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Radiative corrections to one-photon decays of hydrogenic ions
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Radiative corrections to the decay rate ofn52 states of hydrogenic ions are calculated. The transitions
considered are theM1 decay of the 2s state to the ground state and theE1(M2) decays of the 2p1/2 and 2p3/2

states to the ground state. The radiative corrections start in ordera(Za)2, but the method used sums all orders
of Za. The leadinga(Za)2 correction for theE1 decays is calculated and compared with the exact result. The
extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.
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I. INTRODUCTION

Radiative corrections to decay rates in atoms and i
have not been as thoroughly studied as other kinds of ra
tive corrections, such as the Lamb shift@1# and corrections to
hyperfine splitting~hfs! @2,3#. An exception is the case o
exotic atom positronium, where differences between
lowest-order decay rates and experiment of20.6% and
22.2% are present for parapositronium@4# and orthopositro-
nium @5#, respectively. In both cases the bulk of the diffe
ence is accounted for by one-loop radiative corrections@6,7#,
which enter in ordera with large coefficients, and the
present theoretical interest has advanced to the level of
loop radiative corrections@8,9#.

For other hydrogenlike atoms, theoretical work on on
loop corrections toM1 decays has been carried out in Re
@10,11#. These papers established that, unlike positroniu
the order-a correction has a vanishing coefficient, but d
not calculate the actual correction, which enters in or
a(Za)2. A calculation forE1 decays of thea(Za)2 ln(Za)
correction has been carried out in Ref.@12# and is in dis-
agreement with another calculation associated with the
perimental determination of the Lamb shift@13#. This situa-
tion will be discussed further in the conclusion.

It is the purpose of the present paper to calculate radia
corrections for the hydrogen isoelectronic sequence u
methods that treat the electron propagator exactly. In a
tion, a perturbative calculation forE1 decays through orde
a(Za)2 is carried out and compared to the exact res
While of intrinsic interest, development of these techniqu
should also aid in the evaluation of radiative corrections
parity nonconserving transitions in atoms, as will be d
cussed in the conclusion.
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II. LOWEST-ORDER CALCULATION

While the first calculations of the decay rate of hydrog
date back to the beginning of quantum mechanics, fully re
tivistic calculations needed for calculations of highly charg
hydrogenlike ions were first carried out in the early 197
@14#. We briefly present the theory here using techniques
will be extended to the radiative correction case. We wan
use the fact that a decay rate can be related to the imagi
part of the energy through

G522 Im~E!. ~1!

This is the approach taken by Barbieri and Sucher@11#. The
one-photon decay rate is connected through this form
with the self-energy of an electron in a statev, which will be
chosen here to be 2s1/2, 2p1/2, or 2p3/2. We define this
self-energy asSvv(ev), where

Sml~E!52 ie2E d3xd3yE dnk

~2p!n

eikW•(xW2yW )

k21 id

3c̄m~xW !gmSF~xW ,yW ;E2k0!gmc l~yW !, ~2!

and a self-mass counterterm needed to renormalizeS is un-
derstood to be included. If we setn54, carry out thed3k
integration, and represent the Dirac-Coulomb propagator
a spectral decomposition, the above can be written

Sml~E!5 iaE d3xd3yE dk0

2p (
r

eiAk0
2
1 iduxW2yW u

uxW2yW u

3
c̄m~xW !gmc r~xW !c̄ r~yW !gmc l~yW !

E2k02e r~12 id!
. ~3!

If we define
©2004 The American Physical Society13-1
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gi jkl ~E!5aE d3xd3y
eiAE21 iduxW2yW u

uxW2yW u

3c̄ i~xW !gmck~xW !c̄ j~yW !gmc l~yW !, ~4!

then the self-energy can be compactly represented as

Svv~ev!5 i E dk0

2p (
m

gvmmv~k0!

ev2k02em~12 id!
. ~5!

It will be convenient below to also introduce the function

ḡi jkl ~E!5aE d3xd3y
sin~EuxW2yW u!

uxW2yW u

3c̄ i~xW !gmck~xW !c̄ j~yW !gmc l~yW !. ~6!

To carry out the numerical evaluation of the Lamb shift
Wick rotation with k0→ iv is performed. The resulting ex
pression is purely real because imaginary parts present in
v502` interval cancel against other imaginary parts in t
v52`20 interval. The imaginary part of the self-energ
arises solely from the pole term, where a bound-state pol
the first quadrant present whenev.em is encircled during
the Wick rotation. As we are interested in decays to
ground state, we will not consider imaginary parts of t
energy arising fromm being an excited state in Eq.~5!. We
introduce the convention thata refers to the ground stat
when there is no dependence on the magnetic quantum n
ber @as is the case for the energyea and the self-energy
Saa(ea)], andb or c refers to the ground state when there
a dependence, with a sum overb or c running over the two
possible values (61/2) of the magnetic quantum numbe
We also define the lowest-order decay photon energyDE
5ev2ea . It is important to emphasize that this energy d
fers from the actual photon energy because the energy le
are shifted by radiative corrections: the effect of these sh
will be accounted for perturbatively below. The pole term

Spole5(
b

gvbbv~DE!. ~7!

In calculations of the Lamb shift the real part of this is take
but here we are concerned with the imaginary part, wh
gives the lowest-order decay rate

G0522(
b

ḡvbbv~DE!, ~8!

which can be written as a partial-wave expansion

G0528paDE(
blm

E d3x j l~DEx!Ylm~Vx!c̄v~xW !gmcb~xW !

3E d3y j l~DEy!Ylm* ~Vy!c̄b~yW !gmcv~yW !. ~9!

Because Feynman gauge has been used for the self-en
calculation, this form of the decay rate is different from de
02211
he

in

e

m-

els
ts

,
h

rgy
-

vations which use the properties of the actual transverse p
tons that are emitted, but the result is the same becaus
gauge invariance. In Table I, we present the lowest-or
rates for the states 2s1/2, 2p1/2, and 2p3/2 to decay by one-
photon emission to the ground state forZ55,10, . . . ,100.
We now turn to the radiative corrections to these decay ra
which we define in terms of a functionR(Za),

G5G0F11
a

p
R~Za!G . ~10!

Before presenting the exact calculation ofR(Za), we calcu-
late the leading contribution of order (Za)2 for the p states
using an effective field theory approach. We do not treat
more complicateds-state correction, as theM1 decay is
highly suppressed at lowZ.

III. PERTURBATIVE APPROACH

WhenZ is small, an expansion inZa converges rapidly.
We present here the calculation ofR(Za) to leading order
(Za)2, which will serve as a check of the nonperturbati
treatment presented in the next section. The radiative cor
tion to the decay rate is obtained from the nonrelativis
form of quantum electrodynamics~QED! supplemented by
one-loop corrections to electron form factorsF1 ,F2 and the
vacuum polarization. In the lowest order, the decay rate
the 2P state in hydrogenlike atoms is

G05
4

9
aE3u^1SurWu2PW &u2, ~11!

where E is the nonrelativistic limit ofDE defined in the
previous section,

E5E~2P!2E~1S!5
3m~Za!2

8
, ~12!

TABLE I. Lowest-order one-photon decay rates to the grou
state forn52 states of hydrogenic ions in atomic units. Numbers
square brackets indicate powers of 10. The last column gives
nuclear Fermi distribution parameterc in fermis. Conversion to
units of s21 is through 1 a.u.54.134 13731016 s21.

Z 2s1/2 2p1/2 2p3/2 c

5 5.9038@216# 9.4779@26# 9.4735@26# 1.8104
10 6.0733@213# 1.5172@24# 1.5144@24# 2.9889
15 3.5262@211# 7.6868@24# 7.6546@24# 3.2752
20 6.3251@210# 2.4321@23# 2.4140@23# 3.7188
25 5.9680@29# 5.9461@23# 5.8769@23# 4.0706
30 3.7551@28# 1.2351@22# 1.2144@22# 4.4454
40 6.9521@27# 3.9207@22# 3.8037@22# 4.9115
50 6.8431@26# 9.6268@22# 8.8114@22# 5.4595
60 4.5463@25# 2.0100@21# 1.8737@21# 5.8270
70 2.3180@24# 3.7535@21# 3.4051@21# 6.2771
80 9.8091@24# 6.4597@21# 5.6706@21# 6.6069
90 3.6293@23# 1.0440 8.8110@21# 6.9264
100 1.2193@22# 1.6033 1.2913 7.1717
3-2
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with the nonrelativistic wave functions

f1S5
1

A4p
~mZa!3/22e2mZar , ~13!

fW 2P5
1

A4p

1

2A6
~mZa!3/2e2mZar /2~mZarW !. ~14!

Natural units in which\5c51 are used here. Note thatfW 2P
is normalized here in a nonstandard way—name
*d3rfW 2P•fW 2P51. Using the nonrelativistic matrix elemen

d[^1SurWu2PW &5
1

A6

256

81

1

mZa
, ~15!

Eq. ~11! gives the well-known decay rate

G05
28

38 ma~Za!4. ~16!

The radiative corrections to this can be expressed as

a

p
R[

dG

G0
53

dE

E
12

dd

d
. ~17!

When QED effects can be treated as local potentials,
calculation of radiative corrections is relatively simple. W
illustrate this with the correction due to the presence
vacuum polarization, which is given in the nonrelativis
limit by a local interaction potential

dV52
4Za2

15m2 d3~rW !. ~18!

Corrections to the energy and wave function of the 2P state
from dV do not contribute toR(Za) at the order of interest
but the potential shifts the 1S energy by

dE~1S!52
4ma~Za!4

15p
, ~19!

which gives a contribution toR(Za) of 32/15(Za)2. In
addition the potential shifts the 1S wave function by

df1S[K rU 1

~E2H !8
dVU1SL

5
8a~Za2!

15p
e2mZarF5

2
2gE2mZar

1
1

2mZar
2 ln~2mZar !G 1

A4p
~mZa!3/2, ~20!

which leads to a total contribution from vacuum polarizati
of
02211
,

e

f

RVP~Za!5~Za!2H 32

15
1F2

8

15
ln

4

3
2

131

90 G J
5~Za!2F61

90
2

8

15
ln

4

3G
5~Za!2@0.524 347#. ~21!

We note the strong cancellation between the effect of
energy shift, which is automatically accounted for when e
perimental energies are used, and the perturbed orb
which shows that care needs to be taken when that appr
is taken. We now turn to the more complex self-energy c
rection. The effect on the energy shift is well known, comi
from the self-energy part of the Lamb shift of the 1S and
2P1/2 states of

dE~1S!5
ma

p
~Za!4F10

9
1

4

3
ln~Za!222

4

3
ln k0~1S!G ,

~22!

dE~2P!5
ma

p
~Za!4

1

8 F2
1

6
2

4

3
ln k0~2P!G , ~23!

where

ln k0~1S!52.984 128 556, ~24!

ln k0~2P!520.030 016 709. ~25!

This energy shift contributes to the decay rate in accorda
with Eq. ~17!. However, the radiative corrections to the d
pole matrix element are more difficult to obtain. We split th
correction into three parts,dd5ddL1ddH1ddK , where
ddL comes from low-energy photons,ddH is the high-energy
correction to the wave function, andddK is the correction to
the dipole operator. Using nonrelativistic QED one deriv
the following expression forddL :

ddL5
2a

3pm2E0

e

vdv Re@ f ~v!#, ~26!

f ~v!5K SUpi

1

H2ES1v
r j

1

H2EP1v
piUPj L

1K SUr j

1

~H2EP!8
pi

1

H2EP1v
piUPj L

1K SUpi

1

H2ES1v
pi

1

~H2ES!8
r jUPj L

2
d

2 K SUpi

1

~H2ES1v!2
piUSL

2
d

2 K PjUpi

1

~H2EP1v!2
piUPj L , ~27!
3-3



ta
th
n

is

rm

d

tio

wa
tic

-

to

ith

ive
rt of
ee
ion
as
ox

SAPIRSTEIN, PACHUCKI, AND CHENG PHYSICAL REVIEW A69, 022113 ~2004!
where e is assumed to be asymptotically large andi,j are
vector coordinate indices. All matrix elements off (v) are
calculated numerically using a finite-difference represen
tion of the nonrelativistic Hamiltonian. The integration wi
respect tov requires special treatment regarding linear a
logarithmic ine terms. The largev asymptotics is

f ~v!'
A

v
1

B

v2
1

C

v5/2
1•••, ~28!

where

A5K SUp2
1

~H2ES!8
r iUPi L 1K SUr i

1

~H2EP!8
p2UPi L

522d, ~29!

B52
1

2 K SU4pZad3~r !
1

~H2ES!8
r iUPi L

5d~Za!2S 131

24
12 ln

4

3D , ~30!

C52A2B~Za!. ~31!

The numerical integration in Eq.~26!, along a contour which
omits poles from above or below, leads to the result

ddL5
2a

3p H Ae1B lnF 2e

~Za!2G2d~Za!217.759 359J .

~32!

The term linear ine is dropped, and the logarithmic term
canceled by the contributionddH coming from large photon
momenta. This latter contribution can be expressed in te
of an interaction potentialdV obtained from the one-loop
electron form factorsF1 andF2,

dV5Za2F10

9
2

4

3
ln~2e!Gd3~r !1

Za2

2p

LW •SW

r 3
. ~33!

It contributes to the energy shift in a way that has alrea
been accounted for in Eqs.~22! and ~23!, but also gives
corrections to the wave functions and, thus, to the transi
dipole moment:

ddH5Za2F10

9
2

4

3
ln~2e!G K SUd3~r !

1

~ES2H !8
rWUPW L

1
Za2

2p K SUrW 1

~EP2H !8

LW •SW

r 3 UPW L . ~34!

There is one more spin-dependent term which recently
discussed in Ref.@15#. It arises from the anomalous magne
momentk correction to the dipole transition operator
02211
-

d

s

y

n

s

ivrW2
k

4m
kW2rW3sW . ~35!

Its matrix element betweenS and P1/2 states leads to a cor
rectionddK :

ddK52d
Ek

4m
252d

3a

32p
~Za!2. ~36!

With the help of Eq.~17!, the sumddL1ddH1ddK , to-
gether with energy shift contributions from Eqs.~22! and
~23!, leads finally to the result for the radiative correction
the decay rate of the 2P1/2 state:

RSE
2p1/2~Za!5~Za!2H F8

3
ln

4

3
2

61

18G ln~Za!2216.051 68J .

~37!

A similar calculation for the 2P3/2 state yields

RSE
2p3/2~Za!5~Za!2H F8

3
ln

4

3
2

61

18G ln~Za!2215.984 36J .

~38!

The coefficient of the logarithmic term is in agreement w
@12#.

IV. TWO-LOOP FORMALISM

Following the approach given above to calculate radiat
corrections to decay rates, we consider the imaginary pa
the two-loop Lamb shift. We begin by considering the thr
self-energy diagrams of Fig. 1, leaving vacuum polarizat
for later. Expressions for the diagrams, which we refer to
overlap, nested, and reducible following the notation of F
and Yennie@16#, were derived by Mills and Kroll@17#, and
we now treat them in order.

A. Overlap diagram

The overlap diagram, Fig. 1~a!, is given by

S4O52e4E d3xd3yd3zd3w

3E dnk

~2p!n

dnl

~2p!n

eikW•(xW2zW)

k21 id

ei lW•(yW2wW )

l 21 id

3c̄v~xW !gm3SF~xW ,yW ;ev2k0!gnSF

3~yW ,zW;ev2k02 l 0!gmSF~zW,wW ;ev2 l 0!gncv~wW !.

~39!

FIG. 1. Two-loop Lamb shift diagrams.
3-4
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As with the one-loop case, we introduce spectral represe
tions for the electron propagators and carry out thed3k and
d3l integrations to get

S4O52(
mnr

E dk0

2p E dl0
2p

3
gvnmr~k0!gmrnv~ l 0!

~ev2k02em!~ev2k02 l 02en!~ev2 l 02e r !
,

~40!

where in this section we leave the factor (12 id) multiplying
energies in the spectral representation of the electron pr
gator understood. We now consider Wick rotating bothk0
→ ivk and l 0→ iv l . If no poles are passed, this again lea
to a purely real expression. To get an imaginary part, at le
one of the three denominators must involve encircling a p
The middle denominator can have a pole whenn5a and
k01 l 05DE, but this corresponds to two-photon dec
which we do not treat here. We then need consider only
two cases when eitherm5a and k05DE or r 5a and l 0
5DE, which gives the expressions

SL
4O524p ia2(

b
E d3xd3yd3zd3w

eiDEuxW2zWu

uxW2zWu

3E dnl

~2p!n

ei lW•(yW2wW )

l 21 id
c̄v~xW !gmcb~xW !c̄b~yW !

3gnSF~yW ,zW;ea2 l 0!gmSF~zW,wW ;ev2 l 0!gncv~wW !

~41!

and

SR
4O524p ia2(

b
E d3xd3yd3zd3w

eiDEuyW2wW u

uyW2wW u

3E dnk

~2p!n

eikW•(xW2zW)

k21 id
c̄v~xW !gmSF

3~xW ,yW ;ev2k0!gnSF~yW ,zW;ea2k0!gmcb~zW !

3c̄b~wW !gncv~wW !, ~42!

where we have ‘‘undone’’ the spectral representations of
electron propagator and kept either thed3k or d3l integra-
tion.

We note at this point that these expressions are alm
identical to expressions that arise in the treatment of scre
ing corrections to the self-energy in lithiumlike ions@Eqs.
~25! and~27! in Ref. @18##, with the only difference being an
overall minus sign and the fact that we are interested in
imaginary part here, while the real part was calculated
@18#. We were able then, with only slight modifications,
use code developed for the screening corrections in lithiu
like ions for the present calculation. Replacing

eiDEuyW2wW u→ i sin~DEuyW2wW u! ~43!
02211
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and using the equality of the two terms gives the net re
for the decay rate contribution from the overlap diagram
call GV ,

GV5216pa2 Im(
b
E d3xd3yd3zd3w

sin~DEuxW2zWu!

uxW2zWu

3c̄v~xW !gmcb~xW ! E dnk

~2p!n

eikW•(yW2wW )

k21 id
c̄b~yW !gnSF

3~yW ,zW;ea2k0!gmSF~zW,wW ;ev2k0!gncv~wW !. ~44!

B. Nested diagram

The nested diagram, Fig. 1~b!, is given by

S4N52e4E d3xd3yd3zd3wE dnk

~2p!n

dnl

~2p!n

3
eikW•(xW2wW )

k21 id

ei lW•(yW2zW)

l 21 id
c̄v~xW !gm

3SF~xW ,yW ;ev2k0!gnSF~yW ,zW;ev2k02 l 0!

3gnSF~zW,wW ;ev2k0!gmcv~wW !. ~45!

This leads to the expression

S4N52(
mnr

E dk0

2p E dl0
2p

3
gvrmv~k0!gmnnr~ l 0!

~ev2k02em!~ev2k02 l 02en!~ev2k02e r !
.

~46!

We again consider Wick rotating bothk0→ ivk and l 0
→ iv l , which gives a real result if no poles are passed.
get an imaginary part, at least one of the three denomina
must encircle a pole, and once again, we omit poles aris
from the middle denominator, which correspond to tw
photon decay. We therefore need to consider only thek0
Wick rotation, which has poles whenk05DE and eitherm
5a or r 5a. However, if bothm andr are the ground state
a double pole is encountered. If the double pole is exclud
two terms result,

SL
4N5(

br

rÞa
gvrbv~DE!Sbr~ea!

ea2e r
~47!

and

SR
4N5 (

bm

mÞa
gvbmv~DE!Smb~ea!

ea2em
. ~48!

These terms can be written in terms of perturbed orbit
Specifically, if we define

c̃a~zW ![(
br

rÞa

c r~zW !
gvrbv~DE!

ea2e r
dmbmr

~49!
3-5
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and

c̃̄a~zW ![ (
bm

mÞa

c̄m~zW !
gvbmv~DE!

ea2em
dmbmm

, ~50!

then

SL
4N1SR

4N5Saã~ea!1S ãa~ea!. ~51!

Because the ground-state self-energy is purely real, the
contribution to the decay rate comes from the imaginary p
of these perturbed orbital terms.

To treat the double pole, we setm5b andr 5c, and find

SD
4N5 i(

bc
E dk0

2p

gvcbv~k0!Sbc~ev2k0!

~DE2k01 id!2
. ~52!

Applying Cauchy’s theorem and using the fact that the s
energy is diagonal in magnetic quantum numbers gives
derivative terms

SD
4N52(

b
gvbbv8 ~DE!Saa~ea!1(

b
gvbbv~DE!Saa8 ~ea!.

~53!

C. One-particle reducible diagram

The final contribution to the two-loop self-energy com
from Fig. 1~c!, which breaks into two parts, a perturbe
orbital term

SPO5 (
mÞv

Svm~ev!Smv~ev!

ev2em
~54!

and a derivative term

SD5Svv~ev!
]Svv~E!

]E U
E5ev

. ~55!

The perturbed orbital term will have an imaginary part on
if at least one pole term is present, as our analysis of
complex nature ofS did not depend on the external wav
functions, as long as they are real. This then leads to
imaginary contribution to the energy of

SPO~a!5 i @Svṽ~ev!1S ṽv~ev!#, ~56!

where

c̃v~zW ![(
br

rÞv

c r~zW !
ḡvrbv~DE!

ev2e r
~57!

and

c̃̄v~zW ![ (
bm

mÞv

c̄m~zW !
ḡvbmv~DE!

ev2em
. ~58!

The derivative term will lead to an imaginary part of th
energy in two ways: in the first, we take the imaginary p
of the first self-energy, which is of course associated with
lowest-order decay rate, and multiply it by the real part
02211
ly
rt

f-
o
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n

t
e
f

the derivative of the valence self-energy. We combine t
term with the first term of Eq.~53! to get the ‘‘derivativeA’’
term,

Gdera5G0@Saa8 ~ea!1ReSvv8 ~ev!#. ~59!

The second contribution is when the real part of the fi
self-energy multiplies the imaginary part of the derivative
the self-energy, which can be combined with the second
of Eq. ~53! to give

Gderv5G08@ReSvv~ev!2Saa~ea!#. ~60!

In our numerical analysis, we simply evaluateG08 as one
object. However, as can be seen by referring to Eq.~9!, a
multiplicative factorDE is present in the formula forG0. If
the derivative acts on this term, a contribution ofG0 /DE
would be present, as is the case in the formulas given
Barbieri and Sucher@11#.

V. VACUUM POLARIZATION

While the exact treatment of vacuum polarization
somewhat complicated, to ordera(Za)2 one needs to con
sider only the analog of the 1s perturbed orbital. This is to be
contrasted with the effective field theory discussion, in wh
both that perturbed orbital and an energy shift needed to
considered. While the effect of the energy shift is presen
the exact calculation, which enters through the analog of
derivativeA term, it is a peculiarity of the Feynman gaug
that the low-Z behavior ofG08 is of order (Za)4: this arises
through a cancellation between timelike and spacelike ter
which separately behave as (Za)2. Replacing the self-energy
with the Uehling potential in the 1s perturbed orbital gives
numerical results that are consistent with Eq.~21!.

VI. REARRANGEMENT FOR NUMERICAL EVALUATION

In this section we perform further manipulations on t
basic expressions for the two-loop self-energy that will allo
an exact numerical evaluation. Beginning with the over
term, we note that it is ultraviolet divergent. We deal wi
that divergence by considering Eq.~44! with the bound-state
propagators replaced with free propagators, which lead
an expression we denoteGV1,

GV152
2a2

p2 ImE d3xE d3z
sin~DEuxW2zWu!

uxW2zWu

3(
b

c̄v~xW !gmcb~xW !E d3p2E d3p1

3eizW•(pW 12pW 2)E dnk

~2p!n

1

k21 id
c̄b~pW 2!gn

1

p” 22k”2m

3 gm

1

p” 12k”2m
gncv~pW 1!, ~61!

where p25(ea ,pW 2) and p15(ev ,pW 1). If we define qW 5pW 2

2pW 1 and
3-6
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TABLE II. Breakdown of contributions toR2s1/2
(Za).

Z QV1 QV2 QV3 QSL1 QSL2 QSR1 QSR2 Qderb R(Za)

50 28418.269 268 461.495 78 211.835210 142.571 11.673 8593.159 11.810 192.38221.476
60 22446.426 214 508.277 17 540.361 24213.698 11.696 3490.708 11.893 110.82822.915
70 2824.257 24479.499 5587.689 21990.665 11.725 1610.892 11.995 68.08624.034
80 2305.499 21593.601 2044.727 21034.946 11.762 817.408 12.121 43.68324.345
90 2119.499 2639.062 834.541 2580.832 11.808 446.644 12.277 28.79025.333

100 247.230 2288.465 373.852 2347.601 11.867 259.536 12.474 19.24626.321
d der

u-
e

Jvb
m ~qW !5E d3xc̄v~xW !gmcb~xW !e2 ixW•qW , ~62!

this can be rewritten as

GV152
4a2

DE
Im(

b
E d3p2d3p1Jvb

m ~qW !d~ uqW u2DE!

3E dnk

~2p!n

1

k21 id
c̄b~pW 2!gn

1

p” 22k”2m

3 gm

1

p” 12k”2m
gncv~pW 1!. ~63!

Standard Feynman diagram techniques can now be use
write this as

GV15
aC~12e!

pe
G01

a2

2p2DE (
b
E d3p2d3p1Jvb

m ~qW !

3d~ uqW u2DE!E
0

1

rdrE
0

1

dxN0m ln
D

m2

1
a2

4p2DE (
b
E d3p2d3p1Jvb

m ~qW !

3d~ uqW u2DE!E
0

1

rdrE
0

1

dx
Nm

D
, ~64!
02211
to

where

C5~4p!e/2G~11e/2!,

Q5r@xp11~12x!p2#,

D5rx~m22p1
2!1r~12x!~m22p2

2!1Q2,

N0m5c̄b~pW 2!gmcv~pW 1!,

and

Nm5c̄b~pW 2!gn~p” 22Q” 1m!gm~p” 12Q” 1m!gncv~pW 1!.

~65!

We note that the momentum-space form of the lowest-or
decay rate is

G052
a

2pDE (
b
E d3p2d3p1Jvb

m ~qW !d~ uqW u2DE!N0m .

~66!

The ultraviolet divergent term inGV1 will be shown to cancel
with derivative terms below, and the finite remainder is tab
lated asQV1 in the second columns of Tables II–IV, wher
we adopt the convention

Gx5
a

p
G0Qx . ~67!
TABLE III. Breakdown of contributions toR2p1/2
(Za).

Z QV1 QV2 QV3 QSL1 QSL2 QSR1 QSR2 Qderb R(Za)

5 29.551 236.706 23.027 20.013 11.626 20.021 11.625 0.000 20.014
10 26.887 228.062 11.756 20.044 11.625 20.064 11.630 0.000 20.045
15 25.403 225.850 8.106 20.082 11.627 20.119 11.640 20.001 20.082
20 24.409 225.047 6.358 20.126 11.631 20.183 11.653 20.003 20.126
25 23.685 224.732 5.370 20.173 11.635 20.252 11.670 20.003 20.172
30 23.131 224.632 4.760 20.222 11.641 20.325 11.691 20.012 20.230
40 22.344 224.662 4.097 20.319 11.655 20.473 11.743 20.031 20.334
50 21.822 224.806 3.793 20.409 11.673 20.623 11.810 20.065 20.449
60 21.464 224.984 3.654 20.488 11.697 20.770 11.893 20.121 20.583
70 21.219 225.166 3.594 20.553 11.727 20.909 11.995 20.207 20.738
80 21.057 225.349 3.570 20.599 11.764 21.037 12.121 20.334 20.921
90 20.962 225.533 3.558 20.629 11.812 21.146 12.277 20.521 21.144

100 20.928 225.726 3.544 20.637 11.876 21.229 12.474 20.800 21.426
3-7
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TABLE IV. Breakdown of contributions toR2p3/2
(Za).

Z QV1 QV2 QV3 QSL1 QSL2 QSR1 QSR2 Qderb R(Za)

5 29.551 236.484 22.775 0.001 11.626 20.006 11.625 0.000 20.014
10 26.888 227.653 11.254 0.000 11.625 20.014 11.630 0.000 20.045
15 25.406 225.318 7.397 20.001 11.627 20.023 11.640 0.001 20.082
20 24.413 224.381 5.418 20.002 11.630 20.033 11.653 0.004 20.123
25 23.690 223.946 4.202 20.004 11.635 20.042 11.670 0.008 20.166
30 23.138 223.732 3.368 20.008 11.640 20.050 11.691 0.014 20.215
40 22.352 223.572 2.278 20.022 11.656 20.063 11.743 0.037 20.295
50 21.830 223.555 1.579 20.047 11.675 20.075 11.810 0.082 20.361
60 21.470 223.594 1.082 20.087 11.698 20.087 11.893 0.144 20.421
70 21.218 223.661 0.710 20.149 11.726 20.102 11.995 0.242 20.457
80 21.043 223.751 0.424 20.237 11.758 20.119 12.121 0.383 20.464
90 20.926 223.863 0.204 20.360 11.794 20.140 12.277 0.585 20.429

100 20.856 224.006 0.042 20.527 11.833 20.160 12.474 0.877 20.323
by
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We can now deal with an ultraviolet finite expression
evaluatingGV2GV1. To numerically evaluate the subtracte
form, we first carry out the Wick rotationk0→ iv. If this
passes no poles, it is straightforward to show that an exp
sion we refer to asGV2 results,

GV25
4a2

p (
b
E d3xd3yd3zd3w

sin~DEuxW2zWu!

uxW2zWu
Re

3E
0

`

dv
e2vuyW2wW u

uyW2wW u
c̄v~xW !gmca~xW !c̄a~yW !gnSF

3~yW ,zW;ea2 iv!gmSF~zW,wW ;ev2 iv!gncv~wW !,

~68!

where a subtraction of the same form with free-elect
propagators is understood. A kind of infrared divergen
called a reference state singularity is present in the above
is regulated by takingev→ev(12d) and ea→ea(12d),
whered is chosen here to be 1026. GV2 has a logarithmic
dependence ond which cancels with derivative terms an
this is one of the checks used in the calculation. It is poss
to combine the terms together to manifest the cancellat
but we have found it simpler to work with a small, finit
value of d, checking of course that the sum is unchang
when d is varied. We tabulateQV2 in the third columns of
Tables II–IV.

Finally, the Wick rotation picks up pole terms. To tre
these, it is convenient to rewrite Eq.~44! as

GV54 ImE dk0

2p (
bmn

ḡvmbn~DE!gbnmv~k0!

~ea2k02em!~ev2k02en!
. ~69!

Because of the regularization procedure, the first term in
denominator has no poles, but the second does whenen
,ev , which leads to the pole term

GQV354(
bmn

ḡvmbn~DE!gbnmv~ev2en!

em1ev2ea2en
Fn , ~70!
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whereFn51 for positive energy states withen,ev andFn
50 otherwise. The associated contributionQV3 is tabulated
in the fourth columns of Tables II–IV.

Evaluation of the derivativeA terms of Eq.~59! is similar
to that ofQV2, as in both cases ultraviolet and reference st
singularities are present. The same procedures are use
deal with this—namely, a subtraction of a free-propaga
term and use of thed regulator. The analog ofQV3 is also
present, although in this case it involves a double pole. Si
we have discussed the evaluation of these derivative term
some detail in a number of other papers~see, e.g.,@18,20#!,
here we simply combine the various finite effects into t
termsQSL2 andQSR2 in the tables, whereQSL2 refers toSvv8
andQSR2 to Saa8 . An ultraviolet divergent term in the free
propagator terms cancels the first term inQV1. The perturbed
orbital terms are evaluated using techniques for evaluatio
the one-loop Lamb shift@19#, with Eq. ~56! tabulated as
QSL1 and Eq.~51! asQSR1. Finally, the derivativeB term of
Eq. ~60! is tabulated asQderb .

VII. DISCUSSION

The most numerically striking feature of the present c
culation is the very large degree of cancellation present in
2sM1 decays, which prohibits going belowZ550. In the
lowest-order calculation, while using Feynman gauge gi
the correct answer, a large cancellation between a time
and spacelike contribution is present, leaving the highly s
pressed (Za)10 result shown in Table I. This cancellation
lost in individual contributions to the radiative correction a
is only restored in the sum. This strong cancellation in f
served as a useful test of the formulas and numerical m
ods. In the unlikely event that radiative corrections neede
be considered forM1 decays in hydrogenic ions with lowe
Z, the calculation would be better carried out in the Coulom
gauge.

Turning to the 2pE1 decay rates, we note that, while le
severe than forM1 decays, there is still considerable canc
lation present between the various contributions, particula
at low Z. This is of course required by the fact that theZa
3-8
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expansion series forR(Za) has no constant term, but instea
starts in order (Za)2. Again, the high degree of cancellatio
between contributing terms at lowZ serves as a check of ou
numerical calculations, but in this case, we can also comp
our low-Z results with the perturbation series. In Fig. 2, a
order results ofRSE(Za) for 2p1/2 and 2p3/2 from Tables III
and IV are compared with analytic results from Eqs.~37! and
~38!. It can be seen that all-order results do converge to
analytic results at lowZ. In particular, the leading logarith
mic term in the perturbation series, which is the same
both 2p1/2 and 2p3/2, is good forZ51 and 2 only, while
including the constant terms, which leads to the splitting
fine structure results, extends the validity of the perturbat
series toZ57 or 8. This is typical of self-energy calculation
where theZa series is known to converge very slowly e
cept at very lowZ and nonperturbative methods such
those shown here are needed for mid- to high-Z ions.

In spite of the apparent agreement between the pertu
tion and all-order results shown in Fig. 2, it should be no
that there are residual, unresolved discrepancies betw
them. By extending the accuracy of our all-order calculatio
for RSE(Za) to a level of60.0002 for low-Z ions, we were
able to extract values of 6.67 and 6.62 for the constant te
of the 2p1/2 and 2p3/2 states, respectively. While these resu
are uncertain to60.20 due to the high degree of numeric
cancellation at lowZ when the leading logarithmic term i
subtracted out, they are nevertheless different from the
responding analytic values of 6.051 68 and 5.984 36 fr
Eqs. ~37! and ~38!. Until this discrepancy is resolved, w
would assign a 10% error to the constant terms, wh
should have negligible effect onRSE(Za) anyway.

While the decay rate corrections here are of intrinsic
terest, the purpose of the present calculation is actuall
serve as the first step in the evaluation of corrections to
ity nonconserving~PNC! transitions. There is interest in th
PNC transition 6s1/2→7s1/2 in cesium@21#, which serves as
one test of the electroweak part of the standard mode
particle physics. A very large radiative correction has be

FIG. 2. Comparisons between all-order and perturbative res
of RSE(Za). Solid and dashed lines are 2p1/2 and 2p3/2 results,
respectively. Solid and open circles are 2p1/2 and 2p3/2 all-order
results, respectively.
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found for this case@22,23#, but the only calculation using
exact propagators that has so far been carried out was fo
2s1/222p1/2 matrix element for hydrogenlike ions@24#. This
calculation had the advantage of being gauge invariant
cause of the degeneracy of the Dirac energies of the
states. The calculation carried out in this paper is also ga
invariant despite the differing energies of then52 states and
the ground state, and is generalizable to the PNC case
carry out this generalization, the extra perturbation of
effect ofZ boson exchange between the nucleus and elec
must be added.

An additional feature that must be dealt with for exten
ing the present calculation to neutral cesium is the com
cation of dealing with a many-electron system. Because
use numerical Green’s functions, there is no difficulty in u
ing a modified Furry representation of QED in which th
Coulomb potential is replaced with a model potential th
incorporates the dominant effect of electron screening. Ho
ever, the effect of the filled xenonlike core will have to b
taken into account, which will lead to extra diagrams. We
at present setting up calculations of radiative corrections
allowed transitions in the alkalis, in which these issues w
arise, with the next step being the inclusion of the effect oZ
exchange.

The challenges to experiment in testing the calculatio
presented here are considerable. The largest radiative co
tions found here are those toM1 decays at highZ, with the
correction atZ5100 being 1.2%. ForE1 decays, even the
largest case, 2p1/2 at Z5100, has a radiative correction o
only 0.2%. Rather than a direct measurement, experim
involving interference, such as the one discussed in R
@25#, may be more promising.

There is a radiative correction, even though very smal
low Z, that is of particular interest. It involves theE1 decay
of the 2p1/2 state in hydrogen. One approach to the deter
nation of the Lamb shift as described in Ref.@13# involves
the measurement of the decay rate of the 2p1/2 state in hy-
drogen to very high accuracy. To interpret the experime
Ref. @13# used the following formula for the radiative corre
tion:

R2p1/2
~Za!uRef. @13#5

32

3
~Za!2F2 ln~Za!222

1

8
ln k0~2P!

1 ln k0~1S!2
1

64
2

19

30G , ~71!

which can be shown to be equivalent to the first term of E
~17!. However, as discussed in connection with the vacu
polarization contribution, using only the energy shift giv
answers in significant disagreement with using both parts
Eq. ~17!. Our result, combining vacuum polarization wit
self-energy, is

R2p1/2
~Za!upresent work

5~Za!2H F8

3
ln

4

3
2

61

18G ln~Za!2216.576 03J .

~72!

lts
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As noted earlier, we do have agreement with the logarith
contribution found earlier by Ivanov and Karshenboim@12#.
Using the hydrogenic value ofG0 ~including recoil through a
factor of mr /me),

G0~2p1/2!uZ5156.264 94233108 s21,

the radiatively corrected lifetimes of the 2p1/2 state for hy-
drogen are

G~2p1/2!56.264 927 43108 s21 ~present work!,

G~2p1/2!56.264 922 33108 s21 ~Ref. @12#!,

G~2p1/2!56.264 881 23108 s21 ~Ref. @13#!.

As indicated earlier, Ref.@12# included only the logarithmic
term, which was in agreement with our results, so the
merical difference shown above is due to the constant term
I

.

s.

e

A
,

02211
ic

-
in

Eq. ~72!. The difference is under 1 part per million~ppm!,
which corresponds to under 1 kHz in the Lamb shift. Ho
ever, there is a more significant 7 ppm difference with R
@13#, which should play a significant role in the interpretatio
of that experiment. Of course, this is only relevant if pp
precision can be reached experimentally. Issues involve
reaching this extremely high accuracy, which we note is t
orders of magnitude greater than found in positronium@5#,
have been discussed by Hinds@26#.
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