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Entanglement in a second-order quantum phase transition
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We consider a system of mutually interacting spins 1/2 embedded in a transverse magnetic field which
undergoes a second-order quantum phase transition. We analyze the entanglement properties and the spin
squeezing of the ground state and show that, contrarily to the one-dimensional case, a cusplike singularity
appears at the critical pointlc in the thermodynamical limit. We also show that there exists a valuel0>lc

above which the ground state is not spin squeezed despite a nonvanishing concurrence.
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Entanglement is a truly specific property of the quant
world and one of its deepest signatures, as it was alre
recognized in the early days of quantum mechanics. It i
the heart of the celebrated Einstein-Podolsky-Rosen~EPR!
paradox@1,2# and plays a key role in the measurement pro
lem as well as in the quantum to classical transition@3#.
Entanglement is also central in quantum computation@4,5#
where the most interesting operations cannot be comple
fulfilled through the manipulation of separable states.

Recently, entanglement properties of systems underg
quantum phase transitions@6# have attracted much attentio
@7–11#. Interestingly, the concurrence of the ground sta
which is related to the entanglement of formation@12#, has
been shown to be strongly affected at the critical point@7,8#.
More precisely, in the one-dimensional~1D! Ising model in a
transverse field, Osterlohet al. have shown that the deriva
tive of the concurrence with respect to the coupling cons
diverges at the transition point@8# although the concurrenc
itself is not maximum. These pioneering results raise
question of the universality of these behaviors. Apart fro
1D quantum spin models, there has been, up to now, no o
analysis of the ground-state entanglement in systems disp
ing quantum phase transitions except in the Kagome´ lattice
@9#. Actually, the lack of exact solutions especially in high
dimensions implies a numerical treatment which often
stricts the study to a small number of degrees of freed
Such approaches do not allow, in general, an accurate
scription of the thermodynamical properties.

In this paper, we study the entanglement properties o
quantum system made up ofN spins 1/2 on a simplex~each
spin interacts with all others! embedded in a magnetic field
The permutation symmetry of this system allows us to
strict the ground-state determination to anN-dimensional
subspace and, consequently, to deal with a large numbe
spins~about 1000!. We analyze the concurrence and the s
squeezing of the ground state which are, in this case, clo
related @13#. Contrarily to what happens in the 1D Isin
model, the concurrence of the ground state is maximum
displays a cusplike singularity at the critical point. Moreov
at the transition point, the ground state is maximally s
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squeezed and its squeezing parameter@14# vanishes in the
thermodynamical limit. Finally, we show that there exists
special line in the parameter space where the concurre
vanishes and above which the ground state is not s
squeezed although the concurrence is nonzero.

Let us consider the following Hamiltonian first introduce
by Lipkin et al. @15#:

H52
l

N (
i , j

~sx
i sx

j 1gsy
i sy

j !2(
i

sz
i ~1!

52
2l

N
~Sx

21gSy
2!22Sz1

l

2
~11g!, ~2!

where thesa’s are the Pauli matrices andSa5( isa
i /2. We

focus here on the ferromagnetic case (l.0) and we mainly
consider the case 0<g<1. The prefactor 1/N is necessary to
get a finite free energy per spin in the thermodynamical lim

The HamiltonianH preserves the total spin and does n
couple states having a different parity of the number of s
pointing in the magnetic field direction, namely:

@H,S2#50, ~3!

FH,)
i

sz
i G50, ~4!

for all g. In the isotropic caseg51, one further has
@H,Sz#50 so thatH is diagonal in the standard eigenbas
$uS,M &% of S2 andSz .

For anyg, this system displays a second-order quant
phase transition atlc51 which is characterized by th
mean-field exponents@16,17#. Nevertheless, a mean-field ap
proach cannot provide nontrivial entanglement proper
since it essentially turns the Hamiltonian into a sum
single-body Hamiltonians. It is thus necessary to use num
cal diagonalizations ofH for finite N. The dimension of the
Hilbert space is 2N but the study of the ground state reduc
to a problem linear withN since it lies in the fully symmetric
representation corresponding to the maximum total spinS
5N/2. In this subspace spanned by the Dicke states@18#
uM &5uN/2,M & with M52N/2, . . . ,1N/2, one has
©2004 The American Physical Society07-1
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HuM &5F2
l

N
~11g!~N2/42M2!22M G uM &

2~aM21
2 aM

2 uM22&1aM11
1 aM

1 uM12&)

3
l~12g!

2N
, ~5!

whereaM
65A(N/2)(N/211)2M (M61). In the following,

we will denote byE6 the orthogonal subspaces spanned
the Dicke statesuM &, such that) isz

i uM &56uM & which cor-
responds to even or odd values of (N/22M ).

Whenl,lc and for anyg, the ground state is nondege
erate. By contrast, forl.lc , the ground state is doubl
degenerate in the thermodynamical limit for anygÞ1 but
remains unique in the isotropic case (g51). In this limit, the
magnetization~per spin! in thez direction of the ground state
is simply given by@16,17#

1

N
^Sz&5

1

2
for l<lc , ~6!

1

N
^Sz&5

1

2l
for l.lc , ~7!

for all g.
To analyze the entanglement properties of the gro

state uc&, we have computed for several values ofg the
concurrence introduced by Wootters@12#, which is defined as
follows. Let us denote byr the reduced density matrix ob
tained fromuc& by tracing out over (N22) spins. Of course
in our system, the choice of the two spins kept is irrelev
contrarily to the 1D Ising model@7,8#. Next, we introduce
the spin-flipped matrixr̃5sy^ syr* sy^ sy wherer* is the
complex conjugate ofr. The concurrenceC is then defined
by

C5max$0,m12m22m32m4%, ~8!

where them j are the square roots of the four real eigenv
ues, classified in decreasing order, of the non-Hermi
product matrixrr̃. This concurrence vanishes for an une
tangled two-body state whereasC51 for a maximally en-
tangled one. Finally, sinceH couples every spin with eac
other, the two-body entanglement is somewhat ‘‘diluted’’ b
tween all spins and eventually goes to zero in the thermo
namical limit. To get nontrivial information about the en
tanglement, it is thus crucial to consider the resca
concurrenceCR5(N21)C where the prefactor is simply th
coordination number of each spin. In symmetric multiqu
systems, this rescaled concurrence has recently been re
to the spin squeezing parameter@13#

j25
4~DSnW'

!2

N
, ~9!

which measures the spin fluctuations in a correlated quan
state@14#. The subscriptnW' refers to an axis perpendicular t
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the mean spin̂SW & where the minimal value of the variance
obtained. More precisely, for any state belonging toE1 or
E2 , one has

j2512CR ~10!

if the matrix elements of the reduced density matrixr writ-
ten in the standard basis$u↑↑&,u↑↓&,u↓↑&,u↓↓&% satisfy
ur14u>r22 @13,19#. In the opposite case, the states are
spin squeezed (j251).

Let us first recall the results in the isotropic caseg51
which is exactly solvable. As it can be straightforwardly o
tained from Eq.~5!, the ~nondegenerate! ground state is the
Dicke stateuN/2& for l,lc and switches from one stateuM &
to a stateuM 8,M & asl increases@17#. The concurrence of
a Dicke stateuM & can be determined analytically@20,21#:

CR5
1

2N
$N224M22A~N224M2!@~N22!224M2#%.

~11!

In the thermodynamical limit, this rescaled concurrence v
ishes forl,lc , jumps to 2 at the critical pointlc , and
decreases, by discrete steps, to 1 at largel. This singular
behavior at the transition point is similar to the one obtain
in the 1D Ising model@7,8,10,11#, except that in this latter
case, the nearest-neighbor concurrenceC(1) is not maxi-
mum at the critical point. Concerning the spin squeezing,
behavior is trivial since all Dicke states are not spin squee
@20#, and no singularity can thus be observed on this quan
at the transition.

For gÞ1, the situation is more complex. Indeed, as me
tioned above, the ground state is doubly degenerate fol
.lc in the thermodynamical limit so that, in this region, w
should, in principle, study the entanglement obtained fr
the thermal density matrix~at zero temperature!

r th5
1

2
~ u1&^1u1u2&^2u!, ~12!

whereu1& andu2& areany two orthogonal ground states. O
course, for finiteN, the ground state is nondegenerate a
lies, depending onl, either inE1 or in E2 . In the thermo-
dynamical limit, the reduced density matricesr6 built from
the corresponding ground stateuc6& by tracing out over
(N22) spins become identical. Therefore, we have analy
the entanglement of the true finiteN ground state (uc1& or
uc2&).

We have displayed in Fig. 1 the rescaled concurrence
the ground state as a function ofl for various anisotropy
parameters 0<g<1. For allg, the rescaled concurrenceCR
develops a singularity at the critical pointlc as already
pointed out forg51. However, as can be seen in Fig. 2, t
rescaled concurrence goes to 1 in the thermodynamical l
contrarily to the isotropic case where it jumps to 2. Mo
precisely, for allgÞ1, one has

12CR~lM !;N20.3360.01, ~13!

lM2lc;N20.6660.01, ~14!
7-2
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wherelM is the value ofl for which CR is maximum. In the
thermodynamical limit,CR(lM) goes to 1 whilelM goes to
lc so that the ground state is maximally spin squeezed a
critical point (j250).

To analyze the formation of the singularity atl5lc , we
have focused on the caseg50 and plotted in Fig. 3 the
behavior of]lCR near the critical point for different value
of N.

Denoting by lM8 ~respectively,lm8 ) the value ofl for
which ]lCR is maximum~respectively, minimum!, one has

]lCR~lM8 !;N0.3360.01, ~15!

]lCR~lm8 !;2N0.3360.03, ~16!

lc2lM8 ;N2160.01, ~17!

lm8 2lc;N20.6660.01, ~18!

for all gÞ1 and at largeN. In the thermodynamical limit, a
real cusplike singularity is thus observed at the quant
critical point. We underline that although we are not able
exactly compute the exponent giving the large-N behaviors
of CR , ]lCR(lM8 ), and ]lCR(lm8 ), we conjecture that it

FIG. 1. Rescaled concurrence of the ground state as a func
of l for different values ofg and forN51000.

FIG. 2. Behaviors of 12CR(lM) ~upper curves! and lM21
~lower curves! as a function ofN for g50 (s) andg51/2 (n).
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equals 1/3. Note that it is also the one guessed in R
@16,17# for the scaling of the magnetization at the critic
point.

The behaviors ofCR and]lCR are notably different from
those observed in the 1D case@8#. Indeed, in the fully con-
nected system considered here,CR and]lCR are extrema at
lc whereas in the 1D Ising model,]lC(1) is the only quan-
tity affected by the transition@C(1) is surprisingly maximum
below the critical point#. In addition, the scaling behavior o
the concurrence and of its derivative are different in bo
models. This simply reflects the fact that they do not belo
to the same universality class as was already known from
calculations of critical exponents.

In the zero-coupling limit (l50), the rescaled concur
rence obviously vanishes since the ground state is in
case the fully polarized Dicke stateuN/2& and, accordingly,
j251. More interestingly, forgÞ0, there exists anothe
special valuel0(g) for which CR vanishes. Forl>l0(g),
the rescaled concurrence is nonzero but the ground sta
not spin squeezed (j251), whereas forl,l0(g), the spin
squeezing is given by Eq.~10!. This behavior ofj2 is due to
a change in the sign ofur14u2r22 which is always negative
abovel0(g). For g50, such a situation never occurs an
the ground state is always spin squeezed. This is a surpri
result since it singularizes the caseg50, which, from the
phase transition viewpoint, belongs to the same universa
class as the casegÞ0 @16,17#.

We have displayed in Fig. 4 the ‘‘critical line’’l0(g).
Apart from the very specific caseg51 for which the ground
state is never spin squeezed, this line is given, in the ther
dynamical limit, byl051/Ag. We emphasize that this for
mula is also valid forg.1 though, in this region, the critica
point is readily obtained by a rescaling of the coupling co
stant and is given bylc51/g.

At this stage, we do not completely understand why
entanglement properties are so strongly affected by the q
tum critical point. In particular, the extremization of the~re-
scaled! concurrence does not seem to be a generic chara
istic since this phenomenon is not observed in the 1D Is
model in a transverse magnetic field@7,8#, at least forC(1)
@22#. Note, however, that in both models the variation of t
concurrence is extremal atlc . Although in the present cas

FIG. 3. Finite-N behavior of]lCR for g50 near the critical
point lc51.on
7-3
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we have not exactly related the scaling exponent of the
tanglement to the critical exponents, there may certainly
ist some deep relations between them which deserve fur
investigations. It would also be interesting to analyze

FIG. 4. Phase diagram for the ground-state spin squeezing in
plane (g,l0). Note that for the isotropic caseg51, the ground
state which is a Dicke state is never spin squeezed (j251 for any
l).
-

tt.
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scaling of the Von Neumann entropy which has been, v
recently, related to the central charge of the conformal the
associated with 1D quantum spin models@10,11#.

Several important issues remain open. In other syste
displaying a quantum phase transition, the behavior of
spin squeezing has never been investigated so far. It wo
be worth determining whether it is always minimum at t
critical point or not. Indeed, if the concurrence is not alwa
maximum at the transition, nothing prevents the spin sque
ing from being minimum as is the case in the present stu
Another challenging question concerns the quantum dyn
ics. For nonstationary states, one may wonder how the p
imity of a quantum critical point influences the time evol
tion of the entanglement. For a simple initial state fu
polarized along the field direction, we have already so
indications that in the fully connected system analyzed he
the rescaled concurrence vanishes, at large times, forl>lc.
Though we cannot assert that it is a generic situation, i
likely that the entanglement of all eigenstates is modified
the critical point and, consequently, the one of any quant
states built from them. Such a study would be of prima
interest in exactly solvable models.

We are very grateful to C. Aslangul, C. Caroli, and
Douçot for fruitful and stimulating discussions.
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