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All quantum observables in a hidden-variable model must commute simultaneously
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Under a standard set of assumptions for a hidden-variable model for quantum events we show that all
observables must commute simultaneously. This seems to be an ultimate statement about the inapplicability of
the usual hidden-variable model for quantum events. And, despite Bell's complaint that a key condition of von
Neumann’s was quite unrealistic, we show that these conditions, under which von Neumann produced the first
no-go proof, are entirely equivalent to those introduced by Bell and Kochen and Specker. As these conditions
are also equivalent to those under which the Bell-Clauster-Horne inequalities are derived, we see that the
experimental violations of the inequalities demonstrate only that quantum observables do not commute.
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[. INTRODUCTION to those of von Neumann, since, under an HV model of the
Bell or Kochen-Specker type, all observables must commute
A wide range of no-go proofs for hidden-variakleV)  simultaneously.

models for quantum events have been developed and dis-
cussed over many years; Jde-8]. Here we derive an alter- Il. HIDDEN-VARIABLE MODELS
native no-go proof with a rather striking and informative
outcome: under the usual assumptions of an HV medety
pair of observables must commute. As the conditions for a
HV model studied here are known to be entirely equivalen
to the conditions under which the usual Bell-Clauser-Horn -
(BCH) inequalities apply, we see that the numerous experi<" . .
mental vio?ations of t?\%%nequalities show only that quan?um Let Q=0Q(A '.U(A)"“) denote a cla§S|caI probability
observables do not commute. And as the initial conditions irpP2ce: Where\ is a nonempty setg(A) is a Booleana

the elegant inequality-free, no-go proofs of Peres, and Greer"fl-l(gAe)bra of subsets of, andu is a probability measure on

berger, Horne, and Zeilingésee[5—6]) are exactly those of ¢ S . .
a deterministic HV model, our argument will show, as well, ~S used in this paper, a hidden variable model for a quan-

that these proofs yield only the same conclusion: quantun}uum system in a given stafe may make one or more of the
observables do not commute. oIIowmg. assumptions. — . .

Our paper is organized as follows. We first consider speci- HV(_a). Given “’E.A.’ Aez, there is a mapping from
fications for a deterministic(or factorizable stochastic the palr.(w,A) to % itis required that the value di(w,A)
hidden-variable models, such as are presented,g. By D€ an eigenvalue oh. .
extension of a result appearing[i®] we obtain our resulton V(D) For any two commuting observablés B, the
the simultaneous commutativity. We conclude with a shorfMaPPingf is such that
discussion about hybrid HV models, such as thogd 0f11], _
that offer an alternative to the HV assumptions made here. Hw,A+B)=1(w.A)+1(w.B). @
These suggest a more promising route, should one be sought, HV(c): The measurew correctly returns the marginal
for characterizations of quantum events as classical Statis'ficﬂobabilities for each observable that is, for any real Borel

schemes. o . _ _ _ setS, w is such that
We briefly anticipate some of this concluding discussion

here. Thus, one of the more interesting consequences of our

results is that the original conditions under which von Neu- tr[DPA(S)]:f f(w,Pa(S)du, (2.2
mann[12] derived the first no-go proof for HV models are

entirely equivalent to those introduced much later by BEll  where P,(S) is the projector associated with s8tin the
and Kochen and Specké8]. Bell had criticized von Neu- spectral resolution foA.

mann for requiring the deterministic value assignment, under HV(d): For any two commuting observables B, the
an HV model, to apply to sums over noncommutil@om-  measureu correctly returns the joint probabilities; that is, for
patible observables, as well as for commuting ones; sees, Treal Borel sets, the measugeis such that

[6,13. As an assignment for values across incompatible ex-

periments seemed, to Bell, to be physically quite unrealistic,

he introduced the less restrictive condition that the value tr[DPA(S)PB(T)]:f f(@,PA(S)Ps(T)du, (2.3
assignment need apply only to across sums of commuting

observables. However, we show that Bell's conditivasd  for PA(S), Pg(T) the projectors associated with s&sTin
those of Kochen and Spechare in fact entirely equivalent the spectral resolutions &, B, respectively.

Detailed specifications for a hidden-variable model are
rgiven in [1,2,9], some of which we now recall. LeQ
=Q(H,D,E) denote a quantum system with Hilbert space

, quantum density operat@, and a family of observables
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Next we recall a discussion and a definition fr¢@j on Ill. HIDDEN VARIABLES AND COMMUTATIVITY
classical and quantum conditional probability. Assume there
is a classical probability space such that outcomes for pr
jectorsA, B can be described by a joint distributian It is

. . L o . commute.
interesting to ask when the conditional distribution derived ,
from p agrees with the standard definition of quantum con- Proof. LetA, Bbe two quantum observables. Without loss

ditional probability; sed14] for details of the probability of generality we may assume they are one-dimensional pro-

background. For projectors, B, and any quantum staf@ jectors:A, B commute if and only if all projectors appearing

the quantum conditional probability &, givenB, is defined in their spectral resolutions commute, and all t_he prqjectors
by ' ' may be reexpressed amonuniqué sums of one-dimensional

ones. FromTrheorem 1we have that

o. rheorem 2Assume difl=3 and that an HV model
holds for quantum events. Then all quantum observables

P{A[B]=t[DBABJ/t{DB]. 24 u[a,b]=pu[alb]u[b]={tr DBAB]/t[DB]}t{ DB]
C_?onsider now the two cqnditional distributions: th_at_ _de- —t{ DBAB] 3.1)
rived from p and that derived from the standard definition
(2.4) above. When these are equal we will say thatdbe-

" " ) and also that
ditional probability rule holds. For any projectoX, let

u[a,b]=ul[blaju[a]={tr[ DABA]/tr[ DA]}tr{DA]

X Y1) ={we A:X(w)=1}. (2.5
=tr[DABA]. (3.2
Then as shown ifi9] (Theorem 1 we have the following.
Theorem 1Assume dinil=3 and that H\a), HV(c), and  Hence
HV(d) hold. Then for one-dimensional projectofs B, the
conditional probability rule holds: tr{ DBAB]=tr[DABA] (3.3

ulalb]=ulanb]/u[b]=tr[DBAB]/tr[[DB], (2.6)  for all density operator®. Thus BAB=ABA. From this,
and usingA?=A, B?=B, we easily show that

wherea=A"%(1) andb=B~(1).

We observe that the restriction of this result, to one- (AB—BA)?=0. (3.9
dimensional projectors, is not required but the proof in this
case can be obtained using straightforward inner producdince C=AB—BA is skew Hermitian,C?=0 implies C
vector space methods; s¢8] and Guddef{15] (corollary =0, and the result is proved. |
5.17. We do not argue here that the no-go proof presented We note that Fing3] (Theorem 7 obtained a commuta-
below, based on this restricted case, is in any sense technivity result using a rather different condition, called fo@nt
cally simpler than the original Kochen-Specker or Bell distribution (jd) condition Briefly, this states that a measure
proofs—this is partly a matter of taste. However, we will space be given which returns the correct marginal distribu-
argue that the end point of the proof presented here—nameljipns for a set of(not necessarily commutingbservables
commutativity—is more informative and transparent as re-A;, A,,...,A, and which also reproduces the marginal for
garding the problems with local HV models, in particular any observable of the forf(A;,A,,...,A,), for any Borel
those studied using the BCH inequalities. measurabld. The joint distribution condition does not by

We also note that, as discussed ®j, there are two other itself reference HV models, but might be considered as use-
conditions equivalent to HW): a Borel function ruleand a  ful background to the problems with such models. More pre-
product rulg both introduced in[2]. Any of these three cisely, the HV conditions given above, &, HV(c), and
choices will suit the purposes of our discussion. HV(d), do not in any obvious way validate the Borel func-

In [1] the set of conditions H&), HV(c), and HMd) is  tion requirement, just stated, in tfgecondition On the other
called adeterministic hidden-variable mod@quivalently, a hand, we have from above that an HV model is equivalent to
factorizable stochastic modelTo be more precise, in this simultaneous commutativity for all observables, so jtie
paper we take the three conditioft$V(a), HV(c), HV(d)} to  conditionis now seen as an interesting alternative for the
jointly define anHV model As shown in[1] the conditions  collected assumptions of a deterministic HV model.
{HV(a), HV(c), HV(d)} are also entirely equivalent to
{HV(a), HV(b), HV(d)}, and these are the conditions intro-
duced by Bell[7] and Kochen-Speck€i8]. Moreover, as
shown by Fing[3] [proposition(2)], a necessary and suffi-  We have shown that under the standard HV model as-
cient condition for the existence of a deterministic HV modelsumptions (diril=3), all quantum observables must com-
is that the usual BCH inequalities must hold. Van Fraassemute. Seemingly no more sharply informative no-go proof is
[16] (pp. 102—-10% gives further details of the Fine results, possible, and the conclusion obtains under the Bell, Kochen-
showing how locality, in the form of factorizability, is built Specker, or Fine conditions for an HV model. In particular,
into Fine’s definition of HV models. Further details concern-we see that the sum rule HN) is valid for noncommuting
ing how locality might be differently defined can be found in observables, in the presence of the other conditions for an
Fine[11] (Appendix to Chap. # HV model—namely, HVa), and HMd). The requirement

IV. DISCUSSION
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that HV(b) apply for noncommuting observables was madeSpecker, and thénow equivalentvon Neumann conditions
by von Neumann in his original 1932 no-go proof for HV are still too restrictive and truly weaker models could be
models. This was declared by Bell to be entirely unphysicatonsidered. Such hybrid models appear to be already at hand,
for any plausible HV model for quantum events, and he preas in[10]; see also the discussion pfism modelsn [11]
ferred to assume HW®) only for commuting observables; see and the references to the literature cited therein. A significant
the discussion i116,13). In fact, we now see that von Neu- change presented by these prism models is that the hidden
mann’s HV assumptions were no more or less unphysicabariables are not assumed to be factorizable, but do satisfy
than were Bell's or Kochen-Specker’s apparently less restricwhat Fine callBell locality, an assumption briefly described
tive set of assumptions. In this sense von Neumann'’s originas “no outcome-fixing action-at-a-distance;” sgkl| (Ap-
proof is vindicated. pendix to Chap. ¥ Under this construal, violations of the
Finally, given the above it seems appropriate to urge conBCH inequalities do not constitute a failure of Bell locality,
sideration instead of models for quantum events that are n@nd our no-go commutativity result does not extend to a
tied to these HV conditions. Effectively, the Bell, Kochen- negation of Bell locality.

[1] A. Fine, J. Math. Phys23, 1306(1982. Theory(University of Chicago Press, Chicago, 1996

[2] A. Fine and P. Teller, Found. Phy&, 629 (1978. [12] J. von NeumannMathematical Foundations of Quantum Me-
[3] A. Fine, Phys. Rev. Lett48, 291(1982. chanics(Princeton University Press, Princeton, 1855

[4] A. Peres, J. Phys. 84, L175(199)). [13] J. Bub, Interpreting the Quantum Worl@Cambridge Univer-
[5] N. D. Mermin, Phys. Rev. Let5, 3373(1990. sity Press, Cambridge, UK, 1997

[6] N. D. Mermin, Rev. Mod. Phys65, 803 (1993. [14] E. G. Beltrametti and G. Cassinelll;he Logic of Quantum
[7] J. S. Bell, Rev. Mod. Phys38, 447 (1966. Mechanics(Addison-Wesley, Reading, MA, 1981

[8] S. Kochen and E. P. Specker, J. Math. Meth.59 (1967). [15] S. GudderQuantum ProbabilitfAcademic Press, San Diego,
[9] J. D. Malley, Phys. Rev. A8, 812(1998. 1988.

[10] L. E. Szaboand A. Fine, Phys. Lett. 295 229(2002. [16] B. C. van Fraasser@Quantum Mechanics: An Empiricist View

[11] A. Fine, The Shaky Game: Einstein Realism and the Quantum  (Oxford University Press, Oxford, 1991

022118-3



