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Single-atom cooling by superfluid immersion: A nondestructive method for qubits
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We present a scheme to cool the motional state of neutral atoms confined in sites of an optical lattice by
immersing the system in a superfluid. The motion of the atoms is damped by the generation of excitations in
the superfluid, and under appropriate conditions the internal state of the atom remains unchanged. This scheme
can thus be used to cool atoms used to encode a series of entangled qubits nondestructively. Within realizable
parameter ranges, the rate of cooling to the ground state is found to be sufficiently large to be useful in
experiments.
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[. INTRODUCTION ent context, sympathetic cooling schemes are also widely
used in the field of cold quantum gases, where they have
Neutral atoms are one of the most promising candidatebeen used to cool different spin states of the same atomic
as carriers for the storage and manipulation of quantum inspecies[19], to cool different bosonic speci¢g0], and to
formation [1]. Qubits may be stored in long-lived internal ool Fermi gases brought into contact with a BEX1].
atomic states with very low levels of decoherence, and may In this article we consider the sympathetic cooling of a
be manipulated using interactions between the atoms argingle atom in a harmonic trap in contact with a superfluid.
external devicegsuch as lasefsor interactions among the This is readily expanded to the case of many harmonic traps,
atoms themselves. which is a good approximation for an optical lattice without
An experimental prerequisite for this is the developmenttunneling. The motion of the atom is damped by the genera-
of techniques to trap single atoms, and there has been mudien of excitations in the superfluid, and the resulting cooling
progress over the last five years both in optical trEh8] rates are sufficiently large to be useful experimentally. In
and in magnetic microtragd]. In addition, specific imple- addition, decoherence of a qubit encoded on the atoms can
mentation of quantum computing usually requires cooling o€ €liminated in this scheme provided that the internal
atoms to the vibrational ground state of the trap, or at least tgtomic states used to encode the qubit are chosen carefully in
the Lamb-Dicke limit. Many techniques have been devel-Order to satisfy particular collisional requirements.
oped including the widespread use of laser coo[ifiy

_ Ong of the most promising routes to quantum computa- Il. OVERVIEW
tion with neutral atoms is the use of Bose-Einstein conden-
sates(BEC's) [6] loaded in optical lattice§7,8], a system In this section we give a short summary of the most im-

which has been realized in part in a number of recent experiportant results contained in this article. Derivations and fur-
ments[3,9—-11]. There are several theoretical proposals forther discussions of these results follow in the remaining sec-
the implementation of quantum logic gates in such system#ons.
[12-14, and the first steps towards the fundamental experi- Our goal is to cool a single trapped atom representing a
mental techniques required for some of these have been rgubit |0), |1) without destroying the superposition state of
cently realized. For example, the recent demonstration othe qubit(or the entangled state in case of many atoms
spin-dependent transport in an optical latfié¢ makes pos- Cooling of the atom is achieved by sympathetic cooling, im-
sible the implementation of a fundamental quantum phaseersing the atom in a superfluid, which plays the role of a
gate by cold controlled collisiongl2] in which qubits are very cold reservoir. By a proper encoding of the qubit in
encoded using two different internal states of the atoms innternal atomic states, and choice of the atomic level for the
the optical lattice. superfluid reservoifsee Sec. lll Awe can ensure thék) the
However, most of these proposals require the transport ajubit is not destroyed by opening collisional channels to un-
qubits, which is usually associated with heating of the atomisvanted final states, an(d) the |0) and|1) states have iden-
motion[9]. A question then arises as to how that motion maytical collisional properties with respect to the collisional in-
be cooled back to the ground state without changing théeractions with the superfluid, and thus the collisions do not
internal state of the atoms, and thus destroying the qubits gandomize the relative phases of the qubit.
their entanglement. Laser cooling, for example, is clearly not Cooling is considered within a model in which the atoms
applicable here as the process of light scattering causes dare treated as being trapped in independent one-dimensional
coherence. The same problem arises in scalable ion tra@dD) Harmonic oscillator potentials with trapping frequency
guantum computing, and there it has been overcome using, and interact with the superfluid via a density-density in-
sympathetic cooling schemes, in which ions used to encodteraction, generating excitations in the superfluid, which are
qubits are cooled via a coulomb interaction with either amodeled as Bogoliubov excitations in a weakly interacting
single ion which is directly laser cooldd7] or another spe- Bose gagSec. Il) and have momenturhg and energy, .
cies of ions which are directly laser-coolgtB]. In a differ-  In discussing this cooling process we can restrict ourselves to
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Hn, > CV whereg,y, is the coupling constant for interactions between
m <

the atoms in the lattice and the superflyig,is the conden-
sate densityg(n)=%wn, anda~0.3 is a constant.
If we consider the slowest transition rate, that from the

FIG. 1. The motion of an atom in a harmonic trap immersed infi.st excited state to the ground state, we find that the char-
a superfluid is cooled by the generation of excitations in the SUPer3 steristic transition timer, is given by

fluid. Terms in the equations of motion with coefficieffts ., de-
scribe transitions from oscillator stdte) to state/m) by creation of

excitations, while finite temperature contributions with coefficients @710 1.2X1072% ! @' (5)
H, m account for the interaction of the system with thermal excita- 2m poagb lo
tions.

wherea,,, is the scattering length for the interaction between
a single component of the quib@) (or |1)). Justification for  atoms in the lattice and the superfluid, dger \i/(Mmw) is
the use of a density-density interaction is provided in Appenihe size of the harmonic oscillator ground state. Thusg &
dix A, where the dispersion relation for a free foreign particletypically an order of magnitude larger thap,,, and poa,

interacting with a superfluid is derived. ~10 4 7 is of the order of 10 oscillator cycles. This is a
A master equation is derived for the density operator ofsufficiently rapid cooling rate to be useful experimentally.
this system(Sec. 1l C and Appendix B from which the In the subsonic regime, damping still occurs because the

time evolution of the probabilityp,, that the atom is in the oscillatory motion of the atom is acceleratéSec. IV B).
nth motional state of the harmonic oscillator potential is Significant rates are found only for transitions between

shown to be neighboring oscillator levels, ang(n) is found to be linear
inn,
bm: E FnomPn— 2 Fmﬂn’pm‘I'E Hn,m(pn_pm)- 2 4
o Ve " oy~ — —22 ) ®)
@ 127mympu’
The terms with coefficient, ., When the superfluid is at a finite superfluid temperaflire

5 the system is cooled to the temperattref the superfluid.
_em The final distribution of occupation probabilities is shown to
Foom=7% % Zom(@Foho(n=—m)=cq). (2 be a Boltzmann distribution,

. . . . T nhol(keT) — (1 — el (kgT) a— ol (kgT
whereZ, , are the matrix elements of the interaction Hamil- pn=poe” MeD=(1—e "/keD)e MelkeD - (7)

tonian in the basis of harmonic oscillator energy eigenstates ,
(Fock statel describe the transitions from statdo statem  Whereks is the Boltzmann constaitgec. IV Q. If the tem-

due to generation of excitations in the superfluid, and thé?€raturé corresponds to an energy much smaller than the
terms with coefficient,, . Harmonic oscillator spacindkgT<% w, then the population

in excited motional states is negligible. For examplegwif
. ~27X10° s, fiw/kg~5 wK, so that forT=500 nK, we
Hmn=—2~ > N(@)|Zym(@)[26(holn—m|—¢ey), (3  then obtain +py~5x107°.
4 The situation in which the collisional interaction between
atoms in the lattice and superfluid atoms are not identical for
describe the transitions between statand statem due t0  the two qubit statef0) and|1) is considered in Sec. V. If the
interaCtionS with thermal eXCitationS at f|n|te temperatureSS(:attering |engths for interactions between atoms in the qub|t
This is illustrated in Fig. 1. states and atoms in the superflaigl, is expressed as, and
If the speed of sound in the superfluidisand the mass 3, for atoms from each of the two qubit states, then the rate
of superfluid atoms isn,, then the behavior of the cooling of decoherence is found to be proportional @, € ag)?2.
process can be separated into two regimes—where the M@his rate is also proportional to the transition rate between
tion of the oscillating atom is subsonid: <m,u®/2) or  motional states, except for an “initial slip” in the decoher-
supersonick w>m,u/2). In the supersonic regime, cooling ence[also proportional to &; —a,)?] which occurs on the
from any excited oscillator state occurs dil’eCtly to all IOWer'timescale Of approximately ohe Osci"ator Cyc'e_
energy states, including a significant transition rate directly A semiclassical treatment of this system in the WKB ap-
to the ground statéSec. IV A. The resulting rate of energy proximation(Sec. V) gives a result for the supersonic case
losse(n) for a particle in thenth oscillator state is not linear which is different from the full quantum result by only 12 %.
in n, but instead(for lattice and superfluid atoms of equal A similar treatment in the strongly subsonic regime gives
massm) is found to be exact agreement with the earlier result.
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In Sec. VII we investigate a somewhat different model fordecoherence, but noyy) is the total internal state of the
the eXCitationS, in the context of a qua.Si'lD Superfluid. Thm_qubn System, ant’i\/ is the total combined density operator
resulting damping rates are found to be small except in theyr the motional state of each qubit and the state of the en-
regime where the superfluid is very strongly interacting,vironment. Physically, the condition is now modified so that
which is a difficult regime to obtain experimentally. Finally, the interaction between any atom and the superfluid must be
Appendix C contains semiclassical estimates for small addihoth independent of the internal state of that atom, and inde-
tional damping terms which arise at finite temperatures angendent of the internal state of all other atoms. Because the

have been neglected in earlier calculations. interaction is a density-density interaction, this second re-
quirement is always fulfilled. Note that when the correlation
. THE MODEL length of the superfluid is shorter than the separation be-

tween atoms, it is possible for the motional state of different
atoms to become entangled. However, this will not affect the
The total Hamiltonian of the cooling process for a singlestate of theN-qubit system, as the qubits are encoded solely

A. Avoiding decoherence

atom can be written as on the internal states of the atoms, which remain at all times
R R R R R separable from the motional states. The situation in which
H ot= H qubit™ Hmotion Hsuperfiuidt Hint » (8)  the states used to encode the qubit are not appropriately cho-

sen to ensure symmetry in the collisional interactions is con-
whereH g1 is the Hamiltonian for the internal states of the sidered in Sec. V.
atom, denoted0) and|1), on which the qubit is encoded,

H motion is the Hamiltonian for the atomic motion of the atom B. Hamiltonian for the oscillator-superfluid interaction

which is to be cooledH g peruiais the Hamiltonian for the After imposing the requirement from the preceding sec-
superfluid, andH;,, describes the interaction between thetion, we consider only the motional degrees of freedom of
atom and the superfluid. In order to cool a qubit withoutthe atoms in the optical lattice, which are assumed to be
decoherence, the internal state of the atom being coolegonfined in particular lattice sites, where the motional states
should remain unchanged during the cooling process. If wgan be approximated as those of an harmonic oscillator. Cou-
write the initial internal state of an atom in a particular lattice pling to the superfluid occurs in the form of a density-density
site as|), and the combined density operator for the initial interaction that generates excitations in the superfluid, which
mixed motional state of the atom and the state of the supewe model as Bogoliubov excitations in a weakly interacting
fluid as R(0), sothat the total initial density operator is BOS€ 9ag26]. The Hamiltonian for the combined system of

A . . . an atom in a lattice site and the superflgidr the motional
|¢>(¢|®I3(0), then the_ overall Hamiltonian for the cooling ;. degrees of freedom oplis given by
processHi,, must satisfy

I n - n H=Hmotion™ Hsuperfluid”_ Hint, (10)
e Mot y)(YloRO0)eM e = y)(yleR(t). (9
whereﬂmotiOn is a 3D harmonic oscillator Hamiltonian with
Thus H,,; must be of the formH,=(|0)(0|+|1)(1])®H.  frequencyw, which describes the motional state of the atom,
This requirement is satisfied provided that the interactiorﬂ,Superfluid is the Hamiltonian for the superfluid excitations,
Hamiltonian, H;,, is independent of the internal state of the andH;, is the interaction Hamiltonian.
atom in the lattice. Thus, the trap potential must be the same
for the two internal statef0) and|1), and the scattering - -
lengtha,,, between atoms in the superfluid and atoms in the H superfiuid= Eo+ ;0 e(q)bgbg, (11
lattice [22] must also be the same for the two internal states. K
The identical scattering lengths can be arranged by choosi
symmetric spin configurations, for example, by choosihg
and|1) to be internal states with angular momentum quan
tum numberF=1 and magnetic quantum numbeng=
+1, and the superfluid atoms to be in an internal state wit
F=1 andmg=0. In order to make such a configuration
stable against.spin—exchanging collisior3], th(_ese states Hint:gabf 5;3(r)5;)atom(r)d3r:gabj Sp(r)8(r—r)d3r
should all be in the ground state of the manifold, and to
prevent the creation of pairs of lattice atoms from superfluid
atoms[ 24], the energy of then=0 level should be lowered
= + ~

Y;ggrr[zza))?d to theng == 1 states(for example, by using a where fSpatom is the density operator for the motion of the

We must also ensure that when we haVequbits (N atom, rAis the position operator for the atomic motional
>1), the entanglement between them is not destroyed whestates dp is the density fluctuation operator in the superfluid,
the motion of one or more of them is cooled. The conditionand g,,=4m%2%a,,/(2x) is the coupling constant for the
in Eq. (9) is once again sufficient for the suppression ofinteraction, witha,, the scattering length for interactions

n\%hereﬁg andb, are creation and annihilation operators for
Bogoliubov excitations in the superfluid with momenttim
and energye(q), andEy is the ground-state energy of the
r,F,uperfluid.

=Gandp(T), (12)
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between superfluid atoms and atoms in the latiR8, and lation time of atoms in the lattice. Under these assumptions,
= (mymy)/(m,+m,) the reduced mass of an atom in the the master equation for reduced density operator describing

lattice with massm, and a superfluid atom with mass,.  the motional state of an atom in the latticey(t)

The density fluctuation operator may be expressed@s = Trg[W(t)], where Tk denotes the trace over the superfluid
=" —p,, whereW = \/po+ 8V is the second quantized states, is derived in Appendix B.

field operator for the superfluid ang, is the mean conden-  We define the projection operatdronto a basis diagonal
sate density. In terms of the creation and annihilation operain the oscillator Fock statedm)  (Hmotiod M) =% (M
tors for Bogoliubov excitations, we can write +1/2)|m)) as
- 1 ~ ~ : “n A
ov= N % (Ughg€'d " +vgble™19), (13) Px=§m‘, |m){(ml(m|X|m), (19

whereV is the normalization volume, so that

Lq ! Pw(t)=2 [m)(mlp (20)

U=, ve=—. (14 5 "

1- Lq 1- Lq

and Because we assumed that the oscillator trap frequescy

> 7~ 1 wherer is the characteristic timescale on which tran-

eq— (FQ)2/(2m) — mi? sitions take place due to interaction with the superfluid, the
_%q

Ly= > . (15 coupling to off-diagonal elements @i(t) in the Fock state
mu basis is very small, and the state occupation probabilgjes
The energy of excitations with momentub is :téstf%/a? closed set of equations. From Appendix B we then

eq=[U(ha)*+ (ha)*(2m,)?]Y2, (16)

pm= >, F — FmonPmt > H — P)-
and the speed of sound can be expressed s, Pm nz’m n—mPn nz’m m-n'Pm En: nm(Pn~Pm)

= JOpopo /My, Wheregy,=4mha,,/m, with a,, the scat- (22)

tering length for interactions between atoms in the superfluid . . -
[26]. In a weakKly interacting Bose gas at sufficiently low HereF,_, . is the damping coefficient at zero temperature for

temperaturegwhere the condensate density is much smallefr@nsitions from state to statem, andH, , are the coeffi-
than the density of the normal componerthe term from cients of the finite-temperature corrections due to the absorp-

PPN . . tion and scattering of thermal excitations. The zero tempera-
+
(?”;Ifn ;?v\gt?ay be neglectetsee Appendix € In this case we ture damping coefficients are

2
- L e From=— 2 |Z 28(ho(n—m)—egy), (22
op= \/%E [(Uq+Uq)bqelq.r+(Uq+vq)b;eilq'r]- mh %| (@6t )78y (22
q
(17) and the system matrix elements of the interaction Hamil-

For the motion of atoms in the lattice, we make the approxi—tonlan are given by

mation that the damping of in each dimension can be can be P .
considered independently, and thus we treat the atom as a 1D Zn,m(Q)=<m||:|im|n>=(Uq+ v ) Gab \/E<m|e‘qxx|n>,
oscillator with frequency, i.e., v 29
~ ~pa

Haon=fiw(a'a+3), (18 Note that Eq.(22) is Fermi's Golden rule for the transition

- _ _ from state|m) to state|n) via interaction with density fluc-
wherea is the lowering operator for the motional state of theations in the superfluid, and that the restrictions on the

atom. The position operator for the 1D oscillator ¥s  summation in Eq(21) are written for clarity, but actually
= Jil(2m,w)(a+a'), wherem, is the mass of the atoms in result from thes function in Eq.(22), due to whichF,, . is
the lattice. We can also writg-f—q,X, whereg, is the  ©nly nonzero whem=>m.

component ofy in the direction of the oscillator motion. The finite temperature corrections are given by
. ) 2
C. Damping Equations Hm,nzf > N(Q)|Zp m(@)|?8(Fw|n—m|—gg),
- . . q
In deriving equations for the damping of the system we (24)

assume that the cooling rate is significantly slower than the
period of the oscillator, and we treat the BEC as a reservoiwhere N(p)=(eX|:[sp/(kBT)]—1)‘1 is the mean number of
in which the correlation time is much shorter than the correthermal Bogoliubov excitations with momentubp present

022306-4



SINGLE-ATOM COOLING BY SUPERFLUID . .. PHYSICAL REVIEW A69, 022306 (2004

in the superfluid, withT being the temperature in the normal  In the following, we treat both the supersonic and sub-
component of the gas arlg; the Boltzmann constant. Be- sonic regimes. As discussed previously, the supersonic re-
cause we are interested in cooling the system to its groundime is the more relevant of the two in current experiments.
state, we assume that the temperature of the superfluid lowever, the subsonic regime could be specifically engi-
small,kgT<% w. This is very realistic experimentally, and in neered in experiments, and provides an interesting compari-
this regime we can make the approximatidp ,,~0. The son in terms of the physics of the damping mechanism.
consequences of these terms are described in Sec. IV C.

Also note that in the derivation of these equations we IV. RESULTS

assume that the terms p arising from ¥ s¥ ' may be
neglected. This approximation holds when the temperature is
much smaller than the critical temperature, so that the con?
densate density, is much larger than the density of the o o
thermal component. The contribution from these terms at (m|e"qxx|n)=f e~ DEYX (X) thm(X)dX, (26)
finite temperatures is estimated in Appendix C. o

From the transition rates, the energy dissipation rate of an . . .
oscillator in the statén) can then be calculated as wherel o= yA/(m,w) is the oscillator lengthg, is the com-

ponent of g in the direction of the oscillator,,(x)
2
_ =e*XZ’(Z'O)Hn(x/I0)/\/I02“n! r is the position wave func-
s(n)=%: hw(n_m)Hm'”_mZ:n ho(N—mF,_py. tion for the statgn), andH,(x) is a Hermite polynomial.
(25 Using the identity [”.dxe *"V°H(x)H,(x)dx
=2"/7mly" MLN"M(—2y?), which assumesn=n, we
The total-energy dissipation rate for an atom in a mixed stat§an express the matrix elemerfer m<n) as

can be written ag == fiwnp,, which in terms of Eq(25) ' n-m 1242
i ) = [ 12024 n—m| ' 09x

The matrix elements in Eq23) can be expressed in the
osition representation as

_”qu

V2

is given bye=3,£(n)p,. m "
(27)

D. Supersonic and subsonic motion regimes

We note that for typical experimental parameters in theS0 that
lattice and the BECA w>m,u?/2. For example, a Rubidium 2 o ml e /2
BEC with densitypo~10" cm™* and scatterigg lengthy, Fnﬂngabf’o — | q2dqotio(n—m) s |ugtvgl?
~100a,, wherea, is the Bohr radius, has,u?/(24)=2m 2amh n! Jo loq
X 3.7x10? s~1, while typically for an atom trapped in an s
optical lattice,o~2mx 10° s~ *. Thus, as the maximum ve- x | T deemEgat-m|Ln-m(£2)(2 (28)

) . et ¢ m  (£9)]%
locity of the atom may be estimated §2% w/m,, we see —loa/V2
that for a typical experimental system amg~ m,,, the atom , ) i
velocities are supersonic. In this strongly supersonic regiméNis expression can be further analyzed separately in the
the requirements of energy conservation in E2g) mean  SUPersonic and subsonic motion regimes, where the resulting
that even for a transition between states whendn differ ~ Pehavior is remarkably different.
only by 1, the excitations are in the particle branch of the

Bogoliubov excitation spectrum. In this regime, the momen- A. Supersonic case
tu2m20f excitations gen;erated in the supzerlelﬁiq>mbu as Applying to Eq. (28) the approximations given in Sec.
lﬁ a /(2|r2nb)1>hw>mbu /2. Hence,eq~q°/(2my), and | b for the case of supersonic motion yields the expression
Ugstuvgl“~1.

qTUq

If the superfluid was made sufficiently dense or strongly Jin=m)(mp, Tm,) e B
o | dée &0 ML M)

interacting, or the oscillator frequenay was made suffi- TS
ciently small that the motion of the oscillating atom was VT iy M

subsonic for all oscillator states which are initially excited, 2 I
. S . GapPoMy M
then energy conservation would cause the excitations to be in a5l (29
the phonon branch of the spectrum. In this regime, the mo- h |0\/E :
mentum of excitations generated in the superfldid ) ) ) ) 3
<mpu, so thate,~%ug, and|ug+v4|2~%k/(2mpu). The dimensionless function F;_, = m#i%1o\2F ./

Note that the coefficients, andv, can be related to the (9appomy) is plotted in Fig. 2, and shows the dependence of

dynamic structure factos(k, ) of the superfluid which is Fn—m Onnandm Itis immediately clear that for afin<n

often used in relevant literatuf@7]. In terms of the symbols the transition rate coefficient is significant. In fact, for all
dh Ko =t o2 | .th . stategn), the transition rate directly to the ground state is of
used hereS(k,w)=|ui+vy|*. In the same way as previ- o came order as all other allowed transitions. This corre-

ously diSCUSS@dS(k,ZL)%l for large values ok>myu/%,  sponds to the atomic motion generating a rich distribution of
while for smallk, S(k,w)xk. superfluid excitations, which is characteristic of the regime
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0 5 10 15
FIG. 2. The value of ), .= 7%l g\2F . m/(92ppoMs), Show- n
ing the coefficients of the transition rate from statéo statem in e ,
the case of supersonic motion, as computed numerically from Eaf. FIG. 4. The value otle'/dt=2(pn<n(n—mM)F,_, plotted as a
unction of n for supersonic motion, showing the total rate of en-

(29 with my=m,. L . . -
ergy dissipation for a system instantaneously in a oscillator state

) . . . with quantum numben. The points show the values computed
where the motion of the atom is supersonic with respect tQumerically from Eq.(29) with m,=m,, and the solid line is a

the velocity of sound in the superfluidee Sec. IV B for a fitted curve of the fornde'/dt=an32 with o=0.301.
comparison
If we consider the energy dissipation rd&b) for a sys- wherea=0.3, ands(n)=%wn is the energy of state mea-

tem in state|n) in the low-temperature limitkgT<<%i®),  gyred with respect to the ground state. The total energy with
then we see that the largest contribution comes from transi-

tions directly to the ground state or first excited si#ig. 3). respe ct to the Szround ita‘gz Is ther 2_"8(n)p” » SO tha;z

In addition, the complicated excitation spectrum results in a _ azn[;’/g”)] ph~—ae”,  provided that 7%
nonexponential energy damping law, i.e., the energy dissipa=>n€(n)”“Pa. The time dependence of the total energy is
tion rate for a state is not proportional to the energy of the then approximately given by

state. We find instead fan,=my=m (Fig. 4) that

1 2
A~ ~ , 31
g2, pom>? eV (81’2(t=0)+at/2) (3D
20 afe(n)]P? (30)

4 a ~

wh*\2 wherea= — g2, pom*%w®?al (7h5%\2).

The nonexponential damping law we obtain here can be
2 - - understood in terms of a simple classical argument for a
—e- noi5 “foreign” atom moving uniformly through the superfluid at a
—— n=10 supersonic velocity. Itr,, is the scattering cross section for
-+ n=5 the foreign atom interacting with the superfluid, then the av-
erage number of collisions per unit time jgo,,p/My,,
where p/m, is the velocity of the lattice atom propagating
through the superfluid. The momentum of the excitation gen-
. erated in a collision igj«p. Because the motion of the for-
eign atom is supersonic, the energy of the excitation is ap-

. proximately g%/(2m,), and the energy dissipation rate
“ * poorapp Mz %2, which is the same energy dependence
‘e that we observe here.
. In practice, this algebraic energy decay will be limited by
the slowest transition in the process, that from the first ex-
0 : : cited state to the ground state. On shorter timescales, popu-
0 5 10 15 lation in higher motional states will be transferred to lower
states(including direct transfer to the ground statmtil the
FIG. 3. The value of f—m)F/_ ., showing the contributions only significant population in an excited motional state is
to the energy dissipation of the system from transitions from state that in the first motional state. Then the rate of transition to
to statem in the case of supersonic motion. These results are comthe ground state will be exponential, as will the decay of the
puted numerically from Eq29) with my=m,. total system energy.

e(n)=—

0.5
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The transition from the first excited state to the ground
state is also the most important case for the low-energy ex:
citations which are likely to arise in quantum computing ap- gy

plications. Numerically we find that fom,=m,, F} , .

=0.3789. Thus,
2 Tl
m
F, o=0.3789220P™ @ £
7Tﬁslo 2 1

0l g

The characteristic time for the transition from the first ex-
cited state to the ground state is then expressed in terms ¢

the number of cycles by

w710 1 73w 1 1 1 a, - . s s
= 5 = 5 RN FIG. 5. The value ofF,_ ,=4mmyhu’F,_ ,/(95,P0@"),
2m 0.3789 \/Egabpom 0'378916\/577 Podzp '0 showing the coefficients of the transition rate from state statem
(33 in the case of subsonic motion, as computed numerically from Eg.
(34) for lqw/u=0.01.
assuming tham_~m, . In experiments|, will typically be 2 2
9 a b P lo ypicaly . gappow® (n—1)! 2I5w? )
e(n)~— wn
4’7Tmbﬁ n! 6u2

an order of magnitude larger than,, and the parameter
poas,~1074, so the characteristic transition time from the
first excited state to the ground state will be of the order of ) 4
ten cycles. It is interesting that the small prefactor in this __ JabPo® A on (35)
expression is very important in giving such a rapid cooling 127mymyu’ '

rate. This rate is sufficiently fast to be useful experimentally,
particularly given that the transition rates from states withThus, as the energy of stdi®) measured with respect to the

higher quantum number to the ground state are all of thground state is(n)=#%wn, the energy damping law is ex-
ponential. This is a direct consequence of the fact that, in

contrast to the supersonic case, only the decay mode into the

same order.
_ next lowest oscillator state is significant in the damping pro-
B. Subsonic case cess. Figure 7 illustrates from numerical calculations the lin-
Applying the approximations given in section Il D for
the subsonic case to E(28), we obtain 5X 0™

lgw(n—m)/(uy2 1

nﬁm:f TS g oty nom g2 2 -«- n=15 '

1 gw(n—m)/(u2) 4l —— n=10 H
9appow® Ml uy2 34 € == ."
damph n! lyw T4l '

c '

I ;
Figure 5 shows |, = 47myhu®F, . /(g5pp00’) plotted  —| '
as a function oh andm. In contrast to the supersonic case, 7 ’ !
we see thatF, ,, is very sensitive to the differencen( £ i !
—m), and for sufficiently smalk w/m,u?, the only signifi- 1k H '
cant contribution to transitions from the state are transi- ! !
tions to statén—1). This can be seen very clearly in Fig. 6, ] !
which shows the contributions to the overall energy dissipa- —— . - ——

0 2 4 6 8 10 12 14
m

tion from the staten).
If we investigate the rate of energy los¢n) from the
FIG. 6. The value of i—m)F, .., showing the contributions

state|n) as given by Eq(25), the only significant contribu-

tion CO'”geS from the term whema=n—1. For very small {0 the energy dissipation of the system from transitions from state

hw/myus, we can then expand the integrand néa0, and, to statem in the case of subsonic motion. These results are com-
puted numerically from Eq.34) for |qw/u=0.01.

noting thatL}_,(0)=n, obtain
022306-7



DALEY, FEDICHEV, AND ZOLLER PHYSICAL REVIEW A 69, 022306 (2004

x107* C. Finite temperature effects

At finite temperatures, the terms proportionalHg , in
Eqg. (21) contribute heating effects due to the absorption of

5r 7 thermal excitations in the superfluid. When the temperature
is significant, the final equilibrium motional state distribution
al i will contain nonzero excited state probabilities. These can be

calculated using the detailed balance condifi®8]. Consid-

§ ering the transfer rates for atoms between oscillator states
.83' ] with consecutive quantum numbers, we write for the equilib-
! rium probability distributionp,= p,,(t— %),
2r 1 _ -
ForionPn+1= Hn+1,n(pn_ Pn+1) (36)
1r 1 so that
- Hn+1n -
0 : ' T E—
0 5 10 15 Pn+1 Fn+1—>n+Hn+1,npn. (37

n
Substituting the expressions from Ed&2) and (24), and

FIG. 7. The value ofle/dt=2 - (n—m)F,_n, plotted as &  integrating over the modulus of, this expression simplifies
function of n for subsonic motion, showmg the total rate of energy q

dissipation for a system instantaneously in a oscillator state with
quantum numben. The points show the values computed numeri- _ N(g;) —

cally from Eq.(34), and the solid line is a fitted straight line of the pn+1=an,
form dz/dt=an, with a=3.40x 1075, !

ear dependence of the damping ratenoilote that damping wherefiq,= V2himpw i is momentum of excitations with en-
still occurs in this regime despite the fact that the velocity ofergy eq =% . Thus,p,=[N(q1)/(N(d;) +1)]" Po, and us-
the atom is slower than the speed of sound in the superflui

This apparently contradicts the Landau derivation of thqng the normalization conditiol ;_op,=1, we obtain
critical velocity in the superfluid. However, we note that the
Landau criterion is a thermodynamic argument, and cannot

be applied here, as the motion is accelerated. In fact, thience the equilibrium state occupation probabiliies are
damping law has an analogy with that for dipole radiation Nsimply given by the Boltzmann distribution, and the prob-

classical electrodynamidsee Sec. VI & @blhty that an atom is in the ground motional stateﬁ;?
An anal I Xist tween th rsonic an
analogy also exists between the supersonic and Sub=, 7% =i./(kT) ProvidedkgT<% w, the absorption of ther-

sonic motion regimes here and regimes of large and small_
Lamb-Dicke parameter in the context of laser cooling Ofmal excitations will not significantly decrease the cooling
trapped ions in a harmonic potential respectively. In that sys rate, and will not prevent the cooling of essentially all of the
tem the Lamb-Dicke parametey, is the ratio of the size of population to the ground state. This obtainable under reason-
the ground state wave function to the wavelength of the coolabi%5 effegm/ekntiIS Colgd't'o?ﬁ t iorTeXSaOnapli i~ tzhw

ing laser, and the interaction Hamiltonian for the system i w/kg™> w1, SO that for ne, we then

proportional to e/*=gi 7(a+a"h [1]. Here the interaction obtain 1-po=~5x10"°.

Hamiltonian is proportional t@'9*, and while is a fixed
parameter andj, is not, g, is constrained to be a small or
large parameter by the conservation of momentum when ex-
citations are generated in the superfluid. In the case where the interaction between the atoms in the
During the cooling process, the coupling that existslattice and the superfluid atoms is not made symmetric as
between two states, which is proportional to described in Sec. lll A, decoherence of the internal state will
|(ml|exp(—i7x)|n)? is then analogous in the two cases. Weoccur as the relative phase of the qubit is randomized by
observe cooling directly to the ground state from all excitedcollisional interactions with the superfluid. This process can
states in the supersonic regime, and this is also a charactdre modeled by writing the interaction Hamiltonian for atoms
istic of cooling schemes in ion traps with a large Lamb-in the internal state$0) and |1) as Ho=a,Hy, and H
Dicke parameter. Whem or q, are small(the subsonic re- =a,A,,, respectively. Becausdl = g.p*asy, a, and a,

gime or small Lamb-Dicke parameter limitthe matrix e proportional to the scattering lengths for interactions be-
elements simplify fom#n, (m|exdin(a+a’)]n)~(mlina  tween superfluid atoms and atoms in the lattice in stitps
+a")|n), and coupling only exists between nearest neighboand|1) respectively.

states(this is known in ion trap cooling as coupling to the Initially the internal atomic state was neglected in the
red and blue sidebands only derivation of the master equation in Appendix B, as the in-

(39

ana e nhwl/(kgT) — (1_ e*ﬁw/(kBT))efnﬁw/(kBT). (39)

V. DECOHERENCE FOR NONSYMMETRIC
INTERACTIONS

022306-8



SINGLE-ATOM COOLING BY SUPERFLUID . .. PHYSICAL REVIEW A69, 022306 (2004

teraction Hamiltonian was assumed to be independent of the 02
internal state. In order to estimate the rate of decoherence
we must compute the master equation for a density operato
which includes the internal atomic state. Once again project- 015

ing the density operator onto states which are diagonal in &

motional state basis, we write o
© E
o 0.1

N . . C

W= > > Mot (@i [Pij 0 (40 g
i,je{0,} n _g 0.05

where|n),,: denotes the motiongharmonic oscillatorstate §

of the atom, andi), whereie{0,1} denotes the internal
atomic state. If we take the trace #W over the motional

states, and obtain for the density operator,, (V)
=3 ili)(jlpjj. then the rate of decoherence is the rate of 005, 05— 5 2 25 3 35 4
decay of the off-diagonal elemenigy; and p,o, of this re- Time (Oscillator Periods)

duced density operator for the internal states. . . o o
FIG. 8. Numerical calculations of the contributions to the initial

In the long time limit (for time scales larger than the ¢ ) - - !
oscillator periog, all of the standard approximations made in 9écoherence slip from terms in E@3), in the supersonic regime
with Zw=25mu?. The quantities plotted are dimensionless, and

the derivation of the master equation in Appendix B onceexpressed in terms of (a, —a.)2a2po/(A%l,). For (@ m=0, n
. " S . of (& —a;)292p00 o) =0,
again apply. Rewriting the original master equation for the:0 and(b) m=1, n=1 (solid line9. we observe an initial deco-

hew interaction Hamiltonian and neglecting the heatlngherence slip which decays on a time scale of a few oscillator cycles.

terms, we obtain For (©) m=1,n=0 and (d) m=2,n=0 (dash-dotted lings the
contributions settle in less than one oscillator cycle to the same long
time values given by Eq(42). For (¢) m=0,n=1 and (f) m

=0, n=2 (dashed lines the contributions decay rapidly to zero in
(41 less than one oscillator cycle.

2, .2
. af+aj
pij,m=aiajn§m Fnﬂmpij,n_T > Fm—n’Pij,m-

n'<m

Thus, the equation of motional for the elements diagonal insuperfluid(so that the initial overall density matrix is factor-

the internal states are idgqtical to those given in 2&1) ized into the system and the superflyidn “initial slip” in
except that they are multiplied byzo for pgo,m, andaj for the coherence occurs, a behavior which can be analyzed by
p11,M, as is expected. directly performing the time integral i(B4) for the com-

Taking the trace ofV over the motional states, we obtain bined density operator and interaction Hamiltonian. At zero

the equation of motion for the reduced density operator, temperature, we obtain equations of motion for the elements
, of the reduced density operator for the internal states given
) : a,—a; b
piJZZ pij,m:_—( I 2 ) E 2 Fm—mPij,m- g
" moen : (ai_aj)zggbpo
42 pij~—TE (UgF )2 Pijm
i q m,n

Fori=j, p;j=0, so the populations in each internal state are
constant, as we expect. The rate of decoherence is given by
the decay of the off-diagonal elements, which by comparison gq—(M=—N)fiw
with Eq. (21) is seen to be the rate of cooling transitions,
multiplied by (a,—a;)%/2. In the long time limit with the Note that ag—, the factor involving the exponential ap-
superfluid at zero temperature, where the motional states apFoximates as function, and we recover the behavior de-
all cooled to the ground state and cooling transitions ceasescribed by Eq(42). For short times the real part of the terms
the rate of decoherence also goes to zero.af—-(ag)>  in this expression for particular combinations mfand m
<(ay+ap)?, so that the timescale on which the cooling oc- exhibit three different types of time dependent behavior, ex-
curs is much faster than that of the decoherence, the totalmples of which are shown in Fig. 8. Fokm, the terms
decoherence should be small. However, it is important tdhe in this expression settle rapidly within one oscillator
note that in the case of finite temperature, transitions beeycle to the same values that they produce in the long time
tween motional states will continue to occur after the atomdimit, Eq. (42), and within the first oscillator cycle give con-
are cooled to their steady state distribution, resulting in finitetributions of the same order as their long time values. For
levels of decoherence in the steady-state regime. n>m, the terms correspond to a small initial rate of coher-

For time scales shorter than the oscillator period, the obence loss, which decays to zero in much less than one oscil-
served decoherence will be strongly dependent on the matator cycle, a timescale which becomes rapidly shorter as
ner in which the atom is introduced into the superfluid. The(n—m) increases. Thus, the total decoherence arising from
the limiting case in which the atom is suddenly immersed inthese terms is very small. From the terms wheren we

i(eileq— (M=ol rh_q o
( )|<n|6"“xxlm>|2- (43
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obtain the most significant contributions to the initial deco- Assuming that we are in the supersonic motion regime
herence slip that are not accounted for by the long time beand applying the approximations given in Sec. Il D, we ob-
havior. These contributions decay to zero on a timescale dfin

about 2 oscillator cycles, and at their peak values produce

decoherence rates of the same order as terms in the expres- Jan\po @ [27le
sion for the long time rates. The significant point about these To(wn)= W Ef
terms is that they describe decoherence which will occur

e—iqxrma)pos(t)e—iwnt dt.

0

: : i . (46)
even if the atoms are in the motional ground state, in contrast
with decoherence in the long time regime. If there is a sig-Using the identity
nificant population in the excited motional state, then the
initial slip will give a small contribution to the total decoher- 1 (2w i2608@) o ing 2_ )
ence as compared with the long time behavior. However, if Zjo e e d{| =Ju(2), (47)

the atoms are essentially all in the ground state, then this
initial slip produces decoherence which would not otherwiseyhere J,(z) is an ordinary Bessel function, and integrating

arise. In all cases, the rate of decoherence is proportional t§ver the angular values af in spherical coordinates then
(ap—a;)?, so that if the scattering lengths for the std@s gives

and|1) differ only by a small amount, then the total deco-
herence introduced will be small. . 92600

© 1
Bk D) fodqqu_ld@ﬁmrmag)

X 6(hon—gq)wn. (48)

VI. THE SEMICLASSICAL APPROXIMATION

A. Supersonic case

It is interesting to compare the fully quantum calculation We now integrate oveq to give
of the damping rates to the calculation in the semiclassical
approximation. Using this approximation, the calculation i 9Zppomy w2 1
pp S g pproxi ’ | ’ ' ulatl IS L abPolTlp 2 n3/2 dez(ga\/ﬁ) (49)
performed similarly to the calculation of damping due to & 2wk 5 0 :
radiation from an oscillating charge, which provides a useful

phyS|ca_I analogy petween the two situations. ' _ wherea=r ma0/2Myol%. We can see that many valuesrof

In this calculation we make use of the relationship be-cqontribute significantly to this sum, which is analogous to the
tween quantum matrix elements and the Fourier components| quantum result, in which many different transitions be-
of the classical trajectory of the systd@®]. Strictly speak-  yyeen oscillator levels had significant coefficieRts .. As

ing, this approximation is valid only when the equivalent \oiaq in sec. IV A, this fact arises from the the motion of the

quantum number, and where the difference in the quantury,nerfiyid. This spectrum of generated excitations can be
numbers is small relative to the quantum numbers. We Wilkeen a5 being analogous to the result for electromagnetic
discuss the validity of the approximation in practice at the,qjiation from a charge moving faster than the speed of light
end of the calculation. The classical trajectory of the anm Nin a dielectrig, which can be computed semiclassically us-
the lattice may be written in 1D as(t) —rnaC0SE@YZ,  ing a similar method to that used here.

wherez is the axial unit vector along the lattice. Because the It is possible to determine analytically the functional de-
motion is periodic with period 2/w, the frequency spec- pendence of Eq49) on r . by finding an approximate ex-
trum of the resulting excitations will be discrete with fre- pression for the integral ovet. In the limit where the argu-
guencieswn for integern. Analogous to Eq(22), we then  ment of the Bessel function is large, we can write

write the rate of energy dissipation for the atom in the lattice

(at zero temperatuyeas F(a,n)= Jl ngﬁ(éa\/ﬁ)
-1

. 2
8:‘7772 > [Ty(on)?s(fion—sg)fiwn, (44
qg n

J'ld§200§(§a\/ﬁ—n1-r/2— wl4)

where £ méan
2 11 2 a
w 27w R . ~ — o
% |Tq(“’n)|2:% _ZWJO <Nf|Hint|Ni>e |wntdt|2’ —Wa\/ﬁ god§§ —Wa\/ﬁ|n( \/ﬁ)' (50

45
“9 whereé,= Jn/a is the lower limit for & in which the cosine

with |N;) being the final state of the superfluidormally a  approximation of the Bessel function is valid. This expres-
state with a particular number of excitations of momentumsion is strictly only valid forn<a?=2rZ_ mw/f. At larger
fq). This expression is also averaged over the initial state ofalues of n,F(a,n) is exponentially small, and the func-
the systeniN;), which will usually correspond to a thermal tional dependence at,n®?F(a,n) ona can be found from
distribution of excitations. the point at which the summation is cut off, and for a system

022306-10
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C 1.6
3 —— Quantum
1.4f -« - Semiclassical ]
25¢ e
1.2 = 1
21
sl N\/\W\I\/\/\l\l\l\f\f\’\l\““ . ]
110 0.8+ b
0.5¢ 0.6F i
. 2 L a 4+ -
2 4 6 8 10 04
FIG. 9. The value ofC computed numerically as a function of 0.2 2 "1 é é 1'0
a= 2 r ha/lo by comparison of the results from Eq49) and(51). K

Note that this curve is discontinuous because of the discrete sum in
Egs. (49), which was cut off at the highest integer less trff, FIG. 10. Numerical values of the quantum resfily_ 10y

and thatC=0 fora<2, becaus@<2 corresponds to a sum cut off (spjid line) and the semiclassical res@(20k) (dotted ling in the
atn=0. The value of this function in the limit a—x= givesC  gypersonic regime. Note that we observe very good agreement for
~1.75. smallk, but the results diverge for higher valueskof

of energym,wr 2,/2, Nma=Maor2,/(2h)=a2m,/(4my). Ap-  crepancy arises are always significant in the calculation of

proximating the sum by an integral, we can then write the damping rates, and thus this discrepancy does not signifi-
cantly decrease as—o°.

ngbpomgmb[1+ 2In(4my, /m,) w3 o

327%h*

. (51)

&= B. Subsonic motion
. _ _ In addition to the approximations given in Sec. Il D, we
whereC is a constant which for large values @fs indepen-  note that for the purposes of the semiclassical calculation in

dent ofa. Fig. 9 shows a numerical calculation €f(a), the subsonic regimeq- r nal<qQumax/©=vma/U<1. Thus,
from which we observe that for large C~1.75. Moreover,

the approximation is also very good for small valuesaof 1 (27 _. . 2m _

. . . . qyr a)posg“ ing ~ ing
>2, so thalC is essentially a constant for all physical values 27 |, € " © di~5— o Oxl maCOS {)e e dd
of a.

If we use the classical expression,,=+2&/(myw?), . Qerax5 53
wheree is the energy of the oscillating atom, we can rewrite = 2 n,£1s (53
(51 as

& and so
_ 292 p mY2m
s=—C[l+2|n(4mb/ma)]%s3’? (52) o (- L (qrogél?
- 4meujo dq q3J1dg 5| dho—egho
As in the quantum case, the damping is nonexponential as a 5 .
result of the rich distribution of generated excitations and _ ~ GapPo® . (54
insteade «ce¥2 If we compare this result to that from Eq. 127u’mym,

(30), the ratio of the semiclassical result to the quantum re-

sult for my=my is C[1+4In(2))/(8aw)~0.88. The reason As mentioned in Sec. IV B, damping occurs here despite the
for this becomes clear when we examine the terms of théact that the velocity of the atom being slower than the speed
series2k¥2F(2n,k) (noting that if we begin in the initial of sound in the superfluid appears to contradict the Landau
state|n) thena=2n), and compare them to the equivalent derivation of the critical velocity in the superfluid, and we
terms in the quantum calculatior}; kF, ., n—y) . This is  obtain an exponential damping law. In the same sense that
shown for an initial stater=10 in Fig. 10. We see that the the previously discussed case of supersonic motion is analo-
terms agree well for smak but that they diverge ak—n. gous to radiation from a charge moving faster than the speed
This is because the equivalence between the semiclassiaaf light in a dielectric, this case is analogous to dipole radia-
result from the Fourier spectrum and the quantum matrixion from an accelerating charge. The approximation made
elements is strictly only valid whekis small. Because in the that results in only one term in the sum being significant, Eq.
calculation of energy dissipation rates the terms are weighte(63), similarly corresponds to the dipole approximation in
by an additional factor ok, the terms where the largest dis- nonrelativistic quantum electrodynamics.
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Note that if we substitute =7 wn into Eq.(54), then we >1, then the interaction effectively makes the particles im-
obtain exactly the same result we obtained from the quanturpenetrable, and hence in a true 1D system, indistinguishable
case, Eq(35). The semiclassical approximation works ex- from fermions. This is called the Tonks gas regime, and the
tremely well here, because the only significant contributionsound velocity is equal to the effective Fermi velocity
to the quantum calculation comes from matrix elements be=nfip,/m,. The energy spectrum is linear feg<gyppo

tween states with quantum numbers differing by one. (the chemical potential of a weakly interacting Bose)gasd
£q< Wﬁsz/(Zmb) (the Fermi energy of the Tonks gafer
VII. IMMERSION IN A STRONGLY CORRELATED 1D the cases of weak and strong interactions, respectively. At
SUPERFLUID higher energies the excitation spectrum is no longer universal

and depends on the details of the interparticle interactions.

In this segtio_n we investigate the _damping th?t OCCL_JrSBecausesq and the trapping frequenay in the lattice are
yvhen the lattice is immersed in a quasi-1D superflmd, whic elated via energy conservation, the motion of the lattice at-
is an example of strongly correlated quantum liquid. In a real

. . - ) . .~“oms must then be subsonic with respect {dor the model
experiment this setup is not particularly practical for coolmgto be valid

thg motion of Fhe atoms. For a gas tq be quasi-1D, the EXCl The operator for density fluctuations in this regime is
tation modes in the transverse directions must have energi en by

larger than all other significant energy scales in the systen,
and so the oscillator energies for lattice atorie, must be - 2q\/R
much smaller than the energies of the transverse excitations 5P:% L
in the superfluid. Furthermore, the motion of the oscillator

will only be damped in one dimensidalong the direction of \yhereL is the length of the BEC ani = (v,/vy)¥2 The

the quasi-1D superfluid and so the oscillator should be quantity K depends on the interparticle interactions and is
made strongly anisotropic so that in the transverse directiong|ated to the scaling dimension of the particle field operator:
the oscillator is always in the motional ground state and neegl; T(X)\I",(X/)>~|X_X/|—1/(2K) for large|x—x'|. The func-
not be cooled. However, the study of the cooling process i ion K(y) monotonically decreases ag grows, so that
this context is still interesting, for example, because the Iat-K( —0)~m[y—(1/2m) 3/2]_1/2 and  K( H’w)%(l

tice atom in this setup could be used as a probe to providgr 27//7)2 [30] Klote alsoythat for the quasi 1[7)/ systemy,
spectroscopic information about the 1D Bose gas. _ 2 "5 . .

In general the excitation spectrum of such a 1D Bose ga_47:f: a:‘btbk{mtIJBIILEC’: whergdlLdlihthe;lranz\;erse confinement
is complicated. In the case of short-range interactions be-enI% thc; Iirr?it of s;nrz)arl(lj\gsc(:eillati::\sfr; lEen]c;ieca we anpl
tween the particles exact analytical solution exists both for{h mati Eé53 qd in S ' VI Bpp yd
the ground-state wave function and for the excitation spec- bef[ Same approximation, @3, used in Sec. »an
trum [30] for arbitrary strength of the interparticle interac- obtain
tions and the excitation energies. However, in the limit of ) nggb\/ﬁ o 0T max 2
long wavelength the excitations are phonons and the system e=— —f dg q’ 5 '1 S(how—hvgQ)
can be described within a hydrodynamic approach. Follow- & 0

12
) (bge'™+ble '), (56)

ing Ref.[31] we represent the fielBose-particle annihila- 2 2

. | ! e-particle an ~ i Ko

tion) operator in the form¥ (x) « v pg+ dp€'?, where¢ and = ?s. (57)
ThiMyug

5;) are phase and density fluctuation fields respectively and
obey the commutation relatiohsp(x),B(y)]=id(x—y), For smallv. K~a% ol (ma) andv.= JaaTm.
and p, is the 1D density(averaged, in practice, over the 4 mhi\po! (MyGop) Us™ VGooPo Mo
transverse directionsThe low-energy effective Hamiltonian

for the liquid is then . —gapw’m{”
g e A i e~ —m p7/499/48' (58)
Fo=5— f Aoy ton(mop)d], (55 oo S
The transition rate constant is then

wherev ;= mhipo/my,, vn=«l(mhpo), andx is compress- 1 e~ (Jap/Uob) *(i 0! poGpp) (MpGbp /1 2po) ¥(my Imy) 1\
ibility per unit length. The excitation spectrum corresponding<® and hence is generally small. In the opposite limiting
to this Hamiltonian satisfies a linear dispersion relatign ~ case for largey, K~1 andvs=mfpo/my, so
=hvq, where the velocity of sound is given by > o 4
:(UJUN)lIZ. SQMS

The parameters; andvy are phenomenological and can 715 m,pg
be found from the exact Lieb-Liniger solutigB0]. The de-
pendence on the interaction strength between gas particlétere,I' .~ o(MpGap /% 2po) 2(wmy /7 p3) (My /my,)/ °. Thus,
can be described using the dimensionless parameter, in this regime, the damping rates can be made very fast,
=myGs/ (A%po). In the week interaction limity<1, the  provided thaty.,=mMygan/%%p0=0gany/dss iS Made very
velocity of sound is given by the usual Gross-Pitaevskiilarge. However, this regime is difficult to obtain experimen-
value: vs= \gpppo/M,. If the interaction is very strongy  tally, and in most current experimenjs-1.

(59
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In both cases the damping that we obtain is exponentialgollective excitation, which represents both the injected par-
which again arises because the motion we consider is sulbicle and the cloud of the condensed atoms. This leads to a
sonic, and produces excitations at only one significant momodification of the dispersion relation as well as to the ap-
mentum. The energy exchange rate grows as a functian of pearance of frictional forces. Since the goal of the current
in a manner analogous to dipole radiation in quantum elecwork is to calculate the damping of atomic motion due to the
trodynamics. friction force experienced by an alien particle in a harmonic

trap, we first calculate the dispersion relation for a free for-

VIII. SUMMARY eign particle immersed into a superfluid of atoms, which
We e shown tat the immersion of a syste of a1 2L 8 Consantvelocty. Fie stuatn s conceptial
in an optical lattice in a superfluid causes damping of atoms$ pier, : y o g
: ) . ! . |Hteract|on between the superfluid and the foreign particle as
in excited motional states, and that this damping can be used _; ) o )

! . a simple density-density interaction.
to transfer these atoms to the ground motional state whilé . .
. ARG For a given momenturp the energy of the resulting col-

preserving their initial internal state and any entanglemenf

between the atoms. For typical experimental parameters, thlgctlve excitation is given by

transfer occurs in a characteristic time of around 10 oscillator 5
cycles, which is sufficiently rapid to be useful experimen- E= P +Qappo+ OE@ (A1)
tally. These typical parameters come from a regime in which 2mgg  2aPF0 ’

the atoms in the lattice are moving faster than the velocity of
sound in the superfluid, which generates a rich distribution ofvhere m.z~m, is the effective mass of the foreign atoms,
excitations, involving significant transitions from all levels g, is the coupling coefficient for the interaction between the

directly to the ground state. In the opposite regime, wherdoreign particles and the superfluid, apglis the condensate
the velocity of the atoms in the lattice is significantly slower density.
than the speed of sound in the superfluid, damping still oc-

curs because the motion is accelerated, but only transitions (Ug+v )2

between neighboring oscillator levels contribute significantly 5E(2)292p02 ( a_~4 _

to the damping process. a \ p22m,— eq—(p—q)2/2ma+|0
Provided that the temperature in the nonsuperfluid frac-

tion of the gas is much smaller than the oscillator level spac- " 1 (A2)

ing in the lattice, heating effects due to absorption of thermal a%2u )’

excitations is not a significant effect in this process. This is
the case for experimentally realizable conditions. At higher,

du t=m,*+m; ! is the reduced mass. This expression
temperatures, the system W.OUI(.j be COOqu not to the 9round 4 trivial generalization of the standard superfluid ground-
state, but to a thermal distribution of motional states corre-

, S . state energy calculatioisee Ref[26]). The counterternithe
sponding to a Boltzmann distribution with the same temperaseCond term in the bracketis obtained by replacing the
ture as that in the normal component.

) . ! . . . Fourier component of the interaction potential in the Hamil-
The supersonic motion regime discussed here is readlli

realizable in present experiments. Together with a carefu onan by_the scattering lengty, . It is possible to simplify
. . ; - . EQ.(A2) in two particularly relevant cases.
choice of internal atomic states used to encode a qubit, this

; : ; If the momentunp is small(the foreign particle moves at

damping mechanism thus provides a decoherence-free mean : s 4 )
. Lok : subsonic velocitiesp/m,<<u), then the integral in EQA2)

to cool an atomic qubit to its motional ground state.

Note added in proofRecently, we became aware of a converges ag~—u. The gnalysis Of. the energy denominatqr
related study done by Astrachar,chik and Pitaeya], in leads to the Landau critical velocity condition for subsonic
' i (2) = i
which the drag force on an impurity traveling with a constantpaegg(lgs :n(?ant?'l:sst ;emE_ 0 a?]' q ;:r?(; the calculation  of
velocity through a condensate is computed. The present wo w : p= :
differs in that we consider the motion of an oscillating atom

immersed in a superfluid, and deal specifically with the ap- SE@)— g2 E (uq+vq)2 "

plication of the resulting drag force to decoherence sup- = YanPo 3 B €.+ q22m,  q2u G

pressed cooling of an atomic qubit. q a
ACKNOWLEDGMENTS The calculation of the integral oveyis straight forward. For

example, in the casem,=m,, we find SE®
This vyork was supported in part by the Au.strian Science= 49abpo(Poggb)1/2/3772' which is a small correction to the
Foundation F_WF, E.U. Networks, and the Institute for Qua”‘leading order[(poggb) 2<1] and hence can further be ne-
tum Information. glected. One can expandE(® in powers ofp?/(myu) to
find a similar small correction to the effective mass of the
immersed particle, rigr— M,)/My~ (pog2p) Y?<1. There-
fore, interaction effects up to leading order in the gaseous
When a foreign particle is immersed in a superfluid, itsparameter do not lead to damping for subsonic motion. Both
interaction with the condensed atoms can be described astlae mass of the particle and the effective interaction are

APPENDIX A: DISPERSION RELATION FOR A FOREIGN
PARTICLE IN A SUPERFLUID
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changed by a small quantity (ppa®)*?<1, which can be where Tg denotes the trace over the reservoir states.

neglected. This means that the cooling may only originate \we write gq = eiqxi, gq = e*iqx;, fq = E,q and fqz

from accelerated motion. —b' sothat ' ' '
In the other limiting case, where the motion of the foreign 9’

particle is supersoni@/m,>u, ReSE®?=0, and the imagi-

nary part gives the dampingee Ref[33]) . \ﬁ R
, Hint=Jab V% (Ugt Uq)i:L2 sil'i, (B2
87 poazpP

a

Im SE(@)= (A4)

and then substitute this expression into Eg{l) to give
Here, the effects of the interaction between the foreign par-
ticle and the the superfluido leading ordergenerate damp- 2
ing only, which is nothing else but the classical result for a yy= — GabPo
particle moving through a gas of classical scatterers of a V#?
given densitypy. The difference between the real mass and . - . . A .
the effective mass can once again be neglected, so that in ~ —Sj(t)W(D)s;() KLy (t"))r+[w(t)s;(t")s;(t)
both subsonic and supersonic regimes, the interaction be- A s s
tween a foreign particle and a superfluid may be treated as a  — S(OW(OS;E) KT(E)Ti(D)r, (B3)
density-density interaction.

t
2 4 AA A. ! N
3 (ugreg? 3 fodt [S(D3(t)W(D)

where we have used the cyclic property of the trace, dropped
APPENDIX B: DERIVATION OF THE MASTER the operator subscripi, and written Tg(RA)=(A)g. We
EQUATION have also used the fact théf'y(t" )T ;(t))r=0 for g

We treat the superfluid with Bogoliubov excitations as a#9'- o _
reservoir, with density operatd?{. In the interaction picture, Proceeding in the standard way, we change the variable of

and after making the Born-Markov approximation, the masintegration to r=t—t’, and note that by(t—7)

. . ~ . — a—iHpTl R A7l _ aieqrlhi Foni
ter equation for the density operatar of a system which =€ 'H/; ibq(t)?'H/; = q/; qu(t) and similarly
. . .. . . . ~ —iHpT/hR iH 7/t _ o—ieqTlh{
interacts with a reservoir via an interaction Hamiltonfy, € °7 Dg(t)ep7 =e1%a" hy(t). ) -
can be shown to be givdi34] by We then make use of the assumption thet)~ Pw(t)

[see Eq(19)], and write the master equation in a Fock state
representation.  Noting  also  that (by(t)by(t))r

A 1t . N N N
W= — ﬁfodt TrR[Hint(t)1[Hint(t ),W(t)@R]], (Bl) :<6$(t)63(t)>R:0, we obtain

. 292 t . . ,
= 0SS, f d [ |m)(m|e~ "9 n)(n| €% m)(m|pye! 7"
VA2 g mn Jo
—|m)(mle~ "% n)(n|e~ "% X|m)(m|p """ ™] (e~ "*a”h(b b+ e'fa (b)) (B4)

Assuming that the correlation time of the superfluid reservoir is much shorter than that in the system we can extend the
integration overr— o, and making the replacemef§dre'® 207" _, 7, §(¢ — &), we obtain

_ 2795pp0

Pn="v — 2 (Ugtvg)°2 [(mle~ 9| n) ([ 8 o(n—m) — 2q) Py~ 8l (M=) ~ & )Prl(BDY)r

+[8(hw(m=n)—zq)py— 8 o(n—m) —£)pnl(bibg)r}- (B5)

The first two terms heréthose proportional tg¢b,b})r) de- APPENDIX C: ESTIMATION OF &W ' TERMS

scribe the damping by creation of excitations in the super- The heating effects due to absorption of thermal excita-
fluid, whilst the second two termgthose proportional t0  tions has already been discussed in Sec. IV C, where the
<b$bq>R) describe heating effects by absorption of thermallyequilibrium distribution at finite temperatures was shown to
generated excitations. At finite temperatures, the reservoive a Boltzmann distribution. The small additional damping
correlation functions are given by the number of thermakerms arising at finite temperatures from ti& s term,
excitationsN(q) with momentunviq, (blbg)r=N(a). which are small when the condensate dengitys large and
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which were omitted when the density fluctuation operajer ~term is equal to that in Eq(52), but with the numerical
was originally written, may be estimated using a semiclassicoefficient modified, and the density of the condengafe
cal treatment. The operator for the additional density fluctuareplaced by the density of thermal phonopguenons This

tion terms is given by term will always be small, as in this regime<T,., the
1 critical temperature of the Bose gas, & ppnonons
- I oy , s 2 ~F2n2 0
5p' = NTNZV 2 upup,apa;’el(p—p )r tiorllfar,é;;ni]?‘u (z,trt]hensp fp“l(2my). The rate of addi
o.p’ ping is then
T P A ~ : 312
+Upl)p/agap/e i(p=p") "+ UpUp/apap/el(p+p )T (‘c:,: ij3li)zmb 3(kBT)3/2. (C5)
~~pn : , 42 7 h
+upup,aga;,e"(p+p ) (C1) Po

For a uniform Bose gas the critical temperature for Bose

The first two terms in this expression correspond to the incondensation can be expressed 25
elastic scattering of thermal excitations with momentm 2h 223
to excitations with momenturfip’, and the second two cor- __ TP
respond to the absorption and emission, respectively, of two mb[§(3/2)]2’3’
excitations with momentap and#p’. ' . . _

For the case of supersonic motion wherg~1 andv,  Wherep.=po+ py is the total density, ang, is the density of
—0, the correction to the dissipation rate is then given by the normal component, so that we can rewrite &) as

(C6)

kgTe

2 ) 32 ]
. Tab <, €py ( T €pPn
P _ _ , e, =] === C
. - E > [N(P) = N(p")]o(wn e+ &) e =207 T2p (€7
N N where we have used the well-known respilt=p,(T/T)%?
X EL e'tPP dt| fiwn, (C2)  [35]. Thus, this result has the same form as the damping rate

obtained in Eq(52), but the condensate density is replaced
—1; by the density of the normal component, and the numerical
where, as beforeN(p) = (exdey/(ksT)]—1) Lis the mean Y N€ SIty P ' .
number of thermal Bogoliubov excitations with momentum CO€fficient is decreased by a factor of 2. Again, at small
#p present in the superfluid. temperatures compared with the critical temperature,
In order to cool the system to the ground state we already~ | ¢+ WNenpn<po, the contribution from this term will be

requirefi @>kgT, which has been shown to be a reasonableMall . .
experimental condition in Sec. IV C. In this case, the ther- 1he Same calculation can be performed for the subsonic

mally generated excitations with momentdip will have a case. In this regime, the contribution from the terms involv-

L .- - atat -
much smaller energy than the scattered excitations, whicHld apap anda;apr is small, because the double summation
have momentunkp’. Also, e, >%fw>kgT andN(p’)~0. overp andp’ is restricted by energy conservation such that

Thus, lep+ep|=fhon, and in the subsonic case, this quantity is
2 always small. With respect to the subsonic energy dissipation
s~ TYab > > N(p)s(hon—sy) rate in Eq.(54), &, we obtain
h pp’ " o
2l 2 PO — oY (c8)
X iJ e®)rdt| fwn, 480pmpui®
2 0
: Note that ash wn<myu?/2, this expression is derived con-
_ & if‘” 24pN(p) ©3) sidering only the case whekg T<m,u?/2. It can be shown
" 2p0 2m2)o POPTP): that in the limitksT<mu?/2 that the density of the normal
componenfp, is given by[35]
This result is proportional to the density of thermal excita- 272(kgT)?
tions and essentially describes the classical friction due to pp=— (C9)
scattering of thermal excitations by the moving patrticle. 45myh3u®
. If kBT.<mb.uz/2, thensp%hup. .The additional damping so that we can write EGCS) as
is then given in terms of the ratein Eq. (52) by _
- £(3) e 35 C10
=0 ey (c4) © T B4 (c10

T 2wpo(hu)?
Again, this result is a modification of the zero-temperature
where {(X) denotes the Riemanf function. Note that be- damping result, with the condensate density replaced by the
cause the wave number of phonons in this regime is of thelensity of the normal component and the numerical coeffi-
order ofkgT/(%u), this result is proportional to the density cient decreased. In the limit<T,., as with the supersonic
of thermal phononsppynenens Thus the additional damping results, this result will be small, g8,<p,.
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