PHYSICAL REVIEW A 69, 022113 (2004
Radiative corrections to one-photon decays of hydrogenic ions

J. Sapirsteih
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

K. Pachucki
Institute of Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland

K. T. Chend
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
(Received 10 November 2003; published 23 February 004

Radiative corrections to the decay raterof 2 states of hydrogenic ions are calculated. The transitions
considered are thel 1 decay of the 8 state to the ground state and tB&(M2) decays of the R, and 25,
states to the ground state. The radiative corrections start in afdar)?, but the method used sums all orders
of Za. The leadingx(Z«)? correction for theE1 decays is calculated and compared with the exact result. The
extension of the calculational method to parity nonconserving transitions in neutral atoms is discussed.
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I. INTRODUCTION 1. LOWEST-ORDER CALCULATION

. . . . While the first calculations of the decay rate of hydrogen

Radiative corrections to decay rates in atoms and 'ONJate back to the beginning of quantum mechanics, fully rela-
have not been as thoroughly studied as other kinds of radigyistic calculations needed for calculations of highly charged
tive corrections, such as the Lamb slilff and corrections to -y qrogenlike ions were first carried out in the early 1970s
hyperfine splitting(hfs) [2,3]. An exception is the case of [14] we briefly present the theory here using techniques that
exotic atom positronium, where differences between thgyj| pe extended to the radiative correction case. We want to
lowest-order decay rates and experiment -00.6% and yse the fact that a decay rate can be related to the imaginary
—2.2% are present for parapositroni@if) and orthopositro-  part of the energy through

nium [5], respectively. In both cases the bulk of the differ-
ence is accounted for by one-loop radiative correct[@)3, I'=—2Im(E) )
which enter in ordera with large coefficients, and the '

present theoretical interest has advanced to the level of two- = o
loop radiative correctionfs,d]. This is the approach taken by Barbieri and Sudiéi. The

For other hydrogenlike atoms, theoretical work on one_one—photon decay rate is connegted through this_ formula
loop corrections taVMi1 decays has been carried out in Refs.W'th the self-energy of an electronin a StateWh'Ch.W'" b?
[10,11]. These papers established that, unlike positroniumggﬁ_ssﬁeregéo ?eizlz\;vhirr)gz, Or 2pg,. We define this
the orderer correction has a vanishing coefficient, but did gy asyu€),
not calculate the actual correction, which enters in order

a(Za)?. A calculation forE1 decays of thex(Za)? In(Za) o e dk ek x-y)
correction has been carried out in REf2] and is in dis- Zn(E)=—ie” | dxd%y 27" Ktis
agreement with another calculation associated with the ex-

perimental determination of the Lamb sHift3]. This situa- me()Z) y#SF(i,ﬁ;E—ko) y,u,pl()?)' (2)

tion will be discussed further in the conclusion.
It is the purpose of the present paper to calculate radiativgmd a self-mass counterterm needed to renormalize un-
corrections for the hydrogen isoelectronic sequence usingerstoool to be included. If we sat=4, carry out thed3k

methods that trgat the elec_tron propagator exactly. In addii'ntegration, and represent the Dirac-Coulomb propagator by
tion, a perturbative calculation fd1 decays through order 5 spectral decomposition, the above can be written
a(Za)? is carried out and compared to the exact result. '

ei\/kgﬂa\i—ﬂ

While of intrinsic interest, development of these techniques

should also aid in the evaluation of radiative corrections to . s [ dko

parity nonconserving transitions in atoms, as will be dis- EmI(E):|af d°xd yf o > —=
cussed in the conclusion. ' x=yl

X%(x*) Yuthe () (Y)Y (Y)
E—ko—&(1—i6) '
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o VEZ+i 6% TABLE I. Lowest-order one-photon decay rates to the ground
Gijui (E)= OzJ' d3xdly———— state fom=2 states of hydrogenic ions in atomic units. Numbers in
[x—y| square brackets indicate powers of 10. The last column gives the
. N . nuclear Fermi distribution parameterin fermis. Conversion to
X i (X) ¥, i (X) i (Y) Y e (y), (4)  units of stis through 1 a.u=4.134 13K 10'°s™ 2,
then the self-energy can be compactly represented as Z 25, 2P 2Pap c
[ dkg 9ymmo(Ko) 5 5.903¢—16] 9.4779—6] 9.4735-6] 1.8104
Evv(fv):'fﬁga €,—Ko—en(1—10) ® 19 6.0733—13] 1.5172—4] 1.5144—4] 2.9889
° 15 3.526p—11] 7.686§—4] 7.6546—4] 3.2752
It will be convenient below to also introduce the function 20 6.3251—10] 2.4321—-3] 2.4140-3] 3.7188
o 25 5.9680—9]  5.9461—-3] 5.8769—3] 4.0706
_ B s 3 SiN( E|x—yl) 30 3.7551— 8] 1.2351-2] 1.2144-2] 4.4454
gijk|(E)—aj d°xd YW 40 6.9521—7]  3.9207-2] 3.8037-2] 4.9115
50 6.8431—-6] 9.6268—-2] 8.8114-2] 5.4595
X i(X) Y, i X) (V) Y (Y. (6) 60  4.5468-5]  20100-1] 1.8737-1] 5.8270
70 2.3180—4] 3.7535 - 1] 3.4051—1] 6.2771
To carry out the numerical evaluation of the Lamb shift, agg 9.8091—4] 6.450T—1] 5.6706—1] 6.6069
Wick rotation withky—iw is performed. The resulting ex- gg 3.6298— 3] 1.0440 8.8110-1] 6.9264
pression is purely real because imaginary parts present in thg)g 1.2198-2] 1.6033 1.2913 71717

o=0-— interval cancel against other imaginary parts in the
w=—o-0 interval. The imaginary part of the self-energy

arises solely from the pole term, where a bound-state pole imations which use the properties of the actual transverse pho-
the first quadrant present whef> ¢, is encircled during tons that are emitted, but the result is the same because of
the Wick rotation. As we are interested in decays to thegauge invariance. In Table I, we present the lowest-order
ground state, we will not consider imaginary parts of therates for the statess?,, 2p4», and 203, to decay by one-
energy arising fronm being an excited state in E¢5). We  photon emission to the ground state #+5,10, .. .,100.
introduce the convention that refers to the ground state We now turn to the radiative corrections to these decay rates,
when there is no dependence on the magnetic quantum numich we define in terms of a functioR(Za),

ber [as is the case for the energy and the self-energy
3 .a(€2)], andb or c refers to the ground state when there is
a dependence, with a sum ougior ¢ running over the two
possible values £ 1/2) of the magnetic quantum number.
We also define the lowest-order decay photon ene}'@y Before presenting the exact calculationR{iZ«), we calcu-
=¢,— €. It is important to emphasize that this energy dif- 1ate the leading contribution of ordeZ &)? for the p states
fers from the actual photon energy because the energy levelsing an effective field theory approach. We do not treat the
are shifted by radiative corrections: the effect of these shiftgnore complicateds-state correction, as th#M1 decay is
will be accounted for perturbatively below. The pole term ishighly suppressed at low.

r=T, 1+%R(Za) . (10

I1l. PERTURBATIVE APPROACH
Epme:; Gubbo(AE). (7

WhenZ is small, an expansion ida converges rapidly.
In calculations of the Lamb shift the real part of this is taken, W& Present here the calculation B{Z«) to leading order

2 H : .
but here we are concerned with the imaginary part, whicHZ@)”, which will serve as a check of the nonperturbative
gives the lowest-order decay rate treatment presented in the next section. The radiative correc-

tion to the decay rate is obtained from the nonrelativistic
form of quantum electrodynamidQED) supplemented by

L'o= —ZEb Gubbu(AE), (8 one-loop corrections to electron form factd¥s, F, and the
vacuum polarization. In the lowest order, the decay rate of
which can be written as a partial-wave expansion the 2P state in hydrogenlike atoms is
. R 4 .

Io=—8maAEY fd3xj|(AEx)Y|m(Qx)z/;v(x)yﬂz//b(x) To=g@E*(18/1]2P)[% (11

bim

. . _ . where E is the nonrelativistic limit ofAE defined in the
Xf d°yji(AEY) Y (Qy) (Y)Y i, (y). (9 previous section,

Because Feynman gauge has been used for the self-energy 3m(Za)?

E—E(2P)—E(1S)= (12)

calculation, this form of the decay rate is different from deri- 8 '
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with the nonrelativistic wave functions 8 4 131
RVP(Za)=(Za)2 1—5+ — 1—5In§— %
1= (MZ0) 2 "%, 13 J61 8 4
an = _
\ (Za) 55 15113
- 1 1 - =(Za)?[0.524 347. (21)
hop=—=——=(MZa)*?e " 2(mZar). (14
Vaar 2\/6

We note the strong cancellation between the effect of the
o . - energy shift, which is automatically accounted for when ex-
Natural units in whictf: =c=1 are used here. Note thébp  erimental energies are used, and the perturbed orbital,
is normalized here in a nonstandard way—namelyyich shows that care needs to be taken when that approach
Jd% pop- dhop=1. Using the nonrelativistic matrix element s taken. We now turn to the more complex self-energy cor-
rection. The effect on the energy shift is well known, coming

B o 1256 1 from the self-energy part of the Lamb shift of th& and
d=<15|f|2P>=%ﬁ@’ (19 2p,, states of
Eq. (11) gives the well-known decay rate SE(1S)= m(zay %)J,_ gln(Za)*z— gm ko(ls)},
a
28 22
F0=?ma(2a)4. (16) 22
Mo 1 1 4
. : . SE(2P)=—(Za)'z| —=—zIn ko(ZP)}, (23
The radiative corrections to this can be expressed as ™ 8 6 3
a sI' S6E &d where
;REF—=3E+2F. (17
0 Inko(1S)=2.984 128 556, (24)
When QED effects can be treated as local potentials, the
calculation of radiative corrections is relatively simple. We Inko(2P)=—0.030016 709. (25

illustrate this with the correction due to the presence of ) ] )
vacuum polarization, which is given in the nonrelativistic This energy shift contributes to the decay rate in accordance

limit by a local interaction potential

4Za?

T

B3(r). (18

Corrections to the energy and wave function of tHe gate
from S8V do not contribute tdR(Z«) at the order of interest,
but the potential shifts theS energy by

dma(Za)?

SE(1S)=— 5y

(19

which gives a contribution tdR(Za) of 32/15€«)?. In
addition the potential shifts theSlwave function by

Sprs={ r| ——46V|1S
d1s < E—H)’ >
8a(Za?) _ . [5
—We E—yE—mZar
- = 312
+2mZar In(2mZar) \/E(mZa) , (20

which leads to a total contribution from vacuum polarization
of

with Eqg. (17). However, the radiative corrections to the di-
pole matrix element are more difficult to obtain. We split this
correction into three partsgd=&d, + édy+ édx, where
6d, comes from low-energy photonéd,, is the high-energy
correction to the wave function, aniti, is the correction to
the dipole operator. Using nonrelativistic QED one derives
the following expression fobd, :

2
sd =—2 (26)
3

m?

fewdw R F(w)],
0

1 1
P Ecto H Epto’

s

pi‘Pj

s

f(w)=<S

1 1

+( Sr; i
"(H=Ep)’ P Er+o

S

1 1
p'H—ES+wp'(H_ES)' !

; S
(H—Esta)?"
Pj>,

+
o

n

S|pi

d
2

— 5\ Pj|pi (27)

|
|

1
(H—Ept w2

N
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where € is assumed to be asymptotically large arjdare

vector coordinate indices. All matrix elements fffw) are SR M, M S
calculated numerically using a finite-difference representa- @ (b) ©

tion of the nonrelativistic Hamiltonian. The integration with

respect tow requires special treatment regarding linear and FIG. 1. Two-loop Lamb shift diagrams.
logarithmic ine terms. The larges asymptotics is

s K oaps o
A B C le’—mkerU. (35
f(w)~—+—2+—5/2+~~-, (28)

o @ w

Its matrix element betwee8 and P, states leads to a cor-
where rection 6d :

L S = —d =502 g2 (7472 (36)
A={ S|p>———r1;|P; ) +{ S|ri————p?| P; k=0 e= U (Za)”
SCEOE L AN TEESTS am* 327
=-2d, (29)  With the help of Eq.(17), the sumé&d, + édy+ ddy , to-
gether with energy shift contributions from EqR2) and
1 1 (23), leads finally to the result for the radiative correction to
B=—-(Sl4nZad®(r)———r,|P; the decay rate of theR, state:
2 H-Esg)’
131 4 20113 2| |8 61 2
=d(Za)2(—+2In—) 30 REEAZa)=(Za)?|| 31N — 75/ N(Za) +6.05168.
24 3)’
(37)
C=2\2B(Za). (31) A similar calculation for the 2, state yields
The numerical integration in E426), along a contour which 2p ) 61 ,
omits poles from above or below, leads to the result Rse'Za)=(Za)™| 3Inz — 75/IN(Za)"*+5.984 36 .
2 (39
—- _ 2
5d'-_377 Aet+BlIn Za)? d(Za)"17.759 35‘\}' The coefficient of the logarithmic term is in agreement with
(32) [12].
The term linear ine is dropped, and the logarithmic term is IV. TWO-LOOP FORMALISM

canceled by the contributiofid, coming from large photon , ) -
momenta. This latter contribution can be expressed in terms_F0llowing the approach given above to calculate radiative

of an interaction potentiabV obtained from the one-loop corrections to decay rates, we co_nsider the.ima}ginary part of
electron form factors, andF, the two-loop Lamb shift. We begin by considering the three

self-energy diagrams of Fig. 1, leaving vacuum polarization

o o2 for later. Expressions for the diagrams, which we refer to as
SV=7Za? 1_0_ fln(ze)} 83(r)+ Zi L_S (33) overlap, nested, and reducible following the notation of Fox
9 3 2w 3 and Yennie[16], were derived by Mills and Krol[17], and

we now treat them in order.
It contributes to the energy shift in a way that has already
been accounted for in Eq$22) and (23), but also gives A. Overlap diagram
corrections to the wave functions and, thus, to the transition

dipole moment: The overlap diagram, Fig.(4), is given by

10 4 1 . 24O=—e4J d3xdPy d®zdPw
sdy=Za? ——=In(2¢)|( S 8(r)———r|P
o 3 (Es—H)’ B TG
d"k d"l e|k~(x z) e|I-(y w)
- 2 X
+Z—a2 sr—t =5p (34) 2m"(2m)" k2+is 12+is
2\ 7| (Ep—H)’ = = : .
X, (X) Y X Se(X,y;€,—Ko) ¥"Se
There is one more spin-dependent term which recently was - > s -
discussed in Refl15]. It arises from the anomalous magnetic X(y.z.6, = ko= 10) ¥, Se(z Wi €, = 10) 7, 4, (W).
momentx correction to the dipole transition operator (39

022113-4
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As with the one-loop case, we introduce spectral representand using the equality of the two terms gives the net result
tions for the electron propagators and carry outdfle and  for the decay rate contribution from the overlap diagram we

d®l integrations to get call Ty,
dko [ dl SiN(AE|x—2
340=_3 fzko 20 I'y=—16ma? Im>, fd3xd3yd3zd3w—m l» D
mnr T ™ b |X—Z|
% gvnmr(ko)gmrnv(lo) d"k e|k (y w)
(Ev_kO_Em)(Ev_ko_lo_Gn)(ev_lo_fr)' va(x)'y i/’b(x)f(zw)n kz—ir/’b(y)y Se

(40)

o . X (Y2 €a=Ko) ¥, Se(Z Wi €, = Ko) 7, by (W), (44)
where in this section we leave the factor< L5) multiplying

energies in the spectral representation of the electron propa-
gator understood. We now consider Wick rotating bkgh

—iw, andly—iw, . If no poles are passed, this again leads The nested diagram, Fig(ld), is given by
to a purely real expression. To get an imaginary part, at least

B. Nested diagram

n
one of the three denominators must involve encircling a pole. SAN— _ f d3xd®ydPzdPw d% _dn
The middle denominator can have a pole whena and (2 )" (277)
ko+lo=AE, but this corresponds to two-photon decay |k (X—w) e" -2
which we do not treat here. We then need consider only the l/,y( X) yH

two cases when eithen=a and ko,=AE or r=a and |, k2+i5 12+i6

=AE, which gives the expressions R ..
X Se(X,Y;€,—Ko) ¥'Se(Y,z;€,—Ko—1o)

e|AE|x Z o _
240——4ma22 fd3xd3yd3zd3w 3 X 7,Se(Z,W; €,— Ko) ¥, (W). (45)
a4l i (5-w) This leads to the expression
e
¥
(27T)n | tis lpv(x)’y ¢b(x)¢b( ) 24N:—E fdko dlo
mnr 27T 27T

X yY (Q,E;E -1 )’)’ S (Z,VT/;EU_I ) v U(\KI)
v'Se(y a 0/ Vu>F 0) V¥ gurmv(ko)gmnm(lo)

41 .
“D (€,—ko—em)(€,—ko—lo—€n)(€e,~Ko— &)
and (46)
_ gl AEly—wi We again consider Wick rotating botky—iw, and I
SR0=—4mi az; f d3xd3yd3zd3w—| i —iw,, which gives a real result if no poles are passed. To
y get an imaginary part, at least one of the three denominators
d'k  elk-(x-2) must encircle a pole, and once again, we omit poles arising
J(zﬂ_)n e %(X)V”SF from the middle denominator, which correspond to two-

photon decay. We therefore need to consider only khe
- - e - Wick rotation, which has poles wheg=AE and eitherm
X(X,y;€,—Ko) Y"Se(Y.Z; €a— ko) v, h(2) =a or r=a. However, if bothm andr are the ground state,

- = - a double pole is encountered. If the double pole is excluded,
X Pp(W) iy (W), “2) o terms result,
where we have “undone” the spectral representations of the r#a oo (AE) S5 (€2)
electron propagator and kept either ttitk or d*l integra- SN Zurbe ~ brl ~a (47)
tion. br €a” &
We note at this point that these expressions are almost d
identical to expressions that arise in the treatment of screerft’
ing corrections to the self-energy in lithiumlike iop&gs. m#a g (AE)S o €2)
(25) and(27) in Ref.[18]], with the only difference being an SAN= vbmy — mbal. (48)
overall minus sign and the fact that we are interested in the bm €a™ €m

imaginary part here, while the real part was calculated i
[18]. We were able then, with only slight modifications, to
use code developed for the screening corrections in lithiums=
like ions for the present calculation. Replacing r#a

gvrbu(A )

V(D=2 (D)= Oy, (49)

nThese terms can be written in terms of perturbed orbitals.
Specifically, if we define

2BV sin(AE|y—w)|) (43

022113-5
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and the derivative of the valence self-energy. We combine this
m<a term with the first term of Eq(53) to get the “derivativeA”
= -> gubmv(AE) term,
Val2)= 20 Ynl(2) = Omym,y (50)
m ! !
Fgera=T o[ 2 5a(€a) +REZ ) (€,)]. (59
then

The second contribution is when the real part of the first
SINESEN=T ~(€)+3za(€a). (51)  self-energy multiplies the imaginary part of the derivative of

the self-energy, which can be combined with the second part
Because the ground-state self-energy is purely real, the onlys Eq. (53 to give

contribution to the decay rate comes from the imaginary part
of these perturbed orbital terms. Lgern=To[ReZ,,(€,) —Zaal€a)]- (60)

To treat the double pole, we set=b andr=c, and find ) _ _
In our numerical analysis, we simply evaludig as one

AN dko Ouebw(Ko) 2 pe( €, — Ko) object. However, as can be seen by referring to @4. a
2p _'2 2 (AE—Kq+i6)2 : (52 multiplicative factorAE is present in the formula for. If
0 the derivative acts on this term, a contribution I&§/AE
Applying Cauchy’s theorem and using the fact that the selfwould be present, as is the case in the formulas given by
energy is diagonal in magnetic quantum numbers gives twarbieri and Suchef11].
derivative terms

V. VACUUM POLARIZATION

3p= _g Gobb (AE) 2 aq( 6a)+% Gubbo(AE) 2 445(€a). While the exact treatment of vacuum polarization is
(53 somewhat complicated, to orde«(Z«)? one needs to con-
sider only the analog of theslperturbed orbital. This is to be
contrasted with the effective field theory discussion, in which
both that perturbed orbital and an energy shift needed to be
The final contribution to the two-loop self-energy comesconsidered. While the effect of the energy shift is present in
from Fig. 1(c), which breaks into two parts, a perturbed the exact calculation, which enters through the analog of the

C. One-particle reducible diagram

orbital term derivative A term, it is a peculiarity of the Feynman gauge
S (€)S, (e) that the lowZ behavior ofl'}, is of order €a)*: this arises
Spo= E Zomt ol Tmel Tl (54)  through a cancellation between timelike and spacelike terms,
m#v €™ €m which separately behave a&4)2. Replacing the self-energy

with the Uehling potential in the sl perturbed orbital gives

and a derivative term numerical results that are consistent with E2{l).

92,,(E)

JE ' (55) VI. REARRANGEMENT FOR NUMERICAL EVALUATION
E=e,

2D:S’Uv(ev)

In this section we perform further manipulations on the
The perturbed orbital term will have an imaginary part only basic expressions for the two-loop self-energy that will allow
if at least one pole term is present, as our analysis of than exact numerical evaluation. Beginning with the overlap
complex nature o& did not depend on the external wave term, we note that it is ultraviolet divergent. We deal with
functions, as long as they are real. This then leads to athat divergence by considering E@4) with the bound-state

imaginary contribution to the energy of propagators replaced with free propagators, which leads to
. an expression we denotg,,
S po(@)=ilE,5(6,) + 55,(6,)], (56) P e
SiN(AE|x— z|)
where I‘Vl=——2—lmj d3x fd3 INAEIX=2)
- Ix—2|
' >, gurbv( ) (57)
(D=2 iz . ;
T oeme X% %(xw“wb(x)f dspzf d*p;
and
m#v ( ) Xelz (P]_ pz)j (2 )n : lvbb p2)7 p
>, gvb v ™ v
(D=2 (D= (58)
U m 1 R
X Y —’vav(p )! (61)
The derivative term will lead to an imaginary part of the Kpri—k—m !

energy in two ways: in the first, we take the imaginary part
of the first self-energy, which is of course associated with thevhere p2=(e€a,P2) and p;=(e,,py). If we defineq=p,
lowest-order decay rate, and multiply it by the real part of— p1 and

022113-6
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TABLE Il. Breakdown of contributions t(Rlelz(Za).

z QVl QVZ QV3 QSLl QSLZ QSR]. QSRZ Qderb R(Za)

50 —8418.269 —68461.495 78211.835-10142.571 11.673 8593.159 11.810 192.3821.476
60 —2446.426 —14508.277 17540.361 —4213.698 11.696 3490.708 11.893 110.8282.915
70 —824.257 —4479.499 5587.689 —1990.665 11.725 1610.892 11.995 68.0864.034
80 —305.499 —1593.601 2044.727 —1034.946 11.762 817.408 12.121 43.6834.345
90 —119.499 —639.062 834.541 —580.832 11.808 446.644 12.277 28.7965.333
100 —47.230 —288.465 373.852 —347.601 11.867 259.536 12.474 19.2466.321

R _ L - where
Jfb(Q)Zf A3, (X) Y gp(x) @™ 9, (62
C=(4m)T'(1+€l2),
this can be rewritten as
Q=p[xp1+(1=X)p2],
4a° N -
Fvi=—Fgim>, f d®p,d3p;3%,(q) 8(|g| — AE) A= px(m?=pf)+p(1=x)(m?=p3)+Q?,
d"k 1 — . 1 NoM:Eb(F;z) Y,Ll//v(ﬁl),
f—nz—-lﬁb(Pz)Y T
(2m)" k°+i6 p,—k—m and
1 - — . N
X yum Yol (P1). (63 N, = p(P2) v, (P2— Q@+ M)y, (p1— Q@+ M)y #,(P1).
(65
Standard Feynman diagram techniques can now be used {Qe note that the momentum-space form of the lowest-order
write this as decay rate is
aC(l—e) a? 3 3 - @ . .
Tvi=————Tot 5 23F % fd P2d°p1Jy6(q) To=—5—7E }b) J'd3p2d3p1J{}‘b(q)5(|q|—AE)NO#.
(66)

R 1 1 A
X &(|q|—AE f d f dxNy, IN— . . . .
(lal ) 0 pEp 0 0w T m? The ultraviolet divergent term ify4 will be shown to cancel

with derivative terms below, and the finite remainder is tabu-
lated asQy in the second columns of Tables II-IV, where
we adopt the convention

az -
+ 47T2AE % f d3p2d3p1‘]5b(Q)

R 1 1 N a
><5(ICI|—AE)L pdpJOde, (64) y=—ToQx. (67)

TABLE lll. Breakdown of contributions tchpm(Za).

YA Qu1 Qv2 Qvs Qsu1 Qsi2 Qsr Qsr Qderb R(Za)

5 —-9551 -—-36.706 23.027 -0.013 11.626 -—0.021 11.625 0.000 -0.014
10 -—-6.887 —28.062 11.756 —0.044 11.625 -0.064 11.630 0.000 —0.045
15 —-5.403 —25.850 8.106 —0.082 11.627 -0.119 11.640 -0.001 —0.082
20 —4.409 -—25.047 6.358 —0.126 11.631 -0.183 11.653 -0.003 —0.126
25 —3.685 —24.732 5370 -0.173 11635 -0.252 11.670 -0.003 -—0.172
30 —3.131 -—-24.632 4760 —-0.222 11641 -0.325 11.691 -0.012 —-0.230
40 —2.344 —24.662 4.097 —-0.319 11655 -0.473 11.743 -0.031 -—0.334
50 -—1.822 —24.806 3.793 —0.409 11673 -0.623 11.810 -—-0.065 —0.449
60 —1.464 —24.984 3.654 —-0.488 11.697 -0.770 11.893 -0.121 —0.583
70 -1.219 -—25.166 3.594 -0.553 11.727 -0.909 11995 -0.207 —0.738
80 —1.057 —25.349 3.570 —-0.599 11764 -1.037 12121 -0.334 -0.921
90 —-0.962 —25.533 3.558 —-0.629 11.812 -—1.146 12277 -—-0.521 —1.144

100 —-0.928 —25.726 3.544 -0.637 11.876 —1.229 12474 -0.800 —1.426
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TABLE IV. Breakdown of contributions t(R2p3/2(Za).

z QVl QV2 QV3 QSIJ. QSLZ QSR]. QSRZ Qderb R(Za)

5 —9.551 —36.484 22.775 0.001 11.626 —0.006 11.625 0.000 -0.014
10 —6.888 —27.653 11.254 0.000 11.625 —0.014 11.630 0.000 -—0.045
15 —-5406 —25.318 7.397 —0.001 11.627 -—0.023 11.640 0.001 -0.082
20 —4.413 -—24.381 5418 -0.002 11.630 —0.033 11.653 0.004 -0.123
25 —3.690 —23.946 4202 —-0.004 11.635 -—0.042 11.670 0.008 —0.166
30 -—3.138 —23.732 3.368 —0.008 11.640 —0.050 11.691 0.014 -0.215
40 —2.352 —23.572 2278 —0.022 11.656 —0.063 11.743  0.037 —-0.295
50 -1.830 —23.555 1579 -0.047 11.675 -—0.075 11.810 0.082 —-0.361
60 —1.470 —23.594 1.082 -0.087 11.698 —0.087 11.893 0.144 -0.421
70 —1.218 —23.661 0.710 —-0.149 11.726 -—0.102 11.995 0.242 —-0.457
80 —1.043 —23.751 0.424 —-0.237 11.758 -—0.119 12,121  0.383 —0.464
90 —0.926 —23.863 0.204 —-0.360 11.794 -0.140 12.277 0.585 —-0.429

100 —0.856 —24.006 0.042 —-0.527 11.833 -0.160 12.474 0.877 —-0.323

We can now deal with an ultraviolet finite expression bywhereF,=1 for positive energy states witt,<e, andF,
evaluatingl’y—I'y;. To numerically evaluate the subtracted =0 otherwise. The associated contributiQg; is tabulated
form, we first carry out the Wick rotatioky—iw. If this  in the fourth columns of Tables II-IV.
passes no poles, it is straightforward to show that an expres- Evaluation of the derivativé terms of Eq.(59) is similar

sion we refer to a$’y, results, to that ofQy,, as in both cases ultraviolet and reference state
o singularities are present. The same procedures are used to
4a? 3 33 sin(AE|x—2|) deal with this—namely, a subtraction of a free-propagator
Tyvo=—o % f d°xd-yd ZdSWW Re term and use of thé regulator. The analog d®y; is also
present, although in this case it involves a double pole. Since
o @ ely-wl_ R o we have discussed the evaluation of these derivative terms in
xf do —=——=—4,(X) ¥, a(X) a(Y) ¥, Se some detail in a number of other papé¢sse, e.g.[18,20),
0 ly—wl| here we simply combine the various finite effects into the

termsQs > andQsp, in the tables, wher€g, , refers toX
and Qg to 2./, . An ultraviolet divergent term in the free-
(68) propagator terms cancels the first ternQp,. The perturbed

. . orbital terms are evaluated using techniques for evaluation of
where a subtraction of the same form with free-electronme one-loop Lamb shiff19], with Eq. (56) tabulated as

prtl)lngatozs is understood. 'IA‘ kind of infrar_edhdivirgencer\%su and Eq.(51) asQgg . Finally, the derivativeB term of
called a reference state singularity is present in the above an&’ (60) is tabulated aQyerp.

is regulated by takinge,—e€,(1—35) and e;— e,(1— ),

where & is chosen here to be 18. I'y, has a logarithmic
dependence o which cancels with derivative terms and VIl. DISCUSSION
this is one of the checks used in the calculation. It is possible

to combine the terms together to manifest the Cance'Iationéulation is the very large degree of cancellation present in the
but we have found it simpler to work with a small, finite y larg 9 P

value of 8, checking of course that the sum is unchangeqzc;v'v'eitg?g:?’i’a:’gn:ggoﬂmaﬁ'ltes Sg'r?g g:lﬁmm_ago'all? teheives
when § is varied. We tabulat®),,, in the third columns of ’ 9 Fey gauge give
Tables l—IV. the correct answer, a large cancellation between a timelike

Finally, the Wick rotation picks up pole terms. To treat a?:szgg?“;(leo ?ggbﬁ;bgﬁ'g\?vésiﬁr_?;gg’IIe_?%'g%;?}i;}:gggynsgp'
these, it is convenient to rewrite E@l4) as pressed &L a I S .
lost in individual contributions to the radiative correction and
- AE K is only restored in the sum. This strong cancellatlo_n in fact
ry=4 |mf dko D Gombr( AE)Gonm (ko) . (69) served as a useful test of the formulas and numerical meth-
27 pmn (€a—Ko— €m)(€,—Ko—€n) ods. In the unlikely event that radiative corrections needed to

o i ... be considered foM 1 decays in hydrogenic ions with lower
Because of the regularization procedure, the first term in th%, the calculation would be better carried out in the Coulomb

denominator has no poles, but the second does when gauge.
<¢,, which leads to the pole term Turning to the DE1 decay rates, we note that, while less
— severe than foM 1 decays, there is still considerable cancel-
Toys=4> Gombrl AE)Gbnmy (€, — €n) E (70) lation present between the various contributions, particularly
A €EmtT €,~ €37 €, " at low Z. This is of course required by the fact that the

X (Y,Z; €a—10) ¥"Se(Z,W; €,— 1 0) ¥, (W),

The most numerically striking feature of the present cal-
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] found for this casd22,23, but the only calculation using
log + constant term exact propagators that has so far been carried out was for the
2s4o— 2Py, matrix element for hydrogenlike iof&4]. This
[ ] calculation had the advantage of being gauge invariant be-
01 F RRDEEE cause of the degeneracy of the Dirac energies of the two
[ ] states. The calculation carried out in this paper is also gauge
invariant despite the differing energies of the 2 states and
the ground state, and is generalizable to the PNC case. To
carry out this generalization, the extra perturbation of the
effect ofZ boson exchange between the nucleus and electron
must be added.
An additional feature that must be dealt with for extend-
R S SN TP BV ing the present calculation to neutral cesium is the compli-
0 5 10 15 20 25 cation of dealing with a many-electron system. Because we
z use numerical Green’s functions, there is no difficulty in us-
ing a modified Furry representation of QED in which the
FIG. 2. Comparisons betweer_w all-order and perturbative resultg:qgylomb potential is replaced with a model potential that
of Rsg(Za). Solid and dashed lines arepg, and 25, results,  jncorporates the dominant effect of electron screening. How-
respectively. Solid and open circles arp;2 and 2, all-order  gyqr the effect of the filled xenonlike core will have to be
results, respectively. taken into account, which will lead to extra diagrams. We are
at present setting up calculations of radiative corrections to
expansion series fd®(Za) has no constant term, but instead allowed transitions in the alkalis, in which these issues will
starts in order Za)?. Again, the high degree of cancellation arise, with the next step being the inclusion of the effec of
between contributing terms at lo#serves as a check of our €xchange.
numerical calculations, but in this case, we can also compare The challenges to experiment in testing the calculations
our low-Z results with the perturbation series. In Fig. 2, all- presented here are considerable. The largest radiative correc-
order results oRgg(Za) for 2p,,, and 2oy, from Tables 11l tions found here are those M1 decays at higiz, with the
and IV are compared with analytic results from E@¥) and ~ correction atZ=100 being 1.2%. FoE1 decays, even the
(38). It can be seen that all-order results do converge to théargest case, (2, at Z=100, has a radiative correction of
analytic results at lowZ. In particular, the leading logarith- only 0.2%. Rather than a direct measurement, experiments
mic term in the perturbation series, which is the same foinvolving interference, such as the one discussed in Ref.
both 2p;,, and 2pg),, is good forZ=1 and 2 only, while [25], may be more promising.
including the constant terms, which leads to the splitting of There is a radiative correction, even though very small at
fine structure results, extends the validity of the perturbatiodow Z, that is of particular interest. It involves titel decay
series taZ=7 or 8. This is typical of self-energy calculations of the 2p,,, state in hydrogen. One approach to the determi-
where theZa series is known to converge very slowly ex- nation of the Lamb shift as described in REE3] involves
cept at very lowZ and nonperturbative methods such asthe measurement of the decay rate of thmg,2state in hy-
those shown here are needed for mid- to higlons. drogen to very high accuracy. To interpret the experiment,
In spite of the apparent agreement between the perturb&ef.[13] used the following formula for the radiative correc-
tion and all-order results shown in Fig. 2, it should be notedion:
that there are residual, unresolved discrepancies between

all-order results

Ry (Za)

them. By extending the accuracy of our all-order calculations :3_2 2| _ -2_ E

for Rgg(Za) to a level of+0.0002 for lowZ ions, we were Rep, (Z4) et 13 3 (207 ~In(Za) "= glnko(2P)
able to extract values of 6.67 and 6.62 for the constant terms

of the 2p4, and 24, States, respectively. While these results +Inky(1S)— i _ E)} (72)
are uncertain ta-0.20 due to the high degree of numerical 64 30)

cancellation at lowZ when the leading logarithmic term is ) . )
subtracted out, they are nevertheless different from the cot¥Nlich can be shown to be equivalent to the first term of Eg.

responding analytic values of 6.05168 and 5.984 36 fron{1?): However, as discussed in connection with the vacuum
Egs. (37) and (38). Until this discrepancy is resolved, we polarization contribution, using only the energy shift gives

would assign a 10% error to the constant terms, whictgnswers in significant disagrgement with using_bot.h par'gs of
should have negligible effect dRee(Za) anyway. Eqg. (17). Our result, combining vacuum polarization with

While the decay rate corrections here are of intrinsic in-S€!f-energy, is
terest, the purpose of the present calculation is actually to
serve as the first step in the evaluation of corrections to par-
ity nonconserving PNC) transitions. There is interest in the

R2p1,2( Za) | present work

8 4 61
PNC transition 8,,— 7Sy, in cesium[21], which serves as =(Za)2[ 331 In(Za) %+ 6.576 O%.
one test of the electroweak part of the standard model of
particle physics. A very large radiative correction has been (72
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As noted earlier, we do have agreement with the logarithmi&gq. (72). The difference is under 1 part per millidppm),
contribution found earlier by Ivanov and Karshenbdih®].  which corresponds to under 1 kHz in the Lamb shift. How-
Using the hydrogenic value df, (including recoil through a ever, there is a more significant 7 ppm difference with Ref.

factor of m, /m,), [13], which should play a significant role in the interpretation
., of that experiment. Of course, this is only relevant if ppm
[o(2p12)|z-1=6.264942% 10° 574, precision can be reached experimentally. Issues involved in

reaching this extremely high accuracy, which we note is two
orders of magnitude greater than found in positroniidf
have been discussed by Hind5].

the radiatively corrected lifetimes of thepg, state for hy-
drogen are

I'(2py,)=6.264927 410 s'1 (present work,
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