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Violation of the Nernst heat theorem in the theory of the thermal Casimir force
between Drude metals
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We give a rigorous analytical derivation of low-temperature behavior of the Casimir entropy in the frame-
work of the Lifshitz formula combined with the Drude dielectric function. An earlier result that the Casimir
entropy at zero temperature is not equal to zero and depends on the parameters of the system is confirmed, i.e.,
the third law of thermodynamics~the Nernst heat theorem! is violated. We illustrate the resolution of this
thermodynamical puzzle in the context of the surface impedance approach by several calculations of the
thermal Casimir force and entropy for both real metals and dielectrics. Different representations for
the impedances, which are equivalent for real photons, are discussed. Finally, we argue in favor of the
Leontovich boundary condition which leads to results for the thermal Casimir force that are consistent with
thermodynamics.
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I. INTRODUCTION

During the last few years the Casimir effect@1# has at-
tracted a lot of experimental and theoretical attention a
nontrivial macroscopic evidence for the existence of ze
point oscillations of electromagnetic field~see, e.g., mono
graphs@2–4# and reviews@5,6#!. Except for calculations of
the Casimir force between perfectly shaped bodies mad
ideal metal at zero temperature, the topical studies were
ducted taking into account the effects of surface roughn
finite conductivity of the boundary metal, and nonzero te
perature@6#.

The correct theoretical description of the thermal Casi
force between real metals has assumed great importance
to recent precision experiments@7–16#, followed by the pro-
spective applications of the Casimir effect in nanotechnolo
@17,18# and also its use as a test for predictions of fundam
tal physical theories@16,19–23#. It was found unexpectedly
that the calculations of the thermal Casimir force betwe
two parallel plates made of real metal based on the Lifs
formula @24# supplemented by some model dielectric fun
tion ran into serious difficulties. The key question of t
controversy is whether the transverse electric zero mode
tributes to the Casimir effect in the case of real metals.
Refs.@25,26# a positive answer to this question was obtain
by the substitution of the plasma dielectric function into t
Lifshitz formula. In the limit of infinitely high conductivity
the results of Refs.@25,26# are smoothly transformed into th
familiar results for ideal metals@6#. In Ref. @27# the Drude
dielectric function was used to calculate the contributions
both longitudinal and transverse modes to the Casimir fo
It was found that the transverse electric zero mode does
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contribute@27#. The results of Ref.@27# do not smoothly join
with those for ideal metals. In the high-temperature lim
where the contribution of the zero modes is dominant,
Casimir force between plates made of Drude metals pro
to be equal to one half of the force between the ideal met
Today, there is an extensive literature on these two and o
approaches to the calculation of the thermal Casimir fo
between real metals@25–40#.

From this discussion it has been shown@39# that the sub-
stitution of the Drude dielectric function into the Lifshit
formula results in negative values of the Casimir entro
within wide temperature interval and leads to the violation
the third law of thermodynamics~the Nernst heat theorem!.
On the contrary, Refs.@31–33# have thrown doubt on the
computations of Ref.@39# and presented the numerical com
putations in favor of the statement that the Casimir entro
for the Drude metals is zero at zero temperature, i.e.,
third law of thermodynamics is not violated.

In the present paper we give a detailed and rigorous a
lytical derivation of the low-temperature behavior of the C
simir entropy in the framework of the Lifshitz formula com
bined with the Drude dielectric function~Sec. II!. This
derivation removes the doubts raised in Refs.@31–33# and
validates the thermodynamic inconsistency of the Drude
electric function with the Lifshitz formula at nonzero tem
perature. The reason why the opposite conclusion is obta
in Refs. @31–33# is explained in Sec. III. This section con
tains also the resolution of the above thermodynamic puz
by presenting several computations in the framework of
surface impedance approach@36,37# as opposed to the use o
the Drude model. The exact boundary conditions in terms
impedances, depending on polarization and angle of in
dence, are compared with the Leontovich boundary con
tion. The latter is shown to be applicable to the case of fl
tuating fields being in agreement with the third law
thermodynamics. The temperature dependences of the
simir force and entropy for real metals in both approach
are compared with those for dielectrics. Section IV conta
conclusions and discussion of recent experimental result

,
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II. CASIMIR FREE ENERGY AND ENTROPY IN THE
LIFSHITZ THEORY COMBINED WITH THE

DRUDE MODEL

The Casimir free energy for the configuration of two pa
allel plates at a separationa and temperatureT is given by
the Lifshitz formula@24#, which can be represented in th
form

F~a,T!5
kBT

8pa2 (
l 50

`

8E
z l

`

ydy$ ln@12r i
2~z l ,y!e2y#

1 ln@12r'
2 ~z l ,y!e2y#%. ~1!

Here theprime adds a multiple 1/2 near the term withl
50, kB is the Boltzmann constant, the dimensionless M
subara frequencies arez l5j l /vc , where j l52pkBTl/\,
vc5c/(2a), and the reflection coefficients for the two di
ferent polarizations are expressed in terms of the dielec
permittivity «(v) as

r i
2~z l ,y!5H y«~ i z l !2A@«~ i z l !21#z l

21y2

y«~ i z l !1A@«~ i z l !21#z l
21y2J 2

,

r'
2 ~z l ,y!5H y2A@«~ i z l !21#z l

21y2

y1A@«~ i z l !21#z l
21y2J 2

. ~2!

We consider the Drude metals described by the dielec
permittivity of the Drude model. At the imaginary Matsuba
frequencies it is given by

« (D)~ i z l !511
ṽp

2

z l@z l1g̃~T!#
, ~3!

whereṽp and g̃(T) are the dimensionless plasma frequen
and relaxation parameter defined byṽp5vp /vc , g̃(T)
5g(T)/vc . In the absence of relaxationg̃(T)50 and« (D)

coincides with the dielectric permittivity of the free-electro
plasma model« (p). Substituting Eq.~3! into Eqs.~1! and~2!
one obtains the Casimir free energyF (D)(a,T) and the re-
flection coefficientsr i ,'

(D)(z l ,y) in the framework of the
Drude model. If, from the very beginning,g(T)50, then the
Casimir free energy in the framework of the plasma mo
F (p)(a,T) and reflection coefficientsr i ,'

(p) (z l ,y) are ob-
tained. It is notable thatr'

(D)(0,y)50, whereas

r'
(p)2~0,y!5r'

(p)2~z l ,y!5S y2Aṽp
21y2

y1Aṽp
21y2

D 2

Þ0, ~4!

i.e., there is no smooth transition fromF (D) to F (p) when
g(T)→0. This nonanalyticity is determined exclusively b
the zero-frequency contribution of the transverse elec
mode to the free energyF (D)(a,T).

For the calculation of the Drude free energyF (D)(a,T) it
is useful to represent it as the plasma free energyF (p)(a,T)
02211
-
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plus some additional terms. Taking into account th
r'

(D)(0,y)50 and r i
(p)2(0,y)5r i

(D)2(0,y)51, this identical
representation is as follows:

F (D)~a,T!5F (p)~a,T!2
kBT

16pa2

3E
0

`

ydy ln@12r'
(p)2~0,y!e2y#

1
kBT

8pa2 (
l 51

` E
z l

`

ydy$ ln@12r i
(D)2~z l ,y!e2y#

2 ln@12r i
(p)2~z l ,y!e2y#

1 ln@12r'
(D)2~z l ,y!e2y#

2 ln@12r'
(p)2~z l ,y!e2y#%. ~5!

An important point is that the zero-frequency contributio
are contained only in the first two terms of the right-ha
side of Eq.~5!, whilst the summation starts from the ter
with l 51 leading to nonzero lower integration limitsz l in
the integrals at any nonzero temperature.

It is instructive to find the asymptotic representation f
the free energy~5! applicable atT→0. First we note that
among the three parameters contained in Eq.~3!, i.e., ṽp , z l

~with l>1), andg̃(T), the latter is the smallest one. In fa
at T5300 K for good metalsg;101321014rad/s ~for
Au g55.3231013rad/s) whereas j152pkBT/\52.46
31014rad/s, andj l5 l j1, i.e., in all casesg,j l . When T
decreases from room temperature up to approximatelyTD/4,
where TD is the Debye temperature (TD5165 K for Au
@41#!, g(T);T, i.e.,g(T) decreases following the same la
as j l , preserving the inequalityg(T),j l . At T,TD/4 the
relaxation parameter decreases even more quickly thaj l
with decreasingT ~i.e., as ;T5 according to the Bloch-
Grüneisen law due to electron-phonon collisions@42# and as
;T2 at liquid helium temperatures due to electron-electr
scattering@41#!. As a result, atT530 K g(T)/j1(T)'4.9
31022, at T510 K g(T)/j1(T)'1.831023, and this rela-
tion decreases further withT→0, i.e., at low temperature
the conditiong(T)!j l(T) is largely satisfied.

The largest parameter of the above three isvp ~for Au
vp51.3731016rad/s). For example, for Au atT5300 K,
70 K, and 10 K we haveg(T)/vp5g̃(T)/ṽp53.8831023,
6.7131024, 1.0631026, respectively.

The reflection coefficients~2! have continuous derivative
with respect to the relationg(T)/j l(T)( l>1) at the point
g(T)/j l(T)50. Under the above proved conditiong(T)
!j l(T), which is satisfied at all sufficiently low tempera
tures, the relationg(T)/j l(T)!1, and we can expand in
Taylor series around a pointg(T)/j l(T)50 keeping only the
first-order terms

r i
(D)2~z l ,y!5r i

(p)2~z l ,y!2
g̃~T!

z l~T!
Ri~z l ,y!,
9-2
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r'
(D)2~z l ,y!5r'

(p)2~z l ,y!2
g̃~T!

z l~T!
R'~z l ,y!, ~6!

where

Ri~z l ,y!5
2z l

2ay@11a2~2y22z l
2!#ur i

(p)~z l ,y!u

A11a2y2@y1az l
2~ay1A11a2y2!#2

,

R'~z l ,y!5
2ayur'

(p)~z l ,y!u

A11a2y2~ay1A11a2y2!2
, ~7!

and a[1/ṽp5lp /(4pa), lp is the plasma wavelengt
~note that we keep the argumentT whenz l participates in the
expansion parameter but omit it in the other cases!.

The same expansions for the logarithms which appea
Eq. ~1! are

ln@12r i
(D)2~z l ,y!e2y#5 ln@12r i

(p)2~z l ,y!e2y#

1
g̃~T!

z l~T!

Ri~z l ,y!e2y

12r i
(p)2~z l ,y!e2y

,

ln@12r'
(D)2~z l ,y!e2y#5 ln@12r'

(p)2~z l ,y!e2y#

1
g̃~T!

z l~T!

R'~z l ,y!e2y

12r'
(p)2~z l ,y!e2y

.

~8!

Substituting Eq.~8! in Eq. ~5! we obtain the following
expression for the Casimir free energy between para
plates made of Drude metal

F (D)~a,T!5F (p)~a,T!2
kBT

16pa2E0

`

ydy

3 ln@12r'
(p)2~0,y!e2y#1F (g)~a,T!, ~9!

where the contribution depending on the relaxation para
eter is given by

F (g)~a,T!5
g̃~T!

ṽp

kBT

8pa2 (
l 51

`
ṽp

z l~T!
E

z l

`

ydy

3F Ri~z l ,y!

ey2r i
(p)2~z l ,y!

1
R'~z l ,y!

ey2r'
(p)2~z l ,y!

G .

~10!

Note that in this expression the small parameterg̃(T)/ṽp
5g(T)/vp , which does not depend on an index of summ
tion, is put in evidence.

The low-temperature asymptotic limit of the Casimir fr
energyF (p)(a,T) in the framework of the plasma model wa
investigated with details in Ref.@39# ~the coinciding numeri-
cal results follow also from the computations of Ref.@25#!.
In terms of the two small parametersT/Te f f @wherekBTe f f
[\c/(2a)5\vc] and d0 /a52a @where d05lp /(2p) is
02211
in

el
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the skin layer thickness in the frequency region of the inf
red optics# the plasma model free energy is given by@39#

F (p)~a,T!5E(p)~a!2
\cz~3!

16pa3 F S 112
d0

a D S T

Te f f
D 3

2
p3

45z~3! S 114
d0

a D S T

Te f f
D 4G , ~11!

whereE(p)(a) is the Casimir energy at zero temperature c
culated by using the plasma model dielectric function. T
perturbation expansion~11! is applicable at separationslp
<a,3 mm at all temperaturesT<300 K @26#.

The second term in the right-hand side of Eq.~9! is linear
in the temperature. It is an easy matter to calculate the c
ficient nearT perturbatively. For this purpose we use Eq.~4!
and expand the logarithm under the integral in powers
d0 /a. Then all integrals are taken explicitly, resulting in

2
kBT

16pa2E0

`

ydy ln@12r'
(p)2~0,y!e2y#

5
kBTz~3!

16pa2 H 124
d0

a
112S d0

a D 2

232S d0

a D 3F12
z~5!

16z~3!G
180S d0

a D 4F12
z~5!

4z~3!G J , ~12!

wherez(z) is the Riemann zeta function.
Now we consider the low-temperature behavior of the l

term in the right-hand side of Eq.~9!, F (g)(a,T), which
depends on the relaxation parameter. An important poin
that the relaxation parameter is not an independent one b
the function of the temperature,g5g(T). Because of this, it
is not improbable that the temperature-dependent terms
sulting from the integration and summation in Eq.~10! will
cancel the second term, linear in the temperature, in the
simir free energy~9!. Below we demonstrate that this is no
the case.

As pointed out above,g(T)→0 when T→0 no slower
than ;T2. If desired that the quantityF (g)(a,T) from Eq.
~10! be linear inT, the sum in Eq.~10! should tend to infinity
as 1/T2 whenT→0. Let us find what is the actual asymptot
behavior of the quantityF (g)(a,T) when T→0. For this
purpose we expandRi ,'(z l ,y) from Eq. ~7! up to the first
order in the small parametera ~recall thatF (g) is already
proportional to the smallest parameter of our problemg/vp)

Ri~z l ,y!5
2z l

2a

y
, R'~z l ,y!52ya. ~13!

Substituting Eq.~13! into Eq. ~10! one obtains

F (g)~a,T!

5
g~T!

vp

kBT

4pa2 (
l 51

` S z lE
z l

` dy

ey21
1

1

z l
E

z l

` y2dy

ey21
D .

~14!
9-3
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Each of the two sums in Eq.~14! can be simply found when
T→0. The asymptotic of the first sum is as follows

(
l 51

`

z lE
z l

` dy

ey21

5
2pT

Te f f
(
k51

`
1

k F 1

e2pkT/Te f f21
1

1

~e2pkT/Te f f21!2G
'

Te f f

2pT
z~3!1z~2! ~15!

@here we have neglected all terms in the expansion
exp(2pkT/Tef f) in the denominators starting from the thir
ones#. For the second sum in Eq.~14! one obtains

(
l 51

`
1

z l
E

z l

` y2dy

ey21

5
Te f f

2pT F22(
k51

`
1

k3
ln~12e22pkT/Te f f!1

4pT

Te f f

3 (
k51

`
1

k2

1

e2pkT/Te f f21
1

4p2T2

Te f f
2

3 (
k51

`
1

k

e2pkT/Te f f

~e2pkT/Te f f21!2G
'2

Te f fz~3!

pT
ln

2pT

Te f f
1

3Te f fz~3!

2pT
12z~2!. ~16!

Substituting Eqs.~15! and~16! into Eq. ~14! we arrive at

F (g)~a,T!'
g~T!

vp

kBTe f fz~3!

4p2a2

3F2 ln
2pT

Te f f
1213p

z~2!

z~3!

T

Te f f
G . ~17!

As is seen from Eq.~17!, the leading term inF (g)(a,T)
behaves as2g(T)ln(T/Tef f) and goes to zero whenT→0
becauseg(T);T2 at helium and lower temperatures.

Now we are in a position to find the low temperatu
behavior of the Casimir entropy

S(D)~a,T!52
]F (D)~a,T!

]T
, ~18!

calculated by using the Drude dielectric function, where
Casimir free energyF (D)(a,T) is given by Eq.~9!. Accord-
ing to Eq.~9!, there are three contributions into the Casim
entropy in the framework of the Drude model at low tem
peratures. The first one is given by the Casimir entropy c
culated by means of the free-electron plasma dielectric fu
tion. It is obtained from Eq.~11!
02211
f
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r
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S(p)~a,T!52
]F (p)~a,T!

]T

5
3kBz~3!

8pa2 S T

Te f f
D 2H 12

4p3

135z~3!

T

Te f f

12
d0

a F12
8p3

135z~3!

T

Te f f
G J . ~19!

This result coincides with the one obtained in Ref.@39# ~it is
also in agreement with the numerical computations of
thermal corrections to the Casimir force in Refs.@25,26#!.
Evidently the plasma model Casimir entropy is positive a
S(p)(a,T)→0 whenT→0, i.e., it is in agreement with the
Nernst heat theorem.

The second contribution to the Drude model Casimir e
tropy is obtained from the second term in the right-hand s
of Eq. ~9! taking into account Eq.~12! and is given by

S0
(D)~a,T!5S0

(D)~a,0!

5
kB

16pa2E0

`

ydy ln@12r'
(p)2~0,y!e2y#

52
kBz~3!

16pa2 F124
d0

a
112S d0

a D 2

2•••G ~20!

@see Eq.~12! for higher perturbation orders ind0 /a]. This
contribution is negative and does not depend on the temp
ture.

The asymptotic behavior of the last contribution to t
Casimir entropy in the Drude model, as given by Eq.~9!, at
T→0, is obtained from Eq.~17! with account g(T)
5g0T2:

S(g)~a,T!52
]F (g)~a,T!

]T

'2
kBz~3!

4p2a2

g~T!

vp

Te f f

T

3F22 ln
2pT

Te f f
1319p

z~2!

z~3!

T

Te f f
G . ~21!

From Eq.~21! we note thatS(g)(a,T)→0 whenT→0.
As a result, the value of the Casimir entropy at zero te

perature calculated with the help of the Drude dielect
function is found from Eqs.~19!–~21!:

S(D)~a,0!5 lim
T→0

@S(p)~a,T!1S0
(D)~a,T!1S(g)~a,T!#

5S0
(D)~a,0!,0, ~22!

where the quantity in the right-hand side is negative and
given by Eq.~20!. This quantity depends on the paramete
of the system, such as the separation between the plates
plasma frequency, violating the third law of thermodynam
@43,44# ~the Nernst heat theorem!. Therefore we may con-
9-4
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clude that the Drude dielectric function is thermodynam
cally inconsistent with the Lifshitz formula and unusable
calculate the thermal Casimir force between real met
Note also that according to Eqs.~20!–~22! the Casimir en-
tropy between two parallel plates made of Drude metal
negative within a wide separation range. The entropy can
be made positive by introducing some composite sys
containing a subsystem with negative entropy between
two infinite plates without changing the value of the Casim
force.

In the following section we discuss the possibilities
avoid the above thermodynamical puzzle and formulate
approach in which the Casimir entropy is positive, becom
zero at zero temperature.

III. TOWARDS A THERMODYNAMICALLY CONSISTENT
THEORY OF THE THERMAL CASIMIR FORCE

BETWEEN REAL METALS

The above asymptotic limit for the Casimir entropy w
derived under the important condition thatg(T)!j l(T), l
>1, i.e., at anyT the magnitude of the relaxation parame
must be much less than the Matsubara frequencies. If
condition does not hold, the obtained conclusion concern
the thermodynamical inconsistency of the Drude model co
bined with the Lifshitz formula is open to question. Th
explains why in Refs.@31–33# it was concluded that the
Lifshitz formula combined with the Drude model respec
the Nernst heat theorem. In Refs.@31–33# all computations
were performed under the condition that the relaxation
rameter is constant~the valuesg535.6 meV or 0.01 meV, as
at T5300 K andT510 K, respectively, were extended to a
temperatures!. Then even for the smaller value, at tempe
turesT,0.018 K the inequalityg.j1(T) is fulfilled, i.e., the
conditiong(T)!j l(T) is violated, and our proof in Sec. II i
not applicable.

The question arises whether there are physical prere
sites for violating the conditiong(T)!j l(T). According to
Sec. II, the nonelastic processes of electron-phonon c
sions and also the elastic electron-electron scattering res
the inequalityg(T)!j l(T). One may hope, however, tha
some fine properties of real metal bodies could result in
violation of this inequality at some sufficiently low temper
tures. It has been proposed@45# that this role can be playe
by impurities and defects which lead to a nonzero resid
value of the static resistivity~and, thus, a relaxation param
eter; recall that resistivity is proportional to the relaxati
parameter@42#! as the temperature goes to zero~see also
Appendix D in Ref.@32#!.

Here we adduce the argument that impurities cannot r
edy the situation with the violation of the Nernst heat the
rem. In fact, the resistivity ratio of a sample can be defined
the ratio of its resistivity at room temperature to its resid
resistivity. For pure samples the resistivity ratio may be
high as 106 @41#. As an example, let us consider Au wit
g(T5300 K)55.3231013rad/s. In this case for the residu
value of the relaxation parameter one obtainsg res55.32
3107 rad/s. The asymptotic expressions of Sec. II are ap
cable under the conditiong!j152pkBT/\. Thus, with al-
02211
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lowance made for impurities, these asymptotics are ap
cable at temperaturesT@\g res /(2pkB)56.531025 K.
What this means is that the Casimir entropy at tempera
T5531024 K has a nonzero negative value given by E
~20!. Physically this is equivalent to the violation of th
Nernst heat theorem. Only at smaller temperatures of ab
1024 K does Eq.~20! break down and the Casimir entrop
rapidly takes a sharp upward turn to zero. We would like
point out also that the usual theory of the electron-phon
interaction, describing electrons interacting with element
excitations of a perfect lattice with no impurities, must s
isfy and does satisfy all the requirements of thermodynam
In fact, the mean free path of the electrons between the
lisions with impurities at zero temperature is many orders
magnitude greater than the penetration depth of the elec
magnetic oscillations at the characteristic frequency into
metal. To make sure that this is the case, recall that the
laxation time for Au~the inverse of the relaxation paramete!
at T5300 K is equal tot(T5300 K)51.88310214s. Using
the above resistivity ratio, one obtains the value of the rel
ation time at zero temperaturet(T'0 K)51.8831028 s. Fi-
nally, using the value of Fermi velocity for Au (vF51.79
3106 m/s) the mean free path of the electron is equal
l (T'0 K)5vFt(T'0 K)53.36 cm. This should be com
pared with the thickness of the skin layer in the region of
infrared optics, equal to approximately 22 nm. That is w
the attempt to remedy the violation of the Nernst heat th
rem at the expense of impurities is meaningless.

Recently the resolution of these complicated proble
was obtained@37# using another approach to the descripti
of real metals based on the concept of the Leontovich
pedance boundary conditions. This approach offers a fun
mental understanding of the reason why the Drude mode
not compatible with the theory of the thermal Casimir for
between real metals.

The main concept of the Lifshitz theory is the fluctuatin
electromagnetic field considered on the background of
electric permittivity depending only on frequency. This co
cept works good in the case of dielectrics but is not adequ
for real metals. In fact, in the frequency region of the anom
lous skin effect the spatial nonuniformity of the field mak
impossible a description of a metal in terms of«(v) @46#.
Then the electromagnetic fluctuations also cannot be con
ered on this background. Moreover, in the frequency reg
of the normal skin effect the electric fieldE initiates a real
current of conduction electronsj5s0E, wheres0 is the dc
conductivity of a metal. Thesej andE should be considered
as real ones@37#. In contrast withE, the fluctuating field
cannot heat a metal asE does due to collisions of conductio
electrons with phonons.

At present a complete theory of field quantization insi
metals which, among other things, should take into acco
the effects of spatial nonuniformity, is not available. Becau
of this, the concept of the electromagnetic fluctuations ins
a metal remains unclear. In the absence of a complete th
we should not take into consideration the metal interior,
rather take into account the realistic material properties
means of the surface impedance function.

It is well known that for a plane wave of a single fre
9-5
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quency inside a medium with dielectric permittivity« the
following equations are valid@46#:

vH5ck3E, v«E52ck3H, ~23!

wherek is a complex wave vector. Then from the first equ
ity of Eq. ~23! for the field with transverse polarization (E is
perpendicular to thexz plane which is the plane of inci
dence! inside a metal near its boundary plane it follows:

Et5Z'@Ht3n#, Z'5
v

Av2«2c2k'
2

. ~24!

Here the indext refers to the component of the field parall
to the boundary plane and the unit vectorn is perpendicular
to it and directed inside a metal. In the same way, from
second equality of Eq.~23! for the field with longitudinal
polarization one obtains

@n3Et#5ZiHt , Zi5
1

v«
Av2«2c2k'

2 . ~25!

The quantitiesZ',i are called impedances@47#. By the use of
the Snell’s law they can be identically represented as

Z'5
1

A«A12
sin2q0

«

, Zi5
1

A«
A12

sin2q0

«
, ~26!

where q0 is the angle of incidence of the electromagne
wave from vacuum on the boundary plane of the metal.

In metals for all frequencies which are at least seve
times less than the plasma frequency we haveu«u@1. For
this reason, the term sin2q0 /« in Eqs.~26! can be neglected
in comparison with unity. This leads to the fact that inside
metal all waves are spread perpendicular to the surface,
the refraction angle is equal to zero independent of the a
of incidence @46#. As Leontovich has suggested@46#, the
equations

Et5Z@Ht3n#, @n3Et#5ZHt , ~27!

with Z51/A« can be used as boundary conditions in orde
determine the field outside the metal. The quantityZ
5Z(v) is called the impedance of a metal@46# or the ‘‘in-
trinsic’’ impedance@47#. It depends only onv and does not
depend on the polarization or the angle of incidence.
emphasize that for real photons the difference between
Leontovich impedance, as is in Eq.~27!, and impedances in
Eq. ~26! is negligibly small. What is more, whenv→0, the
dielectric permittivity goes to infinity and the Leontovic
impedance coincides precisely with the impedances~26!. By
postulating the boundary condition~27! in the theory of the
Casimir effect, we admit in fact that the virtual photons ha
the same reflection properties on the metal boundary as
ones do. It is significant that the surface impedance and
boundary conditions~27! still hold, even in the frequency
domain of the anomalous skin effect when, due to the spa
nonuniformity of the field, the description in terms of« be-
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comes impossible. Note that in recent Ref.@48# it has been
suggested to use the ‘‘exact’’ boundary conditions~24! and
~25! with the impedances depending on the wave vector~i.e.,
on the angle of incidence! instead of the Leontovich condi
tions~27! used in Refs.@36,37#. This, however, leads us bac
to all the above problems with the thermal Casimir forc
because in the absence of a mass-shell equation the repr
tation for the impedances~24! and~25! becomes not equiva
lent to the representation~26!. In our case we have used th
Leontovich boundary condition~27!; that is to say, the rep-
resentation~26! was generalized for the case of virtual ph
tons. If one generalizes Eqs.~24! and ~25! for the case of
virtual photons, this will lead to zero value for the transver
reflection coefficient at zero frequency and, therefore, t
contradiction with thermodynamics.

By the use of the surface impedance instead of the Dr
model ~3!, the Lifshitz formula~1! is preserved, but the co
efficientsr i

2 , r'
2 given by Eq.~2! should be replaced by@37#

r i
2~z l ,y!5Fy2Z~ i z l !z l

y1Z~ i z l !z l
G2

, r'
2 ~z l ,y!5Fz l2Z~ i z l !y

z l1Z~ i z l !y
G2

.

~28!

Substituting in Eq.~28! the impedance function of the nor
mal skin effect or the anomalous skin effect, one fin
r i

2(0,y)5r'
2 (0,y)51 @36,37#. In the region of the infrared

optics it follows @36,37# that r i
2(0,y)51, r'

2 (0,y)5(ṽp

2y)2/(ṽp1y)2.
It should be stressed that the expressions obtained for

reflection coefficients at zero frequency in the impedan
approach are exact. They readily follow from the exact E
~26! asusin2q0 /«u,(g/vp

2)v→0 whenv→0. This result is in
contradiction with the statement of Ref.@33#. The authors of
Ref. @33# start from representation~24! for Z' and consider
the limit v→0 at fixed nonzerok' @i.e., they violate the
mass-shell equation from which Eqs.~24! and ~25! are
equivalent to Eq.~26!#. As a result, the equalityr'

2 (0,k')
50 obtained in Ref.@33# leads to the violation of the third
law of thermodynamics~see Sec. II!. In fact, both ap-
proaches, ours and that of Ref.@33#, start from different pos-
tulates. Our postulate is that the reflection properties for
fluctuating field are the same as for real photons. If this
true, the impedances~26! follow, which coincide with the
Leontovich impedance at zero frequency and are appr
mately equal to it at all nonzero frequencies with a very h
precision@all calculational results based on Eq.~26! and the
Leontovich impedance usingZ51/A« for metals are practi-
cally the same#. In Ref. @33# another postulate is assume
which admits that the reflection properties for the fluctuat
field are different from those for the usual electromagne
field. Both postulates have the right of being assumed
cause it is impossible to study the reflection properties of
virtual photons experimentally. The second postulate, ho
ever, is shown to be inconsistent with thermodynamics.
this reason it must be rejected, and so we conclude that
fluctuating field has the same reflection properties on a m
boundary as the usual electromagnetic waves.
9-6
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Let us now present several computational results obta
using Eqs.~1! and ~28! in the framework of the impedanc
approach in comparison with the results calculated from
Lifshitz formula ~1! and~2! combined with the Drude mode
~3!. In Fig. 1, the magnitude of the Casimir force per u
areaF52]F/]a for gold plates is plotted, in the tempera
ture interval 1 K<T<1200 K at a separation distancea
51 mm. At this separation distance, the characteristic f
quencyvc belongs to the region of the infrared optics whe
the impedance function is given by

Z~ i z l !5
z l

Aṽp
21z l

2
. ~29!

The solid line represents the values calculated in the fra
work of the impedance approach, and the dashed line is
tained via the Lifshitz formula supplemented by the Dru
model with a temperature-dependent relaxation param
@data forg(T) are taken from Ref.@49##. It is clearly seen
that the dashed line is not monotonous, demonstrating
existence of a wide temperature region where the fo
modulus decreases with an increase of the temperature~as in
Figs. 2, 3 of Ref.@32#!. At the same time, the solid line ob
tained by using the surface impedance demonstrates the
notonous increase of the magnitude of the Casimir force w
temperature in perfect agreement with what is expected f
thermodynamics.

It is instructive to know if the nonmonotonous forc
temperature relation takes place only for Drude metals o
this may also happen for dielectrics. In Fig. 2 the magnitu
of the Casimir force per unit area between dielectrics w
«5const is shown for different temperatures at a separa
of a51 mm. Both solid and dotted lines were obtained fro
the usual Lifshitz formula~1! and ~2! with «( i z l)5«
5const. The solid line is for mica with«57; the dotted line
coincides with the line in Fig. 5 of Ref.@32# with «5100.
The solid line shows a monotonous increase of the Cas
force with the temperature, as is expected from thermo

FIG. 1. Magnitude of the Casimir force per unit area for gold
temperature whena51 mm. The solid line is obtained in the frame
work of the impedance approach. The dashed line is obtained
using the Drude dielectric function.
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namics. On the other hand, the dotted line is not monoton
as the dashed line in Fig. 1. This is, however, artifact
because« can be assumed to be independent on the
quency and temperature only in the case of so-called non
lar dielectrics whose atoms or molecules do not have th
own dipole moments. The electric susceptibility of nonpo
dielectrics arises due to the electronic polarization of ato
and molecules. The values of« for nonpolar dielectrics are
of the order of 1@49–51#. Large values of« can exist only
for polar dielectrics where the partial orientation of perm
nent dipole moments occurs. But for polar dielectrics« de-
pends strongly on the frequency and temperature. Spe
cally, their « quickly decreases with the increase
frequency. As a result, at optical and infrared frequenc
which are characteristic for the Casimir effect, the values
« are determined by the electronic polarizability@49# and
cannot exceed several units. The dielectric permittivity of
polar dielectrics along the imaginary frequency axis can
modeled by@52#

«~ i j!511 (
n51

N
Cn

11
j

vn

, ~30!

where the sum describes the effect of possible Debye r
tional relaxation frequencies~the absorption spectra of di
electrics are not influential at the characteristic frequencie
the Casimir effectvc when the separation between plates
of the order of 1mm!. In solids, the polarization due to ori
entation of the permanent dipole moments disappear
rather low frequencies;(107–108) rad/s@46#. At very high
frequenciesv.1016rad/s,« decreases to unity@42#. There-
fore, for the model calculation we may chooseN52, C1
593, v15107 rad/s, C256, v251016rad/s. In this case
«(0)5100 and«'7 at the characteristic frequencyvc cor-
responding toa51 mm.

Equation~30! was substituted into the Lifshitz formula~1!
and~2!. In Fig. 2, the magnitude of the Casimir force per un

by

FIG. 2. Magnitude of the Casimir force per unit area for diele
trics vs temperature whena51 mm, calculated by the Lifshitz for-
mula. The solid line is for mica, with«57. The dotted line is
obtained for nonexistent nonpolar dielectric with«5100. The
dashed line is for polar dielectric with«(0)5100.
9-7
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area between the polar dielectrics is represented by
dashed line. It is seen that the force-temperature relat
given by the dashed line, is monotonous as in the cas
nonpolar dielectrics with small«, as expected from thermo
dynamics. From Fig. 2 it is clear that the Casimir force b
tween dielectrics is a monotonous function of the tempe
ture when realistic input data for« are substituted into the
Lifshitz formula.

In Fig. 3, the Casimir entropy for gold is plotted as
function of the temperature at a separation distance betw
platesa51 mm. The solid line is drawn in accordance wi
the impedance approach, i.e., by the use of Eqs.~1!, ~28! and
~29!. The dashed line is obtained from the usual Lifsh
formula and Drude model~1!–~3!. Evidently, the solid line
satisfies all conditions, i.e., positive values of the entropy
nonzero temperatures, and the validity of the Nernst h
theorem. By contrast, the dashed line presents the neg
values of the entropy and the violation of the Nernst h
theorem. The analytical proof of the validity of the Nern
heat theorem in the impedance approach can be foun
Ref. @37#.

IV. CONCLUSIONS AND DISCUSSION

As we have proved above, the substitution of the Dru
dielectric function into the Lifshitz formula for the therma
Casimir force leads to the violation of the third law of the
modynamics~the Nernst heat theorem!. A rigorous analytical
evidence of this statement lies on the fact that at low te
peratures the magnitude of the relaxation parameter is m
less than the Matsubara frequencies, a property which is
ways true in the case of perfect crystal lattice. A spec
analysis of the role of defects or impurities leads to the c
clusion that they are incapable to reconcile the calculati
of the thermal Casimir force between Drude metals w
thermodynamics.

It has been known that the Lifshitz formula combin
with the Drude dielectric function predicts a linear~in tem-
perature! large thermal correction to the Casimir force
short separations connected with the second term in the
energy~9! @27,32,34,39#. In recent precision measurement
the Casimir pressure between Au and Cu plates at room

FIG. 3. Casimir entropy per unit area for two gold semispa
vs temperature, whena51 mm. The solid line is obtained in the
framework of the impedance approach. The dashed line is obta
by using the Drude dielectric function.
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perature@15,16# this correction~which we call ‘‘alternative’’
@16#! would comprise 4.89 mPa and 1.23 mPa at separat
a5300 nm and 500 nm, respectively, i.e., 3.6% and 7.24
respectively, of the total Casimir pressure. For reference,
traditional thermal corrections in the same experimental c
figuration ~computed using the plasma dielectric functio
@25,26# or the surface impedance@36,37#! at separationsa
5300 nm and 500 nm are equal to20.008 63 mPa and
20.00441 mPa, respectively, i.e., only 0.006% and 0.03
respectively, of the total Casimir pressure~note that the tra-
ditional thermal corrections are of the same sign as the
simir force, i.e., negative!. The experimental results of Refs
@15,16# and the extent of their agreement with theory rule o
the linear thermal correction to the Casimir force as p
dicted by the Drude dielectric function substituted into t
Lifshitz formula ~see Ref.@16# for details!. Thus, the combi-
nation of the Drude model with the Lifshitz formula is no
only thermodynamically inconsistent, but is also in cont
diction with experiment.

As we have demonstrated through several computatio
the description of real metals based on the surface imped
~Leontovich boundary conditions! is thermodynamically
consistent. Unlike the dielectric permittivity, the surface im
pedance is well defined at all frequencies, even in the dom
of the anomalous skin effect. By the use of the Leontov
impedance boundary conditions, instead of the Drude mo
the Lifshitz formula is preserved, but the reflection coef
cients are expressed in terms of the impedance function
important point is that different representations for the i
pedances, which are equivalent for real photons, beco
nonequivalent in application to the fluctuating fields. As w
have shown above, in the case of fluctuating fields the r
resentation~26! for the impedance should be used leading
the Leontovich boundary conditions, whereas the represe
tions ~24! and ~25!, when applied to virtual photons, lead t
the contradictions with thermodynamics.

In the framework of the impedance approach the value
the zero-frequency term of the Lifshitz formula is prescrib
by the form of the impedance and quite satisfactory phys
results are obtained. In particular, the Casimir energy
force turn out to be monotonous functions of the tempe
ture, in agreement with what would be expected from th
modynamics. In the region of the infrared optics the resu
obtained by using the surface impedance coincide with th
found earlier through the use of the plasma dielectric fu
tion @25,26#. The Casimir entropy in the impedance approa
is always positive and vanishes at zero temperature, in ac
dance with the Nernst heat theorem.

To conclude, we have proved that the Drude dielec
function is not appropriate to describe the thermal Casi
effect in the case of real metals, leading to contradictio
with thermodynamics. On the other hand, the Lifshitz fo
mula with the coefficients expressed in terms of the surf
impedance is suitable to calculate all the quantities of ph
cal interest.
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