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We consider the class of the one-mode Gaussian states of the quantum radiation field. The relative entropy
of such a state with respect to a similar one is derived. We analyze the entropic amount of nonclassicality of
a Gaussian state defined as the minimal relative entropy of any classical Gaussian state with respect to it. A
similar quantity built with the Hilbert-Schmidt distance is also calculated. Both nonclassicality measures are
then compared with the Bures-metric degree of nonclassicality evaluated previously. The properties of the
closest classical Gaussian state, as well as the decrease of the nonclassicality under thermal noise mappings are
carefully examined in each case. For mixed states we find that only the Bures-distance amount of nonclassi-
cality is equivalent to the nonclassical depth.
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I. INTRODUCTION tance. Meanwhile, the Hilbert-Schmidt metric was quite ex-
tensively used in building a nonclassical distari€el0].

Quantifying the amount of nonclassicality contained in aMore recently, the present authdrkl] gave a measure of
guantum state of light is still an important problem in both nonclassicality for an arbitrary one-mode Gaussian state in
guantum optics and quantum information theory. Interest irterms of its Bures distancgl2] to the set of all classical
the nonclassical properties of Gaussian states was recentyie-mode Gaussian states. Note finally that an analysis of
renewed by the experimental realization of the teleportationhe sensitivity of the two measures of nonclassicality,
of a one-mode coherent stdtt]. For a potential experiment namely, the nonclassical depth and a specially defined non-
using a nonclassical state it has become important to evaluaggassical distance applied to superpositions of two states, can
the extent to which the nonclaSSicality can survive impel’fecbe found in Ref[13] Some recent papers on nonc'assica”ty
teleportation2]. - ~ criteria for quantum states are listed in Rgf4].
_ Adirect approach for describing how much the distribu- gy analyzing this recent progress in quantifying nonclas-
tions of observable quantities in a given quantum state diffejcajity we consider that two main problems regarding the
from cIasgcaI distriputions is .due to L¢8]. Lee_defmed & definition of the nonclassical distance still need to be dis-
nonclassical depthr,, of an arbitrary one-mode field state as cussed.

follows: it is the minimum average number of thermal pho- 1. Identifying the reference set of classical statt
tons added to destroy all the nonclassical properties of thf‘h ' . i ST . s
. S . ough the Hillery-type definition is a theoretically appealing
state. By this thermallzatm_n proceis, a state possessing a measure of nonclassicality, one is unable to use it in practice
well-behavedP representation of the density operafbt is ’ o
due to the lack of a parametrization for the whole set of

obtained. We recall that a well-behav@drepresentation is . . .

either a non-negative regular function or a distribution not'@ssical one-modeGaussian and non-Gaussiastates. A

more singular than Dirac's. As examples, Lee found the rgference set of classical statesf as Iarge and relev_ant as pos-

nonclassical depth of Gaussian states to depend on trdole should therefore be used in practical calculations.

squeezing and that of Fock states to have the maximal value 2- Choosing a convenient metrit.is desirable to build a

1. An analysis of nonclassicality using the Wigner functionmeasure of nonclassicality making use of a “distance” which

of the state was carried out by tkenhaus and Barnef6]. has the ability to distinguish between quantum states, by ana-

Nonclassical depth of a phase state was recently studied i4zing the results of any quantum measurement in those

Ref. [7]. states. Opting for one or another of the known “distances”
It was first pointed out by Hillery8] that a measure of the should thus be connected with the description of a general

nonclassicality of a state could be a suitable distance beneasurement in quantum mechanics. Strong candidates for

tween the state and the set of all classical ones. Hillersuch an approach are the relative entr¢p$,16 and the

termed this measure of nonclassicalitynanclassical dis- Bures distance.

tance His choice to employ the trace metric in defining the In the papef11], we formulated three requirements that

nonclassical distance was motivated by the fact that the exany measure of nonclassicality has to satisfy.

pectation value of an observable is evaluated as the trace of (Q1) The amount of nonclassicality vanishes if and only if

its product with the density operator. However, the trace metthe state is classical.

ric is difficult to deal with analytically. Therefore, Hillery (Q2) Classical transformations preserve the amount of

gave upper and lower bounds of the nonclassical trace disionclassicality. We have termethssicalthose unitary trans-
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formations in Hilbert space which map the classical statess a Weyl displacement operator with the coherent-state am-
into classical stategl7]. plitude a € C. The CF is the weight function in the Weyl
(Q3) Nonclassicality does not increase under a positiveexpansion of the density operator,
operator-valued measufBOVM) mapping[18]. .
In this paper we present and compare explicit calculations _ 2
of the distance-type amount of nonclassicality for single- p—;f EXXMID(=M). 23
mode Gaussian states of the radiation field. As a matter of
fact, it is convenient to describe these states as displacedl meaningful expression of the CF E@.1) is obtained by
squeezed thermal staté@STS'S. In all our calculations we Using the real variablesc;,x, defined by A=1/\2(x,

take as reference set the whole clagsof the one-mode —ix;). We readily get the alternative formula
Gaussian states which have a regiaepresentation. These _ 1T . .
states can readily be recognized within the framework of the X(Xy, %) =€xXp{ = 2X VX —ixy(Q) —ixz(p)}, (2.4

DSTS parametrization. We define several amouniGaniss-
ian nonclassicalityof a Gaussian statp as the minimum
over the set; either of the relative entrop$(p'/p) [19] or
of a squared distancé?(p,p’), wherep’ €Cy. We find it 1 1
important to stress that our limitation to studying the non- q=-—=(a+a’), p=-—=(a—ah). (2.5
classicality of solely the Gaussian states has, besides their V2 V2i

experimental significance, also pragmatic reasons. What is . . . .
possible to do in the Gaussian case, for which all the purén Eq.(2.4), Vis the 2<2 real symmetricovariance matrix

wherex' is the row vector X; X,). q andp are the coordi-
nate and momentum operators, respectively,

and mixed states are described by a simple parametrization, o .
seems to be impossible for other states. In principle, there is ) :( a9 qp)_ 2.6
no parametrization for the whole set of classical states. In Opq Opp

ition, analytic expressions for distan n non-

?Siiggie;n?n&gzjcst(:ltgsejfeon(?t y%t gvs;ﬁlags between no The elements of the matri@2.6) are determined by the pa-
The paper is organized as follows. Some properties of thE?MetersA andB of the CF Eq.(2.1) as

one-mode Gaussian states are shortly reviewed in Sec. II. We 1
build then two measures of nonclassicality employing the gqq::((Aq)2>=A+——Re(B), (2.79
relative entropy in Sec. Il and the Hilbert-Schmidt metric in 2
Sec. IV. Section V is devoted to a comparison of the results
with our previous ones based on the Bures mé¢frid. Here Top=((Ap)2)=A+ EJFRG( B) 2.7b
we also analyze the behavior of the nonclassicality under a PP 2 ’ '
thermal noise mappin§20,21]. For this important nonor-
thogonal POVM mapping, we check the requiremé&ps).
Our conclusions are drawn in Sec. VI. The Appendix pre-
sents a derivation of the relative entropy of a one-mode
Gaussian state with respect to a similar state, which is reNote also the mean photon number in a Gaussian state,
quired in Sec. lll.

1
Tgp= qu==§<Aqu+ ApAg)=—-Im(B). (2.7¢9

Tr(pa'a)=A+|C|% (2.9
Il. ONE-MODE GAUSSIAN STATES As a consequence of the fundamental commutation rela-
The one-mode Gaussian states of the radiation field are cﬁ‘gz [h%lgqs_ Il the generalized Heisenberg uncertainty rela-
the greatest importance both theoretically and experimen- ’
tally. This broad class includes pure states such as coherent 1
and squeezed coherent ones and mixed states such as dis- 0qq0pp— (Tpg)*= 7 (2.9
placed thermal and squeezed thermal ones. Moreover, super-
position of a thermal field on a Gaussian one yields a Gausg;, equivalently
ian mixed state of the field. The characteristic functiGir)
of a Gaussian state has the forn{22] 1
dety= R (2.10

X(N\):=Tr(pD(\))
At the same time, déf determines the purity of the state.

=ex —(A+3)[A[*=2B*A*=3B(\*)*+C*\ Indeed, from Eq(2.3) it follows that the degree of purity of
—C\*]  (A=0), (2.2 the statep is the integral
2 1 2 2
where Tr(p )=; d“ N x(N) ]2, (2.11)
D(a):=explaa’—a*a) (2.2 By inserting the CF Eq(2.4) we find
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1 =(n+%)[cosh2r)+cog ¢)sinh(2r)], (2.19
Tr(p?) = -1 (2.12 0qq= (n+3)[cosh2r) +cog ¢)sinh(2r)], (2.193
2\/detV _
opp=(N+73)[cost2r)—cog ¢)sinh(2r)], (2.19b
For a pure Gaussian state pfj=1, so that the uncertainty
relation (2.9 is an equality. The pure Gaussian states are aqu(WJr%)sin(cp)sinr‘(Zr). (2.199

therefore minimum uncertainty states for the generalized un-

certainty relation2.9). Employing Egs.(2.19 we find that the purity(2.12 of a

Itis useful to rec‘?‘” that any Ga}ussmn state can b.e WHtteRs qussian state is determined by its thermal mean occupancy
as a DSTS, so that it has a very simple parametrization of the-

coefficientsA,B,C [22]. Indeed, a DSTS is defined as the
unitary transform of a thermal stat&8S) pt by an ordered

pair of one-mode squeeze and displacement operators, Tr(p?)= 1 (2.20
S(r,¢) andD(«), respectively, P et '
_ t t
p=D(a)S(r,¢)prS (r,¢)D (a). (213 Besides, the squeeze factor can be obtained from the covari-
In Eq. (2.13, the TS ance matrix(2.6) via the identity
L T r2r) = — (2.2
— — 2.1 cosh2r)= . .
pT n+1eXF( na'a) (2.14 2 Jdety

is determined by the dimensionless positive parameter Recall also that the condition for squeezing in coordinate is
the reduction of the varianag,, under its value for a coher-

::h_“’ ent stateg,q<1/2. ADSTS iseffectivelysqueezed provided
7 kgT" the squeeze factor exceeds the threshold vidag
Indeed, according to the Planck law, the thermal average 1 _
photon number is rc::iln(2n+1). (2.22

n=(e”—1)"1 . _ ,
We stress that higher-order squeezing takes place equally if

and only if the conditiorr >r is fulfilled. The value(2.22

The density operatgst, Eq.(2.14), has the spectral decom- . L
'ty operatgsr, Eq.(2.19 P of the squeeze factor is @onclassicality thresholés well.

osition
P Indeed, forr=r., the P representation of a DSTS ceases to
* exist as a well-behaved Gaussian probability distribution. In
pT= 2 Nnln){n|, (2.15 other words, a single-mode Gaussian state is classical if
n=0 r<r. and nonclassical if>r.. Moreover, Lee’s nonclassi-
with the positive nondegenerate eigenvalues cal depthr,e[0,3) of a Gaussian state is simplg]
N n =012, ) 216 Tm=|B[-A (A<]B]), (2.23
n n+1 e
(n+1) or
Further,
mTm=3{l—exgd —2(r—ro)]} (r=ry). (2.29
S(r,p):=exp3r[e'¢(a")?—e “a?]} (2.17
I1l. NONCLASSICALITY MEASURED BY RELATIVE
is a Stoler operator with the squeeze faactand the squeeze ENTROPY
anglep e (— m,]. ] .
The CF of the DSTS2.13 has the form(2.1) with the The relative entropy of a state’ with respect to the state
coefficients o" of a quantum system is defined as
A=(n+%)cosh2r)— %, (2.183 S(o'lo")=Tr{a"[In(c")—In(o")]}. (3.9
B= —(F+ Lydesinh(2r) (2.189 Although the relative entropy is not a metric, it is acceptable
’ as a measure of distinguishability due to the quantum Sanov
C=a. (2.189  theorem[16]: the probability of confusing the states’ and

o' after performingN measurements oa’ is for N>1
Note that, in the DSTS parametrization, the varian@3)
of the canonical variables are phase dependent, Pn(o'—a")=exd —NS(o'/d")].

022104-3



MARIAN, MARIAN, AND SCUTARU PHYSICAL REVIEW A 69, 022104 (2004

For a review of the properties of the relative entropy the SO =T —r -+ exor. ) sinhr ) Infsinh(r
reader is referred to the classic paper of W¢hH] and the Ste'lp) ot eXpro){sinh(r)Insinfre)]

recent ones of Vedradt al. [16]. —coshr)In[coshr )1} + 3In[ 3sinh(2r ") ]
We define the entropic amount of Gaussian nonclassical-
ity of a Gaussian statg as —exp(2r)cosi2(r’ —r)]In[tank(r")].
Qs(p)+= min S(p'/p), 3.2 39
p'eCo Its first- and second-order derivatives with respec?t’taare,
respectively,

where(, is the set of all classical one-mode Gaussian states.

If the statep is classical (<r), then the minimal value 4J _ -,

(3.2 is reached fop’ =p, because this is the unique state ?S(P Ip)=exp(2rc)
for which the relative entropy vanishes. Hence

exg2(r'—r.)] - coshi2(r’—r)]
sinh(2r") sinh(2r")

Qs(p)=0 (r=r), (3.3 —Sinf[2(7’—r)]ln[tanfﬁ’)]}, (3.10

as required by conditiofQ1).

2
To start on the program of EB.2), we need to(i) evalu- ﬁ_s(;,/p) _2exp2re)

{—exp(—2r.)+cosh2r)

ate the relative entropy of a one-mode DSTS with respect toj; 2 [sinh(2r')]?
a similar state(ii) minimize it over the sef, of all classical
one-mode DSTS's. —sinh(2r")sinf 2(r’ —r)]

The Appendix is devoted to stef). Thus, the relative 5 ~ 5
entropy S(p'/p) of the Gaussian state’, with the param- —cosh2(r’—r)][sinh(2r")]?In[tank(r")]}.
etersn’,r’,¢’,a’, with respect to the Gaussian statehav- (3.12)

ing the parameters,r,¢,a, is given by Eq.(A14). We dis- ) ] o
cuss here stefii). If p is a nonclassical state tr.), then  Therefore, in order to find the absolute minimum of the rela-

minimization of the relative entrop$(p’/p) under the con- tive entropy(3.9), one has to solve a transcendental equation,
dition r'<r/ is achieved for a DSTS having the displace- which does not have an exact analytic solution. However, the
c

ment parameter opposite signs of the limits of the first-order derivat{@10
for the extreme values of the squeeze factor

a=a«a (3.9 9 P
lim T’S(p//p)=—0°, lim T’S(p’/p)=2,
and the squeeze angle Tl Tl
(3.12
o= 0. (3.5 prove the existence of at least one minimum of the relative

entropy(3.9). Such a minimum could be found graphically,
We are left to analyze the minimum of the relative entropyas in Fig. 1, where we plot the functid(p'/p) versus the
S(p'/p) over the class of the DSTS’s’ with two fixed variabler’ for several DSTS'’s having the same nonclassical-

parameters, ity thresholdr ;=1 and different squeeze factors. The graphs
in Fig. 1 suggest that the value
a'=a, ¢'=¢, (3.6 Yo=3(r+ry) (3.13
_and, in addition, with the squeeze factor at the nonclassicabf the Variab|e?’ may be an approximate ana|ytic solution
ity threshold(2.22), for the minimum conditions
T=TL. (3.7 I o P o
c —S(p'lp)=0, —=S(p'/p)>0. (3.19
ar or
Accordingly,

We proved that this really happens by writing the simplest
- _ lower and upper bounds for the logarithm occurring in the
2n'+1=exp2r’), (38 first-order derivative3.10 taken at the point’ =T, as well
as an adequate lower bound for the logarithm term in the
so that we may choos€ as the only independent variable. second-order derivative.11). The approximation consisting
By insertion of Egs.(3.4), (3.5), and (3.8) into Eq. (A14) in the use of the valu€3.13 as the absolute minimum point
written for S(p’/p), we find the following function: ?nﬁ of the relative entropy(3.9 becomes more and more
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30 T T T T

The Hilbert-Schmidt distance between two quantum states,
o' andg”, is introduced as the usual norm metric,

I dus(o’ 0" =[|o" ="l ,=\T (0" —0")?]. (4.2

In the case of the single-mode field states, making use of the
Weyl expansion2.3), one can express the Hilbert-Schmidt
inner product Trg' o) in terms of their CF’s as

ﬁ
~ || ~
0ol
LoD

25
20

S(#/p) 15 1
Tr(o-’o-”)=;f PN x* (M) x"(N). 4.3
10

: Specifically, for a pair of one-mode Gaussian stapgésand
p", we employ the Gaussian integral recollected in Appendix
A of the first paper of Ref[22] to get from Eq.(4.3) the
explicit formula

1 1
Tr(p'p")=—=exp — K{(A’ +A"+1)|C'—C"|?

A
FIG. 1. Displaying the minimum of the relative entropy. The \/—
function S(p'/p), Eq. (3.9, is plotted vs the squeeze factor for o +Re (B’ +B")*(C' — C”)Z]}>. (4.4)
several nonclassical Gaussian states having the nonclassicality
thresholdr,=1. The approximatior,~Tg:=3(r+r.) is seen to

be reasonably good in all the shown cases. In Eq. (4.4), we have used the coefficient®.18 for both

states and introduced the determinant of the sum of the cor-
accurate in so far as the squeezing of the given nonclassic#SPonding covariance matricas; andV":

statep is stronger, i.e., the inequality,—r.>1 is better and A:=de(V'+V")=(A"+A"+1)>—|B'+B"|?

better fulfilled. In this case of strong nonclassicality, the

2 2

- . — 1 — — 1\/— 1 .
DSTSps with the parameters = ( N'+3| {0+ F2(n+ 5 7 E) cosh2r),
ns=3lexp2rg—1], Ts.¢.a (3.19 (4.5)

can be considered the closest classical Gaussian state. Thygere cosh(® is given by Eq(A11). In particular, Eq(4.4)
the entropic amount of nonclassicality, which forr; is  yields the degree of purit{2.20. Consequently, the squared

only approximatedas Hilbert-Schmidt distance between two one-mode Gaussian
- states is
Qs(p)=S(pslp) (r>r), (3.16
1
has the explicit expression d’a(p,p’ )= — —
HelPp )= e ot

Qs(p)=0 (r=ry)

2 1
. . ——exp — {(A’+A"+1)|C'—C"|?
Qs(p)= & (F—re)+expir ){sinh(r ) In[sinh(r) ] Ao sl ier=cl
—cosHhr¢)In[coskr,) ]}
+Rg(B'+B")*(C'—=C")?]}|. (4.6
.
+ 1[exp(2r )coshr—r)+1]In cosl’( C”
Zlexp(are)cosh o)+ 1] 2 We define the Hilbert-Schmidt-metric amount of Gaussian
n nonclassicality of a one-mode DSTSas
—1[exp2r )coshr—r,)—1]In sint‘(r FCH .
: ¢ ¢ 2 Qus(p)= mindig(p.p’). 4.7
"eC
(r>ro). (3.17 pee
In the same way as in Sec. Ill, we denote by ,¢,a the
IV. HILBERT-SCHMIDT DISTANCE AS A MEASURE parameters of the staye and byn’ 10", a’, those of the
OF NONCLASSICALITY classical statg’. The minimum of the quantity4.6) under
Any density operatou is of trace class and fortiori has the as§umpt|ons>rc ahdr’<rc is achieved tf}’ a ?Iassmal
a finite Hilbert-Schmidt norm, Gaussian state belonging to the class of DSTS svith the
parameters given by Eg&.6) and(3.7), as in the case of the
[|a]|,=VTr(a?). (4.1)  relative entropy. We insert therefore the valu@s6) and
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the threshold relatiof3.8) into Eq.(4.6) to find the function come a metric space. Note that the “transition probability”
d2<(p,p') of a single variable ', between the mixed states' and ¢”, defined later by Uhl-
mann[23],

dis(p.p')=exp(—2r)| 1—exd —(r—r¢)] Flo',a")=ma{(¥'|¥")|?, (5.2

is closely related to the Bures metric:

X| —x+4{1—exg —2(r—r)]} 12
e dg(o',0")y=VN2-2\F(o',a"). (5.3
1
X ( 1+ 2 ) (48 yhimann[23] succeeded in deriving an explicit expression
of the quantity(5.2), now calledfidelity [24]:
with
. Flo' o) ={Trl(Vo o" Vo ) P12 (5.4
x:=exp(r+r,—2r"). (4.9

The function(4.8) has a unique minimum at the exact value 't Was proved25] that J7(o”,0") equals the minimal over-
lap of the probability distributions for the outcomes of any

}’HS::%(rﬂc)_ %In(24’3{1+exq—2(r _rc)]}—1/3_ 1) P.QV.M. Th_e Bgres r_n_etric exhibits therefore the best proba-
(4.10 bilistic distinguishability between quantum states. As a con-

_ _ sequence, it cannot increase undey POVM. We also men-
of the squeeze factar'. The closest classical stapgs has  tion that a metric on the set of density operators revealing

thus the parameters quantum distinguishability has been defined by Braunstein
- - - and Caveg$26]. For neighboring quantum states, tiistis-
Nps=3z[eXp(2rys) —1], rps, ¢, @. (4.1)  tical distancecoincides up to a factor of 2 with the Bures

distance. There is therefore a strong distinguishability reason
to use the Bures distance as a measure of nonclassicality. In
Ref. [11] we defined an amount of nonclassicality of any
(r>r.), (412  one-mode Gaussian statein terms of its Bures distance to
the setC, of all classical one-mode Gaussian states:

Accordingly, the Hilbert-Schmidt-metric amount of nonclas-
sicality,

QHS(P)zdaS(pv;HS)

reads explicitly

1
Qus(p)=0 (r=ry), Qa(p):=3 min d3(p,p"). (5.5
Qus(p)=exp(—2rJ{L—exd —(r—ro)] peco
X (231 +exd —2(r—ro) ]} ¥3-1)%3 By employing in Ref[11], for the Bures metric, the method

applied here as well, in Secs. Ill and 1V, but making use of
(r>rg). (413  the relative entropy and the Hilbert-Schmidt distance, re-

spectively, we found the closest classical Gaussian ptate

V. DISCUSSION OF THE RESULTS to a nonclassical DST$ whose parameters are denoted
A. Nonclassicality measured by the Bures distance again byn,r,¢,a. The DSTSpg is specified by its param-
eters,

We are now in a position to compare the distance-type
measures of nonclassicality evaluated above to our previous

result concerning the Bures-distance amount of nonclassical- AﬁB: i[exp(2rg)—1],
ity [11]. Recall that the Bures distance between two mixed
states described by the density operatefsand ¢” on a ?B=%In[1+23inr(2rc)exp(2r)], 0, a. (5.6)

Hilbert spaceH ,, was originally introduced on mathematical

grounds{12]. Its square is The Bures-metric degree of nonclassicality,

d3(a’ o) =min||[¥") = [W")||>=2(1—max(¥'|¥")]),
(5.1) 1, -
QB(P)_EdB(P'PB) (r>re), (5.7

where |¥') and |¥") are vectors in an enlarged Hilbert
space Ho® Hg, describing pure states whose reductions
over the auxiliary Hilbert spaceHg are precisely
the given mixed states: o’ =Trg(|¥'){V¥’|) and

has the simple expression

" =Trg(|¥")(W¥"|). Since this definition can obviously be Qe(p)=0 (r=ry),
extended to pure states, the set of all quantum state®
and mixed may be equipped with the Bures distance to be- Qg(p)=1—[sechir—r.)]¥? (r>r,). (5.8
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TABLE I. Purity Tr(p?) of the closest classical DSTS to a pure Gaussian state having the squeeze

factorr.
Metric Amount of nonclassicalitd(p) Tr(p?)
Bure$ 1—[sech¢)]*? 1

Relative-entrop¥ N
51+

ool
ol

Hilbert-Schmidt 1—e '[23(1+e 2 8- 1787 e 2% (1+e 2y W12

3 quations(5.8) and (5.6).
PEquations(3.17), (3.13, and(3.15), obtained as an approximate solution in the strong-squeezing case.
‘Equations(4.13), (4.10, and(4.11).

B. The closest classical Gaussian state erty of the relative entropy15,16], the entropic amount of

It is instructive to compare the features of the classicafonclassicalityQs(p), Eq. (3.2), does not increase under

Gaussian state closest to a given nonclassical one for tHe®YM mappings preserving the Gaussian form of the states.
three “distances” studied in Ref11] and in the present pa- Both measures of the nonclassicality of a Gaussian state sat-

per. isfy the condition(Q3).

Shared features(a) The closest classical DSTS has the A Significant example of a continuous-variable POVM
same displacement parameter and rotation angle as the giv8}PPing is the thermal noise mapping. For one-mode field
nonclassical one. It is easy to explain this property. Thetates, this is definef®0,21 as follows:

translations and rotations in phase space generate the only 5

classical one-mode unitary transformatioDg«), Eq.(2.2), FH(P):i—f & exp( _@ D(B)pD'(B) (Mm=0),
andR(6), Eq.(A9), respectively. In addition, they leave in- m

variant the class of the Gaussian states. As all three distances (5.10

employed above are invariant under any unitary transforma-
tion, the corresponding measures of nonclassicality are prey
served by translations and rotations. Therefore, they meet tt‘@
demandQ2) of being invariant under all classical one-mode with the only modification of the CF Ed2.1) consisting in
unitary transformations(b) The closest classical Gaussian —

- - the addition ofm to A:A—A’:=A+m. Correspondingly,
state is on the boundary of the referenceGgegiven by the . . o
conditlion(3 7 ! y a Y thermalization raises the nonclassicality threshold B2

of a Gaussian state,

herem is the thermal mean number of added photons. The
aussian mapping5.10 transforms DSTS's into DSTS's

Different features A striking difference is displayed by
the degree of purity2.20 of the closest classical DSTS in
the three cases. According to Eq&.13, (3.19, (4.10, 1

_ 2n+1
(4.11), and(5.6), the following inequalities hold: re(m)= §|n

(H<—). (5.11)

Tr(pd) <Tr(pfie <Tr(p?),  Tr(pd<Tr(p)=Tr(p?).
(5.9 In Ref.[11] we pointed out that the Bures-metric degree of
nonclassicalityQg[I'(p)] of the thermalized stat€5.10
Note that the last inequality in E¢6.9) turns into an equality  gecreasesvith the thermal noisen, as required by the de-
if and only if the given nonclassical state is pure. This casenand (Q3). This statement is equally true for the Hilbert-
(r¢=0) is studied in detail in Table I, where the three puri- schmidt measure of nonclassical®y g I'n(p)], Eq.(4.13.
ties are written down explicitly. We see that the closest classince it does not increase under any thermal noise mapping
sical Gaussian state is a pure one, namely a coherent stafg, 10 the functionQ,s(p), Eq. (4.13, is acceptable as a
when using the Bures distance to quantify nonclassicalitymeasure of nonclassicality, even if there is no evidence for
and a mixed one for the other two measures of nonclassicajne fylfillment of condition(Q3) for all POVM mappings
ity. that leave invariant the class of the Gaussian states. In order
to illustrate this important point, we plot in Fig. 2 the
C. Thermal noise mapping amounts of Gaussian nonclassical@®g[ I',(p)], Eq. (5.8),

The above-mentioned property of the Bures distance on[Fm(p)], Eq.(3._17), andQug I'm(p) ], EQ.(4.13, versus
not increasing under any POVM mapp|i]@8] results in a the thermal noisen, Wherep is a nonclassical DSTS with
not increasing of the Bures-metric degree of nonclassicalitghe parameters=3, r.=1. All three nonclassical distances
Qs(p), Eq.(5.5), under any POVM mapping that transforms decrease with the Gaussian noisg in accordance with the
the DSTS’s into DSTS’s. As a consequence of a similar proprequirementQ3).
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1.6 . T T — B — build a distance-type measure of nonclassicality is suitable
| § - only in the case of the Bures distance.
141 B — Furthermore, the Bures metric could analogously be em-
: ployed to calculate a Gaussian amount of entanglement of
1.2 7 two-mode Gaussian states. Specifically, we recently suc-
. ceeded to carry out an approximate analytic evaluation of the
1 7 Bures-metric degree of entanglement for two-mode squeezed
thermal state$27].
Qw08+ - 7
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o APPENDIX: RELATIVE ENTROPY OF AN ONE-MODE
FIG. 2. Nonclassicality vs thermal noisefor a DSTS with the GAUSSIAN STATE WITH RESPECT
squeeze factor=3 and the nonclassicality threshotd=1. We TO ANOTHER ONE
employ the Bures-metricurve B, Eq. (5.8)], the entropidcurveS
Eq. (3.17)], and the Hilbert-Schmidt-metricurve HS, Eq(4.13)] To evaluate the relative entropy of an one-mode Gaussian
amounts of nonclassicality. field state with respect to a similar state, one could either
take advantage of the exponential form of a Gaussian density
VI. CONCLUSIONS operator or employ the eigenvalue problem for the Gaussian

. ) density operator in the DSTS parametrization.
The discussion of the above-presented results favors the Here we present the second derivation pointing out its

Bures distance in comparison with the relative entropy andimplicity. Consider a pair of one-mode DSTSE, andp”,
the Hilbert-Schmidt distance in finding an adequate measurﬁaving the DSTS-parameters norleal and

of nonclassicality for one-mode Gaussian states. — . )
n”,r",¢",a", respectively. With Eqs(2.13 and (2.15 we

First, the degree of Gaussian nonclassicaliy(p), built . . . )
with the Bures distance, has aractanalytic expression, Eq. get the spectral decompositions of their density operators:

(5.8), which is simple and insightful. This is not the case o
when_ employmg theapproximateentropic amount of non- p'= E ND(a)S(r',¢")|n}n|ST(r",¢")D'(a")
classicalityQg(p), Eg. (3.17. n=0

Second, the distand®g(p) fulfills the demand(Q3) for (Ala)

any POVM preserving the Gaussian character of the state.
The situation is different with the Hilbert-Schmidt measure@"

of nonclassicalityQus(p), Eqg. (4.13, which, however, does o

not increase under any thermal noise mapdgo0. "= N"D(a)S(r". oM nnlSTr” oDt (a).
Third, we stress that, besides satisfying the conditions P nZO nD(@)S(r,¢")m(n|S(r", "D (")

(Q1)—(Q3), the Bures-metric degree of nonclassicaliyd) (Alb)

is a bijective function of the Lee nonclassical depth, Eq.

(2.24: Qg(p) increases from 0 to 1 wher, increases from The corresponding eigenvalues, and\ |, are of the form
0 to 1/2. Explicitly, (2.16. The operators Ip() and Inp") have similar spectral

expansions, with the only difference that the eigenvalyes
211/4 and \, are replaced by their logarithms, ki and In{;)),
) } (r>re). (6.2 respectively. We evaluate the relative entropy of the state
with respect to the statg”:

m

QB(P):l_[l_(l_

m

Equation(6.1) therefore proves that the amount of Gaussian S(p'lp")=Tr{p"[In(p")—In(p")]}. (A2)
nonclassicalityQg(p) and the nonclassical depth,, are ) . . . -
equivalentmeasures of the nonclassicality of a single-modeThe first term in Eq(A2) is the negative of the familiar von
Gaussian state. This happens neither for the relative entrogyfeumann entropy

nor for the Hilbert-Schmidt metric. In the mixed-state case,
the quantitieQg(p) and Qys(p) are not equivalent to the
nonclassical depth, which is a genuine measure of nonclas-
sicality. Hence we draw the conclusion that making use of
the reference sef, of all classical DSTS’s in order to of the DSTSp”",

S(p")==Tilp"In(p")]== 2, \In(\) - (A3)
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S(p")=(n"+1)In(n"+1)—n"In(n"). (A4) cosh 2r)=coshk2r')cosh2r")
We evaluate the second term in H&2) in the eigenvector —sinh(2r’)sinh(2r")cog ¢’ — ¢").
basis{D(a’)S(r’,¢’)|n)} of the density operatas’, (A11)
. , - , - Accordingly, the one-mode Gaussian statedefined by Eq.
—Trlp"In(p")]= _HZO In(xp)(nlp[n). (AS) " (a6), has the explicit DSTS form
. p LN orety Typt
In Eq. (A5), p is the Gaussian state p=D(B)S(r,¢)prST(r.@)DI(A). (A12)
. o L e wetion Owing to the structurg2.16) of the eigenvalues\), the
p:=8(r',¢")D(a"—a")S(r", ") prS'(r", ¢") summation in EQ(A5) is readily performed to obtain
XD(a"—a")S(r',¢"). (A6) ~Trp"In(p’)]=[1+Tr(pata)]in(n’ +1)
Its DSTS parameters are specified by the multiplication rules —Tr(pata)n(n’). (A13)
S'(r',¢")D(a"~a")=D(B)S'(r',¢"), A straightforward calculation based on the expression of the
o mean photon number in a DSTS, EQ.8), gives the final
B:=(a"—a')coshr')—(a"—a’)*e'¢ sinh(r’), expression of the relative entrogg2):

(A7) — — _
S(p'lp”)=—[(n"+1)In(n"+1)—n"In(n")]
and[28]

1 —
ST(r’,(p’)S(I’",(p"):eiib/ZS(F,(})R(b). (A8) +§|n[n (n +1)]

In Eq. (A8), R(#) is a rotation operator with the angé 1 1
q ( ) ( ) p gw + — A,+§ AII+§ _Rq:B/(B!/)*]
R(0):=exp(—ifata) (0e(—m, ). (A9) 2n'+1
.. . 1
The parameters, ¢, and are given by the following equa- +| A"+ > |C'—C"|?
tions:
i Y — ’ ” 2 F, +1
e'“coshir)=coshr’)coskr”) +Rg(B")*(C'—C")?]{In| ——/|. (A14)
n!
—e ¢ = sinn(r")sinh(r"), o
In Eq. (A14), we have employed the coefficient®.18 of
ei(;+b)sinm):ei<p"cosm,)Sinm,,) the corresponding CF'sA’,B’,C’' for the statep’ and
A”,B",C" for the statep”. It appears that the expression
—e''sinh(r")coskr”), (A10)  (Al4)ofthe rele_ltive entropy of a Gaussian state with respect
to another one is a new result in the extensively studied area
which yield the composition formula of single-mode field states.
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