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Complete family of separability criteria
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We introduce a family of separability criteria that are based on the existence of extensions of a bipartite
quantum stater to a larger number of parties satisfying certain symmetry properties. It can be easily shown that
all separable states have the required extensions, so the nonexistence of such an extension for a particular state
implies that the state is entangled. One of the main advantages of this approach is that searching for the
extension can be cast as a convex optimization problem known as a semidefinite program. Whenever an
extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular
state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the
well-known positive partial transpose~Peres-Horodecki! criterion, and each test in the hierarchy is at least as
powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed
to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses
corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that, in
turn, allow for a characterization of the interior of the set of positive maps. Coupled with some recent results
on the computational complexity of the separability problem, which has been shown to beNP hard, this
hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of
mixed bipartite entangled states.

DOI: 10.1103/PhysRevA.69.022308 PACS number~s!: 03.67.Mn, 03.65.Ud
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I. INTRODUCTION

Entanglement is one of the most fascinating features
quantum mechanics. As Einstein, Podolsky, and Rosen@1#
pointed out, the quantum states of two physically separa
systems that interacted in the past can defy our intuiti
about the outcomes of local measurements. Entangled
states have zero entropy but can appear to have max
entropy when the experimenter only has access to one o
subsystems. On the other hand, Bell inequalities@2# quantify
the extent to which local measurements on separated q
tum systems can be correlated in ways that are forbidde
any local classical model. Violations of these inequalit
require entanglement. Moreover, it has recently been rec
nized that entanglement is a very important resource in qu
tum information processing, allowing certain important tas
such as teleportation, quantum computation, quantum c
tography, and quantum communication to name a few@3#.

For the case of pure states, determining when a gi
state is entangled is very easy, since it is based on prope
of the Schmidt decomposition or, equivalently, the rank
the reduced density matrices, which can be computed v
efficiently. However, for the case of mixed bipartite stat
no single practical procedure that can be guaranteed to d
the entanglement of every entangled state has been fo
Over the past few years, considerable effort has been d
cated to this problem@4–7#. Still only incomplete criteria
have been proposed that can detect some entangled stat
not all of them or that work only for certain restricted dime
sions. This is a somewhat uncomfortable situation, since
the quantum states generated in the laboratory for prac
applications of quantum information processing are mix
states. Hence the need, not only from the theoretical but
from the practical point of view, of having an efficient to
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that would allow us to determine when a given state is
tangled.

A bipartite mixed state is said to be separable@8# ~not
entangled! if it can be written as a convex combination o
pure product states

r5( pi uc i&^c i u ^ uf i&^f i u, ~1!

whereuc i& and uf i& are state vectors on the spacesHA and
HB of subsystemsA and B, respectively, andpi.0, ( i pi
51. If a state admits such a decomposition, then it can
created by local operations~unitary transformations, mea
surements, etc.! and classical communication~LOCC! by the
two parties, and hence it cannot be an entangled state.
spite the simplicity of Eq.~1!, it has been shown recently b
Gurvits @9# that deciding whether or not such a decompo
tion exists for a given density matrix is anNP-hard problem.
This result destroys any hope of finding a computationa
efficient tool to determine entanglement of mixed states
was the case for pure states, so long as the widely belie
result PÞNP is actually true. But there are some instanc
of the separability problem that allow efficient algorithms
solve them. This is one of the basic ideas behind separab
criteria.

A separability criterion is based on a simple property th
can be shown to hold for every separable state. They pro
necessary but not sufficient conditions for separability.
some stater does not satisfy the property, then it must
entangled. But if it does satisfy it, that does not imply th
the state is separable. One of the first and most widely u
of these criteria is the positive partial transpose~PPT! crite-
©2004 The American Physical Society08-1
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
rion, introduced by Peres@10#. If r has matrix elements
r ik, j l 5^ i u ^ ^kuru j & ^ u l & then the partial transposerTA is de-
fined by

r ik, j l
TA 5r jk,i l . ~2!

If a state is separable, then it must have a PPT. To see
consider the decomposition~1! for r. Partial transposition
takesuc i&^c i u to uc i* &^c i* u, so the partial transpose ofr can
be written as

rTA5( pi uc i* &^c i* u ^ uf i&^f i u. ~3!

ClearlyrTA is a valid quantum state and in particular it mu
be positive semidefinite. Thus any state for whichrTA is not
positive semidefinite is necessarily entangled. This criter
is computationally very easy to check. Furthermore, it w
shown by the Horodeckis@11#, based on previous work b
Woronowicz @12#, to be both necessary and sufficient f
separability inH2^ H2 and H2^ H3 . However, in higher
dimensions, there are PPT states that are nonetheles
tangled, as was first shown in Ref.@13#, again based on Ref
@12#. These states are called bound entangled states bec
they have the peculiar property that no entanglement ca
distilled from them by local operations@14#.

A different useful separability criterion that has been us
to show entanglement of PPT states is the range crite
@12,13#. It is based on the fact that for every separable star
there exist a set of pure product states$uc i&uf i&% that span
the range ofr while $uc i* &uf i&% span the range ofrTA, as
can be easily seen by looking at Eqs.~1! and~3!. This crite-
rion is sometimes stronger than PPT, but in some cases it
be weaker~for example, when considering full rank non-PP
states!. Other criteria that are in general weaker than PPT
the reduction criterion@15,16# and the majorization criterion
@17#. None of these criteria, nor a combination of them a
sufficient to give a complete characterization of separa
states.

Another approach to distinguishing separable and
tangled states involves the so calledentanglement witnesse
~EW’s! @18#. An EW is an observableW whose expectation
value is nonnegative on any separable state, but strictly n
tive on an entangled stater. We say in this case thatW
‘‘witnesses’’ the entanglement ofr. In addition to giving an-
other theoretical tool to detect entangled states, this idea
dresses the question of whether there is an experimental
of distinguishing an entangled state from a separable one
studying the geometrical structure of the set of quant
states, it can be shown that for every entangled state t
exists an entanglement witnessW @11,12#. Thus, there is al-
ways an observable that can be measured that will show
the state is entangled.

There are two other important mathematical objects
lated to entanglement witnesses. Although these do not h
the physical interpretation of observables they allow conn
tions to other results in the mathematical and mathema
physics literature. In the first place, there is a corresponde
that relates entanglement witnesses to linear positive~but not
02230
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completely positive! maps from operators onHA to operators
on HB ~or vice versa!; see Eq.~89! and Ref.@19#. Applying
such a map to one half of an entangled state does not ne
sarily result in a positive matrix. For this reason positi
maps were rejected as possible physical evolutions of qu
tum states in favor of the completely positive maps. The P
test has this structure where the transpose is the pos
map. Any positive but not completely positive map results
an analogous separability criterion. The equivalence betw
entanglement witnesses and positive maps implies that ifr is
entangled there is always a positive map that will detect
entanglement in this way@11,12#. The characterization o
positive linear maps was in fact the original motivation f
studying the separability question@12#.

Finally, there is a well known mapping between positi
linear maps and positive semidefinite biquadratic for
@20,21#. This can be appreciated simply by writing the co
dition thatW is positive on pure product states explicitly
terms of the elements ofW and the state vectors for the tw
systems, as in Eq.~43! in Sec. VI. This suggests the use
results from real algebraic geometry~see, for example, Ref
@22#, and the references therein! to attack the separability
problem. Indeed, the semidefinite programming techniq
we employ here were first developed in this general con
@23#.

The question of whether a given stater is separable may
be phrased as quantified polynomial inequalities in a fin
number of variables

;W@;uc&;uf& ^cu^fuWuc&uf&>0⇒Tr@rW#>0].
~4!

If this proposition is satisfied thenr is separable. Since th
inequalities may be expressed in terms of polynomials of
variables~the components ofW, uc&, uf&! this is a semialge-
braic problem. Much is known about the general class
semialgebraic problems, in particular the fact that they
decidable. The Tarski-Seidenberg decision procedure@22#
can then be used to provide an explicit algorithm to solve
separability problem in all cases and therefore to dec
whetherr is entangled. A drawback of this approach is th
most exact techniques in algebraic geometry scale v
poorly with the number of variables~the Hilbert space di-
mensions in the separability problem!. For this problem,
these methods do not perform well in practice except
very small problem instances. This is in contrast to the P
test which may be implemented very efficiently but does
always settle the question of separability ofr. In this paper
we discuss a set of separability criteria that also have
property; they all scale polynomially with the Hilbert spa
dimension and perform well in practice, any stater that is
entangled is detected by one of the tests but no one
detects all entangled states. Since the separability proble
NP hard it is very unlikely that a procedure guaranteed
solve the problem in all instances can scale well with Hilb
space dimension. As a result our family of separability te
is, in some sense, the best way of solving the problem fr
a practical point of view, in that simple tests will detect th
easiest instances of the problem, while the more complica
instances genuinely require more computational resource
8-2
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
The most important characteristic of the separability pr
lem is the fact that the separable states form a convex
The existence of entanglement witnesses, observables
are positive on separable states but negative on some
tangled state, is a direct result of this convexity. There
been much work on the separability problem, particula
from the Innsbruck-Hannover group as reviewed in Re
@5,6#, that emphasizes convexity and proceeds by chara
izing entanglement witnesses in terms of their extre
points, the so-called optimal entanglement witnesses,
PPT entangled states in terms of their extreme points,
edge PPT entangled states@24,25#. Convexity also plays a
central role in our work which provides a computation
means of constructing entanglement witnesses with cer
properties. It is interesting that our construction will allow
to characterize the interior of the set of entanglement w
nesses, but not its extreme points.

Beyond the separability problem, many problems of int
est in quantum information have the structure of convex
timizations@26#, a fact that has found increasing applicati
in the field in recent years. One early example is the use
results about linear programming to find the optimal lo
entanglement concentration procedure for a pure bipa
state in Ref.@27#. Our work will involve convex optimiza-
tions known as semidefinite programs@26,28#, generaliza-
tions of linear programs that optimize a linear function o
positive matrix subject to linear constraints. Semidefin
programming arguments have also been used in the qua
information literature to address questions about quan
coin tossing, distillation, and optimal state transformatio
@29–33#.

In this paper we discuss in detail a family of separabil
criteria introduced in Ref.@34#, that can be ordered into
hierarchy of tests that have the following two very importa
properties:~i! the hierarchy is complete, i.e., any entangl
state will be detected by some test in the hierarchy,~ii ! there
are efficient computational algorithms to check each of
tests. This provides us with a very practical algorithmic w
for testing entanglement of given bipartite mixed states, t
is guaranteed to detect any entangled state. Furthermore
algorithm constructs an explicit proof of this fact in the for
of an entanglement witness. This in turn helps us to deve
a characterization of almost all positive maps that are
completely positive.

The paper is organized as follows. In Sec. II we introdu
a family of separability criteria. In Sec. III we introduce an
discuss the properties of semidefinite programs~SDP’s!, and
show that each separability test in the family can be cast
SDP, and briefly discuss the resources needed to implem
them. In Sec. IV we discuss how to take advantage of
symmetries that each test requires to further reduce the c
putational resources needed. In Sec. V we present an ex
proof of the completeness of the hierarchy, translating pre
ous results@35,36# into the language of density matrice
Section VI shows how the duality of the SDP can be e
ploited to construct an entanglement witness that proves
tanglement for a given state, and we discuss the algeb
properties of these witnesses. In Sec. VII we present
amples of the application of the hierarchy. In Sec. VIII w
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discuss how to construct an entangled state that is not
tected by the second test of the hierarchy and present se
important consequences of this result. Section IX shows h
to use an SDP to test indecomposability of an entanglem
witness and construct a bound entangled state detected
In Sec. X we discuss the connection between entanglem
witnesses and positive maps, and show how the propertie
the witnesses obtained through our hierarchy of tests ca
translated into a characterization of strictly positive ma
Finally, in Sec. XI, we summarize our results and present
conclusions.

II. PPT SYMMETRIC EXTENSIONS AND SEPARABILITY
CRITERIA

Any separable stater in HA^ HB can be written as in Eq
~1!. Consider now the stater̃ in HA^ HB^ HA , given by

r̃5( pi uc i&^c i u ^ uf i&^f i u ^ uc i&^c i u. ~5!

Then r̃ has the following properties.~i! r̃ is an extension of
r to three parties, in the sense that

TrC@ r̃#5r, ~6!

where TrC means that we take the partial trace over the th
party which we have taken to be equal toHA . ~ii ! r̃ is
symmetric under interchanges of the first and third part
i.e., the two copies of partyA. More precisely, if we define
the swap operatorP by

Pu i & ^ uk& ^ u j &5u j & ^ uk& ^ u i &, ~7!

the symmetry condition can be written as

r̃5Pr̃P. ~8!

~iii ! r̃ must remain positive under any partial transpositi
~sincer̃ is also a separable state!. Note that, due to the sym
metry ~8!, taking partial transpose with respect to the th
subsystem is equal to taking it with respect to the first o
Now, for an arbitrary stater in HA^ HB , we will call r̃ a
PPT symmetric extension ofr to two copies ofHA , if and
only if r̃ satisfies the three properties stated above. Since
have shown by construction that any separable state h
PPT symmetric extension to two copies ofHA , then we can
use its existence as a separability criterion. If a given s
does not have such an extension, then the state must n
sarily be entangled.

We can take this idea of the existence of PPT symme
extensions further by considering extending the state to
arbitrary number of copies of subsystemA. For any sepa-
rable state inHA^ HB given by Eq.~1!, the state

r̃5( pi uc i&^c i u ^ uf i&^f i u ^ uc i&^c i u ^ n21 ~9!

is a state inHA^ HB^ HA
^ n21 that, ~i! is symmetric under

interchanges of any two copies of subsystemA, ~ii ! yields the
original stater in HA^ HB when we trace out anyn21
8-3
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
copies of subsystemA, and ~iii ! remains positive under al
possible partial transpositions. Again, for an arbitrary stater,
we will call r̃ a PPT symmetric extension ofr to n copies of
party A, if and only if r̃ satisfies properties~i!, ~ii !, and~iii !.
And as before, we can use the existence of this extensio
n copies of subsystemA as a separability criterion. We hav
thus generated a countably infinite family of separability c
teria. Note that the same idea can be generalized to the
tipartite case: the existence of PPT symmetric extension
any number of copies of the parties is a separability criteri

For the bipartite case, these separability criteria are
completely independent of each other, but they actually h
a hierarchical structure. We will now show that if a state h
a PPT symmetric extension ton copies ofA, call it r̃n , then
it must have a PPT symmetric extension ton21 copies ofA.
Let r̃n215TrA@ r̃n#, whereA represents one of the copies
A. It is easy to see thatr̃n21 will inherit from r̃n the property
of being symmetric under interchanges of copies of partyA,
since we have just removed one of the copies. It is a
obvious thatr̃n21 is an extension ofr to n21 copies ofA.
Let us assume that is not PPT. Then there is a subsetI of the
parties such thatr̃n21

TI has a negative eigenvalue, whereTI
represents the partial transpose with respect to all the pa
in subsetI. Let ue& be the corresponding eigenvector and
$u i &% be a basis of the systemA over which the partial trace
was performed. Sincer̃n is PPT, then̂ eu^ i ur̃n

TIue&u i &>0, for
all i. Then

(
i

^eu^ i ur̃n
TIue&u i &5^euTrA@ r̃n

TI#ue&>0. ~10!

Since we performed the partial trace over a party that is
included in I, we can commute the trace and the part
transpose, and usingr̃n215TrA@ r̃n#, we have^eur̃n21

TI ue&
>0, which contradicts the fact thatue& is an eigenvector of
r̃n21

TI with negative eigenvalue.
We have then constructed a family of separability crite

with a natural hierarchical structure. If we take the usual P
criterion as the first step of the hierarchy, the existence o
PPT extension to two copies ofA as the second step, and s
on, we see that the tests are ordered in such a way that
test is at least as powerful as the previous one, in the s
that if a state was shown to be entangled by one of them
will be also shown to be entangled by all the tests that
higher in the hierarchy. This family of tests has several v
important and useful properties. It can be shown that e
test can be cast as a semidefinite program~SDP!, which is a
class of convex optimization problems for which efficie
algorithms exist. The duality structure of the SDP allows
to construct an explicit entanglement witness wheneve
state fails one of the tests. And finally, it can be proven t
the hierarchy iscomplete, i.e., every entangled state is gua
anteed to fail the test at some finite point in the hierarch

III. SEMIDEFINITE PROGRAMS AND SEARCHING FOR
PPT SYMMETRIC EXTENSIONS

In this section we will introduce and discuss the struct
of a semidefinite program and we will show explicitly ho
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to apply it to the problem of searching for a PPT symmet
extension.

A. Semidefinite programs

A semidefinite program~SDP! is a particular type of con-
vex optimization problem@26,28#. An SDP corresponds to
the optimization of a linear function subject to a linear m
trix inequality ~LMI !. A typical SDP has the form

minimize cTx,

subject to F~x!>0, ~11!

where c is a given vector,x5(x1 ,...,xn), and F(x)5F0
1( ixiFi , for some fixed Hermitian matricesFi . The in-
equality in the second line means that the matrixF(x) must
be positive semidefinite. The minimization is performed ov
the vectorx, whose components are the variables of t
problem. The set of feasible solutions, i.e., the set ofx that
satisfy the LMI, is a convex set. In the particular case
which c50, there is no function to minimize and the pro
lem reduces to whether or not the LMI can be satisfied
some value of the vectorx. In this case, the SDP is referre
to as a feasibility problem. The convexity of the SDP h
made it possible to develop sophisticated and reliable a
lytical and numerical methods to solve them@28#.

A very important property of a SDP, both from the the
retical and applied points of view, is its duality structure.
any SDP of the form~11!, which is usually called the prima
problem, there is associated another SDP, called the
problem, that can be stated as

maximize 2Tr@F0z#,

subject to Z>0,

Tr@FiZ#5ci , ~12!

where the matrixZ is Hermitian and is the variable ove
which the maximization is performed. This corresponds
the maximization of a linear functional, subject to linear co
straints and a LMI. Letx andZ be any two feasible solution
of the primal and dual problems, respectively. Then we h
the following relationship:

cTx1Tr@F0Z#5Tr@F~x!Z#>0, ~13!

where the last inequality follows from the fact that bothF(x)
andZ are positive semidefinite. From Eqs.~11! and ~12! we
can see that the left-hand side of Eq.~13! is just the differ-
ence between objective functions of the primal and d
problem. The inequality in Eq.~13! tells us that the value o
the primal objective function evaluated on any feasible v
tor x, is always greater or equal than the value of the d
objective function evaluated on any feasible matrixZ. This
property is known as weak duality. Thus, we can use a
feasiblex to compute an upper bound for the optimum
2Tr@F0Z#, and we can also use any feasibleZ to compute a
lower bound for the optimum ofcTx.
8-4
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
If the feasibility constraints on both the primal and du
problems are satisfied for someZ.0 andx such thatF(x)
.0, the problems are termed strictly feasible, and the o
mum values of the primal and dual formulations are equ
This property is called strong duality. Furthermore, there
feasible pair (xopt,Zopt) achieving the optimum. In this case
as can be seen from Eq.~13!, we have Tr@F(xopt)Zopt#50,
and thusF(xopt)Zopt50, so the Hermitian matricesF(xopt)
and Zopt have orthogonal ranges. This is known as t
complementary slackness condition@28#.

Equation~13! has another important application. Consid
the particular case of a feasibility problem~i.e.,c50). Then,
Eq. ~13! will read

Tr@F0Z#>0, ~14!

and this must hold for any feasible solution of the dual pro
lem. This property can be used to give a certificate of inf
sibility for the primal problem: if there exists Z such thatZ
>0 and Tr@FiZ#50, that satisfies Tr@F0Z#,0, then the pri-
mal problem must be infeasible. We will show later that f
the particular case of our hierarchy of separability tes
whenever a PPT symmetric extension ofr cannot be found
~primal problem is infeasible!, the certificate provided by the
dual problem is nothing but an entanglement witness for
stater.

B. Separability tests as semidefinite programs

Each test in the hierarchy of separability criteria intr
duced in Sec. II can be written as a semidefinite program.
will show in detail how the SDP is setup for the second t
in the hierarchy, which corresponds to searching for P
symmetric extensions ofr to two copies of subsystemA. The
general case, of extensions ton copies of partyA, can be
constructed in a similar way.

Let $s i
A% i 51

dA
2

, $s j
B% j 51

dB
2

be bases for the space of Hermitia
matrices that operate onHA andHB , of dimensionsdA and
dB , respectively, such that they satisfy

Tr@s i
Xs j

X#5aXd i j and Tr@s i
X#5d i1 , ~15!

where X stands forA or B, and aX is some constant—the
generators of SU(n) could be used to form such a bas
Then we can expandr in the basis$s i

A
^ s j

B%, and writer
5( i j r i j s i

A
^ s j

B , with r i j 5aA
21aB

21Tr@rs i
A

^ s j
B#. In the

same way, we can expand the extensionr̃ in HA^ HB^ HA
as

r̃5(
i jk
i ,k

r̃ i jk$s i
A

^ s j
B

^ sk
A1sk

A
^ s j

B
^ s i

A%

1(
k j

r̃k jksk
A

^ s j
B

^ sk
A , ~16!

where we made explicit use of the swapping symmetry
tween the first and third parties, that we require fromr̃. To
satisfy the condition thatr̃ is an extension ofr, we need to
impose
02230
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TrC@ r̃#5r, ~17!

where TrC means tracing out the third party. Using Eq.~15!
and the fact that$s i

A
^ s j

B% form a basis ofHA^ HB , Eq.
~17! reduces to

r̃ i j 15r i j . ~18!

This fixes some of the components ofr̃. The remaining ones
will play the role of the variables in the SDP. The LMI’
come from requiring that the extensionr̃ and all its partial
transposes are positive semidefinite. If we define

G05(
j

r1 js1
A

^ s j
B

^ s1
A

1 (
i 52,j 51

r i j $s i
A

^ s j
B

^ s1
A1s1

A
^ s j

B
^ s i

A%,

Gi ji 5s i
A

^ s j
B

^ s i
A , i>2,

Gi jk5~s i
A

^ s j
B

^ sk
A1sk

A
^ s j

B
^ s i

A!, k. i>2, ~19!

we can write the PSD conditionr̃>0 as

G~x!5G01(
J

xJGJ>0, ~20!

where we have collected all the subindices in Eq.~19! into
one subindexJ. Equation~20! has exactly the form that ap
pears in Eq.~11!. The role of the variablex is played by the
coefficientsr̃ i jk(kÞ1,k> i ), which can vary freely without
affecting the extension condition~17!. The number of free
variables ism5(dA

4dB
22dA

2dB
2)/2, and each matrixGJ has

dimensionn5dA
2dB . Since r̃ is symmetric under swaps o

the first and third parties, there are only two independ
partial transpositions that can be applied to it, which we c
take as partial transposes with respect to the first and se
parties~one of the copies ofA, and subsystemB!. The re-
quirement that these two partial transposes are positive le
to two more LMI’s, given by

r̃TA>0 and r̃TB>0, ~21!

where theGJ matrices for these two inequalities are relat
to the matrices given in Eq.~19! by the appropriate partia
transposes, namely,GJ

TA andGJ
TB. We can actually combine

the three LMI’s into one, by defining the matrix

F5 r̃ % r̃TA% r̃TB, ~22!

and using the fact that a block-diagonal matrixC5A% B is
positive semidefinite, if and only if bothA andB are positive
semidefinite.

We have then stated the search of a PPT symmetric
tension ofr as an SDP, in which the objective function
zero (c50), so it corresponds to a feasibility problem, a
the LMI condition readsF5 r̃ % r̃TA% r̃TB>0, which encodes
the requirement of the extension and its partial transpo
being positive semidefinite. The SDP will then take the fo
8-5
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minimize 0,

subject to F>0. ~23!

In Appendix A, we discuss a slightly modified version of th
SDP that has the advantage of performing better numeric
but we will keep the form~23! for all the analytical discus-
sions, since its dual form is more clearly related to the c
struction of entanglement witnesses, which is another on
the main results of this paper.

The SDP for other tests of the hierarchy~extensions to
more copies of partyA!, can be constructed in the same wa
by generating the matricesGJ with the appropriate symme
try, and constructing the block-diagonal matrixF, whose
blocks correspond to all the independent partial transpo
that can be applied to the extensionr̃.

C. Resources needed to implement the tests

As we mentioned before, there are very efficient alg
rithms to solve semidefinite programs, and we can use t
properties to discuss the computational resources require
implement a general step in our hierarchy of tests. Assu
that we are searching for a PPT symmetric extension o
stater in HA^ HB to k copies of subsystemA, with dA and
dB the dimensions ofHA and HB , respectively. Then, the
corresponding semidefinite program will havem

5@(
k

dA
2

1k21
)2dA

2 #dB
2 variables and a matrixG with (k11)

blocks of dimensiondA
2kdB

2. Numerical SDP solvers are de
scribed in detail in Ref.@28#. Typically they involve the so-
lution of a series of least squares problems each requirin
number of operations scaling with problem size asO(m2n2),
whereF(x) is ann3n matrix. For SDP’s with a block struc
ture these break into independent parts each with a valuen
determined by the block size. The number of iterations
quired is known to scale no worse thanO(n1/2). Thus for
any fixed value ofk the computation involved in checkin
our criteria scales no worse thanO(dA

13k/2) which is polyno-
mial in the system size. On the other hand, fordA and dB
fixed, the size of the matrixF(x) scales exponentially with
the number of copiesk. There is, however, a significant im
provement that can be accomplished by exploiting the sw
ping symmetry to its fullest. In the next section we will sho
that we can impose a stronger restriction on the exten
that brings the scaling of resources down to polynomia
the number of copies of subsystemA, for fixed dA , dB . It is
important to point out that the resources required to solve
separability problem have been proven to scale super p
nomially only when the dimensions of both systems are
lowed to vary. These two results are consistent, although
complexity result implies that there is no value ofk such
that thekth test detects all entangled states for all values
dA , dB .

IV. EXPLOITING THE SYMMETRY

Each test for separability searches for an extension
stater in HA^ HB of dimensiondAdB , to the spaceHA

^ k

^ HB , that has dimensiondA
k dB ~where, without loss of gen
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erality, we have interchanged the order ofHB and all copies
of A for convenience!. We see that the dimension of th
extended space increases exponentially with the numbe
copies of partyA. We have shown that we can impose furth
restrictions on the extension, and in particular we requir
to be invariant under swaps of the copies of subsystemA.
This reduces the size of the space over which we search
the extension, but the scaling with the number of copies
mains exponential, which is not desirable of a practical t
for deciding separability of a state. However, we can actua
impose a stronger constraint on the form of the extens
that reduces the scaling of its size from exponential to po
nomial in the number of copies.

As we pointed out before, any separable state inHA
^ HB of the form ~1! has a PPT symmetric extension
HA

^ k
^ HB , that we can explicitly write as

r̃5( pi uc i&^c i u ^ k
^ uf i&^f i u. ~24!

This extension is obviously invariant under swaps of cop
of A, and we used this property to restrict the form of t
matricesFJ in the LMI of our SDP. Butr̃ has a more con-
straining property: its support and range are contained in
symmetric subspace ofHA

^ k
^ HB ~where the symmetry is

understood to apply only to the copies ofA!. For the case of
the extension to two copies of systemA, we can write the
projector into this symmetric subspace asp5 1

2 (11P), with
P the swap operator defined in Eq.~7!. Then, the symmetry
requirement on the extension takes the formr̃5pr̃p.

For an arbitraryr, we can now restrict our search to e
tensions that satisfy this property. If$Si

A% is a basis of Her-
mitian matrices having support and range in the symme
subspace ofHA

^ k , this restriction is equivalent to only con
sidering matricesG in Eq. ~20! of the form G5Si

A
^ s j

B .
Since the dimension of the symmetric subspace inHA

^ k is

dSk
5S dA1k21

k D , ~25!

with dA the dimension ofHA , the number of matrices of this
form is dSk

2 dB
2. The number of variables in the SDP is th

number minus the number of constraints given by Eq.~17!,
which is m5(dSk

2 2dA
2)dB

2. By using Eq. ~25!, we get m

5O(k(dA21)), which for a fixed size ofA is only polynomial
in the number of copies. Since the matricesGJ have range
and support only on this symmetric subspace, we know
by a suitable change of basis they can be simultaneo
block diagonalized, with the only nonzero block having si
n5dSk

2 dB
2.

The SDP that searches for the PPT extension also requ
to check positivity of a certain number of partial transpos
of the extensionr̃. These checks translate into a bigger LM
although we will now show that this does not change
scaling properties of its size. Consider the case in which
apply the partial transpose to the firstl copies ofA, which we
will denote r̃TA^ l . Since the matricesGJ have support and
range only on the symmetric subspace ofHA

^ k , it is not
8-6
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difficult to show that the matricesGJ
TA^ l must have suppor

only on the tensor product of a subspace isomorphic to
symmetric subspace ofHA

^ l and the symmetric subspace
HA

^ (k2 l ) . The dimension of this tensor product is just t
product of the dimensions of the two subspaces. If we p
form a change of coordinates by rotating to a basis that c
tains a basis of this tensor product of symetric subspaces
can see that the size of the matricesGTA^ l can be taken as
dSl

2 dS(k2 l )

2 . This scales at most asO(k2(dA21)). Since the

number of independent partial transposes is (k11), as a
result of the symmetry requirements, the sizen of the matri-
ces in the LMI scales not worse thanO(k2dA21). Combining
this with the scaling of the number of variablesm shown
above and the scaling properties of solving the SDP, whic
given byO(m2n2), we can see that for fixeddA , the tests in
the hierarchy scale asO(k(6dA24)), which is polynomial on
the number of copies of partyA for a fixeddA .

V. COMPLETENESS OF THE HIERARCHY OF TESTS

One of the main results of this paper is the completen
of the hierarchy of separability tests. This result allows us
give an algorithm that will show if a state is entangled in
finite number of steps~although this number may be high fo
some states!. Even though the hierarchy of tests is a ne
result, the proof of its completeness is identical to the pr
of certain properties of the possible equilibrium states o
system that interacts with a thermal bath. These res
which were proved by Raggioet al. @36#, and Fanneset al.
@35#, have been in the literature for quite some time.

It was noted in Ref.@37# that this result@35,36# could be
interpreted as a characterization of bipartite quantum st
that requires that the only states that can have symm
extensions to any number of copies of one of its subsyst
are the separable states. The same idea was independ
conjectured recently by Schumacher@38#.

We will present a proof of the completeness of the hi
archy, which is basically the proof found in Ref.@35#, ap-
plied to the case of bipartite mixed states on finite dim
sional spaces. Our discussion has the same leve
mathematical rigor and is based on the techniques prese
in the discussion of the quantum de Finetti theorem in R
@39#. The theorem we will prove is stronger than our hier
chy, since it requires the existence of symmetric extensi
without any requirements on the partial transposes. The c
pleteness of our hierarchy can be deduced from this resu
a corollary.

Theorem 1 (completeness). Let r be a bipartite mixed
state inHA^ HB . Then r has a symmetric extension tok
copies of subsystemA for anyk, if and only if r is separable.

Proof. One of the implications is trivial. Assumer is sepa-
rable. Then we can write

r5( pi uc i&^c i u ^ uf i&^f i u ~26!

From this expression, we can write down explicitly a sy
metric extensionr̃ for any value ofk, namely,
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r̃5( pi uc i&^c i u ^ k21
^ uf i&^f i u, ~27!

and this completes the first part of the proof.
To prove the other implication, the idea is to use the e

istence of the extensions to construct a set of states inHA
^ n

that can be shown to be separable by using the quantum
Finetti theorem, and then show that this result implies t
the extensions themselves have to be separable. Letr be a
state inHA^ HB such that for anyn, there is a symmetric
extension ofr in HA

^ n
^ HB , which we will call r̃n . Let us

pick a fixed valuek for the number of copies of partyA. Let

the set$bi% i 51
dB

2

be a basis for the set of Hermitian operators
HB , such thatbi.0 for all i ~i.e., all these operators ar
positive definite@40#!, and in particular let us chooseb1
51B , the identity inHB . Now we define the operator

r̄bi ,k5TrB@~1A
^ k

^ bi !r̃k#, ~28!

where1A is the identity on subsystemA. The operatorr̄bi ,k is
positive semidefinite~PSD! and nonzero since all the opera
tors bi were taken to be strictly positive. Thenr̄bi ,k is pro-

portional to a state inHA
^ k , since it is Hermitian and PSD

We can choose the operatorsbi such that Tr@ r̄bi ,k#51 for all

k, so that Eq.~28! is actually a normalized state inHA
^ k .

We will now prove that the existence of symmetric exte
sions r̃k of r for all k, imply that we can choose the state
r̄bi ,k to be exchangeable@39#. Recalling the definition of

exchangeability we need to show that, for anyl .0, there are
statesr̄bi ,(k1 l ) that are symmetric and satisfy

r̄bi ,k5TrAk11¯Ak1 l
@ r̄bi ,~k1 l !#. ~29!

Let us fixk and assume that there is not an extensionr̃k such
that the stater̄bi ,k given by Eq.~28! is exchangeable. Tha

means that there has to be a valuel 1 for which Eq. ~29! is
not satisfied for anyr̄bi ,k and r̄bi ,(k1 l 1) . But sincer has
symmetric extensions for allk, we can just choose an exten
sion to (k1 l 1) copies r̃ (k1 l 1) , and we have that

TrAk11¯Ak1 l 1
@ r̃ (k1 l 1)# is a symmetric extension ofr to k cop-

ies, and

r̄bi ,k5TrB@~1A
^ k

^ bi !TrAk11¯Ak1 l 1
@ r̃~k1 l 1!##

5TrAk11¯Ak1 l 1
@TrB@~1A

^ k1 l 1^ bi !r̃~k1 l 1!##

5TrAk11¯Ak1 l 1
@ r̄bi ,~k1 l 1!#. ~30!

This is a contradiction, so we can conclude that we can
ways choose the statesr̄bi ,k to be exchangeable.

The stater̄bi ,k satisfies then the hypothesis of the qua
tum de Finetti theorem@39#, and so we know there is a
unique probability measure functionPbi

(%)>0, such that
8-7
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r̄bi ,k5E
D
% ^ kPbi

~% !d%, ~31!

whereD represents the space of states inHA ~i.e., the set of
Hermitian, positive semidefinite operators of trace 1!.

For each%, we can think of Pbi
(%) as a functional

applied to the operatorsbi , which we will denoteF% , de-
fined asF%(bi)5Pbi

(%). This functional is linear on convex

combinations of positive operators. To see this, letm.0.
Then F%@mbi1(12m)bj #5Pmbi1(12m)bj

(%), where

Pmbi1(12m)bj
is the unique probability density that satisfie

r̄ @mbi1~12m!bj #,k
5E

D
% ^ kPmbi1~12m!bj

~% !d%

5TrB$@1A
^ k

^ „mbi1~12m!bj…#r̃k%

5mTrB@~1A
^ k

^ bi !r̃k#

1~12m!TrB@~1A
^ k

^ bj !r̃k#

5E
D

@mPbi
~% !1~12m!Pbj

~% !#% ^ kd%.

~32!

The second equality in Eq.~32! holds because we are con
sidering a convex combination of the operatorsbi , which
guarantees that TrB$@1A

^ k
^ „mbi1(12m)bj…#r̃k% is normal-

ized. Then, by the uniqueness of the probability density
the quantum de Finetti theorem, we have

Pmbi1~12m!bj
~% !5mPbi

~% !1~12m!Pbj
~% !, ~33!

which translates into

F%@mbi1~12m!bj #5mF%~bi !1~12m!F%~bj !. ~34!

Then F% is a linear functional on convex combinations
positive states inHB .

SinceF% is defined on a basis, there is a unique way
extending this functional linearly to the whole space of o
erators inHB . So we have a linear, positive and continuo
functional on a finite dimensional Hilbert space, and it is
well-known result that any such functional can be written

F%~b!5TrB@s̄%b# ;b, ~35!

for some unique positive semidefinite operators̄% in HB .
This operator might not be a state inHB since it need not be
normalized. We can then define a function

P~% !5Tr@s̄%# ~36!

that is non-negative. IfP(%) is nonzero, we can defines%

5s̄% /P(%). Then Eq.~35! takes the form

Pb~% !5F%~b!5TrB@s%b#P~% ! ;b. ~37!
02230
n

f
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Note that sinces% is normalized,P(%)5P1B
(%), which

shows thatP(%) is a probability density. Using Eq.~37! in
Eq. ~31!, we get

r̄bi ,k5E
D
% ^ kTrB@s%bi #P~% !d%

5TrBF ~1A
^ k

^ bi !E
D
% ^ k

^ s%P~% !d%G . ~38!

If P(%)50 for some%, we can defines% arbitrarily, since it
would not contribute to the integral in Eq.~38!. Since Eq.
~38! is valid for all the elementsbi of a basis of Hermitian
matrices inHB , by comparing the expression in the seco
line with Eq. ~28!, we can deduce that

r̃k5E
D
% ^ k

^ s%P~% !d%. ~39!

This means thatr̃k is a separable state, since Eq.~39! is an
explicit decomposition as a convex combination of prod
states. Furthermore, sincer̃k is an extension of our origina
stater, we have

r5TrA2¯Ak
@ r̃k#5E

D
% ^ s%P~% !d%, ~40!

which shows thatr has to be a separable state. This co
cludes the proof of the theorem. j

It is clear that this theorem implies the completeness
the hierarchy of separability tests introduced in Sec. II, sin
a state that has PPT symmetric extensions tok copies of
party A for all values ofk obviously has symmetric exten
sions for all values ofk, which according to the theorem
implies that the state must be separable. However, it is in
esting to note that the PPT requirement is not essential
the completeness of the hierarchy. Searching just for s
metric extensions is also a complete family of separabi
criteria and one that requires less resources.

In Ref. @41# local hidden variable~LHV ! theories were
also constructed for quantum states possessing so-c
symmetric quasiextensions, where rather than requiring
the extension be positive as a matrix it is only required tha
is positive on product states. The number of extensions
responds to the number of independent local measurem
settings that the theory is able to describe. In fact our ar
ment that only separable states have an arbitrary numbe
symmetric extensions generalizes to this case. Essentiall
that is needed is a version of the quantum de Finetti theo
that holds for entanglement witnesses as well as states b
is straightforward to check that the argument of Ref.@39#
holds in this case also since only positive operator-valu
measurements~POVM’s! that act as tensor products on ea
subsystem are used in the proof. Hence although the us
quasiextensions is strictly stronger for a small number
local measurement settings, if the LHV is required to wo
for an arbitrary number of local measurement settings,
construction will only work for separable states.
8-8
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
We could generate more families of criteria, by search
for symmetric extensions that have to satisfy some other c
straint, and this family of tests would still be complete a
though it would in general require more resources. If
constraint can be written in terms of linear equalities a
LMI’s, we could still use an SDP to implement the tes
Choosing between these many possibilities is a matte
how well they perform in actual examples. It becomes
trade off between how much more powerful the tests beco
when more constraints are placed on the extensions, and
much this increases the resources needed. Including the
requirement on the extension has the advantage that it g
antees that the second and higher tests in the hierarchy
stronger than the PPT criterion, and we have found this to
a good trade off in practice.

VI. CONSTRUCTION OF ENTANGLEMENT WITNESSES

An entanglement witness~EW! for a stater is a Hermit-
ian operatorW that satisfies

Tr@rW#,0 and Tr@rsepW#>0, ~41!

wherersepis any separable state@11,18#. It is clear that if Eq.
~41! is satisfied, thenr cannot be separable, andW gives a
proof of that fact. This property has a very nice geome
interpretation. Since the set of separable states is convex
point that does not belong to it~as with any entangled state!,
can be separated from the set by a hyperplane. In our c
the operatorW defines the hyperplane. This result is know
as the Hahn-Banach theorem@42#. In practice, finding a
W satisfying Tr@rW#,0 is not difficult, but proving
Tr@rsepW#>0 might be very hard. To understand the reas
for this, let us recall that any separable state can be writte
a convex combination of projectors into pure product sta

rsep5(
i

pi ux&^xu ^ uy&^yu, ~42!

where ux&5S ixi u i &, uy&5S j y j u j &, for some bases
$u i &% and $u j &% of HA and HB , respectively. Then,
Tr@rsepW#>0 for any separable state rsep,
if and only if Tr@ ux&^xu ^ uy&^yuW#>0 for any product state
ux&^xu ^ uy&^yu. Then we have

EW~x,y!5^xyuWuxy&5Tr@ ux&^xu ^ uy&^yuW#

5(
i jkl

Wi jkl xi* yj* xkyl . ~43!

We can interpret then the requirement that Tr@rsepW#>0 as a
positivity condition on the bi-Hermitian formEW(x,y) asso-
ciated with the entanglement witnessW, where bi-Hermitian
means that the form is Hermitian with respect tox and Her-
mitian with respect toy. It is a well-known result that check
ing positivity of an arbitrary real form is anNP-hard prob-
lem, and the result in Ref.@9# implies the same is true fo
bi-Hermitian forms. This is the reason why constructing e
tanglement witnesses is not easy in general.
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As we mentioned in Sec. III, any primal SDP has an
sociated dual problem that is also a SDP, and in particu
whenever the primal problem is infeasible, the dual probl
provides a certificate of this infeasibility. We will show tha
in the case of our separability tests, this infeasibility cert
cate generated by the dual problem is actually an entan
ment witness.

Consider the SDP~23!, and let us focus on the second te
of the hierarchy, i.e., searching for PPT symmetric ext
sions to two copies of partyA. In this case, the dual problem
takes the form

maximize 2Tr@F0Z#,

subject to Z>0,

Tr@FiZ#50, ~44!

whereF0 has three blocks that encode the extension and
two independent partial transposes, and from Eq.~22! we can
see that it has the form

F05G0% G0
TA% G0

TB. ~45!

Due to this block structure, we can restrict the search oveZ
in the dual program, toZ that have the same structure, so w
can take

Z5Z0% Z1
TA% Z2

TB, ~46!

where theZi are operators inHA^ HB^ HA . The positivity
condition onZ in Eq. ~44!, translates into a positivity re
quirement for each of the blocks in Eq.~46!. Using this
structure we can write

Tr@F0Z#5Tr@G0~Z01Z11Z2!#, ~47!

since Tr@G0
TXZi

TX#5Tr@G0Zi #, for i 51, 2 andX5A,B. We
definedG0 in Eq. ~19! as a linear function ofr, so we can
write G05L(r), whereL is a linear map from operators o
HA^ HB to operators onHA^ HB^ HA , whose action on an
arbitrary operatorY on HA^ HB is given by

L~Y!5Y^ 1A /dA1P~Y^ 1A!P/dA21A^ TrA@Y# ^ 1A /dA
2,

~48!

where P is the swap operator defined byPu i & ^ uk& ^ u j &
5u j & ^ uk& ^ u i &. We can now define an operatorZ̃ on HA

^ HB given by Z̃5L* (Z01Z11Z2), whereL* is the ad-
joint map of L and is defined as the map that satisfi
Tr@L(X)Y#5Tr@XL* (Y)# for any Hermitian operatorsX, Y.
For our particular case, this map takes the form

L* ~V!5TrC@V#/dA1TrC@PVP#/dA21A^ TrAC@V#/dA
2.
~49!

Then we have

Tr@rZ̃#5Tr@L~r!~Z01Z11Z2!#5Tr@F0Z#. ~50!
8-9
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
Let rsep be any separable state. Then we know that th
is a PPT symmetric extension ofrsep or, equivalently, the
primal problem~23! is feasible. Then from Eq.~13!, and
using the fact thatc50, we have that Tr@F0Z#>0 for all
dual feasibleZ and so from Eq.~50! we have

Tr@rsepZ̃#>0, ~51!

for any Z̃ obtained from a feasible dual solutionZ. This
means that any operatorZ̃ constructed in this way, satisfie
one of the two properties required in Eq.~41!, and is there-
fore a candidate for an entanglement witness.

Now consider the case in which the primal problem is n
feasible for a given stater. This can only occur if this state i
entangled. We can then use the arguments presented in
pendix B to affirm that there must be a feasible dual solut
ZEW that satisfies Tr@F0ZEW#,0. Using Eqs.~50! and ~51!

we can see that the corresponding Hermitian operatorZ̃EW
satisfies the two conditions

Tr@rZ̃EW#,0 and Tr@rsepZ̃EW#>0, ~52!

which means thatZ̃EW is an entanglement witness for th
stater.

Even though we have shown the calculation explici
only for the second test of the hierarchy, similar reason
can be applied to all tests to show that if the primal probl
is infeasible, there is a dual feasible solution that can be u
to construct an entanglement witness for the stater. The
EW’s obtained for each of the tests have very well-defin
and interesting algebraic properties, that can also be use
interpret each step in the hierarchy as a search for EW’s
particular form.

Algebraic properties of the entanglement witnesses

For any EW there is an associated bi-Hermitian fo
given by Eq.~43!. We have shown that the requirement th
an entanglement witnessW is positive on all separable state
is equivalent to requiring the associated formE(x,y) to be
positive.

Let us consider an EW obtained from the first test in
hierarchy, which corresponds to the usual PPT criterion.
a well-known result that all states that fail this criterion, c
be shown to be entangled by an entanglement witness o
form

W5P1QTA, ~53!

where bothP andQ are positive semidefinite operators. E
tanglement witnesses that have this form are called dec
posable. If we note byucp& the eigenvectors ofP and by
ufp& the eigenvectors ofQ, we can write

P5(
p

kpucp&^cpu,

Q5(
p

lpufp&^fpu,
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where the eigenvalueskp andlp are nonnegative, since bot
P andQ are PSD. If we study the associated formEW(x,y),
we have

EW~x,y!5^xyu~P1QTA!uxy&5(
p

uAkp^cpuxy&u2

1(
p

uAlp^fpux* y&u25(
p

UAkp(
i j

c i j
p xiyjU2

1(
p

UAlp(
i j

f i j
p xi* yjU2

, ~54!

with ucp&5S i j c i j
p u i j & and ufp&5S i j f i j

p u i j &. The last equal-
ity in Eq. ~54! shows thatEW(x,y) can be written as a sum
of squared magnitudes~SOS!, which proves its positivity.
This property is an alternative description of decomposa
entanglement witnesses.

Now imagine that we have a stater that is PPT entangled
whose entanglement is detected by the second test of
hierarchy~i.e.,r does not have a PPT symmetric extension
two copies of partyA!. Then we know that the dual SDP wi
provide us with an entanglement witnessZ̃EW for this state.
Let us concentrate on the properties of thisZ̃EW. First, it is
clear that it cannot be decomposable, since decompos
EW’s can only detect states that are not PPT. By sett
rsep5uxy&^xyu in Eq. ~51!, we have that

Tr@ uxy&^xyuZ̃EW#5^xyuZ̃EWuxy&5EZ̃EW
~x,y!>0. ~55!

According to Eq.~50!, we have

Tr@ uxy&^xyuZ̃EW#5Tr@L~ uxy&^xyu!~Z01Z11Z2!#.
~56!

The operatorL maps a stater in HA^ HB into an operator in
HA^ HB^ HA that is invariant under swaps of the two copi
of A and yields the original stater when one of the copies o
A is traced out, but is in general not positive semidefin
Now consider the stateuxyx&^xyxu. This state is invariant
under swaps of copies of systemA and also satisfies
TrC@ uxyx&^xyxu#5uxy&^xyu. Then we know that there mus
exist some coefficientsaJ such that

uxyx&^xyxu5L~ uxy&^xyu!1(
J

aJGJ , ~57!

since theGJ form a basis of the space of matricesM satis-
fying the swapping symmetry and TrC@M #50. According to
Eq. ~44! we have Tr@GJZi #50, and hence we can rewrite Eq
~56! as

Tr@ uxy&^xyuZ̃EW#5Tr@ uxyx&^xyxu~Z01Z11Z2!#.
~58!

Combining Eqs.~55! and ~58!, we have

^xyuZ̃EWuxy&5^xyxu~Z01Z11Z2!uxyx&. ~59!
8-10
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
Since we are working with normalized states, we know t
^xux&51, so we can multiply the left-hand side of Eq.~59!
by this factor without changing the equality, obtaining

EZ̃EW
~x,y!^xux&5^xyxu~Z01Z11Z2!uxyx&. ~60!

This equation is, in principle, only valid when the variabl
xi and yi correspond to a normalized state, i.e., wh
S i uxi u251 andS i uyi u251. However, since both sides of Eq
~60! are homogeneous functions of fourth degree on thexi ,
and of second degree on theyi , we can extend this equalit
to all values of the variables, and interpret Eq.~60! as an
equality between two forms that is satisfied everywhere.
we can now rewrite the right-hand side of Eq.~60! as

^xyxu~Z01Z11Z2!uxyx&5^xyxuZ0uxyx&

1^x* yxuZ1
TAux* yx&

1^xy* xuZ2
TBuxy* x&. ~61!

SinceZ0 , Z1
TA, andZ2

TB are positive by construction, Eq.~61!
gives an explicit sum of squares decomposition of the rig
hand side of Eq.~60!. We can conclude then that even thou
the form EZ̃EW

(x,y) is not a SOS, it becomes a SOS wh

multiplied by the strictly positive SOS form̂xux&5S i uxi u2.
This property holds for any EW obtained from the seco
test.

This result generalizes to all steps of the hierarchy:
bi-Hermitian form associated with an EW obtained from t
(k11)th test of the hierarchy, can be written as a SOS w
multiplied by the SOS form̂xux&k5(S i uxi u2)k. We will say
then that these EW’s arek-SOS. Then for example, an en
tanglement witness that is 0-SOS is decomposable, sinc
associated form can be written as a SOS~we will use SOS
instead of 0-SOS for this particular case!. It is clear that if an
EW is k-SOS, it is alsol-SOS for all l>k. Note that fork
>1, all k-SOS entanglement witnesses are indecomposa

As we discussed in Sec. V, searching for symmetric
tensions with no PPT requirement generates another c
plete family of separability criteria. For this family, Eq.~60!
takes the form

EZ̃EW
~x,y!^xux&5^xyxuZ0uxyx&, ~62!

since now the LMI has only one block, corresponding to
positivity requirement on the extension. SinceZ0 is PSD, the
right-hand side of Eq.~92! still is a SOS, so we will still say
thatZ̃EW is 1-SOS@or k-SOS if we replacêxux& by ^xux&k in
Eq. ~62!#. The main difference between Eqs.~62! and~61! is
in the type of terms that appear in the sum of squares dec
position. Note that Eq.~62! involves only squares of polyno
mials in the variables (xi ,yj ) while the second and third
terms in the right-hand side of Eq.~61! correspond to square
of polynomials in the (xi* ,yj ,xk) and (xi ,yj* ,yk) variables,
respectively. This situation extends to all the steps of
hierarchy. The SOS decomposition generated by the
family involves the squared magnitudes of all possible po
nomials in the variables (xi ,yj ) and their conjugates that ar
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compatible with the symmetry requirements, while the S
decomposition obtained from the non-PPT family involv
squared magnitudes of polynomials involving only the va
ables (xi ,yj ). The completeness theorem tells us that for a
EW obtained from any of the two families, we could ma
the associated bi-Hermitian form into a SOS by multiplyi
by a certain power of the SOS form (S i uxi u2). However, the
value of the power needed in the non-PPT case will be
general higher than for the PPT case.

We presented our family of separability criteria as t
search for an extension of the original stater that satisfied
certain symmetries and had positive partial transposes,
showed that this search could be put in the primal form o
SDP. From the discussion above, we can see that by loo
at the dual SDP, we can interpret this hierarchy as a se
over possible entanglement witnesses for the stater that are
k-SOS for somek. Note that this interpretation also applies
the non-PPT family of criteria, the only change being t
type of terms allowed in the SOS decomposition. The co
pleteness result proved in Sec. V tells us that the set of
entanglement witnesses that arek-SOS for somek, is suffi-
cient for proving entanglement of any state. This raise
very interesting question: are all EWk-SOS for somek? We
will now show that most EW are, and the only ones that m
not be are those that are extremal in the sense that
associated hyperplane touches the set of separable s
These are the optimal EW’s from Ref.@6#.

Let us first introduce some definitions regarding conv
sets. A setK is said to be a convex cone if it is convex an
closed under linear combinations with nonnegative coe
cients, i.e., if x,yPK and a,b>0, then ax1byPK. The
dual cone ofK is defined asK* 5$z:^z,x&>0,;xPK%,
where^,& represents some inner product~note thatK* will be
different for different inner products!. It is easy to show that
K* is actually a closed convex cone even ifK is not closed.
An important property is that@42#

~K* !* 5cl~K !, ~63!

where cl(K) represents the closure ofK.
Let S be the set of all unnormalized separable states.S is

a closed convex cone. Its dual cone isS* 5$Z:Tr@Zrsep#
>0,;rsepPS%, which contains the set of all entangleme
witnesses. If (S* )o notes the interior ofS* , we have (S* )o

5$Z:Tr@Zrsep#.0,;rsepPS%.
Theorem 2. Let W be an entanglement witness such th

WP(S* )o. ThenW is k-SOS for somek, i.e., 'k such that
EW(x,y)(S i uxi u2)k is a SOS.

Proof. Let Ok5$Z:EZ(x,y)(S i uxi u2)k is a SOS%. This is
just the set of entanglement witnesses that arek-SOS.
Clearly,Ok,Ok11 andOk,S* . Now we define the set

O5 ø
k50

`

Ok . ~64!

O is a convex cone, although it may not be closed. We w
now show that the dual of this cone is the setS. Let rsep
PS. For anyZPO, 'k such thatZPOk . But ZPS* , so
Tr@Zrsep#>0, which means thatrsepPO* , so we have
8-11
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
S,O* . ~65!

Now, let rPO* and assumer¹S; then r is an entangled
state. By the completeness of the hierarchy of separab
tests, we know that there is a value ofk for which Tr@Zr#
,0 for someZPOk,O, and then we must haver¹O* ,
which is a contradiction. Then

O* ,S. ~66!

From Eqs.~65! and~66!, we haveS5O* . Then we can use
Eq. ~63! to state thatS* 5cl(O), which means

~S* !o,O. ~67!

If WP(S* )o then by Eq.~64! there existsk such thatW
POk , and hence it isk-SOS. j

This theorem has a very nice geometric interpretation
says that the sequence of convex conesOk approximates the
convex cone of all entanglement witnessesS* from the in-
side, giving a complete characterization of its interior
terms thek-SOS property. On the other hand, the entang
ment witnesses on the boundary ofS* may not bek-SOS for
any k. They satisfy Tr@Zrsep#50 for some separable sta
rsep, and correspond to the optimal entanglement witnes
discussed in Ref.@6#.

As we briefly mentioned in Sec. II, the separability crit
ria based on searching for certain extensions of a state
easily be generalized to the study of multipartite entang
ment. The dual formulation of searching for an EW wi
certain algebraic properties also clearly applies to the mu
partite case. It is known that multipartite entanglement c
not be characterized in terms of bipartite entanglement a
@43,44#. However, our approach can be generalized to
multipartite case in order to construct another sequenc
tests that is also complete. These results will be repo
elsewhere@45#.
gl
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VII. EXAMPLES

We now present some examples for which we applied
techniques to prove entanglement of certain PPT entan
states, and to construct the appropriate entanglement
nesses. For all these examples, the second test of the h
chy ~searching for PPT symmetric extensions to two cop
of party A! was sufficient to show entanglement. We us
MATLAB to code the corresponding SDP, and used the pa
ageSEDUMI @46# to solve it. The code is available from th
authors on the internet@47#.

A. 3‹3 state

We consider the following state, described in Ref.@7#,
given by

ra5
2

7
uc1&^c1u1

a

7
s11

52a

7
Vs1V, ~68!

with 0<a<5, uc1&5(1/))S i 50
2 u i i &, s15 1

3 (u01&^01u
1u12&^12u1u20&^20u), and V the operator that swaps th
two systems~note they are both the same space!. Notice that
ra is invariant under the simultaneous change ofa→52a
and interchange of the parties. The state is separable f
<a<3 and not PPT fora.4 anda,1, which was proved
in Ref. @7# by using a positive map that is not complete
positive due to Choi@20#. Our code solves the SDP for thi
state in about 5 s on adesktop computer. From this solution
numerical entanglement witnesses can be constructed fora
in the range 31e,a<4 ~and 1<a,22e) with e>1028.
A witness fora.3 can be extracted from these by inspe
tion:

Z̃EW52~ u00&^00u1u11&^11u1u22&^22u!1u02&^02u

1u10&^10u1u21&^21u23uc1&^c1u. ~69!

From this entanglement witness, the Choi form@20# can be
recovered. This observable is non-negative on separ
states
4^xyuZ̃EWuxy&^xux&53ux2x0y1* 2x1x2y0* u213ux1x1* y02x2x0* y2u213ux2x2* y22x0x2* y0u213ux2x1* y22x1x1* y1u2

1u2x0x0* y222x1x2* y11x2x2* y22x0x2* y0u21u2x0x1* y022x2x2* y11x2x1* y22x1x1* y1u2

1u2x0x1y2* 2x2x0y1* 2x1x2y0* u21u2x0x0* y022x1x0* y11x1x1* y02x2x0* y2u2>0.
The expected value on the original state is Tr@ Z̃EWra#
5 1

7 (32a), demonstrating entanglement for alla.3. Ap-
plying the non-PPT tests to this state fails to show entan
ment for a&3.84, even if we apply the sixth test, showin
that this hierarchy can be considerably weaker than the
hierarchy.
e-

T

B. 4‹4 state

We consider next the 4̂4 state given by@48#

ra5
1

21a
~ uc1&^c1u1uc2&^c2u1a•s!, a>0,
8-12
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
where

c15
1

2
~ u00&1u11&1&u22&),

c25
1

2
~ u01&1u10&1&u33&),

s5
1

8
~ u02&^02u1u03&^03u1u12&^12u1u13&^13u

1u20&^20u1u21&^21u1u30&^30u1u31&^31u!.

Applying the PPT criterion yields provable entangleme
only for those states witha,2&'2.82843. It was sus
pected@48# that the state was actually entangled for all no
negative values ofa. Using our criteria, we show that this i
indeed the case, and provide an explicit entanglement
ness and its decomposition. Again, only the second leve
our hierarchy is needed. Using essentially the same appr
as in the example above, from the dual solution of
semidefinite program we identify a particular witness

W5~ u22&2u00&)~^22u2^00u!1~ u22&2u11&!~^22u2^11u!

1~ u33&2u01&!~^33u2^01u!1~ u33&2u10&!~^33u2^10u!

1u23&^23u1u32&^32u2u22&^22u2u33&^33u.

This witness is non-negative on all product states, as
following identity certifies:

^xyuWuxy&^xux&5ux0x0* y01x1x1* y02x2x0* y22x3x1* y3u2

1ux0x0* y11x1x1* y12x2x1* y22x3x0* y3u2

1ux2x2* y21x3x3* y22x0x2* y02x1x2* y1u2

1ux2x2* y31x3x3* y32x1x3* y02x0x3* y1u2

1ux1x3y2* 2x0x2y3* u21ux0x3y2*

2x1x2y3* u21ux1x2y0* 2x0x2y1* u2

1ux0x3y0* 2x1x3y1* u2>0.

Applying the witnessW to the state, we obtain Tr@Wra#
522(&21)/(21a),0, therefore certifying entanglemen
for all values ofa in the allowable range.

We have applied the second test of the hierarchy to m
bound entangled states found in the literature of dimens
up to 6 by 6. In all cases, this test has been sufficien
demonstrate entanglement and construct numerical~and in
some cases analytical! entanglement witnesses. However, w
know from complexity arguments that there must be sta
that pass the second test in the hierarchy but are noneth
entangled as we will discuss in the next section.
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VIII. PROPERTIES OF THE SETS OF ENTANGLED
STATES WITH PPT SYMMETRIC EXTENSIONS

For everyk, let us consider the set of states that are
detected by thekth test of the hierarchy, which can also b
characterized as the states having PPT symmetric extens
to k copies of partyA. They generate a sequence of nes
sets, each one containing the set of separable states.
completeness theorem tells us that this sequence act
converges to the set of separable states. It is natural the
try to understand the properties of these particular sets. F
of all, it is not difficult to see that these sets are all conv
and compact. But there are other interesting questions
can ask about them. Are they nonempty? Is this seque
infinite or does it collapse to a finite number of steps
certain cases? What is the volume of the subset of entan
states contained in each set? Are these sets invariant u
LOCC? In this section we will address some of these qu
tions by explicitly constructing states with PPT symmet
extensions and studying the implications of their existenc

A. Constructing entangled states with PPT symmetric
extensions

We will now show explicitly how to construct an en
tangled state that passes the second test in the hiera
which means it has a PPT symmetric extension to two cop
of systemA. We will proceed by studying the properties o
an EW obtained from the second test under a particular s
ing and then use duality arguments to infer the existence
the required entangled state. The procedure is based
scaling technique developed recently by Reznick@49#.

Let r be a PPT entangled state that is detected by
second test of the hierarchy. Then we know that there is
entanglement witnessZ that satisfies Tr@rZ#,0 and

^xyuZuxy&^xux& is a SOS, ~70!

which implies that Tr@Zrsep#>0 for any separable statersep.
Since r is PPT, we know that the bi-Hermitian form
^xyuZuxy& cannot be a SOS, otherwiseZ can easily be shown
to be decomposable and hence unable to detect a PPT
tangled state, which would be a contradiction. Now, let
consider the following Hermitian operator:

Zg5@~A21!†
^ 1B#Z@A21

^ 1B# , ~71!

with A5diag(1,g,...,g), g.0. This operator satisfies

^xyuZguxy&5^~A21x!yuZu~A21x!y&>0, ~72!

sinceZ is positive on product states. Now consider the st

rg5
1

N
~A^ 1B!r~A†

^ 1B!, ~73!

with N a positive normalization constant. The staterg is
entangled for allg.0, because

Tr@rgZg#5
1

N
Tr@rZ#,0. ~74!
8-13
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
This, together with Eq.~72!, proves thatZg is actually an
entanglement witness. Now, let us assume thatZg is 1-SOS
for all g.0, that is

^xyuZguxy&^xux& is a SOS. ~75!

By using Eq.~71! and introducing the variablesx̃5A21x,
we obtain

^x̃yuZux̃y&^Ax̃uAx̃& is a SOS, ~76!

where the SOS structure is preserved due to the linearit
the transformation fromx to x̃. Specializing forA in Eq. ~76!
we get

^x̃yuZux̃y&@ x̃1
21g2~ x̃2

21¯1 x̃dA

2 !# is a SOS. ~77!

Since the set of forms that can be written as a SOS
closed set, the assertion in Eq.~77! must also be valid for
g50, and in that case we must have that

^x̃yuZux̃y&x̃1
2 is a SOS. ~78!

But this implies that the form̂ x̃yuZux̃y& is itself a SOS,
which contradicts our assumption. Then we conclude t
there must be a valueg* .0 such that for allg,g* , the
entanglement witnessZg has the property that

^xyuZguxy&^xux& is not a SOS. ~79!

Note that this argument is only based in the fact that ther
a PPT entangled state detected by the second test o
hierarchy. Whenever this happens, we know that we can c
struct an EW that satisfies Eq.~79!, regardless of the dimen
sionality of the subsystems.

We can now very easily show that the existence of an E
satisfying Eq.~79! implies the existence of an entangled sta
that is not detected by the second test. We just need a
simple lemma of convex analysis.

Lemma 1. Let K1 and K2 be two closed convex cone
such thatK1,K2 , where, represents strict inclusion. The
the dual cones satisfyK2* ,K1* .

Proof. Recall the definition of the dual of a coneK, K*
5$zu^z,x&>0,;xPK%. Let zPK2* , then ^z,x&>0, ;x
PK2 . Since K1,K2 , ^z,x&>0, ;xPK1 , so zPK1* and
henceK2* #K1* . Now, let x̃PK2 such thatx̃¹K1 . Assume
that K2* 5K1* . Let zPK1* ; then we also havezPK2* and so
^z,x̃&>0. But since this is true;zPK1* , this means thatx̃
PK1** 5K1 , sinceK1 is closed, and this is a contradictio
Then we must haveK2* ,K1* . j

In our case we have the closed convex conesOk
5$Z:^xyuZuxy&(S i uxi u2)k is a SOS%, k50,1,..., that we have
already defined for the proof of theorem 2. In this section
have shown that if there is an entangled state that is dete
by an EW inO1 that is not inO0 , thenO1 is strictly con-
tained inO2 . According to the lemma above this means th
O2* , which is the set of states that are not detected by
third test of the hierarchy, is strictly contained inO1* , the set
of states that are not detected by the second test. Thus
there has to be a state that is not detected by an EW inO1 ,
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because it belongs toO1* ~equivalently, it passes the secon
test!, but is detected by an EW inO2 , ~because it does no
belong toO2* ) and hence is entangled.

The discussion above shows that there has to be an
tangled state that passes the second test, but it does not
an explicit construction. But since we know thatZg ceases to
be inO1 for some small value ofg, and since we have show
that it detects the entanglement ofrg for all g.0, we could
be tempted to say that thenrg has to be a state that pass
the second test for small enoughg. The problem is that even
thoughZg is an EW forrg , it is not clear that there is no
another EW inO1 that detects the entanglement ofrg . How-
ever, even if we are not assured that it would be the case
can still check whetherrg actually passes the second test f
smallg. We did this numerically using our code for the ca
of the Choi state~68! with a53.0001, and we found tha
indeed there is a valueg* .0.4901 of the parameter suc
that for all g,g* , the staterg is entangled but cannot b
detected by the second test of the hierarchy.

B. Properties of the hierarchy

From an algebraic point of view, the result of the previo
subsection is related to the fact that the fixed multiplier a
proach to proving nonnegativity by finding a SOS decomp
sition does not behave well under linear transformations
solution to this problem may be allowing the multiplier^xux&
to vary as well, although it appears that this approach
checking for entanglement cannot be stated as a SDP.

From a physical point of view, this result has a very i
teresting interpretation. The transformation represented
Eq. ~73! corresponds to applying an element of a POVM th
acts locally on systemA and leaves systemB alone. Such a
transformation can be implemented by local operations w
some finite probability. We see then that by stochastic lo
operations and classical communication~SLOCC’s!, we can
transform a state that is detected by the second test in
state that is not. Moreover, since the matrixA in Eq. ~73! is
invertible, the reverse transformation is also possible un
SLOCC. Then we could start with the stater8, whose en-
tanglement is not detected by the second test, and by LO
operations obtain, with some probability, a stater that is
detected by the second test. This shows clearly that, un
the PPT class of states, the classes of states derived from
second and higher tests of the hierarchy are not invar
under SLOCC.

This scaling behavior of both states and entanglement
nesses is very general and has very important conseque
on the hierarchy of tests. First, note that if we assume thaZg
is k-SOS~for any fixedk! for all g.0, this will be equivalent
to replacinĝ xux& by ^xux&k in Eq. ~75!. We can then follow
the exact same steps discussed after Eq.~75! and arrive to the
same contradiction~i.e., that^x̃yuZux̃y& is a SOS!. Then for
g small enough,̂ xyuZguxy&^xux&k must cease to be a SO
for any fixed value ofk. By applying lemma 1 again, we ca
conclude that if a PPT-entangled stater exists inHA^ HB ,
then for any value of k, there must be an entangled staterk
that is not detected by thekth test of the hierarchy. Note tha
this result depends only on the existence of at least
8-14
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bound entangled state, and not on the dimensions of the
tem. Since there are explicit examples of bound entang
states in 3̂ 3 @Eq. ~68!# and 2̂ 4 ~see Ref.@13#!, and we
can ~by embedding! use them to construct bound entangl
states inN^ M , N3M.6, we can conclude that there a
always entangled states inHA^ HB , dA3dB.6, that pass
the first k tests in the hierarchy, for any fixedk. In other
words, the hierarchy never collapses to a finite numbe
steps, even for fixed dimensions~except in the already
known cases of 2̂ 2 and 2̂ 3).

A very interesting question has to do with what is actua
the volume of the set of entangled states that are detecte
the kth test, but are not detected by the (k21)th test @or
equivalently, the set of states that have PPT symmetric
tensions to (k21) copies ofA, but not tok copies#. Even
though we cannot give any estimate on the value of
volume, we can assert that this volume is finite, i.e., the se
question has nonzero measure when we consider the me
on the set of states introduced in Ref.@50#. This is true for all
values ofk for which this set is nonempty. The proof of th
fact is a straightforward translation of the result presented
lemma 7 of Ref.@50#. This lemma proves that if a convex s
C1 strictly contains a compact convex setC2 that itself con-
tains a nonempty ball, thenC1 contains a nonempty ball tha
does not intersectC2 . In our case we can takeC1 to be the
set of states with PPT symmetric extensions to (k21) but
not to k copies ofA, andC2 the ones with extensions tok
copies. Since bothC1 andC2 are convex and compact, an
C2 contains the set of separable states that contains a
empty ball, the lemma proves that there is a nonempty ba
states that have PPT symmetric extensions to (k21) copies
of A, but not tok copies.

IX. CONSTRUCTING BOUND ENTANGLED STATES
FROM INDECOMPOSABLE ENTANGLEMENT

WITNESSES

In previous sections we have discussed how to
semidefinite programs to implement separability criteria, a
in particular we showed how to exploit the duality of th
SDP to generate an indecomposable entanglement wit
from a bound entangled state. In this section we will sh
that we can also use a SDP to test whether a given entan
ment witness is decomposable. If the EW is indecomposa
the dual program constructs a bound entangled state th
detected by the witness. The results of this section were
ported in Ref.@51# which we follow closely.

As discussed above, a sufficient but not necessary co
tion for any Hermitian matrixZ to be an entanglement wit
ness is for it not to be positive but rather decomposable
Z5P1QTA, where P>0, Q>0. Such entanglement wit
nesses are obtained whenever a state fails the first test o
hierarchy, which is just the PPT criterion. These entang
ment witnesses can only detect entangled states that ha
nonpositive partial transpose. As it was shown in Eq.~54!,
the bi-Hermitian forms associated with them can be writ
as a SOS.

If we know only the matrix elements ofZ it may not be
clear how to determine whetherZ is decomposable or not
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Consider the following semidefinite program in the du
form:

maximize 2Tr@P1QTA#/dAdB ,

subject to P>0, Q>0,

H~P1QTA!5H~Z!, ~80!

where H(Y)5Y2(Tr@Y#)1/dAdB is a linear map that out-
puts the traceless part ofY. We can make Eq.~80! take the
more familiar form~12! if we introduce the matrix variable
X, defined byX5P% Q @X will play the role of Z in Eq.
~12!#. The final equality constraint may be enforced by
finite number (dA

2dB
221) of trace constraints that define th

matricesFi and the coefficientsci . F0 is then proportional to
the identity. By adding a sufficiently large multiple of th
identity to any matrix satisfying the trace constraints, it
always possible to construct anX5P% Q.0 also satisfying
the constraints. This means that the optimization is stric
feasible. Leth be the optimum value of the objective func
tion 2Tr@P1QTA#/dAdB , andPopt, Qopt be the values ofP
andQ that achieve this optimum. If

h>2Tr@Z/dAdB#, ~81!

then fore[Tr@Z/dAdB#1h>0 it is clear that we can write

Z5~Popt1e1AB!1Qopt
TA, ~82!

which shows thatZ is decomposable.
We have stated the semidefinite program in its dual fo

The primal form is worth considering since in the case wh
Z is nondecomposable, it constructs bound entangled st
that are detected byZ. Using the formulas~11!, ~12!, and
~80!, the primal form may be shown to be

minimize Tr@Zr#2Tr@Z/dAdB#,

subject to r>0, rTA>0,

Tr@r#51, ~83!

where now the variables are the components of the stater in
some basis. The completely mixed state is strictly posit
and is a feasible solution of Eq.~83!. Thus, because of the
strict feasibility of both the primal and dual problems th
optima of these two programs are equal@28# and there are
matricesropt, Popt, Qopt achieving the optimum. By comple
mentary slackness the range ofPopt is orthogonal to the
range ofropt and the range ofQopt is orthogonal to the range
of ropt

TA.
Suppose now that the optimumh satisfies h,

2Tr@Z/dAdB#. This, together with h5Tr@Zropt#
2Tr@Z/dAdB#, means that

Tr@Zropt#,0. ~84!

Since we know thatZ is an EW, then Eq.~84! means that the
stateropt is entangled. Furthermore, since this state is a f
8-15
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DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 ~2004!
sible solution of Eq.~83!, it must satisfyropt
TA>0, so this state

is bound entangled. For anyP>0, Q>0 we have

Tr@~P1QTA!ropt#5Tr@Propt#1Tr@Qropt
TA#>0, ~85!

so Z cannot be decomposable, since it satisfies Eq.~84!.
We will now show thatropt is a so-called edge PPT en

tangled state. Sinceropt is a PPT entangled state, we ca
write ropt5(12p)rsep1pd, wherersep is separable,d is a
so-called edge PPT entangled state, andp.0 is the mini-
mum value for which such a decomposition is possible@25#.
An edge PPT entangled stated has the property that for an
pure product stateux,y& and e.0, d2eux,y&^x,yu is either
not positive or not PPT. Since Tr@Zrsep#>0 ~becauseZ is an
EW!, if p,1 then

Tr@Zropt#.Tr@Zd#. ~86!

But Eq. ~86! contradicts the optimality ofropt, unlessropt is
itself an edge PPT entangled state.

This SDP finds the canonical decomposition of
indecomposable EW discussed in Ref.@25#. Defining e
52Tr@Zropt#.0, we have

Z5Popt1Qopt
TA2e1AB , ~87!

and as a result of the original dual form of the optimizatio
e is the smallest value for which such an expression ho
with P>0, Q>0. The range properties ofPopt, Qopt, and
ropt mean that this is the canonical form forZ introduced by
Lewensteinet al. @25#.

X. CHARACTERIZATION OF POSITIVE MAPS

It has been known for quite some time that there is a cl
relationship between entanglement witnesses, positive
Hermitian forms, and positive maps@12,20#. In particular,
this relationship was exploited in Ref.@11# to give a com-
plete characterization of the separability problem in terms
positive maps. We will now show how to translate the pro
erties of the entanglement witnesses generated by our hi
chy of separability tests into a characterization of the se
strictly positive maps.

Let us denote byAA and AB the set of linear operator
acting onHA andHB , respectively. We will callL(AA ,AB),
the set of linear maps fromAA to AB . We say that a map
LPL(AA ,AB) is positive, if for any operatorLPAA , L
>0, then L(L)>0. A completely positive~CP! map, is a
mapL such that the induced map

Ln5L ^ 1n :AA^ Mn→AB^ Mn ~88!

is positive for alln, with Mn being the space of operators
a Hilbert space of dimensionn and1n the identity map in that
space. CP maps have very important applications in cha
terizing the set of physically meaningful evolutions of
quantum state.

It is clear that any CP map is also a positive map. Ho
ever, there are positive maps that are not CP. This has
important consequences on the study of entanglemen
02230
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quantum states. In particular, there is a one to one corres
dence @11# between entanglement witnesses and posi
non-CP maps. Since the hierarchy of separability tests of
a characterization of the interior of the set of entanglem
witnesses, it is not difficult to translate this characterizat
to the set of positive non-CP maps. To do this, we use
fact that for any linear operatorLPAA^ AB , we can define
a mapLPL(AA ,AB) by

^kuL~ u i &^ j u!u l &5^ i u ^ ^kuLu j & ^ u l &. ~89!

Conversely, Eq.~89! can be used to uniquely construct th
operatorL from the mapL. Equivalently, we can write@19#

L~r!5TrA@L~rT
^ 1B!#, ~90!

wherer is an operator inAA . Note that the same operato
LPAA^ AB can be used to define two different maps
L(AA ,AB) and in L(AB ,AA). It was shown@19# that this
relationship gives in fact a one to one correspondence
tween entanglement witnesses, i.e., Hermitian operators
are positive on separable states but have a negative e
value, and positive non-CP maps. By using Eq.~90! it is not
difficult to see that the interior of the set of entangleme
witnesses, which correspond to thoseZ that satisfy
Tr@Zrsep#.0 for any separable statersep, is mapped onto
the set of positive maps that map any nonzero posi
semidefinite operator into a positive definite operator. O
characterization of entanglement witnesses will translate
a characterization of this subset of positive maps. The m
that are left out are those that send at least one PSD ope
into a another PSD operator that is not positive definite.

In Sec. VI we showed that anyZ in the interior of the
cone of all entanglement witnesses isk-SOS for somek.
Since they correspond to strictly positive maps~the ones that
map any nonzero PSD operator into a positive definite
erator!, we can characterize these maps by associating a
Hermitian form directly to the map, using Eq.~89!. Then we
can state that a map is strictly positive only if the form

EL~x,y!5^yuL~ ux* &^x* u!uy&

5(
i jkl

~^kuL~ u i &^ j u!u l &!xi* yk* xjyl ~91!

is k-SOS for some value ofk.
We can also give an interpretation of this characterizat

in a language that only involves statements about maps
do this we need to analyze in more detail some of the pr
erties of the EW generated by the SDP. Let us consider
family of separability criteria that searches for symmet
extensions of a certain state, but does not require pos
partial transposes. It is not difficult to see that the entang
ment witnesses generated by the second test will satisfy

^xyxu~ZEW^ 1A!uxyx&5^xyxuZ0uxyx&, ~92!

for all statesux& and uy&, with someZ0>0. This is the analog
to Eq. ~60!. It is not difficult to show that this equality im-
plies that the operatorsZEW^ 1A and Z0 actually coincide
when they are restricted to the symmetric subspace of
8-16
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COMPLETE FAMILY OF SEPARABILITY CRITERIA PHYSICAL REVIEW A69, 022308 ~2004!
copies of systemA. Furthermore, this is true for any numb
of copies of systemA. If we denote bypk the projector onto
the symmetric subspace ofHA

^ k ~which we will denote by
HA

∨k), we have

~pk^ 1B!~ZEW^ 1A^ ~k21!!~pk^ 1B!5~pk^ 1B!Z0~pk^ 1B!.
~93!

SinceZ0 is PSD on the spaceHA^ HB^ HA
^ (k21) , its restric-

tion to the tensor product ofHA
∨k and HB remains PSD,

which is the right-hand side of Eq.~93!. The completeness
theorem of Sec. V then tells us that ifZEW is a strictly posi-
tive entanglement witness, then there must exist a finitek for
which Eq.~93! is true.

We can now use the isomorphism defined by Eq.~89! to
restate Eq.~93! in terms of properties of maps. First we u
the fact that this isomorphism gives a one to one corresp
dence between PSD operatorsLPAA^ AB and CP mapsL
PL(AB ,AA). Let L:AB→AA be the positive non-CP map
associated withZEW, and letL̄k :AA→AH

A
∨k be defined by

L̄k(r)5pk(r ^ 1A^ (k21))pk . Equation ~90! can be used
to check that the map associated with the opera
(pk^ 1B)(ZEW^ 1A^ (k21))(pk^ 1B) is given by

~L̄k+L!:AB→AH
A
∨k. ~94!

However, since the right-hand side of Eq.~93! is PSD, this
map has to be completely positive.

On the other hand, ifL is not a positive map, then th
map (L̄k+L) cannot be completely positive for anyk. This is
true because the mapL̄k always maps a non-PSD matrix int
a non-PSD matrix, as we can easily show. Letui& be an ei-
genvector of a non-PSD operators in HA , with negative
eigenvalue. Then̂i usu i &,0. For anyk the vectoru i & ^ k be-
longs to the symmetric subspaceHA

∨k and satisfiespku i & ^ k

5u i & ^ k. Then we have

~^ i u ^ k!L̄k~s!~ u i & ^ k!5~^ i u ^ k!pk~s ^ 1A
^ k21!pk~ u i & ^ k!

5~^ i u ^ k!~s ^ 1A
^ k21!~ u i & ^ k!

5^ i usu i &,0, ~95!

and soL̄k(s) cannot be PSD. Thus, we have the followin
result.

Theorem 3.If the map L:AB→AA is strictly positive,
then there is a finitek such that the map (L̄k+L):AB
→AH

A
∨k is completely positive. If for somek the map

(L̄k+L) is completely positive, thenL is a positive map.
Since this characterization of positive maps does not

quire solving a SDP, because we only need to check pos
ity of a matrix, it is interesting to study how efficient th
approach is in actually proving positivity of a map. To a
swer this question we consider the following example ba
on the case of the 3̂3 state considered in Sec. VII A. Le
the mapL0 be defined asL0(r)5(1/n)Tr@r#13 , where13
stands for the identity map inH3 . The mapL0 lies in the
02230
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interior of the cone of positive maps. Consider now a conv
combination ofL0 and the positive mapL Z̃EW

induced by
the witness in Eq.~69!, i.e.,

La5~12a!L01aL Z̃EW
, 0<a<1.

The mapL Z̃EW
is in the boundary of the cone of positiv

maps. We have normalized the maps so thatLa(13)513 .
Since for a50 we haveLa5L0 and for a51 we have
La5L Z̃EW

, the mapsLa are contained in a line segmen
with end points near the center and in the boundary of
cone of positive maps, respectively. This implies thatLa is a
strictly positive map fora,1.

A natural question in this case is to determine the ran
of a for which we can effectively recognize positivity b
applying the result of theorem 3. For this, as explained,
have to form the tensor product of the given map withk
21 copies of the identity, project on the symmetric su
space, and check whether the resulting matrix is posi
semidefinite. The computation of the optimala can be done
in this case by solving a simple generalized eigenvalue pr
lem.

We have solved this numerically, for values ofk up to 8
@this involves matrices of size 3•( k

31k21), i.e., 1353135].
The obtained extreme values are shown in Table I, wherek is
the number of extensions. The results are consistent with
expected behavior limk→` ak51.

Notice that the convergence appears to be relatively sl
of order 1/k; in contrast, the SDP tests presented ear
based on the PPT hierarchy can get all the way to the bou
ary a51 in just one step.

It is interesting to note that Jamiołkowski also studied t
problem of checking positivity of maps@21#. His approach
was related to ours in the sense that he showed that chec
positivity of a given map was equivalent to the no
negativity of a certain associated real polynomial. He th
applied a general technique for checking positivity of po
nomials. As discussed in the Introduction there are sev
such algebraic methods and they all scale badly with
problem size. In our case the specific problem of check
positivity of a linear map between matrix algebras has b
reduced to a series of tests of matrix positivity, but none
them succeeds uniformly for all maps. However, it is still t

TABLE I. Number of extensions and optimal value ofa.

k a

1 0.4
2 0.58769
3 0.68556
4 0.72727
5 0.77663
6 0.80766
7 0.823529
8 0.846137
8-17
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case that for many instances, the positivity of a given lin
map can be determined and certified efficiently.

XI. CONCLUSIONS AND DISCUSSION

In this paper we have discussed a family of separab
criteria for bipartite mixed states. Each criterion consists
searching for an extension of a given state in a bigger sp
formed by adding a number of copies of one of the s
systems, and requiring this extension to be symmetric un
exchanges of the copies and to remain positive under
partial transpose. A failure to find such an extension pro
entanglement of the state, since it can be explicitly sho
that separable states have the required extensions. If an
tension is found, the test is inconclusive. This family of te
can be arranged in a hierarchical structure, with each
being at least as powerful as all the previous ones, and
the first test corresponding to the well-known Per
Horodecki PPT criterion.

This hierarchy of tests has two main properties that m
it useful and appealing. First, the hierarchy is complete:
entangled state will fail one of the tests at some finite po
in the sequence. Second, each test can be cast as a sem
nite program, which can be efficiently solved. Furthermo
by exploiting the dual structure of semidefinite program
whenever a state is proven to be entangled by failing on
the tests, an entanglement witness for that state can be
plicitly constructed. This duality can also help us to interp
the hierarchy as trying to prove entanglement of a state
searching for entanglement witnesses with a particular a
braic property that states that the bi-Hermitian form asso
ated with the entanglement witness can be written as a
of squares when multiplied by a fixed sum of squares t
certain power. The completeness of the hierarchy can the
used to show that this algebraic property characterizes al
elements in the interior of the cone of entanglement w
nesses.

We analyzed the computational resources needed
implement these tests. We found that for a fixed test in
hierarchy, they scale polynomially in the dimensions of t
state. When we keep the size of the state fixed, the resou
also scale polynomially with the number of copies added
equivalently, with the order of the test in the hierarchy. T
behavior is very interesting in light of recent results on t
worst case complexity of the separability problem. It h
been shown that checking separability of a state is anNP-
hard problem when we study the scaling with respect to
dimensions of both parties, so computational resource
solve it cannot scale polynomially in this general case. In
family of tests this nonpolynomial behavior is reflected
how high up the hierarchy we need to go to detect all
tangled states. Even though each test is efficiently imp
mentable, there are states for which we need to go arbitra
high in the hierarchy to show that they are entangled.

The dual formulation of the hierarchy can also be und
stood as the construction of a sequence of cones, each
containing the previous ones, that approximate the dua
the cone of separable states~which contains the entangle
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ment witnesses! from the inside, giving a complete chara
terization of its interior.

We can also interpret the primal formulation as the co
struction of a sequence of nested cones that approximate
cone of separable states from the outside. It is worth co
paring this point of view with the results in Ref.@52#, where
a semidefinite program was used to approximate the con
separable states from the inside. This result, however, o
applies when one of the subsystems has dimension 2,
gives a complete characterization of separability only in t
particular case, while our hierarchy works for arbitrary d
mensions of the subsystems.

The hierarchy of tests allows us to divide the set of e
tangled states into different classes, according to whe
they have PPT symmetric extensions tok copies of one of
the parties or not. This generates a nested sequence of
sets of entangled states. This sequence can be shown
infinite for all dimensions of the subsystems, except for
^ 2 and 2̂ 3 where it is well known that the PPT criterion
enough to characterize entanglement~in these two specia
cases, the hierarchy collapses to the first step!. Furthermore,
if the set of states with PPT symmetric extensions tok
21) copies ofA but not tok copies is nonempty, then it ca
be shown to have nonzero measure. These classes of s
however, are not closed under SLOCC operations, since
can transform a state that is not detected by the second
into a state that is, with finite probability and by applyin
only local operations.
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APPENDIX A: IMPROVED SDP FOR IMPLEMENTING
THE TESTS

We will now introduce a slight modification of the SD
given in Eq.~23!, that has the advantage of performing bet
numerically. WithF given by Eq.~22!, let us consider the
following SDP:

minimize t,

subject to t1ABA1F~x!>0, ~A1!
8-18
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where 1ABA is the identity matrix on the spaceHA^ HB
^ HA . It is clear that we can always chooset such that the
LMI on the second line of Eq.~A1! is satisfied. If the mini-
mum of t is negative or zero, then there exists a value ox
such thatF(x)>0, which is equivalent to say that Eq.~23! is
feasible. On the other hand, if the minimum oft is strictly
positive, then we know thatF(x) cannot be PSD. Thus w
see that feasibility of Eq.~23! is equivalent to whether the
minimum of Eq.~A1! is strictly positive or not. So we can
use Eq.~A1! to detect entangled states. This approach has
property that the SDP~A1! is always feasible. This propert
makes the SDP solver behave better numerically~because it
uses an interior point algorithm!. This is in fact the SDP tha
our code is solving when applying the tests to a given qu
tum state.

APPENDIX B: STRONG DUALITY AND SDP
INFEASIBILITY

We want to obtain infeasibility witnesses for the SDP

F01(
i 51

m

xiFi>0.

Clearly, if we can find aW>0 such that

Tr@FiW#50, Tr@F0W#,0,

then the SDP is necessarily infeasible, as follows by the
gument given after Eq.~14!. Under what conditions doe
such aW exist? As we mentioned earlier, we need some fo
of strong duality to hold.

Consider the setSªK1rangeF, where K is the PSD
cone, F:Rm→Sn is the linear map defined byF(x)
-

ts

m

A

02230
he
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ª( i 51
m xiFi , and A1B5$yuy5a1b,aPA,bPB%. Feasi-

bility of the SDP is equivalent toF0PS. The setS is obvi-
ously convex. Now, ifS is also closed, then we can apply th
separating hyperplane theorem, and conclude the exist
of a W as above.

The difficulty, of course, is that in general the sum of tw
closed sets may not be closed. In particular, in SDP thi
can go wrong. For instance, for

F x 1

1 0G>0

which is obviously infeasible, it is not hard to see that
witnessW>0 as above can exist. This can be traced back
the fact thatS in this case is not closed.

So, what conditions can be required to guarantee thaS
be closed? An often-used criterion is the so-called Slater c
dition @42#, which in our case is the following. If
ker F* ùri K* Þ0” , thenK1rangeF is closed. Here,F* is
the adjoint map ofF, K* is the dual cone~equal toK, in this
case!, and ri denotes the relative interior of a set.

In other words, to guarantee the existence of infeasibi
witnesses of the form we described~for any possibleF0), it
is sufficient to show aZ.0, that satisfies Tr@FiZ#50, for all
i 51,...,m. Notice that this looks similar to the certificateW
we are after, except thatF0 does not appear in the expressio
~otherwise, the condition would be useless!. In general,
checking whether the Slater condition is satisfied in concr
problems is not too difficult. For our SDP’s in Eqs.~23! and
~44!, it is immediate to show that the criterion is indee
satisfied, as all the matricesFi are traceless, so we can ju
takeZ51.0.
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