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Single-atom cooling by superfluid immersion: A nondestructive method for qubits

A. J. Daley, P. O. Fedichev, and P. Zoller
Institut für Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria

~Received 25 August 2003; revised manuscript received 17 October 2003; published 17 February 2004!

We present a scheme to cool the motional state of neutral atoms confined in sites of an optical lattice by
immersing the system in a superfluid. The motion of the atoms is damped by the generation of excitations in
the superfluid, and under appropriate conditions the internal state of the atom remains unchanged. This scheme
can thus be used to cool atoms used to encode a series of entangled qubits nondestructively. Within realizable
parameter ranges, the rate of cooling to the ground state is found to be sufficiently large to be useful in
experiments.
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I. INTRODUCTION

Neutral atoms are one of the most promising candida
as carriers for the storage and manipulation of quantum
formation @1#. Qubits may be stored in long-lived intern
atomic states with very low levels of decoherence, and m
be manipulated using interactions between the atoms
external devices~such as lasers! or interactions among the
atoms themselves.

An experimental prerequisite for this is the developm
of techniques to trap single atoms, and there has been m
progress over the last five years both in optical traps@2,3#
and in magnetic microtraps@4#. In addition, specific imple-
mentation of quantum computing usually requires cooling
atoms to the vibrational ground state of the trap, or at leas
the Lamb-Dicke limit. Many techniques have been dev
oped including the widespread use of laser cooling@5#.

One of the most promising routes to quantum compu
tion with neutral atoms is the use of Bose-Einstein cond
sates~BEC’s! @6# loaded in optical lattices@7,8#, a system
which has been realized in part in a number of recent exp
ments@3,9–11#. There are several theoretical proposals
the implementation of quantum logic gates in such syste
@12–16#, and the first steps towards the fundamental exp
mental techniques required for some of these have been
cently realized. For example, the recent demonstration
spin-dependent transport in an optical lattice@9# makes pos-
sible the implementation of a fundamental quantum ph
gate by cold controlled collisions@12# in which qubits are
encoded using two different internal states of the atoms
the optical lattice.

However, most of these proposals require the transpo
qubits, which is usually associated with heating of the atom
motion @9#. A question then arises as to how that motion m
be cooled back to the ground state without changing
internal state of the atoms, and thus destroying the qubit
their entanglement. Laser cooling, for example, is clearly
applicable here as the process of light scattering causes
coherence. The same problem arises in scalable ion
quantum computing, and there it has been overcome u
sympathetic cooling schemes, in which ions used to enc
qubits are cooled via a coulomb interaction with either
single ion which is directly laser cooled@17# or another spe-
cies of ions which are directly laser-cooled@18#. In a differ-
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s
-

y
nd

t
ch

f
to
l-

-
-

ri-
r
s
i-
re-
of

e

in

of
ic
y
e
or
t
e-

ap
ng
de

ent context, sympathetic cooling schemes are also wid
used in the field of cold quantum gases, where they h
been used to cool different spin states of the same ato
species@19#, to cool different bosonic species@20#, and to
cool Fermi gases brought into contact with a BEC@21#.

In this article we consider the sympathetic cooling of
single atom in a harmonic trap in contact with a superflu
This is readily expanded to the case of many harmonic tra
which is a good approximation for an optical lattice witho
tunneling. The motion of the atom is damped by the gene
tion of excitations in the superfluid, and the resulting cooli
rates are sufficiently large to be useful experimentally.
addition, decoherence of a qubit encoded on the atoms
be eliminated in this scheme provided that the inter
atomic states used to encode the qubit are chosen carefu
order to satisfy particular collisional requirements.

II. OVERVIEW

In this section we give a short summary of the most i
portant results contained in this article. Derivations and f
ther discussions of these results follow in the remaining s
tions.

Our goal is to cool a single trapped atom representin
qubit u0&, u1& without destroying the superposition state
the qubit ~or the entangled state in case of many atom!.
Cooling of the atom is achieved by sympathetic cooling, i
mersing the atom in a superfluid, which plays the role o
very cold reservoir. By a proper encoding of the qubit
internal atomic states, and choice of the atomic level for
superfluid reservoir~see Sec. III A! we can ensure that~i! the
qubit is not destroyed by opening collisional channels to
wanted final states, and~ii ! the u0& andu1& states have iden
tical collisional properties with respect to the collisional i
teractions with the superfluid, and thus the collisions do
randomize the relative phases of the qubit.

Cooling is considered within a model in which the atom
are treated as being trapped in independent one-dimens
~1D! Harmonic oscillator potentials with trapping frequen
v, and interact with the superfluid via a density-density
teraction, generating excitations in the superfluid, which
modeled as Bogoliubov excitations in a weakly interacti
Bose gas~Sec. III! and have momentum\q and energy«q .
In discussing this cooling process we can restrict ourselve
©2004 The American Physical Society06-1
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a single component of the qubitu0& ~or u1&). Justification for
the use of a density-density interaction is provided in App
dix A, where the dispersion relation for a free foreign partic
interacting with a superfluid is derived.

A master equation is derived for the density operator
this system~Sec. III C and Appendix B!, from which the
time evolution of the probabilitypn that the atom is in the
nth motional state of the harmonic oscillator potential
shown to be

ṗm5 (
n.m

Fn→mpn2 (
n8,m

Fm→n8pm1(
n

Hn,m~pn2pm!.

~1!

The terms with coefficientFn→m ,

Fn→m5
2p

\ (
q

uZn,m~q!u2d„\v~n2m!2«q…, ~2!

whereZn,m are the matrix elements of the interaction Ham
tonian in the basis of harmonic oscillator energy eigensta
~Fock states!, describe the transitions from staten to statem
due to generation of excitations in the superfluid, and
terms with coefficientHn,m ,

Hm,n5
2p

\ (
q

N~q!uZn,m~q!u2d~\vun2mu2«q!, ~3!

describe the transitions between staten and statem due to
interactions with thermal excitations at finite temperatur
This is illustrated in Fig. 1.

If the speed of sound in the superfluid isu, and the mass
of superfluid atoms ismb , then the behavior of the coolin
process can be separated into two regimes—where the
tion of the oscillating atom is subsonic (\v!mbu2/2) or
supersonic (\v@mbu2/2). In the supersonic regime, coolin
from any excited oscillator state occurs directly to all lowe
energy states, including a significant transition rate direc
to the ground state~Sec. IV A!. The resulting rate of energ
loss«̇(n) for a particle in thenth oscillator state is not linea
in n, but instead~for lattice and superfluid atoms of equ
massm) is found to be

FIG. 1. The motion of an atom in a harmonic trap immersed
a superfluid is cooled by the generation of excitations in the su
fluid. Terms in the equations of motion with coefficientsFn→m de-
scribe transitions from oscillator stateun& to stateum& by creation of
excitations, while finite temperature contributions with coefficie
Hn,m account for the interaction of the system with thermal exc
tions.
02230
-

f

s

e

.

o-

-
y

«̇~n!'2
gab

2 r0m3/2

p\4A2
a@«~n!#3/2, ~4!

wheregab is the coupling constant for interactions betwe
the atoms in the lattice and the superfluid,r0 is the conden-
sate density,«(n)5\vn, anda;0.3 is a constant.

If we consider the slowest transition rate, that from t
first excited state to the ground state, we find that the ch
acteristic transition time,t, is given by

vt1→0

2p
;1.2310223

1

r0aab
3

aab

l 0
, ~5!

whereaab is the scattering length for the interaction betwe
atoms in the lattice and the superfluid, andl 05A\/(mv) is
the size of the harmonic oscillator ground state. Thus, asl 0 is
typically an order of magnitude larger thanaab , andr0aab

3

;1024, t is of the order of 10 oscillator cycles. This is
sufficiently rapid cooling rate to be useful experimentally.

In the subsonic regime, damping still occurs because
oscillatory motion of the atom is accelerated~Sec. IV B!.
Significant rates are found only for transitions betwe
neighboring oscillator levels, and«̇(n) is found to be linear
in n,

«̇~n!'2
gab

2 r0v4

12pmambu7
«~n!. ~6!

When the superfluid is at a finite superfluid temperatureT,
the system is cooled to the temperatureT of the superfluid.
The final distribution of occupation probabilities is shown
be a Boltzmann distribution,

p̄n5 p̄0e2n\v/(kBT)5~12e2\v/(kBT)!e2n\v/(kBT), ~7!

wherekB is the Boltzmann constant~Sec. IV C!. If the tem-
perature corresponds to an energy much smaller than
Harmonic oscillator spacing,kBT!\v, then the population
in excited motional states is negligible. For example, ifv
;2p3105 s21, \v/kB;5 mK, so that forT5500 nK, we
then obtain 12 p̄0'531025.

The situation in which the collisional interaction betwe
atoms in the lattice and superfluid atoms are not identical
the two qubit statesu0& andu1& is considered in Sec. V. If the
scattering lengths for interactions between atoms in the q
states and atoms in the superfluidaab is expressed asa0 and
a1 for atoms from each of the two qubit states, then the r
of decoherence is found to be proportional to (a12a0)2.
This rate is also proportional to the transition rate betwe
motional states, except for an ‘‘initial slip’’ in the decohe
ence@also proportional to (a12a0)2] which occurs on the
timescale of approximately one oscillator cycle.

A semiclassical treatment of this system in the WKB a
proximation~Sec. VI! gives a result for the supersonic ca
which is different from the full quantum result by only 12 %
A similar treatment in the strongly subsonic regime giv
exact agreement with the earlier result.
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SINGLE-ATOM COOLING BY SUPERFLUID . . . PHYSICAL REVIEW A69, 022306 ~2004!
In Sec. VII we investigate a somewhat different model
the excitations, in the context of a quasi-1D superfluid. T
resulting damping rates are found to be small except in
regime where the superfluid is very strongly interactin
which is a difficult regime to obtain experimentally. Finall
Appendix C contains semiclassical estimates for small a
tional damping terms which arise at finite temperatures
have been neglected in earlier calculations.

III. THE MODEL

A. Avoiding decoherence

The total Hamiltonian of the cooling process for a sing
atom can be written as

Ĥ tot5Ĥqubit1Ĥmotion1Ĥsuperfluid1Ĥ int , ~8!

whereĤqubit is the Hamiltonian for the internal states of th
atom, denotedu0& and u1&, on which the qubit is encoded
Ĥmotion is the Hamiltonian for the atomic motion of the ato
which is to be cooled,Ĥsuperfluid is the Hamiltonian for the
superfluid, andĤ int describes the interaction between t
atom and the superfluid. In order to cool a qubit witho
decoherence, the internal state of the atom being co
should remain unchanged during the cooling process. If
write the initial internal state of an atom in a particular latti
site asuc&, and the combined density operator for the init
mixed motional state of the atom and the state of the su
fluid as R̂(0), so that the total initial density operator i
uc&^cu ^ R̂(0), then the overall Hamiltonian for the coolin
process,Ĥ tot , must satisfy

e2 iĤ tott/\uc&^cu ^ R̂~0!eiĤ tott/\5uc&^cu ^ R̂~ t !. ~9!

Thus Ĥ tot must be of the formĤ tot5(u0&^0u1u1&^1u) ^ Ĥ.
This requirement is satisfied provided that the interact
Hamiltonian,Ĥ int is independent of the internal state of th
atom in the lattice. Thus, the trap potential must be the sa
for the two internal statesu0& and u1&, and the scattering
lengthaab between atoms in the superfluid and atoms in
lattice @22# must also be the same for the two internal stat
The identical scattering lengths can be arranged by choo
symmetric spin configurations, for example, by choosingu0&
and u1& to be internal states with angular momentum qu
tum numberF51 and magnetic quantum numbersmF5
61, and the superfluid atoms to be in an internal state w
F51 and mF50. In order to make such a configuratio
stable against spin-exchanging collisions@23#, these states
should all be in the ground state of the manifold, and
prevent the creation of pairs of lattice atoms from superfl
atoms@24#, the energy of themF50 level should be lowered
with respect to themF561 states~for example, by using a
laser@25#!.

We must also ensure that when we haveN qubits (N
.1), the entanglement between them is not destroyed w
the motion of one or more of them is cooled. The conditi
in Eq. ~9! is once again sufficient for the suppression
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decoherence, but nowuc& is the total internal state of the
N-qubit system, andŴ is the total combined density operato
for the motional state of each qubit and the state of the
vironment. Physically, the condition is now modified so th
the interaction between any atom and the superfluid mus
both independent of the internal state of that atom, and in
pendent of the internal state of all other atoms. Because
interaction is a density-density interaction, this second
quirement is always fulfilled. Note that when the correlati
length of the superfluid is shorter than the separation
tween atoms, it is possible for the motional state of differe
atoms to become entangled. However, this will not affect
state of theN-qubit system, as the qubits are encoded sol
on the internal states of the atoms, which remain at all tim
separable from the motional states. The situation in wh
the states used to encode the qubit are not appropriately
sen to ensure symmetry in the collisional interactions is c
sidered in Sec. V.

B. Hamiltonian for the oscillator-superfluid interaction

After imposing the requirement from the preceding se
tion, we consider only the motional degrees of freedom
the atoms in the optical lattice, which are assumed to
confined in particular lattice sites, where the motional sta
can be approximated as those of an harmonic oscillator. C
pling to the superfluid occurs in the form of a density-dens
interaction that generates excitations in the superfluid, wh
we model as Bogoliubov excitations in a weakly interacti
Bose gas@26#. The Hamiltonian for the combined system
an atom in a lattice site and the superfluid~for the motional
atomic degrees of freedom only! is given by

Ĥ5Ĥmotion1Ĥsuperfluid1Ĥ int , ~10!

whereĤmotion is a 3D harmonic oscillator Hamiltonian with
frequencyv, which describes the motional state of the ato
Ĥsuperfluid is the Hamiltonian for the superfluid excitation
and Ĥ int is the interaction Hamiltonian.

Ĥsuperfluid5E01 (
qÞ0

«~q!b̂q
†b̂q , ~11!

whereb̂q
† and b̂q are creation and annihilation operators f

Bogoliubov excitations in the superfluid with momentum\q
and energy«(q), and E0 is the ground-state energy of th
superfluid.

Ĥ int5gabE dr̂~r !dr̂atom~r !d3r5gabE dr̂~r !d~r2 r̂ !d3r

5gabdr̂~ r̂ !, ~12!

where dr̂atom is the density operator for the motion of th
atom, r̂ is the position operator for the atomic motion
states,dr̂ is the density fluctuation operator in the superflu
and gab54p\2aab /(2m) is the coupling constant for the
interaction, withaab the scattering length for interaction
6-3
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DALEY, FEDICHEV, AND ZOLLER PHYSICAL REVIEW A 69, 022306 ~2004!
between superfluid atoms and atoms in the lattice@22#, and
m5(mamb)/(ma1mb) the reduced mass of an atom in th
lattice with massma and a superfluid atom with massmb .
The density fluctuation operator may be expressed asdr̂

5Ĉ†Ĉ2r0, whereĈ5Ar01dĈ is the second quantize
field operator for the superfluid andr0 is the mean conden
sate density. In terms of the creation and annihilation ope
tors for Bogoliubov excitations, we can write

dĈ5
1

AV
(

q
~uqb̂qe

iq•r1vqb̂q
†e2 iq•r !, ~13!

whereV is the normalization volume,

uq5
Lq

A12Lq
2

, vq5
1

A12Lq
2

, ~14!

and

Lq5
«q2~\q!2/~2m!2mu2

mu2
. ~15!

The energy of excitations with momentum\q is

«q5@u2~\q!21~\q!4/~2mb!2#1/2, ~16!

and the speed of sound can be expressed asu
5Agbbr0 /mb, wheregbb54p\abb /mb with abb the scat-
tering length for interactions between atoms in the superfl
@26#. In a weakly interacting Bose gas at sufficiently lo
temperatures~where the condensate density is much sma
than the density of the normal component!, the term from
dĈ†dĈ may be neglected~see Appendix C!. In this case we
can write

dr̂5Ar0

V (
q

@~uq1vq!b̂qe
iq•r1~uq1vq!b̂q

†e2 iq•r#.

~17!

For the motion of atoms in the lattice, we make the appro
mation that the damping of in each dimension can be can
considered independently, and thus we treat the atom as
oscillator with frequencyv, i.e.,

Ĥatom5\v~ â†â1 1
2 !, ~18!

whereâ is the lowering operator for the motional state of t
atom. The position operator for the 1D oscillator isx̂
5A\/(2mav)(â1â†), wherema is the mass of the atoms i
the lattice. We can also writeq• r̂→qxx̂, where qx is the
component ofq in the direction of the oscillator motion.

C. Damping Equations

In deriving equations for the damping of the system
assume that the cooling rate is significantly slower than
period of the oscillator, and we treat the BEC as a reser
in which the correlation time is much shorter than the cor
02230
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lation time of atoms in the lattice. Under these assumptio
the master equation for reduced density operator descri
the motional state of an atom in the lattice,ŵ(t)
5TrR@Ŵ(t)#, where TrR denotes the trace over the superflu
states, is derived in Appendix B.

We define the projection operatorP̂ onto a basis diagona
in the oscillator Fock statesum& (Hmotionum&5\v(m
11/2)um&) as

P̂X̂5(
m

um&^mu^muX̂um&, ~19!

so that

P̂ŵ~ t !5(
m

um&^mupm . ~20!

Because we assumed that the oscillator trap frequencv
@t21, wheret is the characteristic timescale on which tra
sitions take place due to interaction with the superfluid,
coupling to off-diagonal elements ofŵ(t) in the Fock state
basis is very small, and the state occupation probabilitiespn
satisfy a closed set of equations. From Appendix B we th
see that

ṗm5 (
n.m

Fn→mpn2 (
n8,m

Fm→n8pm1(
n

Hn,m~pn2pm!.

~21!

HereFn→m is the damping coefficient at zero temperature
transitions from staten to statem, andHn,m are the coeffi-
cients of the finite-temperature corrections due to the abs
tion and scattering of thermal excitations. The zero tempe
ture damping coefficients are

Fn→m5
2p

\ (
q

uZn,m~q!u2d„\v~n2m!2«q…, ~22!

and the system matrix elements of the interaction Ham
tonian are given by

Zn,m~q!5^muĤ intun&5~uq1vq!gabAr0

V
^mue2 iqxx̂un&.

~23!

Note that Eq.~22! is Fermi’s Golden rule for the transition
from stateum& to stateun& via interaction with density fluc-
tuations in the superfluid, and that the restrictions on
summation in Eq.~21! are written for clarity, but actually
result from thed function in Eq.~22!, due to whichFn→m is
only nonzero whenn.m.

The finite temperature corrections are given by

Hm,n5
2p

\ (
q

N~q!uZn,m~q!u2d~\vun2mu2«q!,

~24!

where N(p)5(exp@«p /(kBT)#21)21 is the mean number o
thermal Bogoliubov excitations with momentum\p present
6-4
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in the superfluid, withT being the temperature in the norm
component of the gas andkB the Boltzmann constant. Be
cause we are interested in cooling the system to its gro
state, we assume that the temperature of the superflu
small,kBT!\v. This is very realistic experimentally, and i
this regime we can make the approximationHn,m'0. The
consequences of these terms are described in Sec. IV C

Also note that in the derivation of these equations
assume that the terms indr̂ arising fromdĈdĈ† may be
neglected. This approximation holds when the temperatur
much smaller than the critical temperature, so that the c
densate densityr0 is much larger than the density of th
thermal component. The contribution from these terms
finite temperatures is estimated in Appendix C.

From the transition rates, the energy dissipation rate o
oscillator in the stateun& can then be calculated as

«̇~n!5(
m

\v~n2m!Hm,n2 (
m,n

\v~n2m!Fn→m .

~25!

The total-energy dissipation rate for an atom in a mixed s
can be written as«̇5(n\vnṗn , which in terms of Eq.~25!

is given by«̇5(n«̇(n)pn .

D. Supersonic and subsonic motion regimes

We note that for typical experimental parameters in
lattice and the BEC,\v@mbu2/2. For example, a Rubidium
BEC with densityr0;1014 cm23 and scattering lengthabb
;100a0, wherea0 is the Bohr radius, hasmbu2/(2\)52p
33.73102 s21, while typically for an atom trapped in a
optical lattice,v;2p3105 s21. Thus, as the maximum ve
locity of the atom may be estimated asA2\v/ma, we see
that for a typical experimental system andma;mb , the atom
velocities are supersonic. In this strongly supersonic reg
the requirements of energy conservation in Eq.~22! mean
that even for a transition between states wherem andn differ
only by 1, the excitations are in the particle branch of t
Bogoliubov excitation spectrum. In this regime, the mome
tum of excitations generated in the superfluid\q@mbu as
\2q2/(2mb)>\v@mbu2/2. Hence,«q'\2q2/(2mb), and
uuq1vqu2'1.

If the superfluid was made sufficiently dense or stron
interacting, or the oscillator frequencyv was made suffi-
ciently small that the motion of the oscillating atom w
subsonic for all oscillator states which are initially excite
then energy conservation would cause the excitations to b
the phonon branch of the spectrum. In this regime, the m
mentum of excitations generated in the superfluid\q
!mbu, so that«q'\uq, anduuq1vqu2'\k/(2mbu).

Note that the coefficientsuq andvq can be related to the
dynamic structure factorS(k,ṽ) of the superfluid which is
often used in relevant literature@27#. In terms of the symbols
used here,S(k,ṽ)5uuk1vku2. In the same way as previ
ously discussed,S(k,ṽ)'1 for large values ofk@mbu/\,
while for smallk, S(k,ṽ)}k.
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In the following, we treat both the supersonic and su
sonic regimes. As discussed previously, the supersonic
gime is the more relevant of the two in current experimen
However, the subsonic regime could be specifically en
neered in experiments, and provides an interesting comp
son in terms of the physics of the damping mechanism.

IV. RESULTS

The matrix elements in Eq.~23! can be expressed in th
position representation as

^mue2 iqxx̂un&5E
2`

`

e2 iqxxcn* ~x!cm~x!dx, ~26!

wherel 05A\/(mav) is the oscillator length,qx is the com-
ponent of q in the direction of the oscillator,cn(x)

5e2x
2
/(2l 0

2
)Hn(x/ l 0)/Al 02nn!Ap is the position wave func-

tion for the stateun&, and Hn(x) is a Hermite polynomial.
Using the identity *2`

` dxe2(x2y)2
Hm(x)Hn(x)dx

52nApm! yn2mLm
n2m(22y2), which assumesm<n, we

can express the matrix elements~for m,n) as

^mue2 iqxx̂un&5Am!

n!
e2 l 0

2qx
2/4S 2 i l 0qx

A2
D n2m

Lm
n2mS l 0

2qx
2

2 D ,

~27!

so that

Fn→m5
gab

2 r0

2p\

m!

n! E0

`

q2dqd~\v~n2m!2«q!
A2

l 0q
uuq1vqu2

3E
2 l 0q/A2

l 0q/A2
dje2j2

j2(n2m)uLm
n2m~j2!u2. ~28!

This expression can be further analyzed separately in
supersonic and subsonic motion regimes, where the resu
behavior is remarkably different.

A. Supersonic case

Applying to Eq. ~28! the approximations given in Sec
III D for the case of supersonic motion yields the express

Fn→m5E
2A(n2m)(mb /ma)

A(n2m)(mb /ma)
dje2j2

j2(n2m)uLm
n2m~j2!u2

3
gab

2 r0mb

p\3l 0A2

m!

n!
. ~29!

The dimensionless function Fn→m8 5p\3l 0A2Fn→m /
(gab

2 r0mb) is plotted in Fig. 2, and shows the dependence
Fn→m on n andm. It is immediately clear that for allm,n
the transition rate coefficient is significant. In fact, for a
statesun&, the transition rate directly to the ground state is
the same order as all other allowed transitions. This co
sponds to the atomic motion generating a rich distribution
superfluid excitations, which is characteristic of the regim
6-5
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DALEY, FEDICHEV, AND ZOLLER PHYSICAL REVIEW A 69, 022306 ~2004!
where the motion of the atom is supersonic with respec
the velocity of sound in the superfluid~see Sec. IV B for a
comparison!.

If we consider the energy dissipation rate~25! for a sys-
tem in stateun& in the low-temperature limit (kBT!\v),
then we see that the largest contribution comes from tra
tions directly to the ground state or first excited state~Fig. 3!.
In addition, the complicated excitation spectrum results i
nonexponential energy damping law, i.e., the energy diss
tion rate for a staten is not proportional to the energy of th
state. We find instead forma5mb5m ~Fig. 4! that

«̇~n!52
gab

2 r0m3/2

p\4A2
a@«~n!#3/2, ~30!

FIG. 2. The value ofFn→m8 5p\3l 0A2Fn→m /(gab
2 r0mb), show-

ing the coefficients of the transition rate from staten to statem in
the case of supersonic motion, as computed numerically from
~29! with ma5mb .

FIG. 3. The value of (n2m)Fn→m8 , showing the contributions
to the energy dissipation of the system from transitions from stan
to statem in the case of supersonic motion. These results are c
puted numerically from Eq.~29! with ma5mb .
02230
o

i-

a
a-

wherea50.3, and«(n)5\vn is the energy of staten mea-
sured with respect to the ground state. The total energy w
respect to the ground state is then«5(n«(n)pn , so that«̇
52ã(n@«(n)#3/2pn'2ã«3/2, provided that «3/2

'(n«(n)3/2pn . The time dependence of the total energy
then approximately given by

«~ t !'S 1

«21/2~ t50!1ãt/2
D 2

, ~31!

whereã52gab
2 r0m3/2v3/2a/(p\5/2A2).

The nonexponential damping law we obtain here can
understood in terms of a simple classical argument fo
‘‘foreign’’ atom moving uniformly through the superfluid at
supersonic velocity. Ifsab is the scattering cross section fo
the foreign atom interacting with the superfluid, then the a
erage number of collisions per unit time isr0sabp/ma ,
where p/ma is the velocity of the lattice atom propagatin
through the superfluid. The momentum of the excitation g
erated in a collision isq}p. Because the motion of the for
eign atom is supersonic, the energy of the excitation is
proximately q2/(2mb), and the energy dissipation rate«̇
}r0sabp

3/ma
2}«3/2, which is the same energy dependen

that we observe here.
In practice, this algebraic energy decay will be limited

the slowest transition in the process, that from the first
cited state to the ground state. On shorter timescales, p
lation in higher motional states will be transferred to low
states~including direct transfer to the ground state! until the
only significant population in an excited motional state
that in the first motional state. Then the rate of transition
the ground state will be exponential, as will the decay of
total system energy.

q.

-

FIG. 4. The value ofd«8/dt5( (m,n)(n2m)Fn→m8 plotted as a
function of n for supersonic motion, showing the total rate of e
ergy dissipation for a system instantaneously in a oscillator s
with quantum numbern. The points show the values compute
numerically from Eq.~29! with ma5mb , and the solid line is a
fitted curve of the formd«8/dt5an3/2, with a50.301.
6-6
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The transition from the first excited state to the grou
state is also the most important case for the low-energy
citations which are likely to arise in quantum computing a
plications. Numerically we find that forma5mb , F1→08
50.3789. Thus,

F1→050.3789
gab

2 r0m

p\3l 0A2
. ~32!

The characteristic time for the transition from the first e
cited state to the ground state is then expressed in term
the number of cycles by

vt1→0

2p
5

1

0.3789

\3l 0v

A2gab
2 r0m

5
1

0.3789

1

16A2p2

1

r0aab
3

aab

l 0
,

~33!

assuming thatma'mb . In experiments,l 0 will typically be
an order of magnitude larger thanaab , and the paramete
r0aab

3 ;1024, so the characteristic transition time from th
first excited state to the ground state will be of the order
ten cycles. It is interesting that the small prefactor in t
expression is very important in giving such a rapid cooli
rate. This rate is sufficiently fast to be useful experimenta
particularly given that the transition rates from states w
higher quantum number to the ground state are all of
same order.

B. Subsonic case

Applying the approximations given in section III D fo
the subsonic case to Eq.~28!, we obtain

Fn→m5E
2 l 0v(n2m)/(uA2)

l 0v(n2m)/(uA2)
dje2j2

j2(n2m)uLm
n2m~j2!u2

3
gab

2 r0v3

4pmb\

m!

n!

uA2

l 0v
. ~34!

Figure 5 showsF̃n→m54pmb\u5Fn→m /(gab
2 r0v3) plotted

as a function ofn andm. In contrast to the supersonic cas
we see thatFn→m is very sensitive to the difference (n
2m), and for sufficiently small\v/mau2, the only signifi-
cant contribution to transitions from the stateun& are transi-
tions to stateun21&. This can be seen very clearly in Fig.
which shows the contributions to the overall energy dissi
tion from the stateun&.

If we investigate the rate of energy loss«̇(n) from the
stateun& as given by Eq.~25!, the only significant contribu-
tion comes from the term wherem5n21. For very small
\v/mau2, we can then expand the integrand nearj50, and,
noting thatLn21

1 (0)5n, obtain
02230
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-

«̇~n!'2
gab

2 r0v3

4pmb\

~n21!!

n!

2l 0
2v2

6u2
\vn2

52
gab

2 r0v4

12pmambu7
\vn. ~35!

Thus, as the energy of stateun& measured with respect to th
ground state is«(n)5\vn, the energy damping law is ex
ponential. This is a direct consequence of the fact that
contrast to the supersonic case, only the decay mode into
next lowest oscillator state is significant in the damping p
cess. Figure 7 illustrates from numerical calculations the

FIG. 5. The value of F̃n→m54pmb\u5Fn→m /(gab
2 r0v3),

showing the coefficients of the transition rate from staten to statem
in the case of subsonic motion, as computed numerically from
~34! for l 0v/u50.01.

FIG. 6. The value of (n2m)F̃n→m , showing the contributions
to the energy dissipation of the system from transitions from stan
to statem in the case of subsonic motion. These results are co
puted numerically from Eq.~34! for l 0v/u50.01.
6-7
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DALEY, FEDICHEV, AND ZOLLER PHYSICAL REVIEW A 69, 022306 ~2004!
ear dependence of the damping rate onn. Note that damping
still occurs in this regime despite the fact that the velocity
the atom is slower than the speed of sound in the superfl
This apparently contradicts the Landau derivation of
critical velocity in the superfluid. However, we note that t
Landau criterion is a thermodynamic argument, and can
be applied here, as the motion is accelerated. In fact,
damping law has an analogy with that for dipole radiation
classical electrodynamics~see Sec. VI B!.

An analogy also exists between the supersonic and
sonic motion regimes here and regimes of large and sm
Lamb-Dicke parameter in the context of laser cooling
trapped ions in a harmonic potential respectively. In that s
tem the Lamb-Dicke parameter,h, is the ratio of the size of
the ground state wave function to the wavelength of the co
ing laser, and the interaction Hamiltonian for the system
proportional to eikx̂5eih(â1â†) @1#. Here the interaction
Hamiltonian is proportional toeiqxx̂, and whileh is a fixed
parameter andqx is not, qx is constrained to be a small o
large parameter by the conservation of momentum when
citations are generated in the superfluid.

During the cooling process, the coupling that exi
between two states, which is proportional
u^muexp(2ihx̂)un&u2 is then analogous in the two cases. W
observe cooling directly to the ground state from all exci
states in the supersonic regime, and this is also a chara
istic of cooling schemes in ion traps with a large Lam
Dicke parameter. Whenh or qx are small~the subsonic re-
gime or small Lamb-Dicke parameter limit!, the matrix
elements simplify formÞn, ^muexp@ih(a1a†)#un&'^muih(â
1â†)un&, and coupling only exists between nearest neigh
states~this is known in ion trap cooling as coupling to th
red and blue sidebands only!.

FIG. 7. The value ofd«̃/dt5( (m,n)(n2m)F̃n→m plotted as a
function of n for subsonic motion, showing the total rate of ener
dissipation for a system instantaneously in a oscillator state w
quantum numbern. The points show the values computed nume
cally from Eq.~34!, and the solid line is a fitted straight line of th

form d«̃/dt5an, with a53.4031025.
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C. Finite temperature effects

At finite temperatures, the terms proportional toHn,m in
Eq. ~21! contribute heating effects due to the absorption
thermal excitations in the superfluid. When the temperat
is significant, the final equilibrium motional state distributio
will contain nonzero excited state probabilities. These can
calculated using the detailed balance condition@28#. Consid-
ering the transfer rates for atoms between oscillator st
with consecutive quantum numbers, we write for the equil
rium probability distributionp̄n5pn(t→`),

Fn11→np̄n115Hn11,n~ p̄n2 p̄n11!, ~36!

so that

p̄n115
Hn11,n

Fn11→n1Hn11,n
p̄n . ~37!

Substituting the expressions from Eqs.~22! and ~24!, and
integrating over the modulus ofq, this expression simplifies
to

p̄n115
N~q1!

N~q1!11
p̄n , ~38!

where\q15A2\mbv is momentum of excitations with en
ergy «q1

5\v. Thus,p̄n5@N(q1)/(N(q1)11)#np̄0, and us-

ing the normalization condition(n50
` p̄n51, we obtain

p̄n5 p̄0e2n\v/(kBT)5~12e2\v/(kBT)!e2n\v/(kBT). ~39!

Hence, the equilibrium state occupation probabilities
simply given by the Boltzmann distribution, and the pro
ability that an atom is in the ground motional state isp̄0
512e2\v/(kBT). ProvidedkBT!\v, the absorption of ther-
mal excitations will not significantly decrease the cooli
rate, and will not prevent the cooling of essentially all of t
population to the ground state. This obtainable under reas
able experimental conditions, for example, ifv;2p
3105 s21, \v/kB;5 mK, so that forT5500 nK, we then
obtain 12 p̄0'531025.

V. DECOHERENCE FOR NONSYMMETRIC
INTERACTIONS

In the case where the interaction between the atoms in
lattice and the superfluid atoms is not made symmetric
described in Sec. III A, decoherence of the internal state
occur as the relative phase of the qubit is randomized
collisional interactions with the superfluid. This process c
be modeled by writing the interaction Hamiltonian for atom
in the internal statesu0& and u1& as Ĥ05a0Ĥ int , and Ĥ1

5a1Ĥ int , respectively. BecauseĤ int}gab}aab , a0 and a1
are proportional to the scattering lengths for interactions
tween superfluid atoms and atoms in the lattice in statesu0&
and u1& respectively.

Initially the internal atomic state was neglected in t
derivation of the master equation in Appendix B, as the

th
-
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SINGLE-ATOM COOLING BY SUPERFLUID . . . PHYSICAL REVIEW A69, 022306 ~2004!
teraction Hamiltonian was assumed to be independent of
internal state. In order to estimate the rate of decohere
we must compute the master equation for a density oper
which includes the internal atomic state. Once again proj
ing the density operator onto states which are diagonal
motional state basis, we write

P̂Ŵ5 (
i , j P$0,1%

(
n

un&motmot̂
nu ^ u i &^ j upi j ,n , ~40!

whereun&mot denotes the motional~harmonic oscillator! state
of the atom, andu i &, where i P$0,1% denotes the interna
atomic state. If we take the trace ofP̂Ŵ over the motional
states, and obtain for the density operator, Trmot(Ŵ)
5( i , j u i &^ j upi j , then the rate of decoherence is the rate
decay of the off-diagonal elements,p01 and p10, of this re-
duced density operator for the internal states.

In the long time limit ~for time scales larger than th
oscillator period!, all of the standard approximations made
the derivation of the master equation in Appendix B on
again apply. Rewriting the original master equation for t
new interaction Hamiltonian and neglecting the heat
terms, we obtain

ṗi j ,m5aiaj (
n.m

Fn→mpi j ,n2
ai

21aj
2

2 (
n8,m

Fm→n8pi j ,m .

~41!

Thus, the equation of motional for the elements diagona
the internal states are identical to those given in Eq.~21!,
except that they are multiplied bya0

2 for p00,m, anda1
2 for

p11,m, as is expected.
Taking the trace ofŴ over the motional states, we obta

the equation of motion for the reduced density operator,

ṗi j 5(
m

ṗi j ,m52
~ai2aj !

2

2 (
m

(
n,m

Fm→mpi j ,m .

~42!

For i 5 j , ṗi j 50, so the populations in each internal state
constant, as we expect. The rate of decoherence is give
the decay of the off-diagonal elements, which by compari
with Eq. ~21! is seen to be the rate of cooling transition
multiplied by (a02a1)2/2. In the long time limit with the
superfluid at zero temperature, where the motional states
all cooled to the ground state and cooling transitions ce
the rate of decoherence also goes to zero. If (a12a0)2

!(a11a0)2, so that the timescale on which the cooling o
curs is much faster than that of the decoherence, the
decoherence should be small. However, it is important
note that in the case of finite temperature, transitions
tween motional states will continue to occur after the ato
are cooled to their steady state distribution, resulting in fin
levels of decoherence in the steady-state regime.

For time scales shorter than the oscillator period, the
served decoherence will be strongly dependent on the m
ner in which the atom is introduced into the superfluid. T
the limiting case in which the atom is suddenly immersed
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superfluid~so that the initial overall density matrix is facto
ized into the system and the superfluid!, an ‘‘initial slip’’ in
the coherence occurs, a behavior which can be analyze
directly performing the time integral in~B4! for the com-
bined density operator and interaction Hamiltonian. At ze
temperature, we obtain equations of motion for the eleme
of the reduced density operator for the internal states gi
by

ṗi j '2
~ai2aj !

2gab
2 r0

V\ (
q

~uq1vq!2(
m,n

pi j ,m

3
i ~e2 i [«q2(m2n)\v] t/\21!

«q2~m2n!\v
u^nue2 iqxx̂um&u2. ~43!

Note that ast→`, the factor involving the exponential ap
proximates ad function, and we recover the behavior d
scribed by Eq.~42!. For short times the real part of the term
in this expression for particular combinations ofn and m
exhibit three different types of time dependent behavior,
amples of which are shown in Fig. 8. Forn,m, the terms
the in this expression settle rapidly within one oscillat
cycle to the same values that they produce in the long t
limit, Eq. ~42!, and within the first oscillator cycle give con
tributions of the same order as their long time values. F
n.m, the terms correspond to a small initial rate of coh
ence loss, which decays to zero in much less than one o
lator cycle, a timescale which becomes rapidly shorter
(n2m) increases. Thus, the total decoherence arising fr
these terms is very small. From the terms wherem5n we

FIG. 8. Numerical calculations of the contributions to the init
decoherence slip from terms in Eq.~43!, in the supersonic regime
with \v525mu2. The quantities plotted are dimensionless, a
expressed in terms of2(ai2aj )

2gab
2 r0 /(\3l 0). For ~a! m50, n

50 and ~b! m51, n51 ~solid lines!, we observe an initial deco
herence slip which decays on a time scale of a few oscillator cyc
For ~c! m51, n50 and ~d! m52, n50 ~dash-dotted lines!, the
contributions settle in less than one oscillator cycle to the same
time values given by Eq.~42!. For ~e! m50, n51 and ~f! m
50, n52 ~dashed lines!, the contributions decay rapidly to zero i
less than one oscillator cycle.
6-9
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DALEY, FEDICHEV, AND ZOLLER PHYSICAL REVIEW A 69, 022306 ~2004!
obtain the most significant contributions to the initial dec
herence slip that are not accounted for by the long time
havior. These contributions decay to zero on a timescal
about 2 oscillator cycles, and at their peak values prod
decoherence rates of the same order as terms in the ex
sion for the long time rates. The significant point about th
terms is that they describe decoherence which will oc
even if the atoms are in the motional ground state, in cont
with decoherence in the long time regime. If there is a s
nificant population in the excited motional state, then
initial slip will give a small contribution to the total decohe
ence as compared with the long time behavior. Howeve
the atoms are essentially all in the ground state, then
initial slip produces decoherence which would not otherw
arise. In all cases, the rate of decoherence is proportion
(a02a1)2, so that if the scattering lengths for the statesu0&
and u1& differ only by a small amount, then the total dec
herence introduced will be small.

VI. THE SEMICLASSICAL APPROXIMATION

A. Supersonic case

It is interesting to compare the fully quantum calculati
of the damping rates to the calculation in the semiclass
approximation. Using this approximation, the calculation
performed similarly to the calculation of damping due
radiation from an oscillating charge, which provides a use
physical analogy between the two situations.

In this calculation we make use of the relationship b
tween quantum matrix elements and the Fourier compon
of the classical trajectory of the system@29#. Strictly speak-
ing, this approximation is valid only when the equivale
quantum matrix elements are taken between states of l
quantum number, and where the difference in the quan
numbers is small relative to the quantum numbers. We
discuss the validity of the approximation in practice at t
end of the calculation. The classical trajectory of the atom
the lattice may be written in 1D asr (t)→r maxcos(vt)ẑ,
whereẑ is the axial unit vector along the lattice. Because
motion is periodic with period 2p/v, the frequency spec
trum of the resulting excitations will be discrete with fr
quenciesvn for integern. Analogous to Eq.~22!, we then
write the rate of energy dissipation for the atom in the latt
~at zero temperature! as

«̇52
2p

\ (
q

(
n

uTq~vn!u2d~\vn2«q!\vn, ~44!

where

(
q

uTq~vn!u25(
Nf

U v

2pE0

2p/v

^Nf uĤ intuNi&e
2 ivntdtu2,

~45!

with uNf& being the final state of the superfluid~normally a
state with a particular number of excitations of moment
\q). This expression is also averaged over the initial state
the systemuNi&, which will usually correspond to a therma
distribution of excitations.
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Assuming that we are in the supersonic motion regi
and applying the approximations given in Sec. III D, we o
tain

Tq~vn!5
gabAr0

AV

v

2pE0

2p/v

e2 iqxr maxcos(t)e2 ivnt dt.

~46!

Using the identity

U 1

2pE0

2p

e2 izcos(z)e2 inz dzU2

5Jn
2~z!, ~47!

whereJn(z) is an ordinary Bessel function, and integratin
over the angular values ofq in spherical coordinates the
gives

«̇52
gab

2 r0

2p (
n
E

0

`

dq q2E
21

1

djJn
2~qrmaxj!

3d~\vn2«q!vn. ~48!

We now integrate overq to give

«̇52
gab

2 r0mb
3/2v3/2

A2 p\5/2 (
n

n3/2E
21

1

djJn
2~jaAn!, ~49!

wherea5r maxA2mbv/\. We can see that many values ofn
contribute significantly to this sum, which is analogous to t
full quantum result, in which many different transitions b
tween oscillator levels had significant coefficientsFn→m . As
noted in Sec. IV A, this fact arises from the the motion of t
oscillating atom being faster than the speed of sound in
superfluid. This spectrum of generated excitations can
seen as being analogous to the result for electromagn
radiation from a charge moving faster than the speed of li
~in a dielectric!, which can be computed semiclassically u
ing a similar method to that used here.

It is possible to determine analytically the functional d
pendence of Eq.~49! on r max by finding an approximate ex
pression for the integral overj. In the limit where the argu-
ment of the Bessel function is large, we can write

F~a,n!5E
21

1

djJn
2~jaAn!

'2E
j0

1

dj
2cos2~jaAn2np/22p/4!

pjaAn

'
2

paAn
E

j0

1

dj
1

j
5

2

paAn
lnS a

An
D , ~50!

wherej05An/a is the lower limit forj in which the cosine
approximation of the Bessel function is valid. This expre
sion is strictly only valid forn!a252r max

2 mbv/\. At larger
values of n,F(a,n) is exponentially small, and the func
tional dependence of(nn3/2F(a,n) on a can be found from
the point at which the summation is cut off, and for a syst
6-10
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SINGLE-ATOM COOLING BY SUPERFLUID . . . PHYSICAL REVIEW A69, 022306 ~2004!
of energymavr max
2 /2, nmax5mavrmax

2 /(2\)5a2ma /(4mb). Ap-
proximating the sum by an integral, we can then write

«̇52C
gab

2 r0ma
2mb@112ln~4mb /ma!#v3r max

3

32p2\4
, ~51!

whereC is a constant which for large values ofa is indepen-
dent of a. Fig. 9 shows a numerical calculation ofC(a),
from which we observe that for largea, C;1.75. Moreover,
the approximation is also very good for small values ofa
.2, so thatC is essentially a constant for all physical valu
of a.

If we use the classical expressionr max5A2«/(mav2),
where« is the energy of the oscillating atom, we can rewr
~51! as

«̇52C@112ln~4mb /ma!#
A2 gab

2 r0ma
1/2mb

16p2\4
«3/2. ~52!

As in the quantum case, the damping is nonexponential
result of the rich distribution of generated excitations a
instead«̇}«3/2. If we compare this result to that from Eq
~30!, the ratio of the semiclassical result to the quantum
sult for ma5mb is C@114ln(2)#/(8ap)'0.88. The reason
for this becomes clear when we examine the terms of
series(kk

3/2F(2n,k) ~noting that if we begin in the initial
stateun& then a52n), and compare them to the equivale
terms in the quantum calculation,(kkFn→(n2k) . This is
shown for an initial staten510 in Fig. 10. We see that th
terms agree well for smallk but that they diverge ask→n.
This is because the equivalence between the semiclas
result from the Fourier spectrum and the quantum ma
elements is strictly only valid whenk is small. Because in the
calculation of energy dissipation rates the terms are weigh
by an additional factor ofk, the terms where the largest di

FIG. 9. The value ofC computed numerically as a function o
a5A2 r max/l0 by comparison of the results from Eqs.~49! and~51!.
Note that this curve is discontinuous because of the discrete su
Eqs. ~49!, which was cut off at the highest integer less thana2/4,
and thatC50 for a,2, becausea,2 corresponds to a sum cut o
at n50. The value of this function in the limit asa→` gives C
;1.75.
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crepancy arises are always significant in the calculation
the damping rates, and thus this discrepancy does not sig
cantly decrease asn→`.

B. Subsonic motion

In addition to the approximations given in Sec. III D, w
note that for the purposes of the semiclassical calculatio
the subsonic regime,uq•rmaxu<qvmax/v5vmax/u!1. Thus,

1

2pE0

2p

e2 iqxr maxcosze2 inz dz'
1

2pE0

2p

qxr maxcos~z!e2 inz dz

5 i
qxr max

2
dn,61 , ~53!

and so

«̇52
gab

2 r0

4pmbuE0

`

dq q3E
21

1

djUqrmaxj

2 U2

d~\v2«q!\v

5
2gab

2 r0v4

12pu7mbma

«. ~54!

As mentioned in Sec. IV B, damping occurs here despite
fact that the velocity of the atom being slower than the sp
of sound in the superfluid appears to contradict the Lan
derivation of the critical velocity in the superfluid, and w
obtain an exponential damping law. In the same sense
the previously discussed case of supersonic motion is an
gous to radiation from a charge moving faster than the sp
of light in a dielectric, this case is analogous to dipole rad
tion from an accelerating charge. The approximation ma
that results in only one term in the sum being significant, E
~53!, similarly corresponds to the dipole approximation
nonrelativistic quantum electrodynamics.

in

FIG. 10. Numerical values of the quantum resultF10→(102k)

~solid line! and the semiclassical resultF(20,k) ~dotted line! in the
supersonic regime. Note that we observe very good agreemen
small k, but the results diverge for higher values ofk.
6-11
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Note that if we substitute«5\vn into Eq. ~54!, then we
obtain exactly the same result we obtained from the quan
case, Eq.~35!. The semiclassical approximation works e
tremely well here, because the only significant contribut
to the quantum calculation comes from matrix elements
tween states with quantum numbers differing by one.

VII. IMMERSION IN A STRONGLY CORRELATED 1D
SUPERFLUID

In this section we investigate the damping that occ
when the lattice is immersed in a quasi-1D superfluid, wh
is an example of strongly correlated quantum liquid. In a r
experiment this setup is not particularly practical for cooli
the motion of the atoms. For a gas to be quasi-1D, the e
tation modes in the transverse directions must have ene
larger than all other significant energy scales in the syst
and so the oscillator energies for lattice atoms,\v must be
much smaller than the energies of the transverse excitat
in the superfluid. Furthermore, the motion of the oscilla
will only be damped in one dimension~along the direction of
the quasi-1D superfluid!, and so the oscillator should b
made strongly anisotropic so that in the transverse direct
the oscillator is always in the motional ground state and n
not be cooled. However, the study of the cooling proces
this context is still interesting, for example, because the
tice atom in this setup could be used as a probe to pro
spectroscopic information about the 1D Bose gas.

In general the excitation spectrum of such a 1D Bose
is complicated. In the case of short-range interactions
tween the particles exact analytical solution exists both
the ground-state wave function and for the excitation sp
trum @30# for arbitrary strength of the interparticle intera
tions and the excitation energies. However, in the limit
long wavelength the excitations are phonons and the sys
can be described within a hydrodynamic approach. Follo
ing Ref. @31# we represent the field~Bose-particle annihila-

tion! operator in the form:Ĉ(x)}Ar01dr̂ei f̂, wheref̂ and
dr̂ are phase and density fluctuation fields respectively
obey the commutation relation@dr̂(x),f̂(y)#5 id(x2y),
and r0 is the 1D density~averaged, in practice, over th
transverse directions!. The low-energy effective Hamiltonian
for the liquid is then

Ĥ05
\

2pE2`

`

dx@vJ~]xf̂ !21vN~pdr̂!2#, ~55!

wherevJ5p\r0 /mb , vN5k/(p\r0), andk is compress-
ibility per unit length. The excitation spectrum correspondi
to this Hamiltonian satisfies a linear dispersion relation«q
5\vsq, where the velocity of sound is given byvs
5(vJvN)1/2.

The parametersvJ andvN are phenomenological and ca
be found from the exact Lieb-Liniger solution@30#. The de-
pendence on the interaction strength between gas part
can be described using the dimensionless parameteg
5mbgbb /(\2r0). In the week interaction limit,g!1, the
velocity of sound is given by the usual Gross-Pitaevs
value: vs5Agbbr0 /mb. If the interaction is very strong,g
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@1, then the interaction effectively makes the particles i
penetrable, and hence in a true 1D system, indistinguish
from fermions. This is called the Tonks gas regime, and
sound velocity is equal to the effective Fermi velocity:vs
5p\r0 /mb . The energy spectrum is linear for«q!gbbr0
~the chemical potential of a weakly interacting Bose gas! and
«q!p\2r0

2/(2mb) ~the Fermi energy of the Tonks gas! for
the cases of weak and strong interactions, respectively
higher energies the excitation spectrum is no longer unive
and depends on the details of the interparticle interactio
Because«q and the trapping frequencyv in the lattice are
related via energy conservation, the motion of the lattice
oms must then be subsonic with respect tovs for the model
to be valid.

The operator for density fluctuations in this regime
given by

dr̂5(
q

S 2qAK

pL D 1/2

~ b̂qeiqx1b̂q
†e2 iqx!, ~56!

whereL is the length of the BEC andK5(vJ /vN)1/2. The
quantity K depends on the interparticle interactions and
related to the scaling dimension of the particle field opera

^Ĉ†(x)Ĉ(x8)&;ux2x8u21/(2K) for large ux2x8u. The func-
tion K(g) monotonically decreases asg grows, so that
K(g→0)'p@g2(1/2p)g3/2#21/2 and K(g→`)'(1
12/g)2 @30#. Note also that for the quasi 1D system,gbb

54p\2abb /mbl'
2 , where l' is the transverse confinemen

length of the BEC, provided thatas! l' @32#.
In the limit of small oscillation frequenciesv, we apply

the same approximation, Eq.~53!, used in Sec. VI B, and
obtain

«̇52
2vgab

2 AK

p E
0

`

dq qUqrmax

2 U2

d~\v2\vsq!

5
2gab

2 AKv2

p\mavs
4

«. ~57!

For smallg, K'p\Ar0 /(mbgbb) and vs5Agbbr0 /mb,
so

«̇'
2gab

2 v2mb
7/4

Ap\mar0
7/4gbb

9/4
«. ~58!

The transition rate constant is the
Ge;v(gab /gbb)

2(\v/r0gbb)(mbgbb /\2r0)3/4(mb /ma)/Ap
!v and hence is generally small. In the opposite limiti
case for largeg, K'1 andvs5p\r0 /mb , so

«̇'
2gab

2 v2mb
4

p5\5mar0
4

«. ~59!

Here,Ge;v(mbgab /\2r0)2(vmb /\r0
2)(mb /ma)/p5. Thus,

in this regime, the damping rates can be made very f
provided thatgab5mbgab /\2r05gabg/gbb is made very
large. However, this regime is difficult to obtain experime
tally, and in most current experimentsg;1.
6-12
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In both cases the damping that we obtain is exponen
which again arises because the motion we consider is
sonic, and produces excitations at only one significant m
mentum. The energy exchange rate grows as a function ov,
in a manner analogous to dipole radiation in quantum e
trodynamics.

VIII. SUMMARY

We have shown that the immersion of a system of ato
in an optical lattice in a superfluid causes damping of ato
in excited motional states, and that this damping can be u
to transfer these atoms to the ground motional state w
preserving their initial internal state and any entanglem
between the atoms. For typical experimental parameters,
transfer occurs in a characteristic time of around 10 oscilla
cycles, which is sufficiently rapid to be useful experime
tally. These typical parameters come from a regime in wh
the atoms in the lattice are moving faster than the velocity
sound in the superfluid, which generates a rich distribution
excitations, involving significant transitions from all leve
directly to the ground state. In the opposite regime, wh
the velocity of the atoms in the lattice is significantly slow
than the speed of sound in the superfluid, damping still
curs because the motion is accelerated, but only transit
between neighboring oscillator levels contribute significan
to the damping process.

Provided that the temperature in the nonsuperfluid fr
tion of the gas is much smaller than the oscillator level sp
ing in the lattice, heating effects due to absorption of therm
excitations is not a significant effect in this process. This
the case for experimentally realizable conditions. At high
temperatures, the system would be cooled not to the gro
state, but to a thermal distribution of motional states cor
sponding to a Boltzmann distribution with the same tempe
ture as that in the normal component.

The supersonic motion regime discussed here is rea
realizable in present experiments. Together with a car
choice of internal atomic states used to encode a qubit,
damping mechanism thus provides a decoherence-free m
to cool an atomic qubit to its motional ground state.

Note added in proof.Recently, we became aware of
related study done by Astracharchik and Pitaevski@36#, in
which the drag force on an impurity traveling with a consta
velocity through a condensate is computed. The present w
differs in that we consider the motion of an oscillating ato
immersed in a superfluid, and deal specifically with the
plication of the resulting drag force to decoherence s
pressed cooling of an atomic qubit.
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APPENDIX A: DISPERSION RELATION FOR A FOREIGN
PARTICLE IN A SUPERFLUID

When a foreign particle is immersed in a superfluid,
interaction with the condensed atoms can be described
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collective excitation, which represents both the injected p
ticle and the cloud of the condensed atoms. This leads
modification of the dispersion relation as well as to the a
pearance of frictional forces. Since the goal of the curr
work is to calculate the damping of atomic motion due to t
friction force experienced by an alien particle in a harmo
trap, we first calculate the dispersion relation for a free f
eign particle immersed into a superfluid of atoms, whi
moves at a constant velocity. This situation is conceptua
simpler, and allows us to consider the validity of treating t
interaction between the superfluid and the foreign particle
a simple density-density interaction.

For a given momentump the energy of the resulting col
lective excitation is given by

E5
p2

2meff
1gabr01dE(2), ~A1!

wheremeff'ma is the effective mass of the foreign atom
gab is the coupling coefficient for the interaction between t
foreign particles and the superfluid, andr0 is the condensate
density.

dE(2)5g2r0(
q

S ~uq1vq!2

p2/2ma2eq2~p2q!2/2ma1 i0

1
1

q2/2m
D , ~A2!

andm215mb
211ma

21 is the reduced mass. This expressi
is a trivial generalization of the standard superfluid groun
state energy calculation~see Ref.@26#!. The counterterm~the
second term in the brackets! is obtained by replacing the
Fourier component of the interaction potential in the Ham
tonan by the scattering length,aab . It is possible to simplify
Eq. ~A2! in two particularly relevant cases.

If the momentump is small~the foreign particle moves a
subsonic velocities,p/ma!u), then the integral in Eq.~A2!
converges atq;m. The analysis of the energy denominat
leads to the Landau critical velocity condition for subson
particles and thus ImdE(2)50. For the calculation of
RedE(2) we can first setp50 and find

dE(2)5gab
2 r0(

q
S 2

~uq1vq!2

eq1q2/2ma

1
1

q2/2m
D . ~A3!

The calculation of the integral overq is straight forward. For
example, in the case ma5mb , we find dE(2)

54gabr0(r0gab
3 )1/2/3p2, which is a small correction to the

leading order@(r0gab
3 )1/2!1# and hence can further be ne

glected. One can expanddE(2) in powers ofp2/(mam) to
find a similar small correction to the effective mass of t
immersed particle, (meff2ma)/ma;(r0gab

2 )1/2!1. There-
fore, interaction effects up to leading order in the gase
parameter do not lead to damping for subsonic motion. B
the mass of the particle and the effective interaction
6-13
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changed by a small quantity;(r0a3)1/2!1, which can be
neglected. This means that the cooling may only origin
from accelerated motion.

In the other limiting case, where the motion of the forei
particle is supersonic,p/ma@u, RedE(2)50, and the imagi-
nary part gives the damping~see Ref.@33#!

Im dE(2)5
8pr0aab

2 p

ma
. ~A4!

Here, the effects of the interaction between the foreign p
ticle and the the superfluid~to leading order! generate damp
ing only, which is nothing else but the classical result fo
particle moving through a gas of classical scatterers o
given densityr0. The difference between the real mass a
the effective mass can once again be neglected, so th
both subsonic and supersonic regimes, the interaction
tween a foreign particle and a superfluid may be treated
density-density interaction.

APPENDIX B: DERIVATION OF THE MASTER
EQUATION

We treat the superfluid with Bogoliubov excitations as
reservoir, with density operatorR̂. In the interaction picture
and after making the Born-Markov approximation, the m
ter equation for the density operatorŵ of a system which
interacts with a reservoir via an interaction HamiltonianĤ int
can be shown to be given@34# by

ẇ̂52
1

\2E0

t

dt8TrR@Ĥ int~ t !,@Ĥ int~ t8!,ŵ~ t ! ^ R̂##, ~B1!
e

lly
vo
a

02230
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where TrR denotes the trace over the reservoir states.
We write ŝq,15eiqxx̂, ŝq,25e2 iqxx̂, Ĝq,15b̂q and Ĝq,2

5b̂q
† , so that

Ĥ int5gabAr0

V (
q

~uq1vq! (
i 51,2

ŝi Ĝ i , ~B2!

and then substitute this expression into Eq.~B1! to give

ẇ̂52
gab

2 r0

V\2 (
q

~uq1vq!2 (
i , j 5$1,2%

E
0

t

dt8@ ŝi~ t !ŝj~ t8!ŵ~ t !

2 ŝj~ t8!ŵ~ t !ŝi~ t !#^Ĝ i~ t !Ĝ j~ t8!&R1@ŵ~ t !ŝj~ t8!ŝi~ t !

2 ŝi~ t !ŵ~ t !ŝj~ t8!#^Ĝ j~ t8!Ĝ i~ t !&R , ~B3!

where we have used the cyclic property of the trace, drop
the operator subscriptq, and written TrR(R̂Â)5^Â&R . We
have also used the fact that^Ĝq,i(t8)Ĝq8, j (t)&R50 for q
Þq8.

Proceeding in the standard way, we change the variabl
integration to t5t2t8, and note that b̂q(t2t)
5e2 iĤ bt/\b̂q(t)e

iĤ bt/\5ei«qt/\b̂q(t) and similarly
e2 iĤ bt/\b̂q

†(t)eiĤ bt/\5e2 i«qt/\b̂q
†(t).

We then make use of the assumption thatŵ(t)'P̂ŵ(t)
@see Eq.~19!#, and write the master equation in a Fock sta
representation. Noting also that ^b̂q(t)b̂q(t)&R

5^b̂q
†(t)b̂q

†(t)&R50, we obtain
tend the
ẇ̂52
2gab

2 r0

V\2 (
q

~uq1vq!2(
m,n

E
0

t

dt@ um&^mue2 iqxx̂un&^nueiqxx̂um&^mupmeivt(m2n)

2um&^mue2 iqxx̂un&^nue2 iqx .x̂um&^mupneivt(n2m)#~e2 i«qt/\^b̂qb̂q
†&R1ei«qt/\^b̂q

†b̂q&R!. ~B4!

Assuming that the correlation time of the superfluid reservoir is much shorter than that in the system we can ex
integration overt→`, and making the replacement*0

`dtei («2«0)t/\→p\d(«2«0), we obtain

ṗm5
2pgab

2 r0

V\ (
q

~uq1vq!2(
n

u^mue2 iqxx̂un&u2$@d~\v~n2m!2«q!pn2d„\v~m2n!2«q…pm#^b̂qb̂q
†&R

1@d~\v~m2n!2«q!pn2d„\v~n2m!2«q…pm#^b̂q
†b̂q&R%. ~B5!
ita-
the
to

ng
The first two terms here~those proportional tôb̂qb̂q
†&R) de-

scribe the damping by creation of excitations in the sup
fluid, whilst the second two terms~those proportional to

^b̂q
†b̂q&R) describe heating effects by absorption of therma

generated excitations. At finite temperatures, the reser
correlation functions are given by the number of therm
excitationsN(q) with momentum\q, ^b̂q

†b̂q&R5N(q).
r-

ir
l

APPENDIX C: ESTIMATION OF dĈ†dĈ TERMS

The heating effects due to absorption of thermal exc
tions has already been discussed in Sec. IV C, where
equilibrium distribution at finite temperatures was shown
be a Boltzmann distribution. The small additional dampi
terms arising at finite temperatures from thedĈ†dĈ term,
which are small when the condensate densityr0 is large and
6-14
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which were omitted when the density fluctuation operatordr̂
was originally written, may be estimated using a semicla
cal treatment. The operator for the additional density fluct
tion terms is given by

dr̂85dĈ†dĈ5
1

V (
p,p8

upup8âpâp8
† ei (p2p8)•r

1vpvp8âp
†âp8e

2 i (p2p8)•r1upvp8âpâp8e
i (p1p8)•r

1upvp8âp
†âp8

† e2 i (p1p8)•r. ~C1!

The first two terms in this expression correspond to the
elastic scattering of thermal excitations with momentum\p
to excitations with momentum\p8, and the second two cor
respond to the absorption and emission, respectively, of
excitations with momenta\p and\p8.

For the case of supersonic motion whereuq→1 andvq
→0, the correction to the dissipation rate is then given b

«̇852
pgab

2

\ (
p,p8

(
n

@N~p!2N~p8!#d~\vn2«p81«p!

3U v

2pE0

2p/v

ei (p2p8)•r (t)dtU2

\vn, ~C2!

where, as before,N(p)5(exp@«p /(kBT)#21)21 is the mean
number of thermal Bogoliubov excitations with momentu
\p present in the superfluid.

In order to cool the system to the ground state we alre
require\v@kBT, which has been shown to be a reasona
experimental condition in Sec. IV C. In this case, the th
mally generated excitations with momentum\p will have a
much smaller energy than the scattered excitations, wh
have momentum\p8. Also, «p8.\v@kBT andN(p8)'0.
Thus,

«̇8'2
pgab

2

\ (
p,p8

(
n

N~p!d~\vn2«p8!

3U v

2pE0

2p/v

ei (p8)•r (t)dtU2

\vn,

5
«̇

2r0

1

2p2E0

`

p2dpN~p!. ~C3!

This result is proportional to the density of thermal exci
tions and essentially describes the classical friction due
scattering of thermal excitations by the moving particle.

If kBT!mbu2/2, then«p'\up. The additional damping
is then given in terms of the rate«̇ in Eq. ~52! by

«̇85
«̇z~3!

2p2r0~\u!3
~kBT!3, ~C4!

wherez(x) denotes the Riemannz function. Note that be-
cause the wave number of phonons in this regime is of
order ofkBT/(\u), this result is proportional to the densit
of thermal phonons,rphonons. Thus the additional damping
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term is equal to that in Eq.~52!, but with the numerical
coefficient modified, and the density of the condensater0
replaced by the density of thermal phonons,rphonons. This
term will always be small, as in this regimeT,Tc , the
critical temperature of the Bose gas, sor0@rphonons.

If kBT@mbu2/2, then«p'\2p2/(2mb). The rate of addi-
tional damping is then

«̇85
«̇z~3/2!mb

3/2

4A2 p3/2r0\3
~kBT!3/2. ~C5!

For a uniform Bose gas the critical temperature for Bo
condensation can be expressed as@35#

kBTc5
2p\2r t

2/3

mb@z~3/2!#2/3
, ~C6!

wherer t5r01rn is the total density, andrn is the density of
the normal component, so that we can rewrite Eq.~C5! as

«̇85
«̇r t

2r0
S T

Tc
D 3/2

5
«̇rn

2r0
, ~C7!

where we have used the well-known resultrn5r t(T/Tc)
3/2

@35#. Thus, this result has the same form as the damping
obtained in Eq.~52!, but the condensate density is replac
by the density of the normal component, and the numer
coefficient is decreased by a factor of 2. Again, at sm
temperatures compared with the critical temperature,T
!Tc , whenrn!r0, the contribution from this term will be
small.

The same calculation can be performed for the subso
case. In this regime, the contribution from the terms invo
ing âpâp8 andâp

†âp8
† is small, because the double summati

over p andp8 is restricted by energy conservation such th
u«p1«p8u5\vn, and in the subsonic case, this quantity
always small. With respect to the subsonic energy dissipa
rate in Eq.~54!, «̇, we obtain

«̇8'2
p2«̇

480r0mbu5\3
~kBT!4. ~C8!

Note that as\vn!mbu2/2, this expression is derived con
sidering only the case wherekBT!mbu2/2. It can be shown
that in the limitkBT!mu2/2 that the density of the norma
componentrn is given by@35#

rn5
2p2~kBT!4

45mb\3u5
, ~C9!

so that we can write Eq.~C8! as

«̇8'2
3«̇rn

64r0
. ~C10!

Again, this result is a modification of the zero-temperatu
damping result, with the condensate density replaced by
density of the normal component and the numerical coe
cient decreased. In the limitT!Tc , as with the supersonic
results, this result will be small, asrn!r0.
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