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Monogamy of quantum entanglement and other correlations
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It has been observed by numerous authors that a quantum system being entangled with another one limits its
possible entanglement with a third system: this has been dubbed the ‘‘monogamous nature of entanglement.’’
In this paper we present a simple identity which captures the trade off between entanglement and classical
correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs
of a monogamy nature for other entanglement measures and secret and total correlation measures.
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I. INTRODUCTION

One of the fundamental differences between classical
relations and quantum correlations is in their sharabi
among many parties. Classical correlations can be sh
among many parties, while quantum ones cannot be fre
shared. For example, if a pair of two-level quantum syste
A andB have a perfect quantum correlation, namely, if th
are in a maximally entangled stateuC2&[(u01&2u10&)/&,
then the systemA cannot be entangled to a third systemC.
This indicates that there is a limitation in the distribution
entanglement, and many researches have been devot
capture this unique property, dubbed the ‘‘monogamy
quantum entanglement,’’ in a quantitative way@1–4#. On the
other hand, the above example also suggests a slightly
ferent limitation on the two types of correlations. Note th
systemA cannot even be classically correlated to systemC if
AB is maximally entangled. Here a perfect quantum corre
tion excludes the possibility of classical correlations to ot
systems. One can also see that a perfect classical correl
betweenA andB will forbid systemA from being entangled
to other systems.

In this paper, we first show~Sec. II! that this mutually
exclusive property can be cast into a simple equality. T
derivation is straightforward once we choose suitable m
sures for the quantum correlation~entanglement cost! and for
the classical correlation~one-way distillable common ran
domness!. The equality also indicates a close connection
tween the two~apparently different! measures. We may sa
that the two measures are complementary to each othe
particular, the question of additivity of one measure can
reduced to that of the other. We also derive an inequa
describing a limitation on the distribution of entangleme
Then, in Sec. III, we explore mutual limitations betwe
more general measures of correlation: entanglement c
general distillable entanglement, ‘‘squashed entangleme
@5#, and distillable secret key.

*Electronic address: koashi@soken.ac.jp
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II. ENTANGLEMENT VERSUS CLASSICAL
CORRELATION

Entanglement cost@6# is an operationally defined measu
of bipartite entanglement. It connects an arbitrary bipar
staterAB over systemA and B to a standard bipartite stat
(u01&2u10&)/& which we call a singlet. Suppose that w
want to preparen pairs of systems in staterAB

^ n by local
operations and classical communication~LOCC!, using a re-
source ofm singlets. The entanglement costEC of rAB is
defined as the infimum of the ratiom/n in the asymptotic
limit n→`, under the condition that the errors in the prep
ration should vanish in the same limit. It was shown@6# that
EC is equal to the regularized entanglement of formationEf
@7#, namely,

EC~rAB!5 lim
n→`

1

n
Ef~rAB

^ n!.

The entanglement of formationEf is defined by

Ef~rAB!5 lim
$pi ,uc i &%

(
i

piS~TrB@ uc i&^c i u# !, ~1!

whereS(r) is the von Neumann entropy of density opera
r and the minimum is taken over all ensembles$pi ,uc i&%
satisfying ( i pi uc i&^c i u5rAB . The entanglement cost doe
not depend on whether the classical communication is
lowed in both directions or restricted to one direction.

A convincing operational measure of the classical cor
lation inherent in a bipartite quantum state has been propo
only recently by Devetak and Winter@8# ~but see also the
recent work of Oppenheim and Horodecki@9# based on a
thermodynamical idea, as well as Refs.@10# and @11# which
adopt an approach via secret key rates!. They consider the
optimum amount of the perfect classical correlation that c
be extracted from a bipartite staterAB , measured in the
number of maximally correlated classical bits (rbits). One
problem in this approach is that if no communication is
lowed, there is no way to produce a perfect correlation e
if we weaken the restriction to an ‘‘almost perfect’’ correl
tion in the asymptotic sense. They thus considered the c
©2004 The American Physical Society09-1
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whereC rbits are extracted fromrAB via R bits of noiseless
classical communication betweenA andB. Noting thatR bits
of noiseless classical communication can produceR rbits of
classical correlation by itself, the net contribution of the st
rAB is (C2R) rbits. This quantity should be optimized ove
R and over various protocols. Considering then statesrAB

^ n ,
an asymptotic measure of distillable common randomn
CD is thus defined as the supremum of (C2R)/n in the limit
n→`. Devetak and Winter have derived the formula forCD
when the classical communication is restricted in one dir
tion. When the direction is fromB to A, the distillable com-
mon randomnessCD

← is given by

CD
←~rAB!5 lim

n→`

1

n
I ←~rAB

^ n!.

Here the functionI ←, which was proposed by Henderso
and Vedral@12#, is defined by

I ←~rAB!5max
$Mx%

FS~rA!2(
x

pxS~rx!G5..maxI ~X;A!,

where the maximum is taken over all the measureme
$Mx% applied on systemB, px[Tr@(1A^ Mx)rAB# is the
probability of the outcomex, rx[TrB@(1A^ Mx)rAB#/px is
the state of systemA when the outcome wasx, and rA
[TrB(rAB). The right-hand side in the first line is th
Holevo quantity, for which the second line introduces a n
tation. This measure is asymmetric, andCD

←(rAB)
ÞCD

→(rAB) in general; in the classical case however, th
coincide and are equal to the mutual information@13#.

In order to connect the above two measures, let us in
duce a duality relation among bipartite states. We say tha
staterAB8 is the B complement torAB when there exists a
tripartite pure staterABB8 such that TrB(rABB8)5rAB8 and
TrB8(rABB8)5rAB . As is obvious from the definition,rAB8
is the B complement torAB if and only if rAB is the B8
complement torAB8 . The stateB complement torAB is
unique up to local unitary operations on systemB8, namely,
any two statesrAB8 andrAB8

8 that areB complement to the
same staterAB are connected by a unitary operationUB8 on
systemB8 asrAB85(1A^ UB8)rAB8

8 (1A^ UB8
† ). Now we can

prove the following.
Theorem 1. WhenrAB8 is theB complement torAB ,

Ef~rA!1I ←~rAB8!5S~rA! ~2!

and

EC~rAB!1CD
←~rAB8!5S~rA!, ~3!

whererA[TrB(rAB)5TrB8(rAB8).
Proof. Let rABB8 be the pure state satisfying TrB(rABB8)

5rAB8 and TrB8(rABB8)5rAB . Take an ensemble$pi ,uc i&%
achieving the minimum in Eq.~1!. Since ( i pi uc i&^c i u
5rAB , there exists a measurement$M̃ i% on systemB8 such
that, if applied on staterABB8 , the outcomei occurs with
probability pi , leaving the state ofA and B in uc i&. If we
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neglect systemB, this implies that if we apply$M̃ i% on state
rAB8 , the outcomei occurs with probabilitypi , leaving the
state ofA in TrA@ uc i&^c i u#. From the definition ofI ←, we
have

I ←~rAB8!>S~rA!2(
i

piS~TrA@ uc i&^c i u# !

5S~rA!2Ef~rAB!. ~4!

Conversely, take a measurement$Mi% on systemB8 achiev-
ing the maximum in the definition ofI ←, namely,
I ←(rAB8)5S(rA)2( i piS(r i). The rank of the operatorMi
may be larger than one in general, so take a decompos
Mi5( jM i j into rank-1 nonnegative operatorsMi j . This
gives a new measurement$Mi j % on systemB8. Let pi j
[Tr@(1A^ Mi j )rAB# and r i j [TrB@(1A^ Mi j )rAB#/pi j .
These are related topi and r i as pi5( j pi j and pir i
5( j pi j r i j . From the concavity of the von Neumann e
tropy, we have S(rA)2( i j pi j S(r i j )>S(rA)2( i piS(r i)
5I ←(rAB8). The definition of I ← leads to the opposite
inequality, and we thus haveS(rA)2( i j pi j S(r i j )
5I ←(rAB8). Suppose that the measurement$Mi j % is applied
to the pure staterABB8 . The probability of the outcomeij
is given bypi j defined above. When the outcome isij , the
state ofAB becomes a pure stateuf i j &, sinceMi j is rank-1.
We thus obtain an ensemble$pi j ,uf i j &% satisfying
( i j pi j uf i j &^f i j u5rAB . If we neglect systemB, the situation
is identical to the case where$Mi j % is applied torAB8 . This
implies that TrB@ uf i j &^f i j u#5r i j . Therefore,

Ef~rAB!>(
i j

pi j S~TrB@ uf i j &^f i j u# !

5(
i j

pi j S~r i j !

5S~rA!2I ←~rAB8!. ~5!

Equation ~2! is proved by combining Eqs.~4! and ~5!. In
order to derive Eq.~3!, note thatrAB8

^ n is theB complement to
rAB

^ n becauserABB8
^ n is a purification of either of the states

Therefore, by the additivity of von Neumann entrop
Ef(rAB

^ n)1I ←(rAB8
^ n )5S(rA

^ n)5nS(rA). Dividing by n and
taking the limitn→`, we obtain Eq.~3!. j

In order to represent the mutually exclusive property
classical and quantum correlations, let us consider a gen
tripartite mixed staterABC . We can always find a pure stat
rABCD on the four systems, such that TrD(rABCD)5rABC .
Regarding systemsC and D as a single systemB8, we can
apply theorem 1 to obtainEf(rAB)1I ←(rA(CD))5S(rA). It
is straightforward to showI ←(rA(CD))>I ←(rAC) from the
definition of I ←. We thus obtain the following corollary.

Corollary 2. For any tripartite staterABC ,

Ef~rAB!1I ←~rAC!<S~rA! ~6!

and
9-2
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MONOGAMY OF QUANTUM ENTANGLEMENT AND . . . PHYSICAL REVIEW A69, 022309 ~2004!
EC~rAB!1CD
←~rAC!<S~rA!. ~7!

The equality in each of the relations holds ifrABC is pure.j
This corollary will be interpreted as follows. The loc

entropyS(rA) represents the effective size of the systemA
measured in qubits. This view is justified by the existence
a compression scheme@14# that transfers the contents of sy
tem A into S(rA) qubits per copy while retaining any corre
lation to other systems asymptotically faithfully. This si
will be understood as the capacity of systemA to make cor-
relations to other systems. Here we are asking how one
correlate systemA to systemB and to systemC at the same
time, under the condition that the size of systemA is limited
to S(rA) qubits. The corollary states that the quantum cor
lation to one system and the classical correlation to the o
system must use up this limited capacity of systemA in a
mutually exclusive way, namely, the two correlations can
share the same fraction of the capacity. In other words,
existence of a certain amount of quantum~classical! correla-
tion to one system is sufficient to restrict the classical~quan-
tum! correlation to other systems by the same amount. O
curious property stated in the corollary is that it is also n
essary to restrict the correlations to other systems. This
sults from the fact that the inequalities are saturated wh
everrABC is pure. Forming a quantum~classical! correlation
to systemA is the only way to assure that the classical~quan-
tum! correlation betweenA and other systems is smaller tha
is available by the size of systemA.

The last property gives us an operational definition of
amount of entanglement in reference to classical resour
rather than to quantum ones such as singlets. Conside
that what we can directly ‘‘perceive’’ is only the classic
quantity, it is natural to seek a tighter connection betwe
entanglement and classical correlations. Bell’s inequali
may serve as a tool for that purpose, but we do not know
how to measure the amount of violation of Bell’s inequaliti
in a satisfactory way, nor how to use Bell’s inequalities
distinguish the states with bound entanglement from
separable ones. Here we can define the amount of enta
ment in a bipartite staterAB as follows. Consider any puri
fication rABC of rAB . The entanglement is defined as t
difference between two values of one-way distillable co
mon randomness asE(rAB)[CD

←(rA(BC))2CD
←(rAC),

whereCD
←(rA(BC)) represents the one-way distillable com

mon randomness betweenA and the combined system ofB
and C, andCD

←(rAC) represents the one betweenA and C.
The amountCD

←(rA(BC))2CD
←(rAC) corresponds to the re

duction in the amount of distillable classical correlatio
caused by the omission of systemB. Since CD

←(rA(BC))
5S(rA), it follows from Eq. ~3! that E(rAB)5EC(rAB).
Thus the two measures coincide, but note thatE(rAB) is in
the unit of rbits, whileEC(rAB) is in the unit ofebits.

Since the von Neumann entropy satisfies the additiv
S(r ^ r8)5S(r)1S(r8), theorem 1 implies that the sum o
Ef(rAB) andI ←(rAB8) is additive. Thus the additivity of one
implies that of the other, namely,Ef(rA1B1

^ rA2B2
)

5Ef(rA1B1
)1Ef(rA2B2

) holds if and only if I ←(rA1B
18

^ rA2B
28
)5I ←(rA1B

18
)1I ←(rA2B

28
), where rAjBj8

is the Bj
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complement torAjBj
. Indeed, a similar relation holds forEC

and CD
← . The problem of the~super!additivity of the one-

way distillable common randomness is thus dual to the pr
lem of the~sub!additivity of entanglement cost or entangl
ment of formation. In particular, we can export the know
results@15# about the additivity of entanglement of formatio
and cost to that of distillable common randomness throu
the duality ofB-complement states.

One may wonder why a symmetric measureEC and an
asymmetric measureCD

← are connected as in Eq.~3!. Let us
introduce the one-way entanglement costEC

→(rAB), which is
defined as the entanglement cost when we restrict the cla
cal communication to be one way fromA to B. Then, we can
regard Eq. ~3! as resulting from the two equation
EC

→(rAB)1CD
←(rAB8)5S(rA) and EC

→(rAB)5EC
←(rAB)

5EC(rAB). The former connects two asymmetric measu
as one would expect, and the latter refers to a symm
lying in the quantum theory. Due to the presence of t
symmetry, Eq.~3! happens to take an anomalous form. W
can also state this symmetry in terms of one-way distilla
common randomness, in the following corollary that is eas
derived from theorem 1.

Corollary 3. WhenrAB8 is theB complement torAB ,

S~rB!2CD
→~rAB!5S~rB8!2CD

→~rAB8!.

This is because both the left- and the right-hand sides
equal toEC(rBB8). j

The mutual exclusiveness between classical and quan
correlations is by itself a property that is symmetric betwe
the two types of correlations. The difference between the
correlations—the classical correlations can be freely sha
but the quantum ones cannot—arises from the follow
asymmetry. The two systems can have classical correlat
without having any quantum correlations, but the convers
not true. It would be interesting to find an inequality repr
senting the converse property, namely, to find an up
bound on the amount of quantum correlations for a giv
amount of classical correlations. Combined with Eq.~7!,
such an inequality will give us a general inequality expre
ing the monogamy of entanglement. As an example, here
prove the following inequality.

Proposition 4.

CD
←~rAB!>ED

←~rAB!, ~8!

whereED
←(rAB) is the one-way distillable entanglement

staterAB .
Namely, consider any purificationuc&ABE of rAB , and any

measurement onB which will result in a random variableX
and post-measurement states onA andE. Then clearly,

I ~X;A!>I ~X;A!2I ~X;E!.

But according to Ref.@8# the maximum of the left-hand sid
over all measurements~regularized! equalsCD

←(rAB), while
the same maximum~regularized! of the right-hand side is
the secret key distillable by one-way discussion@11#
Csecret

← (cABE). ~In secret key capacities, the indices, in th
9-3



git

e
n
e-
es

m

el
en
a
m

s
f

nt
e

ll

n
o-

te
en

li
d

n
-

t
co
y
le
e

e

-

e
-
en

w-

for
ng

nts

te
e

red
ous

ne-
be
ret

a
as a
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order, represent the first legitimate party, the second le
mate party, and the eavesdropper.! On the other hand, it is
obvious thatCsecret

← (cABE)>ED
←(rAB) since one can creat

one bit of secret key from one ebit of distilled entangleme
~It is also directly obtained by looking at the formulas d
rived in Ref. @11#.! Putting together these estimates giv
Eq. ~8!. j

Combining Eq.~8! of proposition 4 with Eq.~7! of corol-
lary 2, we obtain a new inequality describing the monoga
of entanglement.

Theorem 5.

EC~rAB!1ED
←~rAC!<S~rA!, ~9!

for any staterABC . j

III. OTHER CORRELATIONS

In the previous section, an inequality@Eq. ~9!# describing
the monogamy of entanglement has been derived from
close connection between two measures of bipartite corr
tions. In this section, we approach the monogamy of
tanglement through completely different arguments. We
particularly interested in a family of inequalities in the for

E~rAB!1E~rAC!<E~rA~BC!!, ~10!

whereE(rAB) is a measure of correlation between systemA
and B. In the following, we prove that the above form o
inequality is true for the one-way distillable entangleme
the one-way distillable secret key, and the squashed
tanglement.

Before doing so, it will be worthwhile noting that not a
the entanglement measures satisfy the inequality~10!. In par-
ticular, it does not hold for the entanglement cost, as see
the following example. Consider the purification of the t
tally antisymmetric state on a two-qutrit system

uc&ABC5
1

A6
~ u123&2u132&1u231&2u213&1u312&2u321&).

Note that all its two-party restrictions~in particular toAB
and toAC! are isomorphic to the totally antisymmetric sta
for which the entanglement of formation and entanglem
cost are known to be 1ebit @16#. Hence we have
EC(rA(BC))5S(rA)5 log2 3,1115EC(rAB)1EC(rAC). This
counterexample also implies that the monogamy inequa
~9! derived in the previous section cannot be supersede
an inequality of the form~10!.

An inequality in the form~10! has a natural interpretatio
when the measureE represents the optimal yield of distilla
tion protocols. If an optimal protocol betweenA andB and
an optimal protocol betweenA and C can be carried ou
simultaneously without interference, the combined proto
gives an yieldE(rAB)1E(rAC), and hence the inequalit
~10! holds. This is indeed true for the one-way distillab
entanglement. The argument is as follows: Let us introduc
purification of the staterABC on a systemE, such that we can
phrase everything in terms of a global pure state.B and C
can both independently perform their halves of their resp
02230
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tive protocols withA and send her~A! their classical mes-
sages. Clearly, then,A can complete the distillation of en
tanglement between her andB by a local unitaryU, leaving
the whole system in~a high-fidelity approximation of! the
state uFK&AB^ uC&A8CE . After this, she could reverse th
action of U by applyingU21, and apply another local uni
tary V, to complete the distillation of entanglement betwe
her andC, leaving the whole system in~a high-fidelity ap-
proximation of! the stateuFL&AC^ uQ&A8BE . Of course, after
this naive protocol, we could not find the stateuFK&AB any-
where. Observe, however, that since after the first stepAB is
disentangled from the rest of the world,VU21 could as well
be applied with a ‘‘dummy state’’uFK& ÃA5 ~totally in the pos-
session ofA! instead ofuFK&AB , with the same resulting
maximally entangled stateuFL&AC betweenA andC. Thus,A
can extract both maximally entangled states withB andC at
the same time. This operational argument proves the follo
ing inequality.

Theorem 6.

ED
←~rAB!1ED

←~rAC!<ED
←~rA~BC!!, ~11!

for any staterABC .
This inequality can also be derived using a formula

ED
←(rAB), which has recently been established by provi

the ‘‘hashing inequality’’@11#. Let us define the quantity

ED
←~1!~rAB![sup(

i
pi@S~rA

~ i !!2S~rAB
~ i ! !#,

where the supremum is taken over all the local instrume
carried out byB. The quantitypi is the probability of having
classical outcomei when the instrument is applied on sta
rAB , andrAB

( i ) is the state left by the instrument. Then, th
formula is written as

ED
←~rAB!5 lim

n→`

1

n
ED

←~1!~rAB
^ n!.

From the strong subadditivity@17#, we have

S~rA!2S~rAB!1S~rA!2S~rAC!<S~rA!2S~rABC!.

Then, the derivation of Eq.~11! is straightforward by noting
that carrying out a local instrument onB and another onC
can be regarded together as a local instrument onBC. j

Following the analogy between entanglement and sha
secret key~such as the monogamy, observed by numer
authors: a good sample is provided by Refs.@18,11,19#!, it is
possible to apply a similar argument to the case of the o
way distillable secret key. Before that, a few remarks will
helpful regarding the relation between the distillable sec
key and the entanglement. The secret keyCsecret(cABE) dis-
tillable from the pure stateuc&ABE by public ~two-way! dis-
ussion betweenA and B against an eavesdropperE
can be regarded as a function of the marginal staterAB
5TrE(uc&^cuABE). This function is easily checked to be
proper entanglement monotone, hence can be regarded
9-4



d
,

e
n

he
in
-

ar
r
p
fo
th
p

d
s
x
ti
l-

w
o-
co

e
l

e
e-
er
to
e
t

re
y

le

t

ed

y
By

s

an

nd
s an
of

in

MONOGAMY OF QUANTUM ENTANGLEMENT AND . . . PHYSICAL REVIEW A69, 022309 ~2004!
measure of entanglement. This measure lies between the
tillable entanglement and the entanglement cost, namely

ED~rAB!<Csecret~cABE!<EC~rAB!.

The lower bound is obvious, and the upper bound com
from the fact that the entanglement of formatio
(1/n)Ef(rAB

^ n) can be shown to be an upper bound by t
following operational argument. An eavesdropper hold
the E part of n copies ofuc&ABE can, by a suitable measure
ment, effect any pure state decomposition of the state sh
betweenA andB and will only help them by announcing he
measurement result; hence the distillable key length is up
bounded by the average of the distillable key lengths
these pure states, which is easily seen to be equal to
respective entropy of entanglement. Observe that this up
bound was recently improved in Ref.@19#, where it was
shown thatCsecretis in fact upper bounded by the regularize
relative entropy of entanglement~against separable state!
@20#. The technique is very interesting in the present conte
the key point is expressing secret key distillation as a dis
lation problem involving LOCC. With these remarks the fo
lowing should not come as too big a surprise.

We prove that an inequality of the form~10! is true for
E(rA(BC))5Csecret

← (cA(BC)E), namely,
Theorem 7.

Csecret
← ~cAB~CE!!1Csecret

← ~cAC~BE!!<Csecret
← ~cA~BC!E!.

In fact, even the stronger inequality

Csecret
← ~rABE!1Csecret

← ~rAC~BE!!<Csecret
← ~rA~BC!E! ~12!

holds for any four-partite staterABCE.

As in the case of the one-way distillable entanglement,
can prove the inequality by showing that two distillation pr
tocols can be carried out at the same time. The proto
achieving the key ratesCsecret

← (rABE) ~betweenB andA! and
Csecret

← (rAC(BE)) ~betweenC andA! can be integrated in on
protocol in whichB andC independently perform their loca
operations, and send public messages toA. She then com-
pletes first the protocol withB—by the protocol in Ref.@11#,
in which she in fact ‘‘decodes with high probability’’ th
secret key already held byB, hence by the gentle measur
ment principle she will induce only little disturbance to h
state. This means she then can also complete the pro
with C with high fidelity of success. By definition of th
protocol she ends up with key shared withB ~secret agains
E! and key shared withC ~secret againstBE!. The fact that
the latter one is secret againstB ensures that the two keys a
~almost! independent. ThusA andBC can obtain a secret ke
of lengthCsecret

← (rABE)1Csecret
← (rAC(BE)) againstE if B andC

cooperate.
Again, as in the case of the one-way distillable entang

ment, we can also prove Eq.~12! by the formula for
Csecret

← (rABE) derived in Ref.@11#, namely,

Csecret
← ~rABE!5 lim

n→`

1

n
Csecret

←~1!~rABE
^ n !
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Csecret
←~1!~rABE![max@ I ~X;A!2I ~X;E!#,

where the maximum is taken over all measurements aB
~resultX!. Then, the left-hand side of Eq.~12! is ~the regu-
larization of! the maximum of

@ I ~X;A!2I ~X;E!#1@ I ~Y;A!2I ~Y;BE!#

over all measurements atB ~resultX! and measurements atC
~resultY!. On the other hand, we have

I ~X;A!2I ~X;E!1I ~Y;A!2I ~Y;BE!

<I ~X;A!2I ~X;E!1I ~Y;AX!2I ~Y;EX!

5I ~X;A!1I ~Y;AuX!2I ~X;E!2I ~Y;EuX!

5I ~XY;A!2I ~XY;E!,

where the last line, again by the formula, is upper bound
by Csecret

← (rA(BC)E), the right-hand side of Eq.~12!. j

As a special case of Eq.~12!, we can derive a monogam
relation involving common randomness and secret key.
setting systemE as a trivial one~and by swapping notation
B andC!, we obtain

Csecret
← ~rABC!1CD

←~rAC!<CD
←~rA~BC!!.

Finally, we show that the inequality of the form~10! is
true for the so-called ‘‘squashed entanglement’’@5#

Esq~rAB!5 infH 1

2
I ~A;BuE!:rAB5TrE~rABE!J ,

where the infimum is over all extensionsrABE of the state
rAB ~i.e., states whose partial trace overE is rAB), and

I ~A;BuE!5S~rAE!1S~rBE!2S~rABE!2S~rE!

is the conditional quantum mutual information. For it we c
prove the following.

Theorem 8. For any tripartite staterABC ,

Esq~rAB!1Esq~rAC!<Esq~rA~BC!!. ~13!

Using the chain rule for the~conditional! mutual information
with any state extensionrABCE:

1

2
I ~A;BCuE!5

1

2
I ~A;BuE!1

1

2
I ~A;CuBE!

>Esq~rAB!1Esq~rAC!,

sinceE extendsAB and BE extendsAC. As this is true for
every state extension ofrABC we obtain the claim. j

While no operational interpretation has so far been fou
for the squashed entanglement, the above inequality ha
interesting corollary for operationally defined measures
entanglement. This comes from the property thatEsq is lower
bounded byED ~distillation under bidirectional protocols!
and upper bounded byEC @5#. As a consequence, we obta
9-5
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the following from Eq.~13!.
Corollary 9.

ED~rAB!1ED~rAC!<EC~rA~BC!!, ~14!

for any staterABC .
Note that this is in no relation of dependence with E

~11!: there both the left- and the right-hand sides can
smaller since we use one-way distillation.

IV. DISCUSSION

In this paper we have contributed to an understanding
the monogamy of quantum entanglement by casting it int
variety of quantitative trade offs between measures of
tanglement and more general correlation measures. All th
are of the form of an upper bound on the sum of a correla
measure forA-B and~maybe another measure! for A-C for a
tripartite state onABC. This trade off assumes the very plea
ing form of a complementarity identity for entanglement co
and one-way distillable classical correlation, linking the
two quantities and showing that their additivity problems a
equivalent: this extends Shor’s recent list of four equival
additivity questions@21# to five entries. It would be interest
ing to find an operational proof for theorem 1, which here
have proved using only formal properties of the definitio
of Ef and I ←.

We then went on to exploit our relation to study oth
trade offs involving further entanglement and correlati
ta

J.

.

k
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measures: we gave an example that the entanglement
does not obey a symmetric trade off, but showed that
squashed entanglement does—which leads to our only
ample of a mutual trade off for correlation measures ba
on distillation under bidirectional communication. For me
sures based on optimal yields under unidirectional comm
nication, we derived monogamy relations through an ope
tional argument, and also gave an alternative proof base
the basic properties of entropic functions.

There are a number of open questions regarding the
sibility of other inequalities. Along the line discussed in Se
II, an important question is whether one can replaceS(rA) in
the inequality~7! by a correlation measure betweenA and
BC that is equal toS(rA) wheneverrABC is pure @for ex-
ample, the entanglement costEC(rA(BC))]. For inequalities
in the form ~10! in Sec. III, interesting cases will be
E(rAB)5ED

→(rAB), E(rAB)5ED(rAB), and similar ones for
the secret key. A crucial difference here is that, for a sim
operational argument to be carried out, one must show
the partyA can increase the expected coherent informat
betweenA andB by a measurement, without contaminatin
the correlation betweenA and C. It is not clear, and is an
interesting question, whether this is always true or not.

ACKNOWLEDGMENT

A.W. was supported by the U.K. Engineering and Phy
cal Sciences Research Council.
le
-

m,

.

@1# D. Bruß, Phys. Rev. A60, 4344~1999!; W. Dür, G. Vidal, and
J. I. Cirac,ibid. 62, 062314~2000!; M. Koashi, V. Bužek, and
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