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Entanglement in a second-order quantum phase transition
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We consider a system of mutually interacting spins 1/2 embedded in a transverse magnetic field which
undergoes a second-order quantum phase transition. We analyze the entanglement properties and the spin
squeezing of the ground state and show that, contrarily to the one-dimensional case, a cusplike singularity
appears at the critical point; in the thermodynamical limit. We also show that there exists a vajre\.
above which the ground state is not spin squeezed despite a nonvanishing concurrence.
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Entanglement is a truly specific property of the quantumsqueezed and its squeezing paramgidi vanishes in the
world and one of its deepest signatures, as it was alreadinermodynamical limit. Finally, we show that there exists a
recognized in the early days of quantum mechanics. It is agpecial line in the parameter space where the concurrence
the heart of the celebrated Einstein-Podolsky-Ro&&PR vanishes and above which the ground state is not spin
paradox1,2] and plays a key role in the measurement prob-squeezed although the concurrence is nonzero.
lem as well as in the quantum to classical transitj@h Let us consider the following Hamiltonian first introduced
Entanglement is also central in quantum computafig] by Lipkin et al. [15]:
where the most interesting operations cannot be completely
fulfilled through the manipulation of separable states. N P P i

Recently, entanglement properties of systems undergoing H==J 24 (oyah+ yoyol) = > o) )
quantum phase transitiofi6] have attracted much attention ) '

[7-11]. Interestingly, the concurrence of the ground state,

which is related to the entanglement of format{d2], has 2\ A

been shown to be strongly affected at the critical ppiin8]. - W(S>2<Jr 7’35) 25+ 5(1+ V), 2

More precisely, in the one-dimensio(aD) Ising model in a
transverse field, Osterloét al. have shown that the deriva-
tive of the concurrence with respect to the coupling consta
diverges at the transition poip8] although the concurrence
itself is not maximum. These pioneering results raise th . - SN
qguestion of the universality of these behaviors. Apart fromget a finite fr_ee Energy per spin in the thermc_)dynam|cal limit.
1D quantum spin models, there has been, up to now, no other The Hamlltonla_nH Preserves the_total spin and does not
analysis of the ground-state entanglement in systems displag—opp!e st.ates having a dlffferent. par.|ty of the nu.mber of spin
ing quantum phase transitions except in the Kagdatiice ointing in the magnetic field direction, namely:

[9]. Actually, the lack of exact solutions especially in higher

n¥vhere theo,'s are the Pauli matrices arﬁiainoia/Z We
ocus here on the ferromagnetic cage>0) and we mainly
econsider the caseOy=<1. The prefactor M is necessary to

dimensions implies a numerical treatment which often re- [H,$°]=0, 3

stricts the study to a small number of degrees of freedom.

Such approaches do not allow, in general, an accurate de- ,

scription of the thermodynamical properties. [HH ay|=0, 4
I

In this paper, we study the entanglement properties of a
guantum system made up Nfspins 1/2 on a simpleteach
spin interacts with all otheysembedded in a magnetic field. for all y. In the isotropic casey=1, one further has
The permutation symmetry of this system allows us to re{H,S,]=0 so thatH is diagonal in the standard eigenbasis
strict the ground-state determination to &hdimensional {|S,M)} of S andS,.
subspace and, consequently, to deal with a large number of For anyvy, this system displays a second-order quantum
spins(about 1000. We analyze the concurrence and the spinphase transition ah.=1 which is characterized by the
squeezing of the ground state which are, in this case, closelpean-field exponen{d6,17. Nevertheless, a mean-field ap-
related [13]. Contrarily to what happens in the 1D Ising proach cannot provide nontrivial entanglement properties
model, the concurrence of the ground state is maximum ansgince it essentially turns the Hamiltonian into a sum of
displays a cusplike singularity at the critical point. Moreover,single-body Hamiltonians. It is thus necessary to use numeri-
at the transition point, the ground state is maximally spincal diagonalizations off for finite N. The dimension of the

Hilbert space is P but the study of the ground state reduces
to a problem linear withN since it lies in the fully symmetric
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the mean spigS) where the minimal value of the variance is

A
— 2 2
HIM)=| - N(l“L?’)(N /4=M?)—2M||M) obtained. More precisely, for any state belongingto or

- . E_, one has
—(ay-1ay|M—=2)+ay ,,ay|/M+2)) 5
§&=1-Cg (10)
AM1-vy)
XT’ ©) if the matrix elements of the reduced density mapriwrit-

ten in the standard basi§|11),|T1),[11),/11)} satisfy
whereay; = \(N2)(N/2+ 1)~ M(M=1). In the following, ~|p1d=p22 [13,19. In the opposite case, the states are not
we will denote by&. the orthogonal subspaces spanned bysPIN squeezed¢f=1).

the Dicke statesM), such thafl;o,|M)= =|M) which cor- Let us first recall the results in the isotropic cage 1
responds to even or odd values fN/e_ M). which is exactly solvable. As it can be straightforwardly ob-

When\ <\ and for anyy, the ground state is nondegen- tajned from Eq.(5), the (nondegeqeraleground state is the
erate. By contrast, foh>\., the ground state is doubly Dicke statgN/2) for A<\ and switches from one stafts!)
degenerate in the thermodynamical limit for apy-1 but ©@ stat§M’<M) as\ increase$17]. The concurrence of
remains unique in the isotropic casg=1). In this limit, the & Dicke statgM) can be determined analyticall20,21:
magnetizatior{per spin in thez direction of the ground state 1
is simply given by{16,17] chm{N2—4M2— V(N2=4M?)[(N—2)2—4aM?]}.

11)

1 1
— == for A\, (6)
N{S2 72 ¢ In the thermodynamical limit, this rescaled concurrence van-

ishes forN<\., jumps to 2 at the critical poink., and
decreases, by discrete steps, to 1 at laxgeThis singular
behavior at the transition point is similar to the one obtained
in the 1D Ising mode(7,8,10,13, except that in this latter
for all y. case, the nearest-neighbor concurre@d) is not maxi-

To analyze the entanglement properties of the groundgnum at the critical point. Concerning the spin squeezing, its
state|#), we have computed for several values pfthe  behavior is trivial since all Dicke states are not spin squeezed
concurrence introduced by Woottgd<], which is defined as [20], and no singularity can thus be observed on this quantity
follows. Let us denote by the reduced density matrix ob- at the transition.
tained from| ) by tracing out over l—2) spins. Of course, For y# 1, the situation is more complex. Indeed, as men-
in our system, the choice of the two spins kept is irrelevantioned above, the ground state is doubly degenerate\ for
contrarily to the 1D Ising mod€]l7,8]. Next, we introduce >\ in the thermodynamical limit so that, in this region, we
the spin-flipped matri;;,:gy@) oyp* o,® oy Wherep* is the should, in principle, study the entanglement obtained from
complex conjugate op. The concurrenc€ is then defined the thermal density matritat zero temperatuye
by

1 1
N<SZ>:§ for A>\¢, (7)

1
C=max{0.u1— jiy— pia—pial. ® pin=7 ([ +)(+[+]=)=D), (12)
where thew; are the square roots of the four real eigenval-where|+) and| —) areanytwo orthogonal ground states. Of
ues, classified in decreasing order, of the non-Hermitiarfourse, for finiteN, the ground state is nondegenerate and
product matrixpp. This concurrence vanishes for an unen-1€s, dgpenc_iln_g on., either in&, orin £ - In the Fhermo—
tangled two-body state where&@=1 for a maximally en- dynamical I|m|t,.the reduced density matrlqe_s built from
tangled one. Finally, sincel couples every spin with each the corresponding ground stafg..) by tracing out over
other, the two-body entanglement is somewhat “diluted” be-(N—2) Spins become identical. Therefore, we have analyzed
tween all spins and eventually goes to zero in the thermodythe entanglement of the true finité ground state [¢/..) or
namical limit. To get nontrivial information about the en- ¥-)). ) .
tanglement, it is thus crucial to consider the rescaled VW& have displayed in Fig. 1 the rescaled concurrence of
concurrence€€r= (N— 1)C where the prefactor is simply the the ground state as a function kf for various anisotropy
coordination number of each spin. In symmetric multiqubitParameters & y<1. For ally, the rescaled concurrent
systems, this rescaled concurrence has recently been relat@@Velops a singularity at the critical point. as already

to the spin squeezing paramefés] pointed out fory=1. However, as can be seen in Fig. 2, the
rescaled concurrence goes to 1 in the thermodynamical limit
4(AS; )? contrarily to the isotropic case where it jumps to 2. More
gzzTi, (9) precisely, for ally#1, one has
1_CR()\M)~N—O.33t0.01' (13)

which measures the spin fluctuations in a correlated quantum
state[14]. The subscriph, refers to an axis perpendicular to Ay — N~ N~ 0-6620.01 (14)

022107-2



ENTANGLEMENT IN A SECOND-ORDER QUANTUM.. .. PHYSICAL REVIEW A69, 022107 (2004

1 4
—e—1y=0 2 poeid
0.8 |- ——y=0.2 0
——y=0.8
-2
0.6 | axCR
-4
Cr 04 L -6
-8
0.2 -10
12 | | | | | |
0 L e L 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0 1 2 7\’ 3 4 5

FIG. 3. FiniteN behavior of,Cg for y=0 near the critical
FIG. 1. Rescaled concurrence of the ground state as a functiopoint \ .= 1.

of \ for different values ofy and forN=1000.

equals 1/3. Note that it is also the one guessed in Refs.
[16,17 for the scaling of the magnetization at the critical
%oint.

The behaviors o€ andd, Cg are notably different from
those observed in the 1D cag®. Indeed, in the fully con-

have focused on the case=0 and plotted in Fig. 3 the nected system considered he@g, andJ,Cr are extrema at

behavior ofd, Cr near the critical point for different values )?C whereas in the 1D Is?r)g mOdei.*C(l) i_s_the only quan-
of N. tity affected by the transitionC(1) is surprisingly maximum

below the critical point In addition, the scaling behavior of
the concurrence and of its derivative are different in both
models. This simply reflects the fact that they do not belong

where\, is the value ofz for which Cg is maximum. In the
thermodynamical limitCr(\ ) goes to 1 whilex,, goes to
\. so that the ground state is maximally spin squeezed at th
critical point (£2=0).

To analyze the formation of the singularityat\., we

Denoting by\, (respectively,\;) the value of\ for
which ¢, Cg is maximum(respectively, minimury) one has

9, Cr(\ ;) ~N0-3300L (15) to the same univgr_sality class as was already known from the
calculations of critical exponents.
9\Cr(\ )~ —N033:008 (16) In the zero-coupling limit {=0), the rescaled concur-
rence obviously vanishes since the ground state is in this
Ne— N~ N~1+00L (17)  case the fully polarized Dicke statdl/2) and, accordingly,
£=1. More interestingly, fory#0, there exists another
)\,’n—)\pN*O-ﬁﬁto-Ol, (18) special valuexy(y) for which Ci vanishes. FOA=\(y),

the rescaled concurrence is nonzero but the ground state is

for all y#1 and at largeN. In the thermodynamical limit, a not spin squeezedéf=1), whereas foh<\o(), the spin
real cusplike singularity is thus observed at the quantunsqueezing is given by EG10). This behavior of? is due to
critical point. We underline that although we are not able toa change in the sign df4 — p,, Which is always negative
exactly compute the exponent giving the laldebehaviors abovely(y). For y=0, such a situation never occurs and
of Cr, 9,Cr(\y), and 4,Cgr(\}), We conjecture that it the ground state is always spin squeezed. This is a surprising

result since it singularizes the case=0, which, from the
) phase transition viewpoint, belongs to the same universality
class as the caseg+0 [16,17].

We have displayed in Fig. 4 the “critical lineky(vy).

0.1 - \ Apart from the very specific casg=1 for which the ground
b state is never spin squeezed, this line is given, in the thermo-
dynamical limit, byx,=1/\/y. We emphasize that this for-
mula is also valid fory>1 though, in this region, the critical
point is readily obtained by a rescaling of the coupling con-
stant and is given by .= 1/y.

At this stage, we do not completely understand why the
entanglement properties are so strongly affected by the quan-
tum critical point. In particular, the extremization of tfre-

' scaled concurrence does not seem to be a generic character-
100 N 1000 istic since this phenomenon is not observed in the 1D Ising
model in a transverse magnetic fi¢ld 8], at least forC(1)

FIG. 2. Behaviors of +Cg(\y) (upper curvesand \y—1  [22]. Note, however, that in both models the variation of the
(lower curves$ as a function oN for y=0 (O) and y=1/2 (A). concurrence is extremal at.. Although in the present case

0.01 |
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—_
(=3

scaling of the Von Neumann entropy which has been, very
recently, related to the central charge of the conformal theory
associated with 1D quantum spin modgl$,11].

Several important issues remain open. In other systems
displaying a quantum phase transition, the behavior of the
spin squeezing has never been investigated so far. It would
2=1 be worth determining whether it is always minimum at the
critical point or not. Indeed, if the concurrence is not always
maximum at the transition, nothing prevents the spin squeez-
ing from being minimum as is the case in the present study.
, Another challenging question concerns the quantum dynam-
&= 1-Cy ics. For nonstationary states, one may wonder how the prox-

: ' imity of a quantum critical point influences the time evolu-
tion of the entanglement. For a simple initial state fully

i polarized along the field direction, we have already some

FIG. 4. Phase diagram for the ground-state spin squeezing in th dications that in the fully Cor_meCtEd SyStem_analyzed here,
plane (y,\o). Note that for the isotropic case=1, the ground the rescaled concurrence Van'she_s’ at 'afge,t'm?i*_’fc- o
state which is a Dicke state is never spin squeezde- for any ~ 1hough we cannot assert that it is a generic situation, it is
A). likely that the entanglement of all eigenstates is modified at
the critical point and, consequently, the one of any quantum

) states built from them. Such a study would be of primary
we have not exactly related the scaling exponent of the enpierest in exactly solvable models.

tanglement to the critical exponents, there may certainly ex-
ist some deep relations between them which deserve further We are very grateful to C. Aslangul, C. Caroli, and B.
investigations. It would also be interesting to analyze theDougot for fruitful and stimulating discussions.
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