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Violation of the Nernst heat theorem in the theory of the thermal Casimir force
between Drude metals
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We give a rigorous analytical derivation of low-temperature behavior of the Casimir entropy in the frame-
work of the Lifshitz formula combined with the Drude dielectric function. An earlier result that the Casimir
entropy at zero temperature is not equal to zero and depends on the parameters of the system is confirmed, i.e.,
the third law of thermodynamic&he Nernst heat theorénis violated. We illustrate the resolution of this
thermodynamical puzzle in the context of the surface impedance approach by several calculations of the
thermal Casimir force and entropy for both real metals and dielectrics. Different representations for
the impedances, which are equivalent for real photons, are discussed. Finally, we argue in favor of the
Leontovich boundary condition which leads to results for the thermal Casimir force that are consistent with
thermodynamics.
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I. INTRODUCTION contribute[27]. The results of Ref.27] do not smoothly join
with those for ideal metals. In the high-temperature limit,
During the last few years the Casimir effddi] has at- where the contribution of the zero modes is dominant, the
tracted a lot of experimental and theoretical attention as &asimir force between plates made of Drude metals proves
nontrivial macroscopic evidence for the existence of zerot0 be equal to one half of the force between the ideal metals.
point oscillations of e|ectr0magnetic fie(ﬁee1 e.g., mono- TOday, there is an eXtenSiVe. literature on these tWO. and other
graphs[2—4] and reviews5,6]). Except for calculations of approaches to the calculation of the thermal Casimir force
the Casimir force between perfectly shaped bodies made gietween real metal25-40.
ideal metal at zero temperature, the topical studies were con- oM this discussion it has been shol@9] that the sub-
ducted taking into account the effects of surface roughnes titution of the Drude dielectric function into the Lifshitz

finite conductivity of the boundary metal, and nonzero tem_o_rm.ula.results In negative values of the CaS|m!r entropy
perature6]. within wide temperature interval and leads to the violation of

The correct theoretical description of the thermal Casimirthe third law of thermodynamic&he Nernst heat theorem

force between real metals has assumed great importan dOn the cpntrary, Refs.31-33 have thrown dOUbt- on the
L , 9 portance Hgmputatlons of Ref.39] and presented the numerical com-
to recent precision experimerj—16], followed by the pro- putations in favor of the statement that the Casimir entropy
spective applications of the Casimir effect in nanotechnology, . the Drude metals is zero at zero temperature, i.e., the
[17,18 and also its use as a test for predictions of fundamengirg jaw of thermodynamics is not violated.
tal physical theorie$16,19-23. It was found unexpectedly | the present paper we give a detailed and rigorous ana-
that the calculations of the thermal Casimir force betWeer'ytiCEu derivation of the |0w_temperature beha\/ior Of the Ca-
two parallel plates made of real metal based on the Lifshitzimir entropy in the framework of the Lifshitz formula com-
formula [24] supplemented by some model dielectric func-bined with the Drude dielectric functioiiSec. I). This
tion ran into serious difficulties. The key question of the derivation removes the doubts raised in R¢&1-33 and
controversy is whether the transverse electric zero mode cowalidates the thermodynamic inconsistency of the Drude di-
tributes to the Casimir effect in the case of real metals. Irelectric function with the Lifshitz formula at nonzero tem-
Refs.[25,26 a positive answer to this question was obtainedperature. The reason why the opposite conclusion is obtained
by the substitution of the plasma dielectric function into thein Refs.[31-33 is explained in Sec. Ill. This section con-
Lifshitz formula. In the limit of infinitely high conductivity tains also the resolution of the above thermodynamic puzzle
the results of Refd25,26| are smoothly transformed into the by presenting several computations in the framework of the
familiar results for ideal metalf5]. In Ref.[27] the Drude surface impedance approd@6,37] as opposed to the use of
dielectric function was used to calculate the contributions othe Drude model. The exact boundary conditions in terms of
both longitudinal and transverse modes to the Casimir forcempedances, depending on polarization and angle of inci-
It was found that the transverse electric zero mode does nalence, are compared with the Leontovich boundary condi-
tion. The latter is shown to be applicable to the case of fluc-
tuating fields being in agreement with the third law of
*On leave from North-West Technical University, St. Petersburgthermodynamics. The temperature dependences of the Ca-

Russia. simir force and entropy for real metals in both approaches
TOn leave from Noncommercial Partnership “Scientific Instru- are compared with those for dielectrics. Section IV contains
ments,” Moscow, Russia. conclusions and discussion of recent experimental results.
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Il. CASIMIR FREE ENERGY AND ENTROPY IN THE plus some additional terms. Taking into account that
LIFSHITZ THEORY COMBINED WITH THE ri®(0y)=0 and r{?2(0y)=r{>?(0y)=1, this identical
DRUDE MODEL representation is as follows:

The Casimir free energy for the configuration of two par-

allel plates at a separatiamand temperaturd is given by (D) ) kgT
the Lifshitz formula[24], which can be represented in the F T =7"(aT)~ 16722
form
S X fo ydyIn[1-r(P2(0y)e™V]
AT =23 [ “yayinia-ri ye ]
8’7Ta =0 {4 k T 0 .
_ B (D2 -y
+In[1-r2(¢,y)e ]} (1) tora? Zl Llydy{ln[l rf?2(g1.y)e Y]
Here theprime adds a multiple 1/2 near the term with —In[1—rﬁp)2(gI ye Y]
=0, kg is the Boltzmann constant, the dimensionless Mat- (D)2 B
subara frequencies ar§=¢/w., where &=2xkgTI/%, +In[1-r7%(4 y)e ]
=c/(2a), and the reflection coefficients for the two dif- _
we=ci(2a) —In[1-rP2(Z, y)e ). ®)

ferent polarizations are expressed in terms of the dielectric

permittivity e (w) as ) o o
An important point is that the zero-frequency contributions

SN N 222 are contained only in the first twq terms of the right-hand

ye(i6)—Vle(id) Lidity side of Eq.(5), whilst the summation starts from the term

ye(i)+\[e(if)— 11 +y? with | =1 leading to nonzero lower integration limits in

the integrals at any nonzero temperature.

y— \/[s(|§|)—l]§,2+y2 It is instructive to fln_d the asymptotlc_ representation for
\/[ DLy (2 the free energy5) applicable atT—0. First we note that

among the three parameters contained in(E};.i.e.,Z}p, g

We consider the Drude metals described by the dielectri@"’ith 1=1), and;’(T)’ the latter is the smallest one. In fact
y t T=300K for good metalsy~10—10"%rad/s (for

ermittivity of the Drude model. At the imaginary Matsubara &
requencies it is given by ginary AU y=532<10%radls) whereas ¢,=2mkgT/hi=2.46
x 10%rad/s, andé =1&,, i.e., in all casesy<¢,. WhenT

rﬁ(gl !y):l

r2(g ,y>=[

~9 decreases from room temperature up to approximatgly,
8(D>(i§|)=1+“’—g, 3 where T is the Debye temperaturel §=165K for Au
L4+ v(T)] [41]), y(T)~T, i.e., y(T) decreases following the same law

as ¢, preserving the inequality(T)<¢,. At T<Tp/4 the
wherew, andy(T) are the dimensionless plasma frequencyrelaxation parameter decreasgzs even more quickly #an
and relaxation parameter defined 5}’,J=wp/wc, (T) Wlt"h d_ecreasmgT (i.e., as~T accordmg.tp the Bloch-
— %(T)/w,. In the absence of reIaxatioNV(T)=0 ande® Gruneisen law due to electron-phonon collisigdg] and as

coincides with the dielectric permittivity of the free-electron ~T° at liquid helium temperatures due to electron-electron
plasma modet(P). Substituting Eq(3) into Egs.(1) and(2) scattering[41]). As a result, aff=30K y(T)/&y(T)~4.9

2 = ~ -3 i -
one obtains the Casimir free energy®)(a,T) and the re- x10°%, atT=10K y(T)/£,(T)~1.8x10 *, and this rela
. - D) . tion decreases further with—0, i.e., at low temperatures
flection coefﬁmentsrﬁyl(g, ,y) in the framework of the

o the conditiony(T)<<&(T) is largely satisfied.
Drude model. If, from the very beginning(T) =0, then the The largest pararr|1eter of the above threewjs (for Au

Casimir free energy in the framework of the plasma modelw —1.37x 10%®rad/s). For example, for Au af =300K

F®)(a,T) and reflection coefficients{?)(¢,y) are ob- P = ' RSN s

tained. It is notable that®(0y)=0, whereas 70K, and 10K we havey(T)/wp=(T)/w,=3.88<10"%,
' LA ’ 6.71x10 4, 1.06<10 8, respectively.

=55\ 2 The reflection coefficient&) have continuous derivatives
(P2(0y) = 1 P27, y)= Y= Vo, ty 0. @ with respect to the relation(T)/&(T)(I1=1) at th_e point
1 OY)=ri ey oty , y(T)/&(T)=0. Under the above proved conditiop(T)
yTNopTy <&(T), which is satisfied at all sufficiently low tempera-
tures, the relationy(T)/&(T)<1, and we can expand in

i.e., there is no smooth transition froi(® to (P when - - -
’ Taylor series around a poipd(T)/ &(T) =0 keeping only the
y(T)—0. This nonanalyticity is determined exclusively by firs){c-order terms poIM(T)/&(T) ping only

the zero-frequency contribution of the transverse electric
mode to the free energf®)(a,T).

For the calculation of the Drude free ene{"(a,T) it
is useful to represent it as the plasma free eneéféi)(a,T)

=T
ri?2 ) =r{P%(¢ ) - %R(Q o
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UT) the skin layer thickness in the frequency region of the infra-
r®2¢z,y)=rP2(¢ y)— ﬁRi(g, Y), (6)  red opticg the plasma model free energy is given [139]
hcl(3) So\[ T \3
where () =g (g)— _—
, , FH@an)=E™a) 16ma® a Teff)
RI(ZY) 208 ay[1+a?(2y*= D)1 P(y) 3 s 4
1 = 1 ﬂ-
(6 A aAy+ af(ay + Vs I )] w
e
R B 2ay|rP(4.y)| . whereE(®)(a) is the Casimir energy at zero temperature cal-
L(6y)= 1+ a2 (ay+ 1+ a®y?)?’ () culated by using the plasma model dielectric function. The

perturbation expansiofill) is applicable at separations,
and a=1/w,=\,/(4wa), \, is the plasma wavelength <a<3xum at all temperature$<300K [26]

(note that we keep the arguméhwhen(, participates in the The second term in the right-hand side of E9).is linear

expansion parameter but omit it in the other cases in the temperature. It is an easy matter to calculate the coef-
The same expansions for the logarithms which appear ifici€nt nearT perturbatively. For this purpose we use E4).

Eq. (1) are and expand the logarithm under the integral in powers of

dp/a. Then all integrals are taken explicitly, resulting in
In[1=r{?%(¢, y)e YI=In[1-r{P*(g ,y)e ]

keT (=
YT Ri&ye™” o fo ydyln[1-r{?0y)e™]
a(T) 1-r{P2(g y)e Y’

_ keTU(3) 8o so\% . [8\*, ¢5)
I 1-r®2(¢,,y)e =11 P%(g y)e ] T [1‘43“2(3> 323 1_16§(3)}
YT RiG.ye”? 0(50 T, §<5>H
(M) 1—rP2(g y)e Y T80t NI (12

(8)  where{(z) is the Riemann zeta function.
Now we consider the low-temperature behavior of the last

cJerm in the right-hand side of Eq9), FI(a,T), which
depends on the relaxation parameter. An important point is
that the relaxation parameter is not an independent one but is
i the function of the temperature= y(T). Because of this, it

B J ydy is not improbable that the temperature-dependent terms re-

0 sulting from the integration and summation in E@0) will

cancel the second term, linear in the temperature, in the Ca-
simir free energy(9). Below we demonstrate that this is not

Substituting Eq.(8) in Eq. (5) we obtain the following
expression for the Casimir free energy between parall
plates made of Drude metal

FO(a,T)=7FP)(a,T)-
(a,T) (a,T) Tomd?

xIn[1-r{P20y)e Y]+ F(a,T), (9

A - ; the case.
\évtr;(rarii tgf;\(/aeﬁo&nbunon depending on the relaxation param As pointed out abovey(T)—0 whenT—0 no slower
than ~T2. If desired that the quantit¥ (" (a,T) from Eq.
}(T) keT c o - (10) be linear inT, the sum in Eq(10) should tend to infinity
FP(a,T)= "= P ydy as 12 whenT—0. Let us find what is the actual asymptotic
wp 8ma? =1 4(T) g behavior of the quantity?(”)(a,T) when T—0. For this

purpose we expan®  ({;,y) from Eq.(7) up to the first

order in the small parameter (recall thatF(? is already

proportional to the smallest parameter of our problgtw,)
(10 272

§|a
RIGY) ==~ Ruly)=2ye. (13)

RH(gl iy) n Ri(gl !y)
e —rP2(gy) @ =12 y)

Note that in this expression the small parameféT)/w,
=y(T)/wp, which does not depend on an index of summa-g
tion, is put in evidence.

The low-temperature asymptotic limit of the Casimir free FM(a,T)
energyF (P (a,T) in the framework of the plasma model was

ubstituting Eq(13) into Eg. (10) one obtains

investigated with details in Reff39] (the coinciding numeri- YT) kgT = dy 1 (= y’dy
cal results follow also from the computations of RZ5]). T o amal |21 §|f o1 + o) o—1)
In terms of the two small parametefs$T.¢; [WherekgTess poama ™ d d

=hcl(2a)=hw] and §y/a=2a [where 5o=\,/(27) is (14
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Each of the two sums in Eq14) can be simply found when IFP(a,T)
T—0. The asymptotic of the first sum is as follows SP(a,T)=— T
i foc dy 3kgl(3)[ T )2{ a7d T
Rl P gra? \Ter) |© I35(3) Tor
* 5 8m® T
BECAR I L 1 4200 T ] (19
Teosr K51 K| @27KTTeri— 1 (@27KT/Terr—1)2 a 135(3) Tets

Ters This result coincides yvith the one qbtained in F{ep] (itis
5T 2(3)+(2) (15 also in agreement with the numerical computations of the
thermal corrections to the Casimir force in Reff25,26).
. ) Evidently the plasma model Casimir entropy is positive and
[here we hav_e neglected _aII terms n the éxpansion c)fS‘(”)(a,T)—>O whenT—0, i.e., it is in agreement with the
exp(2rkT/Tety) in the denominators starting from the third nerst heat theorem.

oned. For the second sum in E¢L4) one obtains The second contribution to the Drude model Casimir en-
. tropy is obtained from the second term in the right-hand side
s 1 [=y2dy of Eqg. (9) taking into account Eq12) and is given by
=14J)q5ev-1 SP(a,T)=sP)(a,0)
Tett 1 47T ‘
= -2 —In(1—e 2™TTeiry+ — Kg J“ (p)2 -
27T = K3 T = dyln[1—r{P%0y)e™Y
™ =1k eff 167Ta20YY[ 174(0y)e ]
o1 1 47T 2
= kgl(3) 5, 5,
X + _'B _q420 200 ...
&L K2 @27k Teri— 1 Tgff = lena? 1 4a +12 a (20

@2mkT/Te ) . ) )
[see Eq.(12) for higher perturbation orders ify/a]. This

contribution is negative and does not depend on the tempera-
ture.
Tertl(3) 27T 3Tered(3) The asymptotic behavior of the last contribution to the
~— In + +2£(2). (16) L . .
7T Tets 27T Casimir entropy in the Drude model, as given by E), at
T—0, is obtained from Eq.(17) with account y(T)

Substituting Eqs(15) and(16) into Eq.(14) we arrive at = YoT?:

X
k

[

1
4k (e27KTITerr— 1)2

0FN(a,T)
(7) - 7
f(‘y)(a,T)% V(T) kBTeff§(3) S Y. (a;T) (9T
() 47232
kgl(3 T
S AP {2 1 (17) =T 54“2(2)7( )%ﬁ
—1In T . 47282 ®
Tes £(3) Tes 4 P
27T 2(2)
As is seen from Eq(17), the leading term inF(")(a,T) X1 =2 InT_”+3+97T@T_” . (2D
behaves as- y(T)In(T/Tes) and goes to zero whefi—0 ¢ ¢
becausey(T)~T? at helium and lower temperatures. From Eq.(21) we note thaS{”(a,T)—0 whenT—0.
Now we are in a position to find the low temperature  As a result, the value of the Casimir entropy at zero tem-
behavior of the Casimir entropy perature calculated with the help of the Drude dielectric
function is found from Eqs(19)—(21):
) dF P (a,T)
st@n=m T 18 S(a,0)= lim[SP(a, 1)+ (@ 1)+ 5"(a,1)]
calculated by using the Drude dielectric function, where the =sP)(a,0)<0, (22

Casimir free energyr(P)(a, T) is given by Eq.(9). Accord-

ing to Eq.(9), there are three contributions into the Casimirwhere the quantity in the right-hand side is negative and is
entropy in the framework of the Drude model at low tem- given by Eq.(20). This quantity depends on the parameters
peratures. The first one is given by the Casimir entropy calef the system, such as the separation between the plates and

culated by means of the free-electron plasma dielectric funcplasma frequency, violating the third law of thermodynamics
tion. It is obtained from Eq(11) [43,44) (the Nernst heat theoremTherefore we may con-
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clude that the Drude dielectric function is thermodynami-lowance made for impurities, these asymptotics are appli-
cally inconsistent with the Lifshitz formula and unusable tocable at temperaturesT># y,.s/(27kg)=6.5x10"°K.
calculate the thermal Casimir force between real metalswhat this means is that the Casimir entropy at temperature
Note also that according to EqR0)—(22) the Casimir en- T=5x10"*K has a nonzero negative value given by Eq.
tropy between two parallel plates made of Drude metals i$20). Physically this is equivalent to the violation of the
negative within a wide separation range. The entropy canna{ernst heat theorem. Only at smaller temperatures of about
be made positive by introducing some composite systemg-4K does Eq.(20) break down and the Casimir entropy
containing a subsystem with negative entropy between theapidly takes a sharp upward turn to zero. We would like to
two infinite plates without changing the value of the Casimirpoint out also that the usual theory of the electron-phonon
force. interaction, describing electrons interacting with elementary
In the following section we discuss the possibilities to excitations of a perfect lattice with no impurities, must sat-
avoid the above thermodynamical puzzle and formulate thesfy and does satisfy all the requirements of thermodynamics.
approach in which the Casimir entropy is positive, becomingn fact, the mean free path of the electrons between the col-

zero at zero temperature. lisions with impurities at zero temperature is many orders of
magnitude greater than the penetration depth of the electro-
Ill. TOWARDS A THERMODYNAMICALLY CONSISTENT magnetic oscillations at the _characterlstlc frequency into the
THEORY OF THE THERMAL CASIMIR FORCE meta_l. To_ make sure th_at this is the case, rt_acall that the re-
BETWEEN REAL METALS laxation time for Au(the inverse of the relaxation parameter

atT=300K is equal tor(T=300K)=1.88< 10 *s. Using

The above asymptotic limit for the Casimir entropy wasthe above resistivity ratio, one obtains the value of the relax-
derived under the important condition thafT) <& /(T), | ation time at zero temperaturéT~0 K)=1.88< 10 8s. Fi-
=1, i.e., at anyT the magnitude of the relaxation parameternally, using the value of Fermi velocity for Awg=1.79
must be much less than the Matsubara frequencies. If this 10° m/s) the mean free path of the electron is equal to
condition does not hold, the obtained conclusion concerning(T~0 K)=v7(T~0 K)=3.36cm. This should be com-
the thermodynamical inconsistency of the Drude model compared with the thickness of the skin layer in the region of the
bined with the Lifshitz formula is open to question. This infrared optics, equal to approximately 22 nm. That is why
explains why in Refs[31-33 it was concluded that the the attempt to remedy the violation of the Nernst heat theo-
Lifshitz formula combined with the Drude model respectsrem at the expense of impurities is meaningless.
the Nernst heat theorem. In Ref81-33 all computations Recently the resolution of these complicated problems
were performed under the condition that the relaxation pawas obtained37] using another approach to the description
rameter is constarithe valuesy=35.6 meV or 0.01 meV, as of real metals based on the concept of the Leontovich im-
at T=300K andT=10K, respectively, were extended to all pedance boundary conditions. This approach offers a funda-
temperatures Then even for the smaller value, at tempera-mental understanding of the reason why the Drude model is
turesT<0.018 K the inequalityy> &,(T) is fulfilled, i.e., the  not compatible with the theory of the thermal Casimir force
conditiony(T)<<¢/(T) is violated, and our proof in Sec. Il is between real metals.
not applicable. The main concept of the Lifshitz theory is the fluctuating

The question arises whether there are physical prerequelectromagnetic field considered on the background of di-
sites for violating the conditiony(T)<<¢,(T). According to  electric permittivity depending only on frequency. This con-
Sec. Il, the nonelastic processes of electron-phonon collieept works good in the case of dielectrics but is not adequate
sions and also the elastic electron-electron scattering respefctr real metals. In fact, in the frequency region of the anoma-
the inequality y(T)<<¢(T). One may hope, however, that lous skin effect the spatial nonuniformity of the field makes
some fine properties of real metal bodies could result in thémpossible a description of a metal in terms affw) [46].
violation of this inequality at some sufficiently low tempera- Then the electromagnetic fluctuations also cannot be consid-
tures. It has been proposgtb] that this role can be played ered on this background. Moreover, in the frequency region
by impurities and defects which lead to a nonzero residuabf the normal skin effect the electric field initiates a real
value of the static resistivityand, thus, a relaxation param- current of conduction electrorjs- ooE, whereaoy, is the dc
eter; recall that resistivity is proportional to the relaxationconductivity of a metal. Theseand E should be considered
parameter{42]) as the temperature goes to zgsee also as real one$37]. In contrast withE, the fluctuating field
Appendix D in Ref[32]). cannot heat a metal &does due to collisions of conduction

Here we adduce the argument that impurities cannot remelectrons with phonons.
edy the situation with the violation of the Nernst heat theo- At present a complete theory of field quantization inside
rem. In fact, the resistivity ratio of a sample can be defined asetals which, among other things, should take into account
the ratio of its resistivity at room temperature to its residualthe effects of spatial nonuniformity, is not available. Because
resistivity. For pure samples the resistivity ratio may be asf this, the concept of the electromagnetic fluctuations inside
high as 16 [41]. As an example, let us consider Au with a metal remains unclear. In the absence of a complete theory
¥(T=300K)=5.32x 10"3rad/s. In this case for the residual we should not take into consideration the metal interior, but
value of the relaxation parameter one obtaipgs=5.32  rather take into account the realistic material properties by
x 10 rad/s. The asymptotic expressions of Sec. Il are applimeans of the surface impedance function.
cable under the conditioy<¢;=2wkgT/%A. Thus, with al- It is well known that for a plane wave of a single fre-
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guency inside a medium with dielectric permittivity the  comes impossible. Note that in recent Ref8] it has been

following equations are valif46]: suggested to use the “exact” boundary conditid@g) and
(25) with the impedances depending on the wave ve(ter,
wH=CckXE, weE=—ckxH, (23)  on the angle of incidengénstead of the Leontovich condi-

. i tions(27) used in Refs[36,37. This, however, leads us back
wherek is a complex wave vector. Then from the first equal-;y 41 the above problems with the thermal Casimir force,
ity of Eq. (23) for the field with transverse polarizatiof (S pecause in the absence of a mass-shell equation the represen-
perpendicular to thexz plane which is the plane of inCi- (a4on for the impedance@4) and(25) becomes not equiva-
dencg inside a metal near its boundary plane it follows: e 10 the representatiof26). In our case we have used the

Leontovich boundary conditiof27); that is to say, the rep-

_ (24) resentation26) was generalized for the case of virtual pho-

\/w2£—c2kf tons. If one generalizes Eq&4) and (25) for the case of
virtual photons, this will lead to zero value for the transverse

Here the index refers to the component of the field parallel reflection coefficient at zero frequency and, therefore, to a

to the boundary plane and the unit vectois perpendicular contradiction with thermodynamics.

to it and directed inside a metal. In the same way, from the By the use of the surface impedance instead of the Drude

second equality of Eq(23) for the field with longitudinal model(3), the Lifshitz formula(l) is preserved, but the co-

w

Ei=Z,[HXn], Z,=

polarization one obtains efficientsr, r{ given by Eq.(2) should be replaced HB7]
1 2 21,2
[NXE]=ZH;,  Zj=— o e—cki. (29 ) y-zioar o, [a-zig)y)?
ricgy)= v Zag| ri(diy)= avzadyl
The quantitieeZ, | are called impedanc¢47]. By the use of (29

the Snell’'s law they can be identically represented as
1 1 SIES Substituting in Eq(28) the impedance function of the nor-
7= = 7= [1-2229 (26 mal skin effect or the anomalous skin effect, one finds
| - ] H ’ ( ) )
Jon/1- Sir' ¥ Ve & rf(0y)=r%(0y)=1 [36,37. In the region of the infrared
2 optics it follows [36,37 that rf(0y)=1, r?(0y)=(w,

_\N\2/(7 2
where 9, is the angle of incidence of the electromagnetic Y)*(wpty)”. . .
wave from vacuum on the boundary plane of the metal. It should be stressed that the expressions obtained for the

In metals for all frequencies which are at least severareerCtion coefficients at zero f_requency in the impedance
times less than the plasma frequency we hpsje-1. For approach are exact. T2h9y readily follow from the ex.ac.t Eq.
this reason, the term $ifiy/e in Egs.(26) can be neglected (26) as|f5'r,'2'90/8,|<(7/"’p)“’_>0 whenw—0. This result is in
in comparison with unity. This leads to the fact that inside acontradiction with the statement of RE83]. The authors of
metal all waves are spread perpendicular to the surface, i.dXef- [33] start from representatiof24) for Z, and consider
the refraction angle is equal to zero independent of the angii€ limit «—0 at fixed nonzerck, [i.e., they violate the

of incidence[46]. As Leontovich has suggestdd6], the =~ Mass-shell equation from which Eqe4) and (225) are
equations equivalent to Eq(26)]. As a result, the equality? (0K, )

=0 obtained in Ref[33] leads to the violation of the third
E;=Z[HXn], [nXE{]=ZH,, (27) law of thermodynamics(see Sec. ) In fact, both ap-

proaches, ours and that of REB3], start from different pos-
with Z=1/\/e can be used as boundary conditions in order taulates. Our postulate is that the reflection properties for the
determine the field outside the metal. The quantty fluctuating field are the same as for real photons. If this is
=Z(w) is called the impedance of a mefdl6] or the “in-  true, the impedance&6) follow, which coincide with the
trinsic” impedancg47]. It depends only o and does not Leontovich impedance at zero frequency and are approxi-
depend on the polarization or the angle of incidence. Weanately equal to it at all nonzero frequencies with a very high
emphasize that for real photons the difference between thgrecision[all calculational results based on Eg6) and the
Leontovich impedance, as is in E@Q7), and impedances in Leontovich impedance using= 1/\/s for metals are practi-
Eq. (26) is negligibly small. What is more, when—0, the cally the samé In Ref. [33] another postulate is assumed,
dielectric permittivity goes to infinity and the Leontovich which admits that the reflection properties for the fluctuating
impedance coincides precisely with the impedari@és By  field are different from those for the usual electromagnetic
postulating the boundary conditiqg27) in the theory of the field. Both postulates have the right of being assumed be-
Casimir effect, we admit in fact that the virtual photons havecause it is impossible to study the reflection properties of the
the same reflection properties on the metal boundary as resirtual photons experimentally. The second postulate, how-
ones do. It is significant that the surface impedance and thever, is shown to be inconsistent with thermodynamics. For
boundary condition$27) still hold, even in the frequency this reason it must be rejected, and so we conclude that the
domain of the anomalous skin effect when, due to the spatidluctuating field has the same reflection properties on a metal
nonuniformity of the field, the description in terms ©fbe-  boundary as the usual electromagnetic waves.
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FIG. 1. Magnitude of the Casimir force per unit area for gold vs  FIG. 2. Magnitude of the Casimir force per unit area for dielec-
temperature whea=1 um. The solid line is obtained in the frame- trics vs temperature whesm=1 um, calculated by the Lifshitz for-
work of the impedance approach. The dashed line is obtained bgnula. The solid line is for mica, witk=7. The dotted line is
using the Drude dielectric function. obtained for nonexistent nonpolar dielectric with=100. The

dashed line is for polar dielectric withi(0)=100.

Let us now present several computational results obtained
using Egs.(1) and (28) in the framework of the impedance namics. On the other hand, the dotted line is not monotonous
approach in comparison with the results calculated from th@s the dashed line in Fig. 1. This is, however, artifactual
Lifshitz formula (1) and(2) combined with the Drude model becauses can be assumed to be independent on the fre-
(3). In Fig. 1, the magnitude of the Casimir force per unitquency and temperature only in the case of so-called nonpo-
areaF = — dF/da for gold plates is plotted, in the tempera- ar dielectrics whose atoms or molecules do not have their
ture interval 1 KKT<1200K at a separation distange Own dipole moments. The electric susceptibility of nonpolar
=1pum. At this separation distance, the characteristic fre.diE'ECtriCS arises due to the electronic polarization of atoms
guencyw, belongs to the region of the infrared optics whereand molecules. The values effor nonpolar dielectrics are
the impedance function is given by of the order of 1J49-51]. Large values ot can exist only
for polar dielectrics where the partial orientation of perma-
nent dipole moments occurs. But for polar dielectricge-

Z(ig)= NL (29) pends strongly on the frequency and temperature. Specifi-
\/w|2)+§|2 cally, their ¢ quickly decreases with the increase of
frequency. As a result, at optical and infrared frequencies,
The solid line represents the values calculated in the fram@hich are characteristic for the Casimir effect, the values of
work of the impedance approach, and the dashed line is ot are determined by the electronic polarizabil{§9] and
tained via the Lifshitz formula supplemented by the Drudecannot exceed several units. The dielectric permittivity of the
model with a temperature-dependent relaxation parametdiolar dielectrics along the imaginary frequency axis can be
[data fory(T) are taken from Ref[49]]. It is clearly seen Modeled by[52]

that the dashed line is not monotonous, demonstrating the N

existence of a wide temperature region where the force s(ig)zlJrz Cn (30)
modulus decreases with an increase of the temperédarie n=1 &’

Figs. 2, 3 of Ref[32]). At the same time, the solid line ob- 1+

tained by using the surface impedance demonstrates the mo-

notonous increase of the magnitude of the Casimir force withwhere the sum describes the effect of possible Debye rota-

temperature in perfect agreement with what is expected frortional relaxation frequencieghe absorption spectra of di-

thermodynamics. electrics are not influential at the characteristic frequencies of
It is instructive to know if the nonmonotonous force- the Casimir effeciw, when the separation between plates is

temperature relation takes place only for Drude metals or ibf the order of 1um). In solids, the polarization due to ori-

this may also happen for dielectrics. In Fig. 2 the magnitudeentation of the permanent dipole moments disappears at

of the Casimir force per unit area between dielectrics withrather low frequencies- (10’—10%) rad/s[46]. At very high

g=const is shown for different temperatures at a separatiofrequenciesw> 10'®rad/s, ¢ decreases to unitj42]. There-

of a=1 um. Both solid and dotted lines were obtained fromfore, for the model calculation we may chooSe=2, C;

the usual Lifshitz formula(l) and (2) with e(if)=¢ =93, w,=10"rad/s, C,=6, w,=10"%rad/s. In this case

=const. The solid line is for mica with=7; the dotted line ¢(0)=100 ande~7 at the characteristic frequeney; cor-

coincides with the line in Fig. 5 of Ref32] with ¢=100. responding ta=1 um.

The solid line shows a monotonous increase of the Casimir Equation(30) was substituted into the Lifshitz formu(a)

force with the temperature, as is expected from thermodyand(2). In Fig. 2, the magnitude of the Casimir force per unit

022119-7



BEZERRAet al. PHYSICAL REVIEW A 69, 022119 (2004

S (MeVm—2K™1) peraturg 15,16 this correction(which we call “alternative”
[16]) would comprise 4.89 mPa and 1.23 mPa at separations
0.5 a=300nm and 500 nm, respectively, i.e., 3.6% and 7.24%,
respectively, of the total Casimir pressure. For reference, the
50 100 150 200 250 300 traditional thermal corrections in the same experimental con-

0.5 figuration (computed using the plasma dielectric function
T (K) [25,26] or the surface impedand&6,37]) at separations

-1 =300nm and 500nm are equal t60.008 63 mPa and
P —0.00441 mPa, respectively, i.e., only 0.006% and 0.03%,

5P e - respectively, of the total Casimir pressyrete that the tra-
B ditional thermal corrections are of the same sign as the Ca-

simir force, i.e., negatie The experimental results of Refs.
FIG. 3. Casimir entropy per unit area for two gold semispaced 15,16l and the extent of their agreement with theory rule out
vs temperature, whea=1 um. The solid line is obtained in the the linear thermal correction to the Casimir force as pre-
framework of the impedance approach. The dashed line is obtainedicted by the Drude dielectric function substituted into the
by using the Drude dielectric function. Lifshitz formula (see Ref[16] for detailg. Thus, the combi-
nation of the Drude model with the Lifshitz formula is not

area between the polar dielectrics is represented by thenly thermodynamically inconsistent, but is also in contra-
dashed line. It is seen that the force-temperature relatiorfliction with experiment. _
given by the dashed line, is monotonous as in the case of As we have demonstrated through several computations,
nonpolar dielectrics with small, as expected from thermo- the description of real metals based on the surface impedance
dynamics. From Fig. 2 it is clear that the Casimir force be-(Leontovich boundary conditionsis thermodynamically
tween dielectrics is a monotonous function of the temperaCOﬂSiStent. Unlike the dielectric permlttIVIty, the surface im-

ture when realistic input data far are substituted into the Pedance is well defined at all frequencies, even in the domain
Lifshitz formula. of the anomalous skin effect. By the use of the Leontovich

In Fig. 3, the Casimir entropy for gold is plotted as a impedance boundary conditions, instead of the Drude model,

function of the temperature at a separation distance betwedRe Lifshitz formula is preserved, but the reflection coeffi-
platesa=1 um. The solid line is drawn in accordance with cients are expressed in terms of the impedance function. An
the impedance approach, i.e., by the use of Efs(28) and important poin_t is that diffe_rent representations for the im-
(29). The dashed line is obtained from the usual LifshitzPedances, which are equivalent for real photons, become
formula and Drude modell)—(3). Evidently, the solid line honequivalent in appllcatlon to the fluctuat!ng f!elds. As we
satisfies all conditions, i.e., positive values of the entropy afiave shown above, in the case of fluctuating fields the rep-
nonzero temperatures, and the validity of the Nernst hedsentatior(26) for the impedance should be used leading to
theorem. By contrast, the dashed line presents the negatiyBe Leontovich boundary conditions, whereas the representa-
values of the entropy and the violation of the Nernst heations (24) and(25), when applied to virtual photons, lead to
theorem. The analytical proof of the validity of the Nernst the contradictions with thermodynamics.

heat theorem in the impedance approach can be found in !N the framework of the impedance approach the value of
Ref. [37]. the zero-frequency term of the Lifshitz formula is prescribed

by the form of the impedance and quite satisfactory physical

results are obtained. In particular, the Casimir energy and

IV. CONCLUSIONS AND DISCUSSION force turn out to be monotonous functions of the tempera-
dure, in agreement with what would be expected from ther-
dielectric function into the Lifshitz formula for the thermal mod_ynamlcs. In the region of _the infrared optics the. results
Casimir force leads to the violation of the third law of ther- obtained b_y using the surface impedance comqlde W'_th those
found earlier through the use of the plasma dielectric func-

modynamicgthe Nernst heat theoremA rigorous analytical . - . .
evidence of this statement lies on the fact that at low tem{°" [25,28. The Casimir entropy in the impedance approach

peratures the magnitude of the relaxation parameter is mudch always positive and vanishes at zero temperature, in accor-

less than the Matsubara frequencies, a property which is agance with the Nernst heat theorem. . .
q propery To conclude, we have proved that the Drude dielectric

ways true in the case of perfect crystal lattice. A specialf tion i : iate o d ibe the th | Casimi
analysis of the role of defects or impurities leads to the contunction 1S not appropriate to describe the thermal L.asimir
ffect in the case of real metals, leading to contradictions

clusion that they are incapable to reconcile the calculation§" . e
of the thermal Casimir force between Drude metals withWlth thgrmodynam_cs_. On the other hand, the Lifshitz for-
thermodynamics mula with the coefficients expressed in terms of the surface

It has been known that the Lifshitz formula combinedimpedance is suitable to calculate all the quantities of physi-

with the Drude dielectric function predicts a line@n tem- cal interest.
perature large thermal correction to the Casimir force at

short separations connected with the second term in the free
energy(9) [27,32,34,3% In recent precision measurement of ~ The authors are grateful to CNPq and Finep for partial
the Casimir pressure between Au and Cu plates at room tenfinancial support.

As we have proved above, the substitution of the Drud
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