < Coecrel ¥aBC)E) - Finally, we show that the inequality of the forf0) is
In fact, even the stronger inequality true for the so-called “squashed entanglemd]
C, +Cg, <Cg, 12 N ,
secret PABE) secre(PAC(BE)) secre(PA(BC)E) (12 Esq(PAB):mf EI(A!B|E)-pAB:TrE(PABE) ,

holds for any four-partite stateagce-
where the infimum is over all extensiopggg of the state

As in the case of the one-way distillable entanglement, We, - (i.e., states whose partial trace o\&is p,g), and

can prove the inequality by showing that two distillation pro-

tocols can be carried out at the same time. The protocols I(A;B|E)=S(pag) + S(pee) — S(pase) — S(pe)
achieving the key rate€ ..« pape) (betweenB andA) and

Ceecref Pac(er)) (betweenC andA) can be integrated in one is the conditional quantum mutual information. For it we can
protocol in whichB andC independently perform their local prove the following.

operations, and send public message#\t&he then com- Theorem 8For any tripartite stat@apc,
pletes first the protocol witB—by the protocol in Ref{11],
in which she in fact “decodes with high probability” the Esd pas) + Esdpac) <Es{paic)- (13

secret key already held by, hence by the gentle measure- ] - ) )
ment principle she will induce only little disturbance to her Using the chain rule for theconditiona) mutual information
state. This means she then can also complete the protoc#ith any state extensiopagce:

with C with high fidelity of success. By definition of the

protocol she ends up with key share_d wigh(secret against ll(A;BClE)z EI(A;B|E)+ EI(A;ClBE)

E) and key shared witlC (secret againsBE). The fact that 2 2 2

the latter one is secret agaiisensures that the two keys are

(almos} independent. Thus andBC can obtain a secret key =Esdpas) + Esdpac),
of 1engthCoeerel PaBE) + Coearel Pac(ap) @GAINSEIf BandC -0 F oxtendsAB and BE extendsAC. As this is true for
cooperate. every state extension @f,5c We obtain the claim. [

Again, as in the case of the one-way distillable entangle-

While no operational interpretation has so far been found
ment, we can also prove Ed12) by the formula for

for the squashed entanglement, the above inequality has an

Coecrefpase) derived in Ref[11], namely, interesting corollary for operationally defined measures of
1 entanglement. This comes from the property thafis lower
Cloocrek PABE) = ”mﬁc;ge)(p?SE) bounded byE (distillation under bidirectional protocc)ls_
n—a and upper bounded b [5]. As a consequence, we obtain
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the following from Eq.(13). measures: we gave an example that the entanglement cost
Corollary 9. does not obey a symmetric trade off, but showed that the
squashed entanglement does—which leads to our only ex-
En(pas) +Ep(pac)<Ec(paic). (149 ample of a mutual trade off for correlation measures based

on distillation under bidirectional communication. For mea-
sures based on optimal yields under unidirectional commu-
nication, we derived monogamy relations through an opera-
Sional argument, and also gave an alternative proof based on
the basic properties of entropic functions.

There are a number of open questions regarding the pos-
IV. DISCUSSION sibility of other inequalities. Along the line discussed in Sec.

In this paper we have contributed to an understanding ofl, @1 important question is whether one can repl&ge,) in
the monogamy of quantum entanglement by casting it into &"€ inequality(7) by a correlation measure betweénand
variety of quantitative trade offs between measures of enBC that is equal toS(p,) wheneverp,gc is pure[for ex-
tanglement and more general correlation measures. All thesgmple, the entanglement cdSg(paec))]. For inequalities
are of the form of an upper bound on the sum of a correlatiot? the form (10) in Sec. Ill, interesting cases will be
measure foA-B and (maybe another measurer A-Cfora  E(pas) =Ep (pag), E(pas) =En(pag), and similar ones for
tripartite state oiABC. This trade off assumes the very pleas-the secret key. A crucial difference here is that, for a similar
ing form of a complementarity identity for entanglement costoperational argument to be carried out, one must show that
and one-way distillable classical correlation, linking thesethe partyA can increase the expected coherent information
two quantities and showing that their additivity problems arebetweenA and B by a measurement, without contaminating
equivalent: this extends Shor’s recent list of four equivalenthe correlation betweeA and C. It is not clear, and is an
additivity questiong21] to five entries. It would be interest- interesting question, whether this is always true or not.
ing to find an operational proof for theorem 1, which here we
have proved using only formal properties of the definitions
of E; andl .

We then went on to exploit our relation to study other A.W. was supported by the U.K. Engineering and Physi-
trade offs involving further entanglement and correlationcal Sciences Research Council.

for any statepagc-

Note that this is in no relation of dependence with Eg.
(11): there both the left- and the right-hand sides can b
smaller since we use one-way distillation.
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