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We introduce a family of separability criteria that are based on the existence of extensions of a bipartite
guantum state to a larger number of parties satisfying certain symmetry properties. It can be easily shown that
all separable states have the required extensions, so the nonexistence of such an extension for a particular state
implies that the state is entangled. One of the main advantages of this approach is that searching for the
extension can be cast as a convex optimization problem known as a semidefinite program. Whenever an
extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular
state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the
well-known positive partial transpog@eres-Horodeckicriterion, and each test in the hierarchy is at least as
powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed
to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses
corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that, in
turn, allow for a characterization of the interior of the set of positive maps. Coupled with some recent results
on the computational complexity of the separability problem, which has been shown N lerd, this
hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of
mixed bipartite entangled states.
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[. INTRODUCTION that would allow us to determine when a given state is en-
tangled.

Entanglement is one of the most fascinating features of A bipartite mixed state is said to be separaf8¢ (not
quantum mechanics. As Einstein, Podolsky, and Rg4én entangled if it can be written as a convex combination of
pointed out, the quantum states of two physically separatefiure product states
systems that interacted in the past can defy our intuitions
about the outcomes of local measurements. Entangled pure
states have zero entropy but can appear to have maximal _
entropy when the experimenter only has access to one of the p=2 pilv{uileld)al, @
subsystems. On the other hand, Bell inequalitdjuantify
the extent to which local measurements on separated quan-
tum systems can be correlated in ways that are forbidden iwhere|y;) and|¢;) are state vectors on the spadég and
any local classical model. Violations of these inequalitiesHg of subsystemsA and B, respectively, ang;>0, Z;p;
require entanglement. Moreover, it has recently been recog=1. If a state admits such a decomposition, then it can be
nized that entanglement is a very important resource in quarcreated by local operation@nitary transformations, mea-
tum information processing, allowing certain important taskssurements, etgand classical communicatighOCC) by the
such as teleportation, quantum computation, quantum crygwo parties, and hence it cannot be an entangled state. De-
tography, and quantum communication to name a [f&jv spite the simplicity of Eq(1), it has been shown recently by

For the case of pure states, determining when a giveurvits[9] that deciding whether or not such a decomposi-
state is entangled is very easy, since it is based on properti¢ion exists for a given density matrix is &P-hard problem.
of the Schmidt decomposition or, equivalently, the rank ofThis result destroys any hope of finding a computationally
the reduced density matrices, which can be computed vergfficient tool to determine entanglement of mixed states as
efficiently. However, for the case of mixed bipartite stateswas the case for pure states, so long as the widely believed
no single practical procedure that can be guaranteed to detewsult P+ NP is actually true. But there are some instances
the entanglement of every entangled state has been foundf the separability problem that allow efficient algorithms to
Over the past few years, considerable effort has been dedsolve them. This is one of the basic ideas behind separability
cated to this problenj4—7]. Still only incomplete criteria criteria.
have been proposed that can detect some entangled states buA separability criterion is based on a simple property that
not all of them or that work only for certain restricted dimen- can be shown to hold for every separable state. They provide
sions. This is a somewhat uncomfortable situation, since alhecessary but not sufficient conditions for separability. If
the quantum states generated in the laboratory for practicslome statep does not satisfy the property, then it must be
applications of quantum information processing are mixedentangled. But if it does satisfy it, that does not imply that
states. Hence the need, not only from the theoretical but alsthe state is separable. One of the first and most widely used
from the practical point of view, of having an efficient tool of these criteria is the positive partial transpdB®T) crite-
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rion, introduced by Perefl0]. If p has matrix elements completely positivemaps from operators oK, to operators
pik,ji=(il®(kplj)@|l) then the partial transpoge 4 is de-  on 7 (or vice versy see Eq(89) and Ref.[19]. Applying
fined by such a map to one half of an entangled state does not neces-
T sarily result in a positive matrix. For this reason positive
Pikf\“ = Pjk,il - 2 maps were rejected as possible physical evolutions of quan-
tum states in favor of the completely positive maps. The PPT
If a state is separable, then it must have a PPT. To see thiest has this structure where the transpose is the positive
consider the decompositiofl) for p. Partial transposition map. Any positive but not completely positive map results in
takes| ¢ ){ ] to | )¢, so the partial transpose pfcan  an analogous separability criterion. The equivalence between
be written as entanglement witnesses and positive maps implies thaisif
entangled there is always a positive map that will detect the
entanglement in this wayl11,17. The characterization of
pTA= 2 pilvt Nut @l di)(il. (3) positi\?e linear maps was in fact the original motivation for
studying the separability questi¢h2].
Clearly p™a is a valid quantum state and in particular it must ~ Finally, there is a well known mapping between positive
be positive semidefinite. Thus any state for which is not  linear maps and positive semidefinite biquadratic forms
positive semidefinite is necessarily entangled. This criterioi20,21. This can be appreciated simply by writing the con-
is computationally very easy to check. Furthermore, it wadlition thatW is positive on pure product states explicitly in
shown by the Horodeckigl1], based on previous work by terms of the elements &% and the state vectors for the two
Woronowicz [12], to be both necessary and sufficient for systems, as in Eq43) in Sec. VI. This suggests the use of
separability inH,®H, and H,®H5. However, in higher results from real algebraic geometisee, for example, Ref.
dimensions, there are PPT states that are nonetheless €@2], and the references thergito attack the separability
tangled, as was first shown in R§L3], again based on Ref. problem. Indeed, the semidefinite programming techniques
[12]. These states are called bound entangled states becawse employ here were first developed in this general context
they have the peculiar property that no entanglement can H&3].
distilled from them by local operatiorfd4]. The question of whether a given statés separable may
A different useful separability criterion that has been usedbe phrased as quantified polynomial inequalities in a finite
to show entanglement of PPT states is the range criterionumber of variables
[12,13. Itis based on the fact that for every separable giate
there exist a set of pure product statég;)| ¢;)} that span YWIY[¢)V[ ) (4l(d|WI¢)|$)=0=Ti[ pW]=0].
the range ofp while {| )| #;)} span the range gb's, as
can be easily seen by looking at Eg¥) and(3). This crite- I this proposition is satisfied thep is separable. Since the
rion is sometimes stronger than PPT, but in some cases it canequalities may be expressed in terms of polynomials of the
be weakeffor example, when considering full rank non-PPT variables(the components dV, |#), |¢)) this is a semialge-
state$. Other criteria that are in general weaker than PPT aréraic problem. Much is known about the general class of
the reduction criterioi15,16 and the majorization criterion semialgebraic problems, in particular the fact that they are
[17]. None of these criteria, nor a combination of them aredecidable The Tarski-Seidenberg decision proced(i2g]
sufficient to give a complete characterization of separabl&an then be used to provide an explicit algorithm to solve the
states. separability problem in all cases and therefore to decide
Another approach to distinguishing separable and enwhetherp is entangled. A drawback of this approach is that
tangled states involves the so calledtanglement witnesses most exact techniques in algebraic geometry scale very
(EW’s) [18]. An EW is an observabl®/ whose expectation poorly with the number of variableghe Hilbert space di-
value is nonnegative on any separable state, but strictly negasensions in the separability problemFor this problem,
tive on an entangled state We say in this case thalV  these methods do not perform well in practice except for
“witnesses” the entanglement @f. In addition to giving an-  very small problem instances. This is in contrast to the PPT
other theoretical tool to detect entangled states, this idea adest which may be implemented very efficiently but does not
dresses the question of whether there is an experimental waways settle the question of separabilitymfin this paper
of distinguishing an entangled state from a separable one. Bye discuss a set of separability criteria that also have this
studying the geometrical structure of the set of quantunproperty; they all scale polynomially with the Hilbert space
states, it can be shown that for every entangled state themimension and perform well in practice, any statéhat is
exists an entanglement witne®s[11,12. Thus, there is al- entangled is detected by one of the tests but no one test
ways an observable that can be measured that will show thaletects all entangled states. Since the separability problem is
the state is entangled. NP hard it is very unlikely that a procedure guaranteed to
There are two other important mathematical objects resolve the problem in all instances can scale well with Hilbert
lated to entanglement witnesses. Although these do not hawapace dimension. As a result our family of separability tests
the physical interpretation of observables they allow connecis, in some sense, the best way of solving the problem from
tions to other results in the mathematical and mathematica practical point of view, in that simple tests will detect the
physics literature. In the first place, there is a correspondenceasiest instances of the problem, while the more complicated
that relates entanglement witnesses to linear pogitivenot  instances genuinely require more computational resources.

(4)
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The most important characteristic of the separability prob-discuss how to construct an entangled state that is not de-
lem is the fact that the separable states form a convex seected by the second test of the hierarchy and present several
The existence of entanglement witnesses, observables thaportant consequences of this result. Section IX shows how
are positive on separable states but negative on some ei¢ use an SDP to test indecomposability of an entanglement
tangled state, is a direct result of this convexity. There havitness and construct a bound entangled state detected by it.
been much work on the separability problem, particularlyln Sec. X we discuss the connection between entanglement
from the Innsbruck-Hannover group as reviewed in RefsWitnesses and positive maps, and show how the properties of
[5,6], that emphasizes convexity and proceeds by charactef1€ Witnesses obtained through our hierarchy of tests can be
izing entanglement witnesses in terms of their extremdranslated into a characterization of strictly positive maps.

points, the so-called optimal entanglement witnesses, anginally, in Sec. XI, we summarize our results and present our

PPT entangled states in terms of their extreme points, thEonclusions.

edge PPT entangled statg®4,25. Convexity also plays a

central role in our work which provides a computational !l PPT SYMMETRIC EXTENSIONS AND SEPARABILITY
means of constructing entanglement witnesses with certain CRITERIA

properties. It is interesting that our construction will allow us
to characterize the interior of the set of entanglement wit
nesses, but not its extreme points.

Beyond the separability problem, many problems of inter-
est in quantum information have the structure of convex op- =2 Pl (il @ i) il @ i) (Wl (5
timizations[26], a fact that has found increasing application
in the field in recent years. One early example is the use ofhenp has the following propertiesi) p is an extension of
results about linear programming to find the optimal local, to three parties, in the sense that
entanglement concentration procedure for a pure bipartite
state in Ref[27]. Our work will involve convex optimiza- Tre[p]=p, (6)
tions known as semidefinite program®6,28, generaliza- ) )
tions of linear programs that optimize a linear function of awhere Tg means that we take the partial trace over the third
positive matrix subject to linear constraints. SemidefiniteParty which we have taken to be equal #6,. (ii) b is
programming arguments have a|so been used in the quantuwmmetric Under intel’changeS Of the fiI’St and th|rd parties,
information literature to address questions about quanturh€., the two copies of partp. More precisely, if we define
coin tossing, distillation, and optimal state transformationshe swap operatdp by
[29-33. . . : .

In this paper we discuss in detail a family of separability Pli)elkali)=l)Helkeli), @)
criteria introduced in Ref[34], that can be ordered into a
hierarchy of tests that have the following two very important
properties:(i) the hierarchy is complete, i.e., any entangled 5=PpP. (8)
state will be detected by some test in the hieraré¢iythere
are efficient computational algorithms to check each of theiii) o must remain positive under any partial transposition
tests. This provides us with a very practical algorithmic way(sincep is also a separable statéote that, due to the sym-
for testing entanglement of given bipartite mixed states, thametry (8), taking partial transpose with respect to the third
is guaranteed to detect any entangled state. Furthermore, teabsystem is equal to taking it with respect to the first one.
algorithm constructs an explicit proof of this fact in the form Now, for an arbitrary state in Ha® Hg, we will call p a
of an entanglement witness. This in turn helps us to develoPPT symmetric extension @f to two copies ofH,, if and
a characterization of almost all positive maps that are nobnly if p satisfies the three properties stated above. Since we
completely positive. have shown by construction that any separable state has a

The paper is organized as follows. In Sec. Il we introducePPT symmetric extension to two copies’df,, then we can
a family of separability criteria. In Sec. lll we introduce and use its existence as a separability criterion. If a given state
discuss the properties of semidefinite progrd®BP’s, and  does not have such an extension, then the state must neces-
show that each separability test in the family can be cast as arily be entangled.

SDP, and briefly discuss the resources needed to implement We can take this idea of the existence of PPT symmetric
them. In Sec. IV we discuss how to take advantage of thextensions further by considering extending the state to an
symmetries that each test requires to further reduce the comarbitrary number of copies of subsystefn For any sepa-
putational resources needed. In Sec. V we present an expligible state irf{,® Hg given by Eq.(1), the state

proof of the completeness of the hierarchy, translating previ-

ous results[35,36 into the language of density matrices. - _

Section VI shows how the duglitygof the SDPycan be ex- =2 pilvn)(wil el g il o) (vl ™" ©)
ploited to construct an entanglement witness that proves en-

tanglement for a given state, and we discuss the algebrais a state i ®Hg@HA""* that, (i) is symmetric under
properties of these witnesses. In Sec. VIl we present exinterchanges of any two copies of subsystnii) yields the
amples of the application of the hierarchy. In Sec. VIII we original statep in Ho®Hg when we trace out anyp—1

Any separable statein H,® Hg can be written as in Eq.
(1). Consider now the stafg in HA® Hg® H,, given by

the symmetry condition can be written as
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copies of subsystem, and (iii) remains positive under all to apply it to the problem of searching for a PPT symmetric
possible partial transpositions. Again, for an arbitrary spate extension.
we will call p a PPT symmetric extension pfto n copies of
party A, if and only ifp satisfies propertie§), (ii), and(iii). A. Semidefinite programs
And as before, we can use the existence of this extension to S . .
n copies of subsysterA as a separability criterion. We have A Sem".’ef'r.‘"e progranSDP) is a particular type of con-
thus generated a countably infinite family of separability cri-V€X OPtimization probleni26,28. An SDP corresponds to
teria. Note that the same idea can be generalized to the mLHJ_e optimization of a Ilnea}r function subject to a linear ma-
tipartite case: the existence of PPT symmetric extensions thi inequality (LMI). A typical SDP has the form
any number of copies of the parties is a separability criterion.
For the bipartite case, these separability criteria are not
completely independent of each other, but they actually have
a hierarchical structure. We will now show that if a state has
a PPT symmetric extension tocopies ofA, call itp,, then  \herec is a given vectorx=(xy,....x,), and F(x)="F
it mEst have aEPT symmetric extensiomte 1 copies ofA. +3,x;F;, for some fixed Hermitian matrices;. The in-
Let’hn-1=Tra[pn], whereA represents one of the copies of ¢qjity in the second line means that the mai{x) must
A. Itis easy to see that,_, will inherit from jp, the property e positive semidefinite. The minimization is performed over
of being symmetric under interchanges of copies of pAlty the vectorx, whose components are the variables of the
since we have just removed one of the copies. It is alsqygplem. The set of feasible solutions, i.e., the sex dfat
obvious thafp,, is an extension op to n—1 copies ofA.  g4iisfy the LMI, is a convex set. In the particular case in
Let us assume thETlt is not PPT. Then there is a subsethe  \hich c=0, there is no function to minimize and the prob-
parties such thdp *, has a negative eigenvalue, whéfg  |em reduces to whether or not the LMI can be satisfied for
represents the partial transpose with respect to all the partis®me value of the vectot. In this case, the SDP is referred
in subsetZ. Let |e) be the corresponding eigenvector and letto as a feasibility problem. The convexity of the SDP has
{|i)} be a basis of the systefover which the partial trace made it possible to develop sophisticated and reliable ana-
was performed. Sincg, is PPT, then(e|(i |“,3;I|e>|i)>o, for lytical and numerical methods to solve th¢&8].
alli. Then A very important property of a SDP, both from the theo-
retical and applied points of view, is its duality structure. To
T N T any SDP of the form{11), which is usually called the primal
Ei (el(i[p,1e)|i)=(elTralB,"1le)=0. (10 problem, there is associated another SDP, called the dual
problem, that can be stated as
Since we performed the partial trace over a party that is not

minimize ¢'x,

subject to F(x)=0, (11

included inZ, we can commute the trace and the partial maximize — Tr[Fyz],
transpose, and using,_,=Tra[p,], we have(e|“,3l_1|e> _
=0, which contradicts the fact thé) is an eigenvector of subject to Z=0,

73;{1 with negative eigenvalue.

We have then constructed a family of separability criteria
with a natural hierarchical structure. If we take the usual PPT here the matrixZ is Hermitian and is the variable over
criterion as the first step of the hierarchy, the existence of é{vh. h th L .

PPT extension to two copies éfas the second step, and o Which the maximization is performed. This corresponds to

on, we see that the tests are ordered in such a way that ea reamgxgmng?f&|Of|_aetl(lr;%rzfublcgﬂni{,’vﬂg:;ﬁg Islg?uiiro%(;n-
test is at least as powerful as the previous one, in the sen& : y

that if a state was shown to be entangled by one of them, ﬁ] the p“ma' and (_jual problems, respectively. Then we have
will be also shown to be entangled by all the tests that aré € following relationship:

higher in the hierarchy. This family of tests has several very
important and useful properties. It can be shown that each

test can be cast as a semidefinite progt&mP), which is a where the last inequality follows from the fact that b&tfx)

class of convex optimization problems for which efficient . e
. : ) z finite. F E 12
algorithms exist. The duality structure of the SDP allows usand are positive semidefinite. From Edd1) and(12) we

L . can see that the left-hand side of E#3) is just the differ-
to construct an explicit entanglement witness whenever Ance between objective functions of the primal and dual

state 'fails one of the teSFS' And finally, it can be proven thabroblem. The inequality in Eq13) tells us that the value of
the h|erarchy icompletei.e., every enta_ngl_ed state Is guar- ., primal objective function evaluated on any feasible vec-
anteed to fail the test at some finite point in the hierarchy. tor x, is always greater or equal than the value of the dual
objective function evaluated on any feasible ma#ixThis
property is known as weak duality. Thus, we can use any
feasiblex to compute an upper bound for the optimum of
In this section we will introduce and discuss the structure— Tr[FZ], and we can also use any feasiBléo compute a
of a semidefinite program and we will show explicitly how lower bound for the optimum of"x.

TI’[FiZ]=Ci f (12)

c'™x+Tr[FoZ]=TH[F(x)Z]=0, (13)

IIl. SEMIDEFINITE PROGRAMS AND SEARCHING FOR
PPT SYMMETRIC EXTENSIONS
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If the feasibility constraints on both the primal and dual Tre[pl=p, (17
problems are satisfied for sonze>0 andx such thatF(x)
>0, the problems are termed strictly feasible, and the optiwhere Tg means tracing out the third party. Using Eg5)
mum values of the primal and dual formulations are equaland the fact tha{oi’*®a}3} form a basis ofH,® Hg, EQ.
This property is called strong duality. Furthermore, there is 417) reduces to
feasible pair Xqpt,Zop) achieving the optimum. In this case, _
as can be seen from E(L3), we have TrF(Xyp)Zopd =0, Pij1= Pij - (18)
ZES tzr:;tsigfgt)ﬁﬁfﬁ ogc’)r? ;)I t:] aen ; eesr'm_lliur?ig Egatlglcoevsvrgx‘g’g th eThis fixes some of the componentsafThe remaining ones
. will play the role of the variables in the SDP. The LMI's
complementary slackness conditif2g]. come from requiring that the extensi@nand all its partial
Equation(13) has another important application. Considert d gt definit ql"p defi P
the particular case of a feasibility probldire.,c=0). Then, ransposes are positive semidetinite. It we define
Eq. (13) will read N
TI[FoZ]=0, (14) ©o ; PUILE TN

and this must hold for any feasible solution of the dual prob- + E
lem. This property can be used to give a certificate of infea- i=2]=
sibility for the primal problem: if there exists Z such that

=0 and TfF;Z]=0, that satisfies TF,2]<0, then the pri- Giji=of®@ofol, =2,

mal problem must be infeasible. We will show later that for

the particular case of our hierarchy of separability tests, Gik=(of®oleop +topeo;®a]), k>i=2, (19
whenever a PPT symmetric extensiongo€annot be found

(primal problem is infeasible the certificate provided by the we can write the PSD conditigh=0 as

dual problem is nothing but an entanglement witness for the

statep. G(x)=Go+ X, x;G3=0, (20
J

Ao Bo AL Ao B A
) pilof®@o;@ol+oi®@0; @07},

B. Separability tests as semidefinite programs Lo . .
where we have collected all the subindices in Ek) into

Each test in the hierarchy of separability criteria intro- gne subindex. Equation(20) has exactly the form that ap-
duced in Sec. Il can be written as a semidefinite program. Waears in Eq(11). The role of the variable is played by the
will show in detail how the SDP is setup for the second tes‘boefficientsﬁijk(k# 1k=i), which can vary freely without
in the hierarchy, which corresponds to searching for PP-%ﬁ:ecting the extension conditiofL7). The number of free
symmetric extensions gfto two copies of subsystem The | 4riables ism=(d4Ad§—d,§d§)/2, and each matrixG, has
general case, of (_ext_ensions mocopies of partyA, can be dimensionnzdidB. Sincep is symmetric under swaps of
constructedzm a S|m|2Iar way. the first and third parties, there are only two independent
Let{oiA}idjl, {0’}3}?21 be bases for the space of Hermitian partial transpositions that can be applied to it, which we can
matrices that operate ol andHg, of dimensiongd, and  take as partial transposes with respect to the first and second

dg, respectively, such that they satisfy parties(one of the copies of\, and subsystenB). The re-
quirement that these two partial transposes are positive leads
Tilofo]]=axd; and Tfo(]=6, (15  to two more LMI's, given by
where X stands forA or B, and ay is some constant—the pTA=0 and p'e=0, (22

generators of SU() could be used to form such a basis. ] . -
Then we can expand in the basis{c® ¢"}, and writep where theG; matrices for these two inequalities are related

ZEijPijUiA@)U,B, with pij=a;1a,§1Tr[poi ®0']B]. In the to the matrices given in Ec[.'Lng by the appropriate par_tial
. We can actually combine

n
same way, we can expand the extengioim H,® Hg@H,  ransposes, namel,” andG,
as the three LMI’s into one, by defining the matrix

F=pap Aap'e, 22
T’:Z ﬁijk{a'f‘®0'j8®(rﬁ‘+ 0?@0}3@)0’{“} pEpEp 22
i'l<"k and using the fact that a block-diagonal mattix A®B is
positive semidefinite, if and only if botA andB are positive
(16) semidefinite. _
We have then stated the search of a PPT symmetric ex-
tension ofp as an SDP, in which the objective function is
where we made explicit use of the swapping symmetry bezero c=0), so it corresponds to a feasibility problem, and
tween the first and third parties, that we require fifpmTo  the LMI condition read$ =p@p"A@p'8=0, which encodes
satisfy the condition thgs is an extension op, we need to the requirement of the extension and its partial transposes

impose being positive semidefinite. The SDP will then take the form

~ A B A
+; ijko'k®0'j ®U’k,
J
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minimize O, erality, we have interchanged the order’of and all copies
of A for conveniencg We see that the dimension of the
subject to F=0. (23)  extended space increases exponentially with the number of

) i i - ] copies of partyA. We have shown that we can impose further
In Appendix A, we discuss a slightly modified version of the restrictions on the extension, and in particular we require it
SDP that has the advantage of performing better numericallyy pe invariant under swaps of the copies of subsystem
but we will keep the forn(23) for all the analytical discus- Thjs reduces the size of the space over which we search for
sions,_ since its dual form is_more clearly rel_ated to the conthe extension, but the scaling with the number of copies re-
struction of entanglement witnesses, which is another one gyains exponential, which is not desirable of a practical tool
the main results of this paper. _ _ for deciding separability of a state. However, we can actually
The SDP for other tests of the hierarclgxtensions to  jmpose a stronger constraint on the form of the extension,

more copies of party), can be constructed in the same way, that reduces the scaling of its size from exponential to poly-
by generating the matrice3; with the appropriate symme-  nomjal in the number of copies.

try, and constructing the block-diagonal matfx whose As we pointed out before, any separable stateHg
blocks correspond to all the independent partial transpos%HB of the form (1) has a PPT symmetric extension to
that can be applied to the extensipn ka@) Hg, that we can explicitly write as

C. Resources needed to implement the tests ~
p=2 pilui) (Wil ®*@ | )il (24

As we mentioned before, there are very efficient algo-

rithms to solve semidefinite programs, and we can use their, . S . . . .
Prog ‘Fhis extension is obviously invariant under swaps of copies

properties to discuss the cqmputau_onal resources required E)q A, and we used this property to restrict the form of the
implement a general step in our hierarchy of tests. Assume__.". .

. . . MmatricesF ; in the LMI of our SDP. Bufp has a more con-
that we are searching for a PPT symmetric extension of a

statep in H,® Hg to k copies of subsyster, with d, and straining.property: its su%;iort and range are contained ip the
dg the dimensions of{, and Hg, respectively. Then, the symmetric subspace dt, " Hg (where the symmetry is
corresponding  semidefinite  program  will havenm understooq to apply only Fo the copiesAi For the case of
k-1 e . . . the_exten_smn to two copies of systefn we can write _the
=[("*, ")—daldg variables and a matri& with (k+1)  projector into this symmetric subspaceas (1+ P), with
blocks of dimensiord2“d3. Numerical SDP solvers are de- P the swap operator defined in E@). Then, the symmetry
scribed in detail in Ref{28]. Typically they involve the so- requirement on the extension takes the fgimmp.

lution of a series of least squares problems each requiring a For an arbitraryp, we can now restrict our search to ex-
number of operations scaling with problem sized(sn’n?), tensions that satisfy this property. {IS,A} is a basis of Her-
whereF(x) is annXxn matrix. For SDP’s with a block struc- mitian matrices having support and range in the symmetric
ture these break into independent parts each with a valoe ofsubspace onfk, this restriction is equivalent to only con-
determined by the block size. The number of iterations residering matricesG in Eq. (20) of the form G=S|A® ch-B.

quired is known to scale no worse th&@(n*?). Thus for  since the dimension of the symmetric subspace(j is
any fixed value ofk the computation involved in checking

our criteria scales no worse th&(dx*"?) which is polyno- [da+k-1 -
mial in the system size. On the other hand, fir and dg S k ' (25

fixed, the size of the matrik (x) scales exponentially with
the number of copiek. There is, however, a significant im- with d, the dimension oft,, the number of matrices of this

provement that can be accomplished by exploiting the swagorm is dékdé. The number of variables in the SDP is this

plng Symmetry to its fullest. In the next section we will show number minus the number of constraints given by E_q),
that we can impose a stronger restriction on the extensiofjhich is m=(d§k—d/§)d§- By using Eq.(25), we getm
that brings the scaling of resources down to polynomial in
the number of copies of subsystéinfor fixedd,, dg. Itis

important to point out that the resources required to solve th
separability problem have been proven to scale super pol
nomially only when the dimensions of both systems are al

=0(k{@ =1y, which for a fixed size o is only polynomial
En the number of copies. Since the matriggg have range
and support only on this symmetric subspace, we know that
by a suitable change of basis they can be simultaneously

lowed to vary. These two results are consistent, although thBISCk diagonalized, with the only nonzero block having size

2 42
complexity result implies that there is no value lofsuch n_dSKdB'

that thekth test detects all entangled states for all values of The SDP that searches for the PPT extension also requires
da, dg. to check positivity of a certain number of partial transposes

of the extensiofp. These checks translate into a bigger LMI,
IV. EXPLOITING THE SYMMETRY although we will now show that this does not change the
scaling properties of its size. Consider the case in which we
Each test for separability searches for an extension of apply the partial transpose to the firstopies ofA, which we
statep in Ho® Hg of dimensiond,dg, to the Spaceij’k will denoteTJTA®'. Since the matrice§&; have support and
®Hg, that has dimensiodXdg (where, without loss of gen- range only on the symmetric subspace £, it is not
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difficult to show that the matrice& "»®' must have support _ B
only on the tensor product of a SlJJbspace isomorphic to the =2 pilyi)(wil* el b, (27)
symmetric subspace Gfl;?' and the symmetric subspace of

HZ®&D | The dimension of this tensor product is just theand this completes the first part of the proof.

product of the dimensions of the two subspaces. If we per- To prove the other implication, the idea is to use the ex-
form a change of coordinates by rotating to a basis that conistence of the extensions to construct a set of statégh

tains a basis of this tensor product of symetric subspaces, what can be shown to be separable by using the quantum de
can see that the size of the matric@®$®' can be taken as Finetti theorem, and then show that this result implies that
dédé(k,,)- This scales at most a®(k?@Aa~1)). Since the the extensions themselves have to be separablep bet a

number of independent partial transposes ks 1), as a  State iINHA®Hg SU;P that for anyn, there is a symmetric
result of the symmetry requirements, the sizef the matri-  extension ofp in Hy"®@Hg, which we will call’p,. Let us
ces in the LMI scales not worse th&r{k??~1). Combining  Pick a fixed valuek for the number of copies of par#. Let

. . . f 2
this with the scaling of the number of variablesshown e sefh} . be a basis for the set of Hermitian operators in
apove and th? szcallng properties of sonmg the SDP, Wh.'Ch '?-lB, such thatb;>0 for all i (i.e., all these operators are
given byO(m*n®), we can see that for fixed,,, the tests in positive definite[40]), and in particular let us choose;

the hierarchy scale a(k(®*~%), which is polynomial on =7 "\ identity | N define th i
the number of copies of part for a fixedd, . 5. the identity in7ig. Now we define the operator

_ K ~
po, = Tre[ (1x @ b)pi], (28)
V. COMPLETENESS OF THE HIERARCHY OF TESTS

One of the main results of this paper is the completeneswherel, is the identity on subsystes The operatoﬁ,i kis

of the hierarchy of separability tests. This result allows us tqyositive semidefinitéPSD and nonzero since all the opera-
give an algorithm that will show if a state is entangled in ators b; were taken to be strictly positive. Them,  is pro-

finite number of step&lthough this number may be high for . . . I .
some states Even ?r%ugh ,the hierarchy of teysts is% neWportlonal to a state n‘ka, since it is Hermitian and PSD.

result, the proof of its completeness is identical to the prooiWe can choose th.e operatdrssuch tha't pri W=1 f(zr all

of certain properties of the possible equilibrium states of & SO that Eq(28) is actually a normalized state iy .
system that interacts with a thermal bath. These results, e will now prove that the existence of symmetric exten-
which were proved by Raggiet al. [36], and Fannestal. ~ sionspy of p for all k, imply that we can choose the states
[35], have been in the literature for quite some time. pp, k t0 be exchangeablE39]. Recalling the definition of

It was noted in Ref[37] that this resul{35,36 could be exchangeability we need to show that, for dny0, there are
interpreted as a characterization of bipartite quantum statestatesp, (x+y that are symmetric and satisfy
that requires that the only states that can have symmetric
extensions to any number of copies of one of its subsystems
are the separable states. The same idea was independently
conjectured recently by Schumachés.

We will present a proof of the completeness of the hier-Let us fixk and assume that there is not an extengipauch
archy, which is basically the proof found in RéB5], ap-  that the statey, \ given by Eq.(28) is exchangeable. That
plied to the case of bipartite mixed states on finite dimenmeans that there has to be a valydor which Eq.(29) is
sional spaces. Our discussion has the same level afot satisfied for anyyp, k and py, (+1,)- But sincep has
mathematical rigor and is based on the techniques present@dmmetric extensions for ak, we can just choose an exten-
in the discussion of the.quantunj de Finetti theorem in Refsion to &+1;) copies Py, and we have that
[39]. The theorem we will prove is stronger than our hierar- L
chy, since it requires the existence of symmetric extension
without any requirements on the partial transposes. The conies, and
pleteness of our hierarchy can be deduced from this result as

Po, k=Tl A [P, (k1] (29)

yAkH'“AkHl[T)(k*'l)] is a symmetric extension @fto k cop-

a corollary. o o k= Trel (125 @b)Tra  oa . [Prcsiy]]
Theorem 1 (completeness)Let p be a bipartite mixed 1

state inH,® Hg. Thenp has a symmetric extension to =Tr Tral (125 12 b )5

copies of subsyster for anyk, if and only if p is separable. Ak+1"'Ak+'1[ ol (1 DPacrip ]

Proof. One of the implications is trivial. Assumeis sepa-

X =Tra .. Pb. ) 30
rable. Then we can write Acer A, Py (et 1] (30)

This is a contradiction, so we can conclude that we can al-
p=2 pilvi) (i@l )il (26)  ways choose the stat@§  to be exchangeable.

The stateﬁji « satisfies then the hypothesis of the quan-

From this expression, we can write down explicitly a sym-tum de Finetti theorenj39], and so we know there is a
metric extensiorp for any value ofk, namely, unique probability measure functid?, (¢)=0, such that
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Pb, k= fDQMPbi(Q)dQ, (31)

whereD represents the space of state$Hp (i.e., the set of
Hermitian, positive semidefinite operators of trage 1
For eachp, we can think Obei(Q) as a functional

applied to the operators;, which we will denoteF,, de-
fined asF,(b;) = Pbi(Q). This functional is linear on convex

combinations of positive operators. To see this, det0.
Then  Folubi+ (1= p)bj]=Pup+@-pmp(€),  where
P#bi+(1,ﬂ)bj is the unique probability density that satisfies

PLuby+ (1 )b, k= fDQ®kPubi+(l—M)bj(9)dQ
:TrB{[lfk‘@(Mbi+(1_,U«)bj)]ﬁk}
= uTre[ (1X®b)7]
+(1= w) Tre[ (13 bj)Pi]
:JD[MPbi(Q)+(1_M)ij(9)]9®kd9-
(32)
The second equality in Eq32) holds because we are con-

sidering a convex combination of the operatbts which
guarantees that F{{15*® (ub;+ (1— x)b))Ipy} is normal-

ized. Then, by the uniqueness of the probability density ircludes the proof of the theorem.

the quantum de Finetti theorem, we have
Pub+1-mp,(€)=pPp (@) +(1-p)Py(0), (33
which translates into

Folubi+ (1= w)bj]=uF (b)) +(1—u)F,(b)). (34

ThenF, is a linear functional on convex combinations of
positive states it .

PHYSICAL REVIEW A69, 022308 (2004

Note that sinces, is normalized,P(¢) =Py (¢), which
shows thatP(p) is a probability density. Using Eq37) in
Eqg. (31), we get

Po, k= JDQ®kTrB[09bi]P(9)dQ

= TI’B

(lj?k®bi)fDQ®k®chP(e)de}- (38

If P(e)=0 for someg, we can definer, arbitrarily, since it
would not contribute to the integral in E¢38). Since Eq.
(38) is valid for all the elementd; of a basis of Hermitian
matrices inHg, by comparing the expression in the second
line with Eq.(28), we can deduce that

= fDQ@"‘@%P(e)de- (39

This means thdp, is a separable state, since Eg9) is an
explicit decomposition as a convex combination of product
states. Furthermore, sin@g is an extension of our original
statep, we have

P:TrAzmAk[?’k]:fDQ®UgP(Q)dQ, (40)

which shows thafp has to be a separable state. This con-
|

It is clear that this theorem implies the completeness of
the hierarchy of separability tests introduced in Sec. Il, since
a state that has PPT symmetric extensionk toopies of
party A for all values ofk obviously has symmetric exten-
sions for all values ok, which according to the theorem
implies that the state must be separable. However, it is inter-
esting to note that the PPT requirement is not essential for
the completeness of the hierarchy. Searching just for sym-
metric extensions is also a complete family of separability
criteria and one that requires less resources.

In Ref. [41] local hidden variablgLHV) theories were

SinceF, is defined on a basis, there is a unique way ofy 5 constructed for quantum states possessing so-called
extendmg this functional Ilnea_lrly to the_v_vhole space_of Op'symmetric quasiextensions, where rather than requiring that
erators inHg. So we have a linear, positive and continuouspe extension be positive as a matrix it is only required that it
functional on a finite dimensional Hilbert space, and it is ajq positive on product states. The number of extensions cor-
well-known result that any such functional can be written aSesponds to the number of independent local measurement

_ settings that the theory is able to describe. In fact our argu-

Fo(b)=Trg[o,b] Vb, (39 ment that only separable states have an arbitrary number of
symmetric extensions generalizes to this case. Essentially all
that is needed is a version of the quantum de Finetti theorem
that holds for entanglement witnesses as well as states but it
is straightforward to check that the argument of H&0]
holds in this case also since only positive operator-valued
measurement®OVM's) that act as tensor products on each
subsystem are used in the proof. Hence although the use of
quasiextensions is strictly stronger for a small number of
local measurement settings, if the LHV is required to work
for an arbitrary number of local measurement settings, the
construction will only work for separable states.

for some unique positive semidefinite operatgy in Hg.

This operator might not be a statefy since it need not be

normalized. We can then define a function
P(e)=Trlo,] (36)

that is non-negative. IP(¢) is nonzero, we can define,
=0,/P(0). Then Eq.(35) takes the form
Py(0)=F,(b)=Trg[o,b]P(e) Vb. (37)
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We could generate more families of criteria, by searching As we mentioned in Sec. Ill, any primal SDP has an as-
for symmetric extensions that have to satisfy some other corsociated dual problem that is also a SDP, and in particular,
straint, and this family of tests would still be complete al- whenever the primal problem is infeasible, the dual problem
though it would in general require more resources. If theprovides a certificate of this infeasibility. We will show that
constraint can be written in terms of linear equalities andn the case of our separability tests, this infeasibility certifi-
LMI's, we could still use an SDP to implement the tests.cate generated by the dual problem is actually an entangle-
Choosing between these many possibilities is a matter aihent witness.
how well they perform in actual examples. It becomes a Consider the SDI23), and let us focus on the second test
trade off between how much more powerful the tests becomef the hierarchy, i.e., searching for PPT symmetric exten-
when more constraints are placed on the extensions, and hasions to two copies of part4. In this case, the dual problem
much this increases the resources needed. Including the PRakes the form
requirement on the extension has the advantage that it guar-
antees that the second and higher tests in the hierarchy are
stronger than the PPT criterion, and we have found this to be
a good trade off in practice.

maximize — Tr[FyZ],
subject to Z=0,

T F;Z]=0, (44)

VI. CONSTRUCTION OF ENTANGLEMENT WITNESSES

An entanglement witnes&€W) for a statep is a Hermit-
ian operatolV that satisfies

whereF has three blocks that encode the extension and its
two independent partial transposes, and from(Eg). we can
see that it has the form
T pW]<0 and TfpsNV]=0, (41)

Fo=Go® G @GP, (45)
wherepgeyis any separable stafl,18|. It is clear that if Eq.
(41) is satisfied, themp cannot be separable, ad gives a  Due to this block structure, we can restrict the search @ver
proof of that fact. This property has a very nice geometricin the dual program, t& that have the same structure, so we
interpretation. Since the set of separable states is convex, aggn take
point that does not belong to (as with any entangled state
can be separated from the set by a hyperplane. In our case,
the operatoMW defines the hyperplane. This result is known
as the Hahn-Banach theorepd2]. In practice, finding a where thez; are operators ifH,® Hg® H,. The positivity
W satisfying TfpW]<0 is not difficult, but proving condition onZ in Eq. (44), translates into a positivity re-
Tr[ psepV]=0 might be very hard. To understand the reasonquirement for each of the blocks in E¢46). Using this
for this, let us recall that any separable state can be written asructure we can write

a convex combination of projectors into pure product states

Z=2,0Z*®Z}¢, (46)

TI’[FOZ]=TI‘[G0(ZO+ Zl+ 22)], (47)

Psep=2i pilx) (x| @[y)yl, 42 since TEGJ*Z'X]=TH[GeZ ], fori=1, 2 andX=A,B. We
definedGy in Eq. (19 as a linear function op, so we can
where |x)=3xi|i), |y>=21yj'|j>, for some bases Wwrite Go=A(p), whereA is a linear map from operators on

HA® Hpg to operators or{,® Hg® H, Whose action on an
arbitrary operatolY on H,® Hg is given by

{liY} and {|j)} of H, and Hg, respectively. Then,
TrlpseV]=0  for any separable state pegp,
if and only if T |x)(x|®|y){y|W]=0 for any product state
|X><X|®|y><y| Then we have A(Y)=Y®1A/dA+ P(Y®}1A) P/dA—1A®TrA[Y]®1A/(1(i, )
48

Ew(X,y)=(Xy|W|xy)=Tr[ [ X){X|® . . . .
w(xy) = O Wixy) =Tl [x) x| @ y){y| Wi where P is the swap operator defined H9|i)®|k)®|j)

43) =|j)®|k)®|i). We can now define an operatdr on Hpa

:Z Wiji XY XY -
ijkl

We can interpret then the requirement thdtpLg\W]=0 as a
positivity condition on the bi-Hermitian forri,,(X,y) asso-
ciated with the entanglement witneds where bi-Hermitian
means that the form is Hermitian with respectxtand Her-
mitian with respect tg. It is a well-known result that check-
ing positivity of an arbitrary real form is aNP-hard prob-
lem, and the result in Ref9] implies the same is true for

®@Hg given byZ=A*(Zy+Z;+7Z,), whereA* is the ad-
joint map of A and is defined as the map that satisfies
T A(X)Y]=Tr XA*(Y)] for any Hermitian operatorX, Y.

For our particular case, this map takes the form

A*(V)=Tro[V]/da+ Trc[ PVP]/dp— 1,2 Trad[ V]/da.
(49)

Then we have

bi-Hermitian forms. This is the reason why constructing en-

tanglement witnesses is not easy in general.

T pZ]=THA(p)(Zo+Z1+2Z,)]=TH[FoZ]. (50
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Let psepbe any separable state. Then we know that therevhere the eigenvalueg, and\ , are nonnegative, since both
is a PPT symmetric extension pf¢, or, equivalently, the P andQ are PSD. If we study the associated foEg(x,y),
primal problem(23) is feasible. Then from Eq(13), and we have
using the fact that=0, we have that TiFoZ]=0 for all
dual feasibleZ and so from Eq(50) we have

EW<x,y>=<xy|<P+QTA>|xy>=§ |iep{ ol xy) |2

Tr[Pse;z:lZOa (51 )

for any Z obtained from a feasible dual solutich This

means that any operatd@r constructed in this way, satisfies

one of the two properties required in Eg1), and is there- +2

fore a candidate for an entanglement witness. P
Now consider the case in which the primal problem is not

feasible for a given state This can only occur if this state is  with [¢p) =% ¢fi[ij) and|$,) =3 ¢fij). The last equal-

entangled. We can then use the arguments presented in Ay in Eq. (54) shows thatE,(x,y) can be written as a sum

pendix B to affirm that there must be a feasible dual solutiorof squared magnitude€SOS, which proves its positivity.

Zgy that satisfies TF¢Zgw]|<0. Using Eqgs.(50) and(51)  This property is an alternative description of decomposable

we can see that the corresponding Hermitian operzggy ~ €ntanglement witnesses.

-3 IR VoS vhey

2
: (54)

\/h—p%} ¢ﬁ X Yi

satisfies the two conditions Now imagine that we have a stgig¢hat is PPT entangled,
whose entanglement is detected by the second test of the
T pZew]<0 and Tfpse,zEw]?O, (52)  hierarchy(i.e., p does not have a PPT symmetric extension to

two copies of partyd). Then we know that the dual SDP will
which means thaZg,, is an entanglement witness for the provide us with an entanglement witnéégs,, for this state.

statep. _ ~ Let us concentrate on the properties of thisy. First, it is
Even though we have shown the calculation explicitlyclear that it cannot be decomposable, since decomposable

only for the second test of the hierarchy, similar reasoningew's can only detect states that are not PPT. By setting
can be applied to all tests to show that if the primal problemy, o= [XY)(xy| in Eq. (51), we have that

is infeasible, there is a dual feasible solution that can be use

to construct an entanglement witness for the sgat&he TH XWXV Z e 1= (X Z e XV = E> (x.V)=0. (55
EW'’s obtained for each of the tests have very well-defined L) OvlZewl = (x| Zewlxy) =Bz, (x,y) =0. (89
and interesting algebraic properties, that can also be used
interpret each step in the hierarchy as a search for EW'’s of
particular form.

;Qccording to Eq.(50), we have

T Ixy)(xy|Zew] = THA(xy)(xy)(Zo+ Z1+ Z)]. s
Algebraic properties of the entanglement witnesses (56)

For any EW there is an associated bi-Hermitian formThe operatoA maps a statp in H,® Hg into an operator in
given by Eq.(43). We have shown that the requirement that Ha® Hg® Ha that is invariant under swaps of the two copies
an entanglement witne&¥ is positive on all separable states, of A and yields the original staigwhen one of the copies of
is equivalent to requiring the associated foEfx,y) to be A is traced out, but is in general not positive semidefinite.
positive. Now consider the statexyx)(xyx. This state is invariant

Let us consider an EW obtained from the first test in theunder swaps of copies of systel and also satisfies
hierarchy, which corresponds to the usual PPT criterion. It isTrc[ [XyX)(xyx|1=|xy)(xy|. Then we know that there must
a well-known result that all states that fail this criterion, canexist some coefficienta; such that
be shown to be entangled by an entanglement witness of the
form xy0oyX= Ay + S 8,6y, (57
W=P+QT, (53

since theG; form a basis of the space of matrickksatis-
fying the swapping symmetry andJdmM ]=0. According to
nEq. (44) we have TrG;Z;]=0, and hence we can rewrite Eq.
(56) as

where bothP andQ are positive semidefinite operators. En-
tanglement witnesses that have this form are called deco
posable. If we note b)k%) the eigenvectors oP and by
|#p) the eigenvectors o, we can write

T [xy)(xY|Zew] = TIL Xy X)(XYX(Zo+ Z1+ Z,)].
P:% Kp|‘//p><’/’p|a (58

Combining Egs(55) and(58), we have

Q=2 Aol o), A Zend ) = (XYM (Zo+ Z1+ ZD)xyR. (59)
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Since we are working with normalized states, we know thatompatible with the symmetry requirements, while the SOS

(x|x)=1, so we can multiply the left-hand side of E&9) decomposition obtained from the non-PPT family involves

by this factor without changing the equality, obtaining squared magnitudes of polynomials involving only the vari-
ables §;,y;). The completeness theorem tells us that for any

EZ (X Y(XIX) =(xyX(Zo+Z1+Z5)[xyx). (600  EW obtained from any of the two families, we could make

the associated bi-Hermitian form into a SOS by multiplying

This equation is, in principle, only valid when the variablesby a certain power of the SOS forr (|x;|?). However, the

x; and y; correspond to a normalized state, i.e., whenvalue of the power needed in the non-PPT case will be in

3i[x|?=1 and3,|y;|*=1. However, since both sides of Eq. general higher than for the PPT case.

(60) are homogeneous functions of fourth degree onxthe We presented our family of separability criteria as the

and of second degree on thig, we can extend this equality search for an extension of the original stat¢hat satisfied

to all values of the variables, and interpret E0) as an  certain symmetries and had positive partial transposes, and

equality between two forms that is satisfied everywhere. Bushowed that this search could be put in the primal form of a

we can now rewrite the right-hand side of E0) as SDP. From the discussion above, we can see that by looking
at the dual SDP, we can interpret this hierarchy as a search
(XYX(Zo+Z1+Z5)[xyx) = (XyXZo|xyX) over possible entanglement witnesses for the stdtet are

k-SOS for soméx. Note that this interpretation also applies to
the non-PPT family of criteria, the only change being the
type of terms allowed in the SOS decomposition. The com-
pleteness result proved in Sec. V tells us that the set of all

. Ta Ts . . entanglement witnesses that &&0S for some, is suffi-
SinceZ,, Z,* andz,® are positive by construction, EGL)  gient for proving entanglement of any state. This raises a
gives an explicit sum of squares decomposition of the rlghtvery interesting question: are all EWSOS for some? We
hand side of ch60)._We can conclude then that even thoughyyj|| now show that most EW are, and the only ones that may
the formEz_ (x,y) is not a SOS, it becomes a SOS whennot pe are those that are extremal in the sense that their
multiplied by the strictly positive SOS forrx|x)=3;|x;|2. associated hyperplane touches the set of separable states.
This property holds for any EW obtained from the secondThese are the optimal EW’s from Ré¢B].
test. Let us first introduce some definitions regarding convex

This result generalizes to all steps of the hierarchy: thesets. A seK is said to be a convex cone if it is convex and
bi-Hermitian form associated with an EW obtained from theclosed under linear combinations with nonnegative coeffi-
(k+1)th test of the hierarchy, can be written as a SOS whemients, i.e., ifx,ye K and a,b=0, thenax+byeK. The
multiplied by the SOS forngx|x)*=(Z;|x;|?)%. We will say  dual cone ofK is defined askK* ={z:(z,x)=0VxeK},
then that these EW's afeSOS. Then for example, an en- where(,) represents some inner produebte thatk* will be
tanglement witness that is 0-SOS is decomposable, since itiifferent for different inner produc}slt is easy to show that
associated form can be written as a S@& will use SOS K* is actually a closed convex cone everKifis not closed.
instead of 0-SOS for this particular cask is clear that if an ~ An important property is thdi42]
EW is k-SOS, it is alsd-SOS for alll=k. Note that fork
=1, all k-SOS entanglement witnesses are indecomposable. (K*)*=cl(K), (63)
As we discussed in Sec. V, searching for symmetric ex-

tensions with no PPT requirement generates another conithere clK) represents the closure &t

(YN ZA Xty

+(xy* x|Z£B|xy* x). (61)

plete family of separability criteria. For this family, E660) Let Sbe the set of all unnormalized separable steds.

takes the form a closed convex cone. Its dual coneS8={Z:Ti[Zpg]
=0,V psepe S, Which contains the set of all entanglement

EZ. X Y)(X[X) = (XyXZo|xyX), (62)  witnesses. If §*)° notes the interior o8*, we have §*)°

={Z:Tr{Zpsed >0V psepe S}
since now the LMI has only one block, corresponding to the Theorem 2Let W be an entanglement witness such that
positivity requirement on the extension. Sirggis PSD, the We (S*)°. ThenW is k-SOS for some, i.e., 3k such that
right-hand side of Eq(92) still is a SOS, so we will still say  Ew(x,y)(2i]x|?)" is a SOS.
thatZgy is 1-SOSor k-SOS if we replacéx|x) by (x|x)kin ~ Proof. Let O, ={Z:Ez(x,y)(Zi|x|*)* is a SO$. This is
Eq. (62)]. The main difference between Eq62) and(61) is  just the set of entanglement witnesses that &®OS.
in the type of terms that appear in the sum of squares decontlearly, O,C Oy ; andO,CS*. Now we define the set
position. Note that Eq62) involves only squares of polyno- -
mials in the variablesx;,y;) while the second and third 0= U O,. (64)
terms in the right-hand side of E(1) correspond to squares k=0
of polynomials in the " ,y;,x) and ;,y;,y\) variables,
respectively. This situation extends to all the steps of théD is a convex cone, although it may not be closed. We will
hierarchy. The SOS decomposition generated by the PPiiow show that the dual of this cone is the $etlLet pgp
family involves the squared magnitudes of all possible poly-e S. For anyZe< O, 3k such thatZe O,. But Ze S*, so
nomials in the variablesx(,y;) and their conjugates that are Tr[ Zpg.,|=0, which means thats.,c O*, so we have
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SCO*. (65) VIl. EXAMPLES

* . . We now present some examples for which we applied our
Now, let pe O* and assume ¢ S; the'np IS an entangled_. techniques to prove entanglement of certain PPT entangled
state. By the completenes.s of the hlerarchy. of separablht)étates’ and to construct the appropriate entanglement wit-
tests, we know that there is a value lofor which T{Zp]  npesses. For all these examples, the second test of the hierar-
<0 for someZe O,CO, and then we must have¢ O*,  chy (searching for PPT symmetric extensions to two copies
which is a contradiction. Then of party A) was sufficient to show entanglement. We used

MATLAB to code the corresponding SDP, and used the pack-

. ageSEDUMI [46] to solve it. The code is available from the
o*cs. (66)  authors on the internét7].

From Egs.(65) and(66), we haveS=0O*. Then we can use A. 3®3 state

Eq. (69) to state thaS" =cl(O), which means We consider the following state, described in REgf],

given by
(S*)°co. (67)
. 2 a 5—a
If We(S*)° then by Eq.(64) there existsk such thatW pa=?|¢+><¢+|+70++TVU+V, (68)
e Oy, and hence it i%-SOS. |

This theorem has a very nice geometric interpretation. Itwith 0<a<5, |y, )=(1#3)S2 i), o.=21(|01)(01
says that the sequence of convex coBgsapproximates the  +]12)(12+]20)(20)), and V the operator that swaps the
convex cone of all entanglement witnes&¥sfrom the in-  two systemgnote they are both the same spadéotice that
side, giving a complete characterization of its interior inp,, is invariant under the simultaneous changexof:5—
terms thek-SOS property. On the other hand, the entangleand interchange of the parties. The state is separable for 2
ment witnesses on the boundaryS¥f may not bek-SOS for <a<3 and not PPT fow>4 anda<1, which was proved
any k. They satisfy TrZpee]=0 for some separable state in Ref. [7] by using a positive map that is not completely
psep and correspond to the optimal entanglement witnesseositive due to Choj20]. Our code solves the SDP for this
discussed in Ref6]. state in abou5 s on adesktop computer. From this solution,

As we briefly mentioned in Sec. Il, the separability crite- Numerical entanglement witnesses can be constructegl,for
ria based on searching for certain extensions of a state cdf the range 3 e<a=4 (and I @<2-¢) with e=10"°.
easily be generalized to the study of multipartite entangle® Witness fora>3 can be extracted from these by inspec-
ment. The dual formulation of searching for an EW with 10N
certain algebraic properties also clearly applies to the multi-
partite case. It is known that multipartite entanglement can-  7_ = 2(]00)(00|+ |11)(11] +|22)(22]) +|02)(02|
not be characterized in terms of bipartite entanglement alone
[43,44). However, our approach can be generalized to the +]10)(10 +|22)(21 =3[, ) (¢ |- (69)

multipartite case in order to construct another sequence qérom this entanglement witness, the Choi fdi28] can be

tests that is also complete. These results will be rePorteP'ecovered. This observable is non-negative on separable
elsewherd45]. states

A(XY|Zew| xy)(X|X) = 3|X2XoyT = XaXa¥§ |2+ 3[X1XF Yo — XaX§ Val 2+ 3| XX Yo — XoX5 Yol 2+ 3 XoXE Yo — XaXF ya|
+[2XoXE Y2 2X1X5 Y1+ XoX5 Y2 — XoX5 Yol >+ [2XXT Yo — 2XoX5 Y1+ XoXT Yo — XqX] V4|2

* * *12 * * * * 2
+[2X0X1Y5 = XoXoYT — X1XoYg |“+ | 2X0XG Yo — 2X1X5 Y1+ X1X] Yo— XX Y| “=0.

The expected value on the original state i§ZEp,] B. 4®4 state
=1(3—a), demonstrating entanglement for al>3. Ap-
plying the non-PPT tests to this state fails to show entangle-
ment for «<3.84, even if we apply the sixth test, showing
that this hierarchy can be considerably weaker than the PPT
hierarchy.

We consider next thed4 state given by48]

1
p”‘:2+a(|‘//1><‘!’1|+|¢2><l//2|+a'(7), a=0,
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where VIIl. PROPERTIES OF THE SETS OF ENTANGLED
STATES WITH PPT SYMMETRIC EXTENSIONS

For everyk, let us consider the set of states that are not
detected by théth test of the hierarchy, which can also be
characterized as the states having PPT symmetric extensions
! to k copies of partyA. They generate a sequence of nested

_ sets, each one containing the set of separable states. The
¢2_§(|01>+|10>+‘f2|33>)’ completeness theorem tells us that this sequence actually
converges to the set of separable states. It is natural then to
try to understand the properties of these particular sets. First
o= }(|02><02|+|03><03|+|12><12|+|13><13| of all, it is not difficult to see that thgse sets are all convex
8 and compact. But there are other interesting questions we
can ask about them. Are they nonempty? Is this sequence
infinite or does it collapse to a finite number of steps for
certain cases? What is the volume of the subset of entangled
Applying the PPT criterion yields provable entanglementstates contained in each set? Are these sets invariant under
only for those states withv<<2v2~2.82843. It was sus- LOCC? In this section we will address some of these ques-
pected[48] that the state was actually entangled for all non-tions by explicitly constructing states with PPT symmetric
negative values of.. Using our criteria, we show that this is extensions and studying the implications of their existence.
indeed the case, and provide an explicit entanglement wit-
ness and its decomposition. Again, only the second level of A, Constructing entangled states with PPT symmetric
our hierarchy is needed. Using essentially the same approach extensions
as in the example above, from the dual solution of the
semidefinite program we identify a particular witness

1
Y1=5 (|00 +[12) +v2]22),

+120)(20 + |21)(21] +|30)(30 + [31)(31]).

We will now show explicitly how to construct an en-
tangled state that passes the second test in the hierarchy,
which means it has a PPT symmetric extension to two copies
W=(|22)—|00)) ({22 —(00)) + (|22 —|11))((22 —(11]) of systemA. We will proceed by studying the properties of
an EW obtained from the second test under a particular scal-
+(133—102))((33 —(01) +(|33)~[10)((33 —(10) ing and then use duality arguments to infer the existence of
+[23)(23 +|32)(32] - |22)(22 - |33)(33. the required entangled state. The procedure is based on a
scaling technique developed recently by Rezri€$].

) ] ) ) Let p be a PPT entangled state that is detected by the
This witness is non-negative on all product states, as thgecond test of the hierarchy. Then we know that there is an
following identity certifies: entanglement witnes that satisfies TpZ]<0 and

Z i 7
(XY WEXY)(XIX) = 05 Yot XX Vo= XaxX§ 2= X5t Vsl Ozaytxl) s a SOS, (70
F IXaXE Vr A XX Vg — XX Vo— XXX a2 Which implies that TrZpge|=0 for any separable statgg,,.
XoXD Y1+ XiXT Y1~ XaX1 V2~ XX Vsl Since p is PPT, we know that the bi-Hermitian form
+|XoX% Yo+ XaX5 Yo — XoX5 Yo— X1X5 ¥4 (Xy|Z|xy) cannot be a SOS, otherwigecan easily be shown
. . . . 12 to be decomposable and hence unable to detect a PPT en-
+[X2X3 Y31 X3X3 Y3~ X1X3 Yo~ XoX3 Y1 tangled state, which would be a contradiction. Now, let us
consider the following Hermitian operator:
+|X1X3y3 — XoXoY3 >+ [XoXay3 g P

—ra-1yt -1
—X1X2Y5 |2+ X1 XaYE —XoXaYi |2 Zy=LAT) ®llZIA @ lg], ()

+ [ XoXaYE — X Xay¥ |2=0. with A=diag(1yy,...,y), y>0. This operator satisfies

(xy|Z,Ixy)=((A")y|Z|(A"*x)y)=0, (72)
Applying the witnessW to the state, we obtain Wp,]
=-2(2-1)/(2+ a) <0, therefore certifying entanglement sinceZ is positive on product states. Now consider the state
for all values of« in the allowable range.

We have applied the second test of the hierarchy to many _i
bound entangled states found in the literature of dimensions Py™N
up to 6 by 6. In all cases, this test has been sufficient to
demonstrate entanglement and construct numetanad in ~ with N a positive normalization constant. The staig is
some cases analytidantanglement witnesses. However, we entangled for ally>0, because
know from complexity arguments that there must be states
that pass the second test in the hierarchy but are nonetheless
entangled as we will discuss in the next section.

(Ao 1g)p(AT®1p), (73

1
Tilp,Z,1= T pZ]<O0. (74)

022308-13



DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 (2004

This, together with Eq(72), proves thatZ,, is actually an  because it belongs 107 (equivalently, it passes the second
entanglement witness. Now, let us assume Fais 1-SOS  tes), but is detected by an EW i®,, (because it does not
for all >0, that is belong toO%) and hence is entangled.

The discussion above shows that there has to be an en-

(xy|Z,|xy)(x|x) is a SOS. (75 tangled state that passes the second test, but it does not give
By using Eq.(71) and introducing the variablés=A"1x, an explicit construction. But since we know tlzaf ceases to
we obtain be inO, for some small value of, and since we have shown
that it detects the entanglementgf for all y>0, we could
(Xy|Z|Xy)(AX|AX) is a SOS, (76)  be tempted to say that then, has to be a state that passes

. . ~ the second test for small enoughThe problem is that even
where the SOS structure is preserved due to the linearity ahoughz, is an EW forp,, it is not clear that there is not
the transformation from toX. Specializing forAin Eq.(76)  another EW inO, that detects the entanglementgf. How-
we get ever, even if we are not assured that it would be the case, we

ol TN 2 1 2092 1 . can still check whetheg ., actually passes the second test for
(XylZ[xy)[Xi+ v* (X + +XdA)] is a SOS. (77) small y. We did this numerically using our code for the case

) ) _of the Choi statg68) with «=3.0001, and we found that
Since the set of forms that can be written as a SOS is & geed there is a valug* =0.4901 of the parameter such

closed set,_ the assertion in E@.7) must also be valid for that for all y<y*, the statep,, is entangled but cannot be
y=0, and in that case we must have that detected by the second test of the hierarchy.

(Xy|Z|Xy)%Z is a SOS. (78)
B. Properties of the hierarchy
But this implies that the form(Xy|Z[Xy) is itself a SOS,

which contradicts our assumption. Then we conclude thag From an algebraic point of view, the resuit of the previous
there must be a valug* >0 such that for ally<y*, the subsection is related to the fact that the fixed multiplier ap-

. proach to proving nonnegativity by finding a SOS decompo-
entanglement witness, has the property that sition does not behave well under linear transformations. A
(xy|Z,xy)(x|x) is not a SOS, (79 solution to this problem may be allowing the multipl(eﬂx)
to vary as well, although it appears that this approach to
Note that this argument is only based in the fact that there i§hecking for entanglement cannot be stated as a SDP.
a PPT entangled state detected by the second test of the From a physical point of view, this result has a very in-
hierarchy. Whenever this happens, we know that we can corieresting interpretation. The transformation represented by
struct an EW that satisfies E€9), regardless of the dimen- Ed.(73) corresponds to applying an element of a POVM that
sionality of the subsystems. acts locally on system and leaves systeid alone. Such a
We can now very easily show that the existence of an Ewransformation can be implemented by local operations with
satisfying Eq(79) implies the existence of an entangled statesome finite probability. We see then that by stochastic local
that is not detected by the second test. We just need a ve@perations and classical communicati®.OCC's, we can
simple lemma of convex analysis. transform a state that is detected by the second test into a
Lemma 1 Let K; and K, be two closed convex cones state that is not. Moreover, since the ma#n Eg. (73) is
such thatk; CK,, whereC represents strict inclusion. Then invertible, the reverse transformation is also possible under
the dual cones satisfigs CK¥ . SLOCC. Then we could start with the stgié, whose en-
Proof. Recall the definition of the dual of a cone K*  tanglement is not detected by the second test, and by LOCC
—{z|(zx)=0¥xecK}. Let zeK%, then (zx)=0, Vx operations obtain, with some probability, a statehat is _
eK,. SinceK,CK,, (zx)=0, ¥xeK,, sozeK* and detected by the second test. This shows clearly_that, unlike
h * % T ' ' the PPT class of states, the classes of states derived from the
enceK; CKY . Now, letXe K, such thak ¢ K;. Assume . ; X .
. S . * second and higher tests of the hierarchy are not invariant
thatK3; =K7 . Letze K7 ; then we also havee K5 and so under SLOCC.
(2%)=0. But since this is tru&/ze K7 , this means theX This scaling behavior of both states and entanglement wit-
e K" =Ky, sinceK, is closed, and this is a contradiction. nesses is very general and has very important consequences
Then we must hav&; CK7 . B on the hierarchy of tests. First, note that if we assumezZbat
In our case we have the closed convex cor@s sk-SOS(for any fixedk) for all y>0, this will be equivalent
={Z:(xy|Z|xy)(Zi[x|?)" is a SO$, k=0,1,..., that we have to replacing(x|x) by (x|x)¥ in Eq. (75). We can then follow
already defined for the pl’OOf of theorem 2. In this section wehe exact same steps discussed after('B)_and arrive to the
have shown that if there is an entangled state that is detectehme contradictiofi.e., that(Xy|Z|Xy) is a SOS. Then for
by an EW inO; that is not inOg, thenO, is strictly con- v small enough(xy|zy|xy><x|x>k must cease to be a SOS
tained inO,. According to the lemma above this means thatfor any fixed value ok. By applying lemma 1 again, we can
5, Which is the set of states that are not detected by theonclude that if a PPT-entangled statexists inH,® Hg,
third test of the hierarchy, is strictly contained@j , the set  then for any value of k, there must be an entangled state
of states that are not detected by the second test. Thus, thifat is not detected by theh test of the hierarchy. Note that
there has to be a state that is not detected by an E@;in  this result depends only on the existence of at least one
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bound entangled state, and not on the dimensions of the sy&onsider the following semidefinite program in the dual
tem. Since there are explicit examples of bound entangletbrm:

states in &3 [Eq. (68)] and 24 (see Ref[13]), and we o .

can (by embeddinguse them to construct bound entangled maximize —Tr[P+Q A]/dadg,

states iINN®@M, NXM>6, we can conclude that there are
always entangled states H,o® Hg, daxXdg>6, that pass
the firstk tests in the hierarchy, for any fixed In other
words, the hierarchy never collapses to a finite number of

steps, even for fixed dimensiongxcept in the already whereH(Y)=Y—(Tr[Y])1/dadg is a linear map that out-
known cases of 22 and 223). . . puts the traceless part of We can make E¢(80) take the

A very interesting question has to do with what is actually more familiar form(12) if we introduce the matrix variable
the volume of the set of entangled states that are detected l;y defined byX=P&Q [X will play the role of Z in Eq.
the kth test, but are not detected by thle(1)th testfor  (12)]. The final equality constraint may be enforced by a
equivalently, the set of states that have PPT symmetric Xjite number 2d2—1) of trace constraints that define the
tﬁnsmrr:s to k—1) copies ofA, but not tok copied. EVen  maicesr and the coefficients; . F is then proportional to
t cl)ug we cannot glveh anyr/]_estlrlnate on the value of thishe igentity. By adding a sufficiently large multiple of the
volume, we can assert that this volume is finite, i.e., the set Iriljentity to any matrix satisfying the trace constraints, it is

guestion has nonzero measure when we consider the measyjig o : fo
. i - ys possible to construct ah=P® Q>0 also satisfying
on the set of states introduced in RE0]. This is true for all e constraints. This means that the optimization is strictly

values ofk for which this set is nonempty. The proof of this feasible. Lety be the optimum value of the objective func-

fact is a straightforward translation of the result presented irf'on —THP+0"Al/dxdn . andP be th |
lemma 7 of Ref[50]. This lemma proves that if a convex set z;ndQ th([a\t ac(r?]ie\;e thie ’optimu?rﬁt, h?"p‘ e the values oP

C, strictly contains a compact convex $&f that itself con-

tains a nonempty ball, the@; contains a nonempty ball that n=—Ti[Z/dAdg], (81)
does not intersed®,. In our case we can takg, to be the

set of states with PPT symmetric extensions ke-() but  then fore=Tr[Z/dadg]+ =0 it is clear that we can write
not to k copies ofA, andC, the ones with extensions to

subject to P=0, Q=0,

H(P+QT4)=H(2), (80)

copies. Since botlE; andC, are convex and compact, and Z=(Poprt eJlAB)JrQ(T);\t, (82
C, contains the set of separable states that contains a non-
empty ball, the lemma proves that there is a nonempty ball oivhich shows thaZ is decomposable.
states that have PPT symmetric extensionskte 1) copies We have stated the semidefinite program in its dual form.
of A, but not tok copies. The primal form is worth considering since in the case where
Z is nondecomposable, it constructs bound entangled states
IX. CONSTRUCTING BOUND ENTANGLED STATES that are detected by. Using the formulaq11), (12), and
FROM INDECOMPOSABLE ENTANGLEMENT (80), the primal form may be shown to be
WITNESSES L
minimize TfZp]—Tr[Z/dxdg],
In previous sections we have discussed how to use
semidefinite programs to implement separability criteria, and subject to p=0, p'A=0,
in particular we showed how to exploit the duality of the
SDP to generate an indecomposable entanglement witness T p]=1, (83

from a bound entangled state. In this section we will show
that we can also use a SDP to test whether a given entanglehere now the variables are the components of the ptate
ment witness is decomposable. If the EW is indecomposablegome basis. The completely mixed state is strictly positive
the dual program constructs a bound entangled state that &d is a feasible solution of E¢83). Thus, because of the
detected by the witness. The results of this section were restrict feasibility of both the primal and dual problems the
ported in Ref[51] which we follow closely. optima of these two programs are eq{i28] and there are
As discussed above, a sufficient but not necessary condinatricespqp:, Popt, Qopt @Chieving the optimum. By comple-
tion for any Hermitian matriXZ to be an entanglement wit- mentary slackness the range Bfy, is orthogonal to the
ness is for it not to be positive but rather decomposable agnge ofp,, and the range oQ, is orthogonal to the range
Z=P+Q"A, where P=0, Q=0. Such entanglement wit- of P;ﬁt-
nesses are obtained whenever a state fails the first test of the syppose now that the optimuny satisfies 7<
hierarchy, which is just the PPT criterion. These entangle--T({z/d,dg]. This, together with =Tt Zpopd
ment W!tpesses can only detect entangled state_s that have_arr[ Z/ddg], means that
nonpositive partial transpose. As it was shown in Esf),
the bi-Hermitian forms associated with them can be written Tr{ Zpopd <O. (84)
as a SOS.
If we know only the matrix elements & it may not be  Since we know thaZ is an EW, then Eq(84) means that the
clear how to determine whethé&ris decomposable or not. statep,y is entangled. Furthermore, since this state is a fea-

022308-15



DOHERTY, PARRILO, AND SPEDALIERI PHYSICAL REVIEW A69, 022308 (2004

sible solution of Eq(83), it must SatisfypTAt20’ so this state  duantum states. In particular, there is aone to one correspon-
is bound entangled. For af§=0, Q=0 c\)}\)/e have dence[11] between entanglement witnesses and positive

non-CP maps. Since the hierarchy of separability tests offers
TH(P+0TA =T Pp.]+THOp A1=0, (85 a characterization of the interior of the set of entanglement
LP+Q M) popd LPPopd [Qp"pt] @ witnesses, it is not difficult to translate this characterization

s0Z cannot be decomposable, since it satisfies(84). to the set of positive non-CP maps. To do this, we use the
We will now show thatp,y is a so-called edge PPT en- fact that for any linear operatdre A,® Ag, we can define

tangled state. Sincp,y is a PPT entangled state, we can@ mapA e £(Ax,4p) by

Write pop=(1—P) psegt PS, Wherepg, is separableg is a N iy .

so-called edge PPT entangled state, ane0 is the mini- (KIA(DDIM = (e kILj)@]1). (89

mum value for which such a decomposition is possi@lel.  conyersely, Eq(89) can be used to uniquely construct the

An edge PPT entangled staféhas the property th_at f(_)r any operatorL from the mapA. Equivalently, we can writ¢19]

pure product statéx,y) and >0, 5— €|x,y){x,y| is either

not positive or not PPT. Since [pg.|=0 (because is an A(p)=Tra[L(p"®1p)], (90)

EW), if p<1 then _ _
wherep is an operator in4,. Note that the same operator

T Zpop] >Tr[Z5]. (86) Le Ap,®Ag can be used to define two different maps in
) o . L(Ax,Ag) and in L(Ag,Aa). It was shown[19] that this
But Eq. (86) contradicts the optimality gy, Unlessponis  relationship gives in fact a one to one correspondence be-
itself an edge PPT entangled state. tween entanglement witnesses, i.e., Hermitian operators that
This SDP finds the canonical decomposition of angre positive on separable states but have a negative eigen-
indecomposable EW discussed in R¢R5]. Defining €  value, and positive non-CP maps. By using E3§) it is not

=—Ti{ Zpox]>0, we have difficult to see that the interior of the set of entanglement
witnesses, which correspond to thosg that satisfy
Z=Popt QIA— el (87) :
opt™ Nopt~ €'ABs Tr[Zpse >0 for any separable staig, is mapped onto

. .. . the set of positive maps that map any nonzero positive
and as a result of the original dual form of the optimization, semjdefinite operator into a positive definite operator. Our
€ is the smallest value for which such an expression holdgyaracterization of entanglement witnesses will translate into
with P=0, Q=0. The range properties ¢foy, Qqp, an a characterization of this subset of positive maps. The maps
Popt Mean that this is the canonical form férntroduced by  hat are left out are those that send at least one PSD operator

Lewensteinet al. [25]. into a another PSD operator that is not positive definite.
In Sec. VI we showed that an¥ in the interior of the
X. CHARACTERIZATION OF POSITIVE MAPS cone of all entanglement witnesses ksSOS for somek.

It has been known for quite some time that there is a close$‘ince they correspond to strictly ppsitive map_se ones that
relationship between entanglement witnesses, positive p{1aP any nonzero PSD operator into a positive d_efl_nlte op-
Hermitian forms, and positive magd2,20. In particular, eratob_,_we can c_haractenze these maps by associating a bi-
this relationship was exploited in Rdfl1] to give a com- Hermitian form directly to the map, using E(@9). Then we

plete characterization of the separability problem in terms ofan state that a map is strictly positive only if the form
positive maps. We will now show how to translate the prop- EAOGY) = (YA (X)X )]y)

erties of the entanglement witnesses generated by our hierar-

chy of separability tests into a characterization of the set of

strictly positive maps. =% (KA DI X yixjy, 91
Let us denote byd, and Ag the set of linear operators
acting onH, andHg, respectively. We will calll(Aa ,.Ag), is k-SOS for some value d.

the set of linear maps froml, to Ag. We say that a map We can also give an interpretation of this characterization
A e L(Ap,Ag) is positive, if for any operatot e A5, L in a language that only involves statements about maps. To
=0, thenA(L)=0. A completely positive(CP) map, is a do this we need to analyze in more detail some of the prop-

map A such that the induced map erties of the EW generated by the SDP. Let us consider the
family of separability criteria that searches for symmetric
Ap=A@1, AN® My— Ag® M, (88)  extensions of a certain state, but does not require positive

partial transposes. It is not difficult to see that the entangle-

is positive for alln, with M, being the space of operators in .1t witnesses generated by the second test will satisfy

a Hilbert space of dimensiamand],, the identity map in that

space. CP maps have very important applications in charac- (XyX(Zew® 1) |Xyx) = (xyx|Zo|xyx), (92)
terizing the set of physically meaningful evolutions of a
quantum state. for all stategx) and|y), with someZ,=0. This is the analog

It is clear that any CP map is also a positive map. How-to Eq. (60). It is not difficult to show that this equality im-
ever, there are positive maps that are not CP. This has veplies that the operatorggy® 1, and Z, actually coincide
important consequences on the study of entanglement afhen they are restricted to the symmetric subspace of the
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copies of systemd\. Furthermore, this is true for any number
of copies of system\. If we denote by, the projector onto
the symmetric subspace Off\’k (which we will denote by
HY), we have

(’7Tk® JB)(ZEW® 1A®(k’1))( 7Tk®JlB) = (7Tk® lB)ZO( 7Tk® 1?53)

SinceZ, is PSD on the spack @ Hg® Hf(k_l) , its restric-
tion to the tensor product dHEk and Hg remains PSD,
which is the right-hand side of E¢93). The completeness
theorem of Sec. V then tells us thatdt,y is a strictly posi-
tive entanglement witness, then there must exist a flofte
which Eq.(93) is true.

We can now use the isomorphism defined by B89) to

PHYSICAL REVIEW A69, 022308 (2004

TABLE I. Number of extensions and optimal value @f

=~

o

0.4
0.58769
0.68556
0.72727
0.77663
0.80766

0.823529
0.846137

O ~NO UL WN P

interior of the cone of positive maps. Consider now a convex

restate Eq(93) in terms of properties of maps. First we use COmbination ofA, and the positive map\z_ induced by
the fact that this isomorphism gives a one to one corresporthe witness in Eq(69), i.e.,

dence between PSD operatirg A,® Ag and CP maps\
e L(Ag,Ap). Let A: Ag— A, be the positive noiGP map

associated wittZg,,, and Ieth:AAHAHEk be defined by
A(p)=m(p®lpea1)my. Equation (90) can be used

Osa=<l.

A,=(1—a)Agt+ aA}EW,

to check that the map associated with the operatof "€ MapAz  is in the boundary of the cone of positive

(m®18) (ZEW® lag (k-1)) (7c® 1g) is given by

(AkoA):ABHAHEk. (94)
However, since the right-hand side of E§3) is PSD, this
map has to be completely positive.

On the other hand, i\ is not a positive map, then the
map (A A) cannot be completely positive for akyThis is
true because the map, always maps a non-PSD matrix into
a non-PSD matrix, as we can easily show. |igbe an ei-
genvector of a non-PSD operatorin H,, with negative
eigenvalue. Thexi|o|i)<0. For anyk the vector|i)®¥ be-
longs to the symmetric subspagg< and satisfiesr,|i)®¥
=]i)®k. Then we have

(YA (D) = (| *) m(o@ 17 D ([1)®¥)
=({(i|®9) (@12 )([i)*Y

—(i|oli)=<0, (95)

and szk(a) cannot be PSD. Thus, we have the following
result.

Theorem 3.If the map A: Ag— A, is strictly positive,
then there is a finitek such that the map A eA): Ag
—>AHEk is completely positive. If for some the map

(/TkoA) is completely positive, ther is a positive map.

maps. We have normalized the maps so tha(l;)=1;.
Since for «=0 we haveA,=A, and for a=1 we have
AazAQEW, the mapsA , are contained in a line segment

with end points near the center and in the boundary of the
cone of positive maps, respectively. This implies thatis a
strictly positive map fore<<1.

A natural question in this case is to determine the ranges
of « for which we can effectively recognize positivity by
applying the result of theorem 3. For this, as explained, we
have to form the tensor product of the given map wkth
—1 copies of the identity, project on the symmetric sub-
space, and check whether the resulting matrix is positive
semidefinite. The computation of the optimakan be done
in this case by solving a simple generalized eigenvalue prob-
lem.

We have solved this numerically, for valueslofip to 8
[this involves matrices of size-8*7k 1), i.e., 135¢135].

The obtained extreme values are shown in Table |, whése
the number of extensions. The results are consistent with the
expected behavior lip, . a=1.

Notice that the convergence appears to be relatively slow,
of order 1k; in contrast, the SDP tests presented earlier
based on the PPT hierarchy can get all the way to the bound-
ary =1 in just one step.

It is interesting to note that Jamiotkowski also studied the
problem of checking positivity of map®1]. His approach
was related to ours in the sense that he showed that checking
positivity of a given map was equivalent to the non-

Since this characterization of positive maps does not renegativity of a certain associated real polynomial. He then

quire solving a SDP, because we only need to check positivapplied a general technique for checking positivity of poly-

ity of a matrix, it is interesting to study how efficient this nomials. As discussed in the Introduction there are several
approach is in actually proving positivity of a map. To an-such algebraic methods and they all scale badly with the
swer this question we consider the following example baseg@roblem size. In our case the specific problem of checking
on the case of the @3 state considered in Sec. VIIA. Let positivity of a linear map between matrix algebras has been

the mapA, be defined as\y(p)=(1/n)Tr[p]ls, wherel,
stands for the identity map ifilz. The mapA, lies in the

reduced to a series of tests of matrix positivity, but none of
them succeeds uniformly for all maps. However, it is still the
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case that for many instances, the positivity of a given lineament witnessgsfrom the inside, giving a complete charac-
map can be determined and certified efficiently. terization of its interior.
We can also interpret the primal formulation as the con-
struction of a sequence of nested cones that approximate the
X1. CONCLUSIONS AND DISCUSSION cone of separable states from the outside. It is worth com-
paring this point of view with the results in R¢52], where
In this paper we have discussed a family of separabilitya semidefinite program was used to approximate the cone of
criteria for bipartite mixed states. Each criterion consists inseparable states from the inside. This result, however, only
searching for an extension of a given state in a bigger spacapplies when one of the subsystems has dimension 2, and
formed by adding a number of copies of one of the sub-gives a complete characterization of separability only in this
systems, and requiring this extension to be symmetric undgparticular case, while our hierarchy works for arbitrary di-
exchanges of the copies and to remain positive under anfensions of the subsystems.
partial transpose. A failure to find such an extension proves The hierarchy of tests allows us to divide the set of en-
entanglement of the state, since it can be explicitly showr@ngled states into different classes, according to whether
that separable states have the required extensions. If an éfiey have PPT symmetric extensionsk@opies of one of
tension is found, the test is inconclusive. This family of testsN® parties or not. This generates a nested sequence of sub-
can be arranged in a hierarchical structure, with each tesi€tS Of entangled states. This sequence can be shown to be

being at least as powerful as all the previous ones, and witfinite for all dimensions of the subsystems, except for 2
the first test corresponding to the well-known Peres-®2 and 23 where it is well known that the PPT criterion is

Horodecki PPT criterion. enough to characterize entangleméint these two special

This hierarchy of tests has two main properties that mak&aSes; the hierarchy collapses to the first)steprthermore,
it useful and appealing. First, the hierarchy is complete: anyf the set of states with PPT symmetric extensions ko (
entangled state will fail one of the tests at some finite point_ 1) copies ofA but not tok copies is nonempty, then it can
in the sequence. Second, each test can be cast as a semid@g-Shown to have nonzero measure. These classes of states,
nite program, which can be efficiently solved. Furthermore however, are not closed under SLOCC operations, since we
by exploiting the dual structure of semidefinite programs.can transform a state that is not detected by the second test

whenever a state is proven to be entangled by failing one df'to @ state that is, with finite probability and by applying

the tests, an entanglement witness for that state can be eR0ly local operations.
plicitly constructed. This duality can also help us to interpret
the hierarchy as trying to prove entanglement of a state by ACKNOWLEDGMENTS
searching for entanglement witnesses with a particular alge-
braic property that states that the bi-Hermitian form associ- It is a pleasure to acknowledge stimulating conversations
ated with the entanglement witness can be written as a suitith Hideo Mabuchi, John Doyle, John Preskill, and Ben
of squares when multiplied by a fixed sum of squares to &chumacher. Thanks to Patrick Hayden for suggesting an
certain power. The completeness of the hierarchy can then bgprovement in an earlier proof of theorem 1, and to Nicolas
used to show that this algebraic property characterizes all th@isin for providing us with the PPT entangled state in Sec.
elements in the interior of the cone of entanglement wit-VIl B. A.C.D. gratefully acknowledges conversations with
nesses. Barbara Terhal. F.M.S. thanks Oscar Bruno for many clari-

We analyzed the computational resources needed tfying discussions regarding the completeness theorem. P.A.P.
implement these tests. We found that for a fixed test in thé&cknowledges interesting conversations with Bruce Reznick.
hierarchy, they scale polynomially in the dimensions of theThis work was supported by the National Science Founda-
state. When we keep the size of the state fixed, the resourcéign as part of the Institute for Quantum Information under
also scale polynomially with the number of copies added, ofsrant No. EIA-0086083, the Caltech MURI Center for
equivalently, with the order of the test in the hierarchy. ThisQuantum NetworkgGrant No. DAAD19-00-1-0374 and
behavior is very interesting in light of recent results on thethe Caltech MURI Center for Uncertainty Management for
worst case complexity of the separability problem. It hasComplex Systems.
been shown that checking separability of a state iN&n
hard problem when we study the scaling with respect to the
dimensions of both parties, so computational resources to
solve it cannot scale polynomially in this general case. In our
family of tests this nonpolynomial behavior is reflected in  We will now introduce a slight modification of the SDP
how high up the hierarchy we need to go to detect all engiven in Eq.(23), that has the advantage of performing better
tangled states. Even though each test is efficiently implenumerically. WithF given by Eq.(22), let us consider the
mentable, there are states for which we need to go arbitraril§ollowing SDP:
high in the hierarchy to show that they are entangled.

The dual formulation of the hierarchy can also be under-

APPENDIX A: IMPROVED SDP FOR IMPLEMENTING
THE TESTS

; minimize t,
stood as the construction of a sequence of cones, each one
containing the previous ones, that approximate the dual of
the cone of separable statéghich contains the entangle- subject totlagat+ F(X)=0, (A1)
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where 1,54 IS the identity matrix on the spac®,® Hg =3, xFi, and A+B={yly=a+b,acA beB}. Feasi-
®Ha. Itis clear that we can always choossuch that the  pjjity of the SDP is equivalent t& e S. The setS is obvi-

LMI on the second line of EqA1) is satisfied. If the mini-  ously convex. Now, ifS is also closed, then we can apply the
mum oft is negative or zero, then there exists a valueof separating hyperplane theorem, and conclude the existence
such thaf(x)=0, which is equivalent to say that E@3) is  of a W as above.

feasible. On the other hand, if the minimum tofs strictly The difficulty, of course, is that in general the sum of two

positive, then we know thaf(x) cannot be PSD. Thus we closed sets may not be closed. In particular, in SDP things
see that feasibility of Eq(23) is equivalent to whether the can go wrong. For instance, for

minimum of Eq.(Al) is strictly positive or not. So we can
use Eq(A1l) to detect entangled states. This approach has the
property that the SDPAL) is always feasible. This property
makes the SDP solver behave better numerigdlgcause it
uses an interior point algorithmThis is in fact the SDP that

our code is solving when applying the tests to a given quanghich is obviously infeasible, it is not hard to see that no

x 1
1 0

=0

tum state. withnessW=0 as above can exist. This can be traced back to
the fact thatS in this case is not closed.
APPENDIX B: STRONG DUALITY AND SDP So, what conditions can be required to guarantee $hat
INFEASIBILITY be closed? An often-used criterion is the so-called Slater con-

dition [42], which in our case is the following. If
ker 7 Nri K* #0, thenK+rangeF is closed. HereF* is
m the adjoint map ofF, K* is the dual conéequal toK, in this
Fot >, XFi=0. case, and ri denotes the relative interior of a set.
i=1 In other words, to guarantee the existence of infeasibility
witnesses of the form we describédr any possible-g), it
is sufficient to show &> 0, that satisfies TF;Z]=0, for all
TIF,W]=0, T{F,W]<O0, i=1,...m. Notice that this looks similar to the certificate
we are after, except th&t, does not appear in the expression
then the SDP is necessarily infeasible, as follows by the arfotherwise, the condition would be uselesén general,
gument given after Eq(14). Under what conditions does checking whether the Slater condition is satisfied in concrete
such aW exist? As we mentioned earlier, we need some formproblems is not too difficult. For our SDP’s in Eq23) and
of strong duality to hold. (44), it is immediate to show that the criterion is indeed
Consider the seS:=K+rangeF, whereK is the PSD satisfied, as all the matricés are traceless, so we can just
cone, F:R™—S" is the linear map defined byF(x) takeZ=1>0.

We want to obtain infeasibility witnesses for the SDP

Clearly, if we can find aN=0 such that
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