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We consider the class of the one-mode Gaussian states of the quantum radiation field. The relative entropy
of such a state with respect to a similar one is derived. We analyze the entropic amount of nonclassicality of
a Gaussian state defined as the minimal relative entropy of any classical Gaussian state with respect to it. A
similar quantity built with the Hilbert-Schmidt distance is also calculated. Both nonclassicality measures are
then compared with the Bures-metric degree of nonclassicality evaluated previously. The properties of the
closest classical Gaussian state, as well as the decrease of the nonclassicality under thermal noise mappings are
carefully examined in each case. For mixed states we find that only the Bures-distance amount of nonclassi-
cality is equivalent to the nonclassical depth.
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I. INTRODUCTION

Quantifying the amount of nonclassicality contained in
quantum state of light is still an important problem in bo
quantum optics and quantum information theory. Interes
the nonclassical properties of Gaussian states was rec
renewed by the experimental realization of the teleporta
of a one-mode coherent state@1#. For a potential experimen
using a nonclassical state it has become important to eva
the extent to which the nonclassicality can survive imperf
teleportation@2#.

A direct approach for describing how much the distrib
tions of observable quantities in a given quantum state di
from classical distributions is due to Lee@3#. Lee defined a
nonclassical depthtm of an arbitrary one-mode field state a
follows: it is the minimum average number of thermal ph
tons added to destroy all the nonclassical properties of
state. By this thermalization process@4#, a state possessing
well-behavedP representation of the density operator@5# is
obtained. We recall that a well-behavedP representation is
either a non-negative regular function or a distribution
more singular than Dirac’sd. As examples, Lee found th
nonclassical depth of Gaussian states to depend on
squeezing and that of Fock states to have the maximal v
1. An analysis of nonclassicality using the Wigner functi
of the state was carried out by Lu¨tkenhaus and Barnett@6#.
Nonclassical depth of a phase state was recently studie
Ref. @7#.

It was first pointed out by Hillery@8# that a measure of the
nonclassicality of a state could be a suitable distance
tween the state and the set of all classical ones. Hill
termed this measure of nonclassicality anonclassical dis-
tance. His choice to employ the trace metric in defining t
nonclassical distance was motivated by the fact that the
pectation value of an observable is evaluated as the trac
its product with the density operator. However, the trace m
ric is difficult to deal with analytically. Therefore, Hillery
gave upper and lower bounds of the nonclassical trace
1050-2947/2004/69~2!/022104~10!/$22.50 69 0221
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tance. Meanwhile, the Hilbert-Schmidt metric was quite e
tensively used in building a nonclassical distance@9,10#.
More recently, the present authors@11# gave a measure o
nonclassicality for an arbitrary one-mode Gaussian stat
terms of its Bures distance@12# to the set of all classica
one-mode Gaussian states. Note finally that an analysi
the sensitivity of the two measures of nonclassical
namely, the nonclassical depth and a specially defined n
classical distance applied to superpositions of two states,
be found in Ref.@13#. Some recent papers on nonclassical
criteria for quantum states are listed in Ref.@14#.

By analyzing this recent progress in quantifying noncla
sicality, we consider that two main problems regarding
definition of the nonclassical distance still need to be d
cussed.

1. Identifying the reference set of classical states.Al-
though the Hillery-type definition is a theoretically appeali
measure of nonclassicality, one is unable to use it in prac
due to the lack of a parametrization for the whole set
classical one-mode~Gaussian and non-Gaussian! states. A
reference set of classical states as large and relevant as
sible should therefore be used in practical calculations.

2. Choosing a convenient metric.It is desirable to build a
measure of nonclassicality making use of a ‘‘distance’’ whi
has the ability to distinguish between quantum states, by a
lyzing the results of any quantum measurement in th
states. Opting for one or another of the known ‘‘distance
should thus be connected with the description of a gen
measurement in quantum mechanics. Strong candidate
such an approach are the relative entropy@15,16# and the
Bures distance.

In the paper@11#, we formulated three requirements th
any measure of nonclassicality has to satisfy.

~Q1! The amount of nonclassicality vanishes if and only
the state is classical.

~Q2! Classical transformations preserve the amount
nonclassicality. We have termedclassicalthose unitary trans-
©2004 The American Physical Society04-1
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formations in Hilbert space which map the classical sta
into classical states@17#.

~Q3! Nonclassicality does not increase under a posit
operator-valued measure~POVM! mapping@18#.

In this paper we present and compare explicit calculati
of the distance-type amount of nonclassicality for sing
mode Gaussian states of the radiation field. As a matte
fact, it is convenient to describe these states as displa
squeezed thermal states~DSTS’s!. In all our calculations we
take as reference set the whole classC0 of the one-mode
Gaussian states which have a regularP representation. Thes
states can readily be recognized within the framework of
DSTS parametrization. We define several amounts ofGauss-
ian nonclassicalityof a Gaussian stater as the minimum
over the setC0 either of the relative entropyS(r8/r) @19# or
of a squared distanced2(r,r8), wherer8PC0. We find it
important to stress that our limitation to studying the no
classicality of solely the Gaussian states has, besides
experimental significance, also pragmatic reasons. Wha
possible to do in the Gaussian case, for which all the p
and mixed states are described by a simple parametriza
seems to be impossible for other states. In principle, ther
no parametrization for the whole set of classical states
addition, analytic expressions for distances between n
Gaussian mixed states are not yet available.

The paper is organized as follows. Some properties of
one-mode Gaussian states are shortly reviewed in Sec. II
build then two measures of nonclassicality employing
relative entropy in Sec. III and the Hilbert-Schmidt metric
Sec. IV. Section V is devoted to a comparison of the res
with our previous ones based on the Bures metric@11#. Here
we also analyze the behavior of the nonclassicality unde
thermal noise mapping@20,21#. For this important nonor-
thogonal POVM mapping, we check the requirement~Q3!.
Our conclusions are drawn in Sec. VI. The Appendix p
sents a derivation of the relative entropy of a one-mo
Gaussian state with respect to a similar state, which is
quired in Sec. III.

II. ONE-MODE GAUSSIAN STATES

The one-mode Gaussian states of the radiation field ar
the greatest importance both theoretically and experim
tally. This broad class includes pure states such as cohe
and squeezed coherent ones and mixed states such a
placed thermal and squeezed thermal ones. Moreover, su
position of a thermal field on a Gaussian one yields a Ga
ian mixed state of the field. The characteristic function~CF!
of a Gaussian stater has the form@22#

x~l!ªTr„rD~l!…

5exp@2~A1 1
2 !ulu22 1

2 B* l22 1
2 B~l* !21C* l

2Cl* # ~A>0!, ~2.1!

where

D~a!ªexp~aa†2a* a! ~2.2!
02210
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is a Weyl displacement operator with the coherent-state
plitude aPC. The CF is the weight function in the Wey
expansion of the density operator,

r5
1

pE d2lx~l!D~2l!. ~2.3!

A meaningful expression of the CF Eq.~2.1! is obtained by
using the real variablesx1 ,x2 defined by l51/A2(x2
2 ix1). We readily get the alternative formula

x~x1 ,x2!5exp$2 1
2 xTVx2 ix1^q&2 ix2^p&%, ~2.4!

wherexT is the row vector (x1 x2). q andp are the coordi-
nate and momentum operators, respectively,

q5
1

A2
~a1a†!, p5

1

A2i
~a2a†!. ~2.5!

In Eq. ~2.4!, V is the 232 real symmetriccovariance matrix

VªS sqq sqp

spq spp
D . ~2.6!

The elements of the matrix~2.6! are determined by the pa
rametersA andB of the CF Eq.~2.1! as

sqqª^~Dq!2&5A1
1

2
2Re~B!, ~2.7a!

sppª^~Dp!2&5A1
1

2
1Re~B!, ~2.7b!

sqp5spqª
1

2
^DqDp1DpDq&52Im~B!. ~2.7c!

Note also the mean photon number in a Gaussian state,

Tr~ra†a!5A1uCu2. ~2.8!

As a consequence of the fundamental commutation r
tion @q,p#5 i I , the generalized Heisenberg uncertainty re
tion holds:

sqqspp2~spq!
2>

1

4
, ~2.9!

or equivalently

detV>
1

4
. ~2.10!

At the same time, detV determines the purity of the state
Indeed, from Eq.~2.3! it follows that the degree of purity o
the stater is the integral

Tr~r2!5
1

pE d2lux~l!u2. ~2.11!

By inserting the CF Eq.~2.4! we find
4-2
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Tr~r2!5
1

2AdetV<1. ~2.12!

For a pure Gaussian state Tr(r2)51, so that the uncertainty
relation ~2.9! is an equality. The pure Gaussian states
therefore minimum uncertainty states for the generalized
certainty relation~2.9!.

It is useful to recall that any Gaussian state can be wri
as a DSTS, so that it has a very simple parametrization of
coefficientsA,B,C @22#. Indeed, a DSTSr is defined as the
unitary transform of a thermal state~TS! rT by an ordered
pair of one-mode squeeze and displacement opera
S(r ,w) andD(a), respectively,

r5D~a!S~r ,w!rTS †~r ,w!D†~a!. ~2.13!

In Eq. ~2.13!, the TS

rT5
1

n̄11
exp~2ha†a! ~2.14!

is determined by the dimensionless positive parameter

hª
\v

kBT
.

Indeed, according to the Planck law, the thermal aver
photon number is

n̄5~eh21!21.

The density operatorrT , Eq. ~2.14!, has the spectral decom
position

rT5 (
n50

`

lnun&^nu, ~2.15!

with the positive nondegenerate eigenvalues

ln5
n̄n

~ n̄11!n11
~n50,1,2,3, . . . !. ~2.16!

Further,

S~r ,w!ªexp$ 1
2 r @eiw~a†!22e2 iwa2#% ~2.17!

is a Stoler operator with the squeeze factorr and the squeeze
anglewP(2p,p#.

The CF of the DSTS~2.13! has the form~2.1! with the
coefficients

A5~ n̄1 1
2 !cosh~2r !2 1

2 , ~2.18a!

B52~ n̄1 1
2 !eiwsinh~2r !, ~2.18b!

C5a. ~2.18c!

Note that, in the DSTS parametrization, the variances~2.7!
of the canonical variables are phase dependent,
02210
e
n-

n
e

rs,

e

sqq5~ n̄1 1
2 !@cosh~2r !1cos~w!sinh~2r !#, ~2.19a!

spp5~ n̄1 1
2 !@cosh~2r !2cos~w!sinh~2r !#, ~2.19b!

sqp5~ n̄1 1
2 !sin~w!sinh~2r !. ~2.19c!

Employing Eqs.~2.19! we find that the purity~2.12! of a
Gaussian state is determined by its thermal mean occup
n̄ as

Tr~r2!5
1

2n̄11
. ~2.20!

Besides, the squeeze factor can be obtained from the co
ance matrix~2.6! via the identity

cosh~2r !5
trV

2AdetV . ~2.21!

Recall also that the condition for squeezing in coordinate
the reduction of the variancesqq under its value for a coher
ent state,sqq,1/2. A DSTS iseffectivelysqueezed provided
the squeeze factor exceeds the threshold value@22#

r cª
1

2
ln~2n̄11!. ~2.22!

We stress that higher-order squeezing takes place equa
and only if the conditionr .r c is fulfilled. The value~2.22!
of the squeeze factor is anonclassicality thresholdas well.
Indeed, forr 5r c , theP representation of a DSTS ceases
exist as a well-behaved Gaussian probability distribution.
other words, a single-mode Gaussian state is classica
r<r c and nonclassical ifr .r c . Moreover, Lee’s nonclassi

cal depthtmP@0,1
2 ) of a Gaussian state is simply@3#

tm5uBu2A ~A<uBu!, ~2.23!

or

tm5 1
2 $12exp@22~r 2r c!#% ~r>r c!. ~2.24!

III. NONCLASSICALITY MEASURED BY RELATIVE
ENTROPY

The relative entropy of a states8 with respect to the state
s9 of a quantum system is defined as

S~s8/s9!ªTr$s9@ ln~s9!2 ln~s8!#%. ~3.1!

Although the relative entropy is not a metric, it is accepta
as a measure of distinguishability due to the quantum Sa
theorem@16#: the probability of confusing the statess9 and
s8 after performingN measurements ons8 is for N@1

PN~s8→s9!5exp@2NS~s8/s9!#.
4-3
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For a review of the properties of the relative entropy t
reader is referred to the classic paper of Wehrl@15# and the
recent ones of Vedralet al. @16#.

We define the entropic amount of Gaussian nonclassi
ity of a Gaussian stater as

QS~r!ª min
r8PC0

S~r8/r!, ~3.2!

whereC0 is the set of all classical one-mode Gaussian sta
If the stater is classical (r<r c), then the minimal value
~3.2! is reached forr85r, because this is the unique sta
for which the relative entropy vanishes. Hence

QS~r!50 ~r<r c!, ~3.3!

as required by condition~Q1!.
To start on the program of Eq.~3.2!, we need to:~i! evalu-

ate the relative entropy of a one-mode DSTS with respec
a similar state;~ii ! minimize it over the setC0 of all classical
one-mode DSTS’s.

The Appendix is devoted to step~i!. Thus, the relative
entropyS(r8/r) of the Gaussian stater8, with the param-
etersn̄8,r 8,w8,a8, with respect to the Gaussian stater, hav-
ing the parametersn̄,r ,w,a, is given by Eq.~A14!. We dis-
cuss here step~ii !. If r is a nonclassical state (r .r c), then
minimization of the relative entropyS(r8/r) under the con-
dition r 8<r c8 is achieved for a DSTS having the displac
ment parameter

ã5a ~3.4!

and the squeeze angle

w̃5w. ~3.5!

We are left to analyze the minimum of the relative entro
S( r̃8/r) over the class of the DSTS’sr̃8 with two fixed
parameters,

ã85a, w̃85w, ~3.6!

and, in addition, with the squeeze factor at the nonclassi
ity threshold~2.22!,

r̃ 85 r̃ c8 . ~3.7!

Accordingly,

2ñ̄8115exp~2r̃ 8!, ~3.8!

so that we may chooser̃ 8 as the only independent variabl
By insertion of Eqs.~3.4!, ~3.5!, and ~3.8! into Eq. ~A14!
written for S(r8/r), we find the following function:
02210
l-

s.

to

l-

S~ r̃8/r!5 r̃ 82r c1exp~r c!$sinh~r c!ln@sinh~r c!#

2cosh~r c!ln@cosh~r c!#%1 1
2 ln@ 1

2 sinh~2r̃ 8!#

2 1
2 exp~2r c!cosh@2~ r̃ 82r !# ln@ tanh~ r̃ 8!#.

~3.9!

Its first- and second-order derivatives with respect tor̃ 8 are,
respectively,

]

] r̃ 8
S~ r̃8/r!5exp~2r c!H exp@2~ r̃ 82r c!#

sinh~2r̃ 8!
2

cosh@2~ r̃ 82r !#

sinh~2r̃ 8!

2sinh@2~ r̃ 82r !# ln@ tanh~ r̃ 8!#J , ~3.10!

]2

] r̃ 82
S~ r̃8/r!5

2exp~2r c!

@sinh~2r̃ 8!#2
$2exp~22r c!1cosh~2r !

2sinh~2r̃ 8!sinh@2~ r̃ 82r !#

2cosh@2~ r̃ 82r !#@sinh~2r̃ 8!#2ln@ tanh~ r̃ 8!#%.

~3.11!

Therefore, in order to find the absolute minimum of the re
tive entropy~3.9!, one has to solve a transcendental equati
which does not have an exact analytic solution. However,
opposite signs of the limits of the first-order derivative~3.10!
for the extreme values of the squeeze factorr̃ 8,

lim
r̃ 8→0

]

] r̃ 8
S~ r̃8/r!52`, lim

r̃ 8→`

]

] r̃ 8
S~ r̃8/r!52,

~3.12!

prove the existence of at least one minimum of the relat
entropy~3.9!. Such a minimum could be found graphicall
as in Fig. 1, where we plot the functionS( r̃8/r) versus the
variabler̃ 8 for several DSTS’s having the same nonclassic
ity thresholdr c51 and different squeeze factors. The grap
in Fig. 1 suggest that the value

r̃ Sª
1
2 ~r 1r c! ~3.13!

of the variabler̃ 8 may be an approximate analytic solutio
for the minimum conditions

]

] r̃ 8
S~ r̃8/r!50,

]2

] r̃ 82
S~ r̃8/r!.0. ~3.14!

We proved that this really happens by writing the simpl
lower and upper bounds for the logarithm occurring in t
first-order derivative~3.10! taken at the pointr̃ 85 r̃ S , as well
as an adequate lower bound for the logarithm term in
second-order derivative~3.11!. The approximation consisting
in the use of the value~3.13! as the absolute minimum poin
r̃ m8 of the relative entropy~3.9! becomes more and mor
4-4
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accurate in so far as the squeezing of the given nonclas
stater is stronger, i.e., the inequalityr̃ m8 2r c@1 is better and
better fulfilled. In this case of strong nonclassicality, t
DSTS r̃S with the parameters

ñ̄S5 1
2 @exp~2r̃ S!21#, r̃ S ,w,a ~3.15!

can be considered the closest classical Gaussian state.
the entropic amount of nonclassicality, which forr .r c is
only approximatedas

QS~r!5S~ r̃S /r! ~r .r c!, ~3.16!

has the explicit expression

QS~r!50 ~r<r c!

QS~r!5 1
2 ~r 2r c!1exp~r c!$sinh~r c!ln@sinh~r c!#

2cosh~r c!ln@cosh~r c!#%

1 1
2 @exp~2r c!cosh~r 2r c!11# lnFcoshS r 1r c

2 D G
2 1

2 @exp~2r c!cosh~r 2r c!21# lnFsinhS r 1r c

2 D G
(r .r c). ~3.17!

IV. HILBERT-SCHMIDT DISTANCE AS A MEASURE
OF NONCLASSICALITY

Any density operators is of trace class anda fortiori has
a finite Hilbert-Schmidt norm,

uusuu25ATr~s2!. ~4.1!

FIG. 1. Displaying the minimum of the relative entropy. Th

function S( r̃8/r), Eq. ~3.9!, is plotted vs the squeeze factorr̃ 8 for
several nonclassical Gaussian states having the nonclassi

thresholdr c51. The approximationr̃ m8 ' r̃ Sª
1
2 (r 1r c) is seen to

be reasonably good in all the shown cases.
02210
cal

hus

The Hilbert-Schmidt distance between two quantum sta
s8 ands9, is introduced as the usual norm metric,

dHS~s8,s9!5uus82s9uu25ATr@~s82s9!2#. ~4.2!

In the case of the single-mode field states, making use of
Weyl expansion~2.3!, one can express the Hilbert-Schmi
inner product Tr(s8s9) in terms of their CF’s as

Tr~s8s9!5
1

pE d2lx8* ~l!x9~l!. ~4.3!

Specifically, for a pair of one-mode Gaussian states,r8 and
r9, we employ the Gaussian integral recollected in Appen
A of the first paper of Ref.@22# to get from Eq.~4.3! the
explicit formula

Tr~r8r9!5
1

AD
expS 2

1

D
$~A81A911!uC82C9u2

1Re@~B81B9!* ~C82C9!2#% D . ~4.4!

In Eq. ~4.4!, we have used the coefficients~2.18! for both
states and introduced the determinant of the sum of the
responding covariance matrices,V 8 andV 9:

Dªdet~V 81V 9!5~A81A911!22uB81B9u2

5S n̄81
1

2D 2

1S n̄91
1

2D 2

12S n̄81
1

2D S n̄91
1

2D cosh~2ř !,

~4.5!

where cosh(2ř) is given by Eq.~A11!. In particular, Eq.~4.4!
yields the degree of purity~2.20!. Consequently, the square
Hilbert-Schmidt distance between two one-mode Gauss
states is

dHS
2 ~r,r8!5

1

2n̄11
1

1

2n̄811

2
2

AD
expS 2

1

D
$~A81A911!uC82C9u2

1Re@~B81B9!* ~C82C9!2#% D . ~4.6!

We define the Hilbert-Schmidt-metric amount of Gauss
nonclassicality of a one-mode DSTSr as

QHS~r!ª min
r8PC0

dHS
2 ~r,r8!. ~4.7!

In the same way as in Sec. III, we denote byn̄,r ,w,a the
parameters of the stater and by n̄8,r 8,w8,a8, those of the
classical stater8. The minimum of the quantity~4.6! under
the assumptionsr .r c and r 8<r c8 is achieved by a classica

Gaussian state belonging to the class of DSTS’sr̃8 with the
parameters given by Eqs.~3.6! and~3.7!, as in the case of the
relative entropy. We insert therefore the values~3.6! and

lity
4-5
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the threshold relation~3.8! into Eq. ~4.6! to find the function
dHS

2 (r,r̃8) of a single variabler̃ 8,

dHS
2 ~r,r̃8!5exp~22r c!F12exp@2~r 2r c!#

3S 2x14$12exp@22~r 2r c!#%
21/2

3S 11
1

x2D 21/2D G ~4.8!

with

xªexp~r 1r c22r̃ 8!. ~4.9!

The function~4.8! has a unique minimum at the exact val

r̃ HSª
1
2 ~r 1r c!2 1

4 ln~24/3$11exp@22~r 2r c!#%
21/321!

~4.10!

of the squeeze factorr̃ 8. The closest classical stater̃HS has
thus the parameters

ñ̄HS5 1
2 @exp~2r̃ HS!21#, r̃ HS , w, a. ~4.11!

Accordingly, the Hilbert-Schmidt-metric amount of noncla
sicality,

QHS~r!5dHS
2 ~r,r̃HS! ~r .r c!, ~4.12!

reads explicitly

QHS~r!50 ~r<r c!,

QHS~r!5exp~22r c!$12exp@2~r 2r c!#

3~24/3$11exp@22~r 2r c!#%
21/321!3/2%

~r .r c!. ~4.13!

V. DISCUSSION OF THE RESULTS

A. Nonclassicality measured by the Bures distance

We are now in a position to compare the distance-ty
measures of nonclassicality evaluated above to our prev
result concerning the Bures-distance amount of nonclass
ity @11#. Recall that the Bures distance between two mix
states described by the density operatorss8 and s9 on a
Hilbert spaceHA was originally introduced on mathematic
grounds@12#. Its square is

dB
2~s8,s9!ªminuuuC8&2uC9&uu252~12maxu^C8uC9&u!,

~5.1!

where uC8& and uC9& are vectors in an enlarged Hilbe
spaceHA^ HB , describing pure states whose reductio
over the auxiliary Hilbert spaceHB are precisely
the given mixed states: s85TrB(uC8&^C8u) and
s95TrB(uC9&^C9u). Since this definition can obviously b
extended to pure states, the set of all quantum states~pure
and mixed! may be equipped with the Bures distance to b
02210
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come a metric space. Note that the ‘‘transition probabilit
between the mixed statess8 and s9, defined later by Uhl-
mann@23#,

F~s8,s9!ªmaxu^C8uC9&u2, ~5.2!

is closely related to the Bures metric:

dB~s8,s9!5A222AF~s8,s9!. ~5.3!

Uhlmann @23# succeeded in deriving an explicit expressi
of the quantity~5.2!, now calledfidelity @24#:

F~s8,s9!5$Tr@~As8s9As8!1/2#%2. ~5.4!

It was proved@25# thatAF(s8,s9) equals the minimal over-
lap of the probability distributions for the outcomes of a
POVM. The Bures metric exhibits therefore the best pro
bilistic distinguishability between quantum states. As a co
sequence, it cannot increase underanyPOVM. We also men-
tion that a metric on the set of density operators revea
quantum distinguishability has been defined by Brauns
and Caves@26#. For neighboring quantum states, thisstatis-
tical distancecoincides up to a factor of 2 with the Bure
distance. There is therefore a strong distinguishability rea
to use the Bures distance as a measure of nonclassicalit
Ref. @11# we defined an amount of nonclassicality of a
one-mode Gaussian stater in terms of its Bures distance t
the setC0 of all classical one-mode Gaussian states:

QB~r!ª
1

2
min

r8PC0

dB
2~r,r8!. ~5.5!

By employing in Ref.@11#, for the Bures metric, the metho
applied here as well, in Secs. III and IV, but making use
the relative entropy and the Hilbert-Schmidt distance,
spectively, we found the closest classical Gaussian stater̃B
to a nonclassical DSTSr whose parameters are denot
again byn̄,r ,w,a. The DSTSr̃B is specified by its param
eters,

ñ̄B5 1
2 @exp~2r̃ B!21#,

r̃ B5 1
4 ln@112sinh~2r c!exp~2r !#, w, a. ~5.6!

The Bures-metric degree of nonclassicality,

QB~r!5
1

2
dB

2~r,r̃B! ~r .r c!, ~5.7!

has the simple expression

QB~r!50 ~r<r c!,

QB~r!512@sech~r 2r c!#
1/2 ~r .r c!. ~5.8!
4-6
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TABLE I. Purity Tr(r̃2) of the closest classical DSTS to a pure Gaussian state having the sq
factor r.

Metric Amount of nonclassicalityQ(r) Tr( r̃2)

Buresa 12@sech(r )#1/2 1
Relative-entropyb

1
2Hr1FcoshS r

2DG
2

lnSFcoshS r

2DG
2D e2r

2FsinhS r

2DG
2

lnSFsinhS r

2DG
2DJ

Hilbert-Schmidtc 12e2r@24/3(11e22r)21/321#3/2 e2r@24/3(11e22r)21/321#1/2

aEquations~5.8! and ~5.6!.
bEquations~3.17!, ~3.13!, and~3.15!, obtained as an approximate solution in the strong-squeezing case
cEquations~4.13!, ~4.10!, and~4.11!.
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B. The closest classical Gaussian state

It is instructive to compare the features of the classi
Gaussian state closest to a given nonclassical one for
three ‘‘distances’’ studied in Ref.@11# and in the present pa
per.

Shared features. ~a! The closest classical DSTS has t
same displacement parameter and rotation angle as the g
nonclassical one. It is easy to explain this property. T
translations and rotations in phase space generate the
classical one-mode unitary transformations,D(a), Eq. ~2.2!,
andR(u), Eq. ~A9!, respectively. In addition, they leave in
variant the class of the Gaussian states. As all three dista
employed above are invariant under any unitary transfor
tion, the corresponding measures of nonclassicality are
served by translations and rotations. Therefore, they mee
demand~Q2! of being invariant under all classical one-mo
unitary transformations.~b! The closest classical Gaussia
state is on the boundary of the reference setC0 given by the
condition ~3.7!.

Different features. A striking difference is displayed by
the degree of purity~2.20! of the closest classical DSTS i
the three cases. According to Eqs.~3.13!, ~3.15!, ~4.10!,
~4.11!, and~5.6!, the following inequalities hold:

Tr~ r̃S
2!,Tr~ r̃HS

2 !,Tr~r2!, Tr~ r̃S
2!,Tr~ r̃B

2 !<Tr~r2!.
~5.9!

Note that the last inequality in Eq.~5.9! turns into an equality
if and only if the given nonclassical state is pure. This ca
(r c50) is studied in detail in Table I, where the three pu
ties are written down explicitly. We see that the closest cl
sical Gaussian state is a pure one, namely a coherent s
when using the Bures distance to quantify nonclassica
and a mixed one for the other two measures of nonclass
ity.

C. Thermal noise mapping

The above-mentioned property of the Bures distance
not increasing under any POVM mapping@18# results in a
not increasing of the Bures-metric degree of nonclassica
QB(r), Eq. ~5.5!, under any POVM mapping that transform
the DSTS’s into DSTS’s. As a consequence of a similar pr
02210
l
he

en
e
nly

es
a-
e-
he

e

-
te,

y,
l-

f

ty

-

erty of the relative entropy@15,16#, the entropic amount of
nonclassicalityQS(r), Eq. ~3.2!, does not increase unde
POVM mappings preserving the Gaussian form of the sta
Both measures of the nonclassicality of a Gaussian state
isfy the condition~Q3!.

A significant example of a continuous-variable POV
mapping is the thermal noise mapping. For one-mode fi
states, this is defined@20,21# as follows:

Gm̄~r!ª
1

pm̄
E d2b expS 2

ubu2

m̄
D D~b!rD†~b! ~m̄>0!,

~5.10!

wherem̄ is the thermal mean number of added photons. T
Gaussian mapping~5.10! transforms DSTS’s into DSTS’s
with the only modification of the CF Eq.~2.1! consisting in
the addition of m̄ to A:A→A8ªA1m̄. Correspondingly,
thermalization raises the nonclassicality threshold Eq.~2.22!
of a Gaussian stater,

r c~m̄!5
1

2
lnS 2n̄11

122m̄
D S m̄,

1

2D . ~5.11!

In Ref. @11# we pointed out that the Bures-metric degree
nonclassicalityQB@Gm̄(r)# of the thermalized state~5.10!
decreaseswith the thermal noisem̄, as required by the de
mand ~Q3!. This statement is equally true for the Hilber
Schmidt measure of nonclassicalityQHS@Gm̄(r)#, Eq.~4.13!.
Since it does not increase under any thermal noise map
~5.10!, the functionQHS(r), Eq. ~4.13!, is acceptable as a
measure of nonclassicality, even if there is no evidence
the fulfillment of condition~Q3! for all POVM mappings
that leave invariant the class of the Gaussian states. In o
to illustrate this important point, we plot in Fig. 2 th
amounts of Gaussian nonclassicalityQB@Gm̄(r)#, Eq. ~5.8!,
QS@Gm̄(r)#, Eq. ~3.17!, andQHS@Gm̄(r)#, Eq. ~4.13!, versus
the thermal noisem̄, wherer is a nonclassical DSTS with
the parametersr 53, r c51. All three nonclassical distance
decrease with the Gaussian noisem̄, in accordance with the
requirement~Q3!.
4-7
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VI. CONCLUSIONS

The discussion of the above-presented results favors
Bures distance in comparison with the relative entropy a
the Hilbert-Schmidt distance in finding an adequate meas
of nonclassicality for one-mode Gaussian states.

First, the degree of Gaussian nonclassicalityQB(r), built
with the Bures distance, has anexactanalytic expression, Eq
~5.8!, which is simple and insightful. This is not the ca
when employing theapproximateentropic amount of non-
classicalityQS(r), Eq. ~3.17!.

Second, the distanceQB(r) fulfills the demand~Q3! for
any POVM preserving the Gaussian character of the st
The situation is different with the Hilbert-Schmidt measu
of nonclassicalityQHS(r), Eq. ~4.13!, which, however, does
not increase under any thermal noise mapping~5.10!.

Third, we stress that, besides satisfying the conditi
~Q1!–~Q3!, the Bures-metric degree of nonclassicality~5.8!
is a bijective function of the Lee nonclassical depthtm , Eq.
~2.24!: QB(r) increases from 0 to 1 whentm increases from
0 to 1/2. Explicitly,

QB~r!512F12S tm

12tm
D 2G1/4

~r .r c!. ~6.1!

Equation~6.1! therefore proves that the amount of Gauss
nonclassicalityQB(r) and the nonclassical depthtm are
equivalentmeasures of the nonclassicality of a single-mo
Gaussian state. This happens neither for the relative ent
nor for the Hilbert-Schmidt metric. In the mixed-state ca
the quantitiesQS(r) and QHS(r) are not equivalent to the
nonclassical depth, which is a genuine measure of nonc
sicality. Hence we draw the conclusion that making use
the reference setC0 of all classical DSTS’s in order to

FIG. 2. Nonclassicality vs thermal noisem̄ for a DSTS with the
squeeze factorr 53 and the nonclassicality thresholdr c51. We
employ the Bures-metric@curveB, Eq. ~5.8!#, the entropic@curveS,
Eq. ~3.17!#, and the Hilbert-Schmidt-metric@curve HS, Eq.~4.13!#
amounts of nonclassicality.
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build a distance-type measure of nonclassicality is suita
only in the case of the Bures distance.

Furthermore, the Bures metric could analogously be e
ployed to calculate a Gaussian amount of entanglemen
two-mode Gaussian states. Specifically, we recently s
ceeded to carry out an approximate analytic evaluation of
Bures-metric degree of entanglement for two-mode squee
thermal states@27#.
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APPENDIX: RELATIVE ENTROPY OF AN ONE-MODE
GAUSSIAN STATE WITH RESPECT

TO ANOTHER ONE

To evaluate the relative entropy of an one-mode Gaus
field state with respect to a similar state, one could eit
take advantage of the exponential form of a Gaussian den
operator or employ the eigenvalue problem for the Gauss
density operator in the DSTS parametrization.

Here we present the second derivation pointing out
simplicity. Consider a pair of one-mode DSTS’s,r8 andr9,
having the DSTS-parameters n̄8,r 8,w8,a8, and
n̄9,r 9,w9,a9, respectively. With Eqs.~2.13! and ~2.15! we
get the spectral decompositions of their density operator

r85 (
n50

`

ln8D~a8!S~r 8,w8!un&^nuS †~r 8,w8!D†~a8!

~A1a!

and

r95 (
n50

`

ln9D~a9!S~r 9,w9!un&^nuS †~r 9,w9!D†~a9!.

~A1b!

The corresponding eigenvalues,ln8 andln9 , are of the form
~2.16!. The operators ln(r8) and ln(r9) have similar spectra
expansions, with the only difference that the eigenvaluesln8
and ln9 are replaced by their logarithms, ln(ln8) and ln(ln9),
respectively. We evaluate the relative entropy of the stater8
with respect to the stater9:

S~r8/r9!5Tr$r9@ ln~r9!2 ln~r8!#%. ~A2!

The first term in Eq.~A2! is the negative of the familiar von
Neumann entropy

S~r9!ª2Tr@r9ln~r9!#52 (
n50

`

ln9ln~ln9! ~A3!

of the DSTSr9,
4-8
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S~r9!5~ n̄911!ln~ n̄911!2n̄9ln~ n̄9!. ~A4!

We evaluate the second term in Eq.~A2! in the eigenvector
basis$D(a8)S(r 8,w8)un&% of the density operatorr8,

2Tr@r9ln~r8!#52 (
n50

`

ln~ln8!^nuřun&. ~A5!

In Eq. ~A5!, ř is the Gaussian state

řªS †~r 8,w8!D~a92a8!S~r 9,w9!rT9S †~r 9,w9!

3D†~a92a8!S~r 8,w8!. ~A6!

Its DSTS parameters are specified by the multiplication ru

S †~r 8,w8!D~a92a8!5D~b!S †~r 8,w8!,

bª~a92a8!cosh~r 8!2~a92a8!* eiw8sinh~r 8!,
~A7!

and @28#

S†~r 8,w8!S~r 9,w9!5e2 i ǔ/2S~ ř ,w̌ !R~ ǔ !. ~A8!

In Eq. ~A8!, R( ǔ) is a rotation operator with the angleǔ,

R~u!ªexp~2 iua†a! ~uP~2p,p#!. ~A9!

The parametersř ,w̌, andǔ are given by the following equa
tions:

ei ǔcosh~ ř !5cosh~r 8!cosh~r 9!

2e2 i (w82w9)sinh~r 8!sinh~r 9!,

ei (w̌1 ǔ)sinh~ ř !5eiw9cosh~r 8!sinh~r 9!

2eiw8sinh~r 8!cosh~r 9!, ~A10!

which yield the composition formula
t

ia

02210
s

cosh~2ř !5cosh~2r 8!cosh~2r 9!

2sinh~2r 8!sinh~2r 9!cos~w82w9!.

~A11!

Accordingly, the one-mode Gaussian stateř, defined by Eq.
~A6!, has the explicit DSTS form

ř5D~b!S~ ř ,w̌ !rT9S †~ ř ,w̌ !D†~b!. ~A12!

Owing to the structure~2.16! of the eigenvaluesln8 , the
summation in Eq.~A5! is readily performed to obtain

2Tr@r9ln~r8!#5@11Tr~ řa†a!# ln~ n̄811!

2Tr~ řa†a!ln~ n̄8!. ~A13!

A straightforward calculation based on the expression of
mean photon number in a DSTS, Eq.~2.8!, gives the final
expression of the relative entropy~A2!:

S~r8/r9!52@~ n̄911!ln~ n̄911!2n̄9ln~ n̄9!#

1
1

2
ln@ n̄8~ n̄811!#

1
2

2n̄811
H S A81

1

2D S A91
1

2D2Re@B8~B9!* #

1S A81
1

2D uC82C9u2

1Re@~B8!* ~C82C9!2#J lnS n̄811

n̄8
D . ~A14!

In Eq. ~A14!, we have employed the coefficients~2.18! of
the corresponding CF’s:A8,B8,C8 for the stater8 and
A9,B9,C9 for the stater9. It appears that the expressio
~A14! of the relative entropy of a Gaussian state with resp
to another one is a new result in the extensively studied a
of single-mode field states.
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