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All quantum observables in a hidden-variable model must commute simultaneously

James D. Malley
Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA

~Received 1 September 2003; published 27 February 2004!

Under a standard set of assumptions for a hidden-variable model for quantum events we show that all
observables must commute simultaneously. This seems to be an ultimate statement about the inapplicability of
the usual hidden-variable model for quantum events. And, despite Bell’s complaint that a key condition of von
Neumann’s was quite unrealistic, we show that these conditions, under which von Neumann produced the first
no-go proof, are entirely equivalent to those introduced by Bell and Kochen and Specker. As these conditions
are also equivalent to those under which the Bell-Clauster-Horne inequalities are derived, we see that the
experimental violations of the inequalities demonstrate only that quantum observables do not commute.
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I. INTRODUCTION

A wide range of no-go proofs for hidden-variable~HV!
models for quantum events have been developed and
cussed over many years; see@1–8#. Here we derive an alter
native no-go proof with a rather striking and informativ
outcome: under the usual assumptions of an HV modelevery
pair of observables must commute. As the conditions for
HV model studied here are known to be entirely equival
to the conditions under which the usual Bell-Clauser-Ho
~BCH! inequalities apply, we see that the numerous exp
mental violations of the inequalities show only that quant
observables do not commute. And as the initial conditions
the elegant inequality-free, no-go proofs of Peres, and Gre
berger, Horne, and Zeilinger~see@5–6#! are exactly those o
a deterministic HV model, our argument will show, as we
that these proofs yield only the same conclusion: quan
observables do not commute.

Our paper is organized as follows. We first consider spe
fications for a deterministic~or factorizable stochastic!
hidden-variable models, such as are presented in@1,2#. By
extension of a result appearing in@9# we obtain our result on
the simultaneous commutativity. We conclude with a sh
discussion about hybrid HV models, such as those of@10,11#,
that offer an alternative to the HV assumptions made h
These suggest a more promising route, should one be so
for characterizations of quantum events as classical statis
schemes.

We briefly anticipate some of this concluding discuss
here. Thus, one of the more interesting consequences o
results is that the original conditions under which von Ne
mann@12# derived the first no-go proof for HV models ar
entirely equivalent to those introduced much later by Bell@7#
and Kochen and Specker@8#. Bell had criticized von Neu-
mann for requiring the deterministic value assignment, un
an HV model, to apply to sums over noncommuting~incom-
patible! observables, as well as for commuting ones;
@6,13#. As an assignment for values across incompatible
periments seemed, to Bell, to be physically quite unrealis
he introduced the less restrictive condition that the va
assignment need apply only to across sums of commu
observables. However, we show that Bell’s conditions~and
those of Kochen and Specker! are in fact entirely equivalen
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to those of von Neumann, since, under an HV model of
Bell or Kochen-Specker type, all observables must comm
simultaneously.

II. HIDDEN-VARIABLE MODELS

Detailed specifications for a hidden-variable model a
given in @1,2,9#, some of which we now recall. LetQ
5Q(H,D,J) denote a quantum system with Hilbert spa
H, quantum density operatorD, and a family of observables
J.

Let V5V„L,s(L),m… denote a classical probabilit
space, whereL is a nonempty set,s~L! is a Booleans
algebra of subsets ofL, andm is a probability measure on
s~L!.

As used in this paper, a hidden variable model for a qu
tum system in a given stateD may make one or more of th
following assumptions.

HV~a!: Given vPL, APJ, there is a mappingf from
the pair (v,A) to R; it is required that the value off (v,A)
be an eigenvalue ofA.

HV~b!: For any two commuting observablesA, B, the
mappingf is such that

f ~v,A1B!5 f ~v,A!1 f ~v,B!. ~2.1!

HV~c!: The measurem correctly returns the margina
probabilities for each observableA: that is, for any real Borel
setS, m is such that

tr@DPA~S!#5E f „v,PA~S!…dm, ~2.2!

where PA(S) is the projector associated with setS in the
spectral resolution forA.

HV~d!: For any two commuting observablesA, B, the
measurem correctly returns the joint probabilities; that is, fo
S, Treal Borel sets, the measurem is such that

tr@DPA~S!PB~T!#5E f „v,PA~S!PB~T!…dm, ~2.3!

for PA(S), PB(T) the projectors associated with setsS, Tin
the spectral resolutions ofA, B, respectively.
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Next we recall a discussion and a definition from@9# on
classical and quantum conditional probability. Assume th
is a classical probability space such that outcomes for p
jectorsA, B can be described by a joint distributionm. It is
interesting to ask when the conditional distribution deriv
from m agrees with the standard definition of quantum co
ditional probability; see@14# for details of the probability
background. For projectorsA, B, and any quantum stateD,
the quantum conditional probability ofA, givenB, is defined
by

Pr@AuB#5tr@DBAB#/tr@DB#. ~2.4!

Consider now the two conditional distributions: that d
rived from m and that derived from the standard definitio
~2.4! above. When these are equal we will say that thecon-
ditional probability ruleholds. For any projectorX, let

X21~1!5$vPL:X~v!51%. ~2.5!

Then as shown in@9# ~Theorem 1! we have the following.
Theorem 1. Assume dimH>3 and that HV~a!, HV~c!, and

HV~d! hold. Then for one-dimensional projectorsA, B, the
conditional probability rule holds:

m@aub#5m@aùb#/m@b#5tr@DBAB#/tr@DB#, ~2.6!

wherea5A21(1) andb5B21(1).
We observe that the restriction of this result, to on

dimensional projectors, is not required but the proof in t
case can be obtained using straightforward inner prod
vector space methods; see@9# and Gudder@15# ~corollary
5.17!. We do not argue here that the no-go proof presen
below, based on this restricted case, is in any sense tec
cally simpler than the original Kochen-Specker or B
proofs—this is partly a matter of taste. However, we w
argue that the end point of the proof presented here—nam
commutativity—is more informative and transparent as
garding the problems with local HV models, in particul
those studied using the BCH inequalities.

We also note that, as discussed in@9#, there are two other
conditions equivalent to HV~b!: a Borel function ruleand a
product rule, both introduced in@2#. Any of these three
choices will suit the purposes of our discussion.

In @1# the set of conditions HV~a!, HV~c!, and HV~d! is
called adeterministic hidden-variable model~equivalently, a
factorizable stochastic model!. To be more precise, in thi
paper we take the three conditions$HV~a!, HV~c!, HV~d!% to
jointly define anHV model. As shown in@1# the conditions
$HV~a!, HV~c!, HV~d!% are also entirely equivalent t
$HV~a!, HV~b!, HV~d!%, and these are the conditions intr
duced by Bell@7# and Kochen-Specker@8#. Moreover, as
shown by Fine@3# @proposition~2!#, a necessary and suffi
cient condition for the existence of a deterministic HV mod
is that the usual BCH inequalities must hold. Van Fraas
@16# ~pp. 102–105! gives further details of the Fine result
showing how locality, in the form of factorizability, is buil
into Fine’s definition of HV models. Further details concer
ing how locality might be differently defined can be found
Fine @11# ~Appendix to Chap. 4!.
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III. HIDDEN VARIABLES AND COMMUTATIVITY

Theorem 2. Assume dimH>3 and that an HV mode
holds for quantum events. Then all quantum observab
commute.

Proof. Let A, Bbe two quantum observables. Without lo
of generality we may assume they are one-dimensional
jectors:A, B commute if and only if all projectors appearin
in their spectral resolutions commute, and all the project
may be reexpressed as~nonunique! sums of one-dimensiona
ones. FromTheorem 1we have that

m@a,b#5m@aub#m@b#5$tr@DBAB#/tr@DB#%tr@DB#

5tr@DBAB# ~3.1!

and also that

m@a,b#5m@bua#m@a#5$tr@DABA#/tr@DA#%tr@DA#

5tr@DABA#. ~3.2!

Hence

tr@DBAB#5tr@DABA# ~3.3!

for all density operatorsD. Thus BAB5ABA. From this,
and usingA25A, B25B, we easily show that

~AB2BA!250. ~3.4!

Since C5AB2BA is skew Hermitian,C250 implies C
50, and the result is proved. j

We note that Fine@3# ~Theorem 7! obtained a commuta
tivity result using a rather different condition, called thejoint
distribution (jd) condition. Briefly, this states that a measu
space be given which returns the correct marginal distri
tions for a set of~not necessarily commuting! observables
A1 , A2 ,...,Ak and which also reproduces the marginal f
any observable of the formf (A1 ,A2 ,...,Ak), for any Borel
measurablef. The joint distribution condition does not b
itself reference HV models, but might be considered as u
ful background to the problems with such models. More p
cisely, the HV conditions given above, HV~a!, HV~c!, and
HV~d!, do not in any obvious way validate the Borel fun
tion requirement, just stated, in thejd condition. On the other
hand, we have from above that an HV model is equivalen
simultaneous commutativity for all observables, so thejd
condition is now seen as an interesting alternative for t
collected assumptions of a deterministic HV model.

IV. DISCUSSION

We have shown that under the standard HV model
sumptions (dimH>3), all quantum observables must com
mute. Seemingly no more sharply informative no-go proo
possible, and the conclusion obtains under the Bell, Koch
Specker, or Fine conditions for an HV model. In particul
we see that the sum rule HV~b! is valid for noncommuting
observables, in the presence of the other conditions for
HV model—namely, HV~a!, and HV~d!. The requirement
8-2



d
V
ca
re
e
-
ic
tri
in

on
n

n-

be
and,

ant
den

tisfy
d

e
y,

a
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that HV~b! apply for noncommuting observables was ma
by von Neumann in his original 1932 no-go proof for H
models. This was declared by Bell to be entirely unphysi
for any plausible HV model for quantum events, and he p
ferred to assume HV~b! only for commuting observables; se
the discussion in@6,13#. In fact, we now see that von Neu
mann’s HV assumptions were no more or less unphys
than were Bell’s or Kochen-Specker’s apparently less res
tive set of assumptions. In this sense von Neumann’s orig
proof is vindicated.

Finally, given the above it seems appropriate to urge c
sideration instead of models for quantum events that are
tied to these HV conditions. Effectively, the Bell, Koche
tu
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Specker, and the~now equivalent! von Neumann conditions
are still too restrictive and truly weaker models could
considered. Such hybrid models appear to be already at h
as in @10#; see also the discussion ofprism modelsin @11#
and the references to the literature cited therein. A signific
change presented by these prism models is that the hid
variables are not assumed to be factorizable, but do sa
what Fine callsBell locality, an assumption briefly describe
as ‘‘no outcome-fixing action-at-a-distance;’’ see@11# ~Ap-
pendix to Chap. 4!. Under this construal, violations of th
BCH inequalities do not constitute a failure of Bell localit
and our no-go commutativity result does not extend to
negation of Bell locality.
-
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