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Scheme for direct measurement of the Wigner characteristic function in cavity QED
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~Received 24 March 2003; published 29 January 2004!

We propose a simple scheme for the reconstruction of the single-mode cavity field by considering the
resonant atom-cavity interaction in the presence of a strong classical field. With the aid of the strong classical
field, it is easy to realize the displacement operator for the cavity field correlated to the internal state of the
atom. It is shown that the measurement of the population of the lower internal state directly yields the Wigner
characteristic function of the cavity field.
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In recent years there has been great interest in the pr
ration and measurement of quantum states@1#. Cavity QED,
with Rydberg atoms crossing superconducting cavities, o
an almost ideal system for the generation and measurem
of nonclassical states and implementation of small sc
quantum information processing@2#. In the context of cavity
QED, numerous theoretical schemes@3# for generating vari-
ous nonclassical states were proposed, which led to exp
mental realization of Schro¨dinger cat state@4# and Fock state
@5# in a cavity mode. Thus, it is desirable to have a power
tool to prove that the cavity field has indeed been prepare
the desired state. Several measurement schemes for the
ity fields have been proposed by probing quantum states
two-level atoms and subsequently measuring the atomic s
@6#. But only a few of the proposals have a strikingly simp
data analysis. Wilkens and Meystre proposed a scheme
directly measuring the Wigner characteristic function of
cavity field via the nonlinear atomic honodyne detection@7#.
In Ref. @8#, Kim et al. made a similar proposal based o
current experimental conditions. In Ref.@9#, Lutterbach and
Davidivich presented a scheme for direct measuremen
Wigner function of cavity field, which has been experime
tally demonstrated in a cavity@10#. This scheme is based o
the dispersive interaction of a single atom with the cav
field. However, dispersive interaction requires that the det
ing between the atoms and the cavity is much bigger than
atom-cavity coupling strength. Thus, the quantum dynam
operates at a low speed. In Ref.@11#, Bardroffet al.proposed
a simple and fast scheme for direct measurement of
Wigner characteristic function of the motion state of
trapped ion. This scheme can be applied to measure
quantum state of a cavity field via realizing a displacem
operator for the cavity field correlated to the internal state
the atom. Such displacement operation has been sugg
by Davidovichet al. in the context of quantum switches u
ing a dispersive atom-cavity interaction, but the experimen
realization of the scheme is difficult.

In this paper, we propose an alternative scheme to dire
measure the characteristic function of the Wigner function
single-mode cavity field. The physical system is a two-le
atom interacting with a single-mode cavity field in the pre
ence of a strong classical field. Recently, Solanoet al. stud-
ied such physical model for generating atom-field entang
states and field superposition states@12#. These authors
showed that, with the aid of the strong classical field, it
1050-2947/2004/69~1!/015802~3!/$22.50 69 0158
a-

r
nt

le

ri-

l
in
av-
th
te

for

of
-

-
e
s

e

he
t
f
ted

al

ly
f
l
-

d

easy to realize the displacement operator for the cavity fi
correlated to the internal state of the atom. In this paper,
show that such physical system can be used to measure
Wigner characteristic function of single-mode cavity fiel
and the phase of classical field acting as a tunable param
is important for the measurement of cavity field.

We consider a two-level atom interacting with a sing
mode cavity field and driven additionally by an external cla
sical field. In the rotating-wave approximation, the Ham
tonian is~assuming\51) @12#

H5
vat

2
sz1vcava†a1g~s2eiw1 ivLt1s1e2 iw2 ivLt!

1V~a†s21as1!, ~1!

where sz5ue&^eu2ug&^gu,s15ue&^gu, and s25ug&^eu,
with ug& and ue& being the ground and excited states of t
two-level atom.vat is the atomic transition frequency.a and
a† are the annihilation and creation operator of the sing
mode cavity field of frequencyvcav . V is the atom-cavity
interaction strength.g andw are the amplitude and phase
the classical field.vL is the frequency of the classical field
Here we should mention the physical system proposed
Alsing and Carmichael@13# on the single atom cavity QED
system with a strongly driven cavity field, which was lat
studied by Mabuchi and Wiseman@14#. Although these au-
thors consider a strongly driven cavity rather than a stron
driven atom, there is a canonical mapping between the
cases, so both systems are in fact essentially identical.

In a frame, which rotates with the classical wave fr
quencyvL , the associated Hamiltonian of the system b
comes

H5
D

2
sz1da†a1g~s2eiw1s1e2 iw!1V~a†s21as1!,

~2!

whereD5v02vL andd5v2vL .
In the following we assume that the atom, the cavity, a

the driving classical field are all resonant:D5d50. In this
case, the Hamiltonian~2! can be written as

H5g~s2eiw1s1e2 iw!1V~a†s21as1!. ~3!
©2004 The American Physical Society02-1
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To see how quantum dynamics is modified by a strong c
sical field, we first move into the dressed state picture
tained by rotating atomic states with transformation

R5expFp4 ~s12s2!GexpS iw

2
szD . ~4!

Using the relation

Rs6R†5 1
2 e6 iw@sz6~s12s2!#, ~5!

we can see that, in this picture, the Hamiltonian~3! becomes

H85RHR†5gsz1
V

2
$a†e2 iw@sz2~s12s2!#

1aeiw@sz1~s12s2!#%. ~6!

Making a further interaction picture transformation of t
Hamiltonian by the unitary operatorT(t)5exp(igszt), we
have

H95
V

2
$a†e2 iw@sz2~s1e2igt2s2e22igt!#

1aeiw@sz1~s1e2igt2s2e22igt!#%. ~7!

Assumingg@V, one can eliminate the term that oscillat
with high frequencies in Hamiltonian~7! and obtain the ef-
fective interaction

He f f5
V

2
~a†e2 iw1aeiw!sz , ~8!

which is precisely as in Ref.@12# except that it retains the
phasew of the classical field. In Ref.@14#, Mabuchi et al.
have also obtained the same effective Hamiltonian by us
same procedure as here.

The time evolution operator of Hamiltonian~8! is

Ue f f~ t !5expF2 i
Vt

2
~a†e2 iw1aeiw!szG . ~9!

In the standard picture@i.e., the one corresponding to th
Hamiltonian~2!#, the time evolution operator is

U~ t !5R†T†~ t !Ue f f~ t !T†~0!R

5exp@2 igt~s2eiw1s1e2 iw!#expF2 i
Vt

2
~a†e2 iw

1aeiw!~s2eiw1s1e2 iw!G . ~10!

One possible application of the scheme is to reconstruct
unknown quantum staterc of single-mode cavity field. We
assume that the atomic stateuCa& is initially prepared in a
superposition of the ground and excited states

uCa&5Aug&1Beiuue&, ~11!
01580
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whereA, B, andu are real numbers, andA21B251. Thus
the state of the whole system~atom1cavity! is

r~0!5uCa&^Caurc . ~12!

After an interaction timet, the density operator for the whol
system is

r~ t !5 1
2 @~Ae2 iw/21Beiw/21 iu!exp~2 igt2 ikXw/2!u1&

1~Ae2 iw/22Beiw/21 iu!exp~ igt1 ikXw/2!u2&]rc

3@~Aeiw/21Be2 iw/22 iu!exp~ igt1 ikXw/2!^1u

1~Aeiw/22Be2 iw/22 iu!exp~2 igt2 ikXw/2!^2u#,

~13!

where

u6&5
1

A2
~eiw/2ug&6e2 iw/2ue&), ~14!

Xw5a†e2 iw1aeiw, ~15!

andk5Vt. In Eq. ~13!, the cavity field is entangled with the
atomic state. We can remove this entanglement by detec
the atomic state. Measuring the population of the lower
ternal stateug&, we find the probability

Pg~u!5
1

2
1

A22B2

2
Tr@cos~gt1kXw!rc#1AB sin~u

1w!Tr@sin~gt1kXw!rc#. ~16!

We see that the probabilityPg(u) is directly related to the
Wigner characteristic function of cavity field@15#

x~k,w!5Tr@exp~ ikXw!rc# ~17!

through

Pg~u!5
1

2
1

A22B2

2
cos~kg/V!1ABABsin~u

1w!sin~kg/V!Re@x~k,w!#1FAB sin~u

1w!sin~kg/V!2
A22B2

2
cos~kg/V!G Im@x~k,w!#.

~18!

Therefore, we obtain the Wigner characteristic function@16#

x~k,w!5e2 igk/VH Pg~2w2p/2!1Pg~2w1p/2!21

A22B2

1 i
Pg~2w1p/2!2Pg~2w1p/2!

2AB J . ~19!

Thus a measurement ofPg(u) for two phases2w6p/2 di-
rectly yields the Wigner characteristic function of the initi
2-2
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state at the point (k,w). With regard to the argumentk, it can
be varied by changing the evolution time. The parameterw is
phase of classical field, which is a tunable parameter.

In summary, we proposed a scheme to directly meas
the Wigner characteristic function of the single-mode cav
field. The scheme is based on the displacement operatio
the cavity field correlated to the internal state of the ato
te
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With the aid of strong classical field, it is easy to realize su
a displacement operation for the cavity field. It is shown th
the phasew of classical field acting as a tunable paramete
important for the measurement of cavity field. The sche
only requires the resonant atom-cavity interaction so that
quantum dynamics operates at a high speed, which is im
tant in view of decoherence.
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