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Evolution in time of an N-atom system. II. Calculation of the eigenstates
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We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excita-
tions of a number of different arrays ofN identical two-level atoms~TLA’s ! or qubits, including polygons,
‘‘diamond’’ structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling
occurs via an exchange interaction which depends on the separation between the atoms. We include the
interactions betweenall pairs of atoms, and our results are valid for arbitrary separations relative to the
radiation wavelength.
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In this paper, we calculate the eigenstates of some reg
geometrical arrangements ofN identical~coherently excited!
two-level quantum systems. Such systems are known as
bits to the quantum information community and as two-le
atoms~TLA’s ! to the quantum optics/spectroscopy comm
nity. The coherent excitation of identical TLA’s has lon
been of interest to spectroscopists, in connection with
theory of molecular excitons@1# for example, or the phenom
enon of superradiance@2#. More recently, the interest ha
been in connection with the optical properties of molecu
clusters or aggregates@3#, many of which properties are be
lieved to be related to the coherent interaction of the agg
gates with the radiation field. At the same time, multiparti
entangled states of qubits have become an active are
study in the field of quantum information theory. The resu
presented here are of relevance to this community in
studies of decoherence-free subspaces@4# and investigations
into the entanglement properties of rings of qubits@5#.

We emphasize the complete generality of the majority
the results obtained herein: our results are applicable to
systems in which excitation is exchanged between the p
of interacting TLA’s. Such exchange interactions occ
widely: For example, our theory is applicable to systems
which the coupling is via a spin-exchange interaction, or
a retarded dipole-dipole~quadrupole-quadrupole! interaction,
such as exists in coherent dipole@6# ~quadrupole@7#! radia-
tive excitation of atoms or molecules. Our calculations
valid for arbitrary distances relative to the radiation wav
length, and we donot make the common approximation o
including only nearest-neighbor interactions, but rather
diagonalize the full Hamiltonian: This is important becau
for many physically realistic systems the coupling betwe
nonnearest neighbors can exceed that between adjace
oms.

*Electronic address: hsf@yorku.ca
1050-2947/2004/69~1!/013815~9!/$22.50 69 0138
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The eigenstates of regular polygons are calculated in S
I. In Sec. I A, we begin by reviewing the calculation of th
eigenstates for single (n51) excitations of a system ofN
TLA’s arranged at the vertices of a regular polygon and
teracting via an exchange interaction, valid for arbitraryN. In
Sec. I B we present a method for calculating the eigenst
for double (n52) excitations of the system, also for arb
trary N. Finally in Sec. I C, we outline the calculation of th
triplet (n53) eigenstates forN56 and 7, and present in
Tables I–III the complete set of eigenstates for all regu
polygons up to and includingN56; results forN57 are
available upon request.

In Sec. II, we adapt the methods of Sec. I to study ot
structures: ‘‘diamonds’’ and ‘‘pyramids’’ in Sec. II A, poly-
gon multilayers in Sec. II B, icosahedra in Secs. II C a
II D, and dodecahedra in Sec. II E. As discussed in@8#, the
optical activity or inactivity of the eigenstates in absorptio
as well as their total decay rates in emission, is immedia
evident in the imaginary parts of their eigenvalues. For qu
tum information theorists, there is special interest in the
total decay rates in order to identify particularly long live
states, which might be useful for encoding quantum inform
tion. To quantum information theorists, these are known
‘‘decoherence-free’’ states, and to spectroscopists as ‘‘su
diant’’ states @9#. In general, complete subradiance exis
only in the small sample limit, when distance effects a
ignored. Since our calculations contain the complete dista
dependence, they can be used to examine deviations from
‘‘long wavelength’’ or ‘‘equal collective decoherence’’ as
sumption commonly made in the theory of decoherence-
subspaces.

In the spectroscopy community, the study of collecti
atomic phenomena is many years old, beginning w
Dicke’s pioneering article@6#; for the early work, see@2,11#,
and references therein. A detailed study of the coopera
emission by a fully-excited system of 3 identical atoms
some specific geometrical configurations was performed
©2004 The American Physical Society15-1
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Richter @10#, while the complete eigenstates for two- a
three-atom systems of arbitrary geometrical arrangement
be found in Ref.@11#. The single-excitation eigenstates
linear chains were presented in@12#, of two-dimensional ar-
rays in@13#, and of rings and regular polygons in@14#. Single
and double excitations of regular polygons in the lon
wavelength limit were considered by Spano and Mukam
@3#; however, they included in their calculations only neare
neighbor interactions, so that our energy eigenvalues
eigenstates differ considerably from theirs.

I. REGULAR POLYGONS

We consider systems ofN identical TLA’s located at po-
sitionsRi , each with ground stateuai&, excited stateubi& and
transition frequencyv0 . The atomic Hamiltonian is then
given by

HA5(
i 51

N

\v0ubi&^bi u.

Henceforth, we will label states in the ‘‘computational’’ ba
sis, i.e., the bare noninteracting states, according to wh
atoms are excited therein; for example, the state of theN
55 system in which atoms 2 and 5 are excited is written
uB25&[ua1&ub2&ua3&ua4&ub5&. The state with all atoms in the
stateua& ~ub&! is denoted byuG& ~uE&!.

The generic ~excitation-! exchange interaction Hamil
tonian of the TLA’s is given by

Hint5 (
i , j 51
iÞ j

N

\V i j Si
1Sj

2 ,

whereSi
1 andSi

2 are the raising and lowering operators
atom i. The sole assumption we make regarding the inter
tion potentialV i j is that it is a function only of the separatio
between atomsi andj, Ri j 5Ri2Rj . We focus in this section
on atoms arranged at the vertices of regular polygons,
number them sequentially around the polygon~see Fig. 1!.
For nearest-neighbor atoms, we defineV i ,i 615a; similarly,
V i ,i 625b; for N atoms there arebN/2c characteristic inter-
actions, which we label sequentially alphabetically. For u
with the master equation, we will include in the full Hami
tonian the free-atom radiation damping Hd

5( i 51
N \gubi&^bi u as well, and allow theV i j to be

complex—their exact expressions are given in@8#. As dis-

FIG. 1. A regular hexagon of interacting TLA’s.
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tion energy, and the imaginary part the interatomic dampi
@In many systems as well an interaction exists between n
est neighbors~e.g., due to atomic overlap! in addition to the
electromagnetic exchange interaction which occurs betw
all pairs. These forces too can be included trivially in o
analysis, simply by incorporating them into the neare
neighbor interactionV i ,i 615a.] This results in a non-
Hermitian Hamiltonian, with complex eigenvalues. As de
onstrated in@8#, the real part of the eigenvalue gives the sh
of energy of the state due to local field effects, and the ima
nary part gives its total decay constant~or inverse lifetime!.

The full Hamiltonian to be diagonalized is represented
a 2N32N matrix. Fortunately, it is block-diagonal in struc
ture, breaking up into a series of submatrices, in each
which the coupled subsets of states all have the same num
n of excited TLA’s. The submatrices are of dimension (n

N),
and the submatrix forn excited atoms is the same as that f
N2n excited, a general property of exchange interactio
this halves the amount of work we must do~and conse-
quently we tabulate results only forn51,...,bN/2c). The n
50 andn5N eigenstates are justuG& and uE&, respectively.

A. nÄ1: Single excitation eigenstates

The single excitation~or n51) eigenstates of a system o
N TLA’s arranged at the vertices of a regular polygon we
calculated years ago@14#, guided by the symmetry of the
system under rotation about an axis perpendicular to
polygon plane; then51 eigenvalues and eigenstates forN
51 – 6 are tabulated there. Here we rewrite these calc
tions in a notation which allows us to extend them to sta
containing higher numbers of excited TLA’s, using the ca
of N55 as an example.

In the subspace spanned by the basis vec
$uB1&,uB2&,...,uB5&%, the matrix to be diagonalized has th
form

M ~1!5S 0 a b b a

a 0 a b b

b a 0 a b

b b a 0 a

a b b a 0

D .

We introduce the matrixP, a generator of the 5-dimensiona
representation ofC5 ~the cyclic group of order 5!:

P5S 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

D . ~1!

The eigenvalue equation ofP is given by

Pu~v !5lvu~v ! ,
5-2
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TABLE I. Eigenvalues and eigenvectors of 5 TLA’s arranged on the vertices of a regular pentag

n v Eigenvalues Eigenvectors

1 1,4 2(c2a2c1b) (c2 ,c4 ,c6 ,c8 ,c10); (s2 ,s4 ,s6 ,s8 ,s10)
2,3 2(2c1a1c2b) (c4 ,c8 ,c12,c16,c20); (s4 ,s8 ,s12,s16,s20)
5 2a12b ~1,1,1,1,1!

2 1,4 E6(2c1a,c2b) (c2 ,2c1 ,2c1 ,c2,1; v6c2 ,v6 ,v6c2 ,2v6c1 ,2v6c1)
(21,22c2,2c2,1,0; v6,0,2v6 ,22v6c2,2v6c2)

2,3 E6(c2a,2c1b) (2c1 ,c2 ,c2 ,2c1,1; 2w6c1 ,w6 ,2w6c1 ,w6c2 ,w6c2)
(22c2,1,21,2c2,0; 2w6c2,0,22w6c2 ,w6 ,2w6)

5 E1(a,b) ~1,1,1,1,1;u,u,u,u,u!
E2(a,b) ~u,u,u,u,u; 21,21,21,21,21!

cj5cos(jp/5) u5G1(a,b)

sj5sin(jp/5) v65G6(2c1a,c2b)
F(a,b)5A5(a1b)224ab w65G6(c2a,2c1b)
E6(a,b)5a1b6F(a,b) G6(a,b)5@a2b6F(a,b)#/2(a,b)
n
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where l[e2p i /5, u(v)5(lv,l2v,l3v,l4v,l5v), and v
51,...,5. We define the polynomialM (x)5a(x1x4)1b(x2

1x3), in terms of whichM (1)5M (P). SinceM (1) is a sum
of powers ofP, the eigenvectorsu(v) of P will be eigenvec-
tors of M (1) as well, and we write the eigenvalue equatio

M ~1!u~v !5m~v !u~v ! ,

where the eigenvaluesm(v)5M (lv)[G(v)
(1)1 iF (v)

(1) . There is
1 nondegenerate eigenvalue corresponding tov55, m(5)
52a12b, and (521)/2 degenerate pairs of eigenvalue
corresponding to roots which are complex conjugates of e
other:lv5(l52v)* . The eigenvector corresponding tom(5)
is simplyu(5)5(1,1,1,1,1). For the eigenvectors correspon
ing to the degenerate pairs of eigenvalues, we choose the
linear combinations ofu(v) andu(52v) ,

U ~v !
~1 !5

1

2
~u~v !1u~52v !!,

U ~v !
~2 !5

1

2i
~u~v !2u~52v !!.

Together withu(5) , these form an orthogonal basis set f
the n51 subspace. They are listed in Table I.

B. nÄ2: Double excitation eigenstates

1. Odd values of N

We continue with the example ofN55 to demonstrate
how to calculate then52 ~biexciton! eigenstates for genera
odd values ofN. The subspace corresponding toN55, n
52 has 10 basis states, which we take in the or
$uB12&,uB23&,...,uB51&;uB13&,uB24&,...,uB52&%.

If we define the four polynomialsM11(x)5b(x1x4),
M12(x)5a(x41x5)1b(x1x3), M21(x)5a(x1x5)1b(x2

1x4) and M22(x)5a(x21x3), then the interaction can b
represented by the 10310 matrix,
01381
,
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M ~2!~P![S M11~P! M12~P!

M21~P! M22~P!
D .

Thus,M (2) is partitioned into a 232 array of square subma
trices, each of dimension 535. The ability to write the ma-
trix in this form is directly due to the ordering of the bas
vectors, which allows the rotational symmetry of the pen
gon to be reflected in each of the submatrices. It is eas
show that for any odd value ofN, M (2) can be partitioned in
this way into an array of (N21)/23(N21)/2 square sub-
matrices, each of dimensionN3N. This results in a dramatic
simplification of the problem, for instance here we need
agonalize only a 2-dimensional matrix instead of the origi
10-dimensional one.

As with the n51 case discussed above, each mat
Mi j (P) is a linear combination ofP and its powers, and
therefore has the eigenvalue equation

Mi j ~P!u~v !5Mi j ~lv!u~v ! ,

wherelv andu(v) are the eigenvalues and eigenvectors ofP.
In order to obtain the eigenvalues and eigenvectors ofM (2),
we first solve the eigenvalue equation

M ~x!V~x!5m~x!V~x!,

whereV(x) is an eigenvector andm(x) an eigenvalue of the
two-dimensional matrixM (x). The solutions are easily
found to be

m6~x!5
1

2
@M11~x!1M22~x!6R~x!#,

where

R~x!5A„M11~x!2M22~x!…214M12~x!M21~x!

and
5-3
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TABLE II. Eigenvalues and eigenvectors of a single pair (N52), equilateral triangle (N53), and square
array (N54) of TLA’s.

N n v Eigenvalues Eigenvectors

2 1 1 2a ~21,1!
2 a ~1,1!

3 1 1,2 2a ~21,21,2!; ~1,21,0!
3 2a ~1,1,1!

4 1 1,3 2b ~0,21,0,1!; ~1,0,21,0!
2 22a1b ~21,1,21,1!
4 2a1b ~1,1,1,1!

2 1,3 0 ~0,21,0,1;0,0!; ~1,0,21,0;0,0!; ~0,0,0,0;1,21!

2 22b ~21,1,21,1;0,0!
4 b6R (1,1,1,1;x6 ,x6)

R5Ab218a2 x65(2b6R)/2a
s
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.
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V6~x!5S M11~x!2M22~x!6R~x!

2M21~x! D .

The eigenvalues and eigenvectors ofM (2) can then be shown
by direct substitution to be$m6(lv)% and

U ~v !
6 5V6~lv! ^ u~v !5S V1

6~lv!u~v !

V2
6~lv!u~v !

D ,

wherev51,...,5. As withn51, for degenerate eigenvalue
we form the real linear combinations of the eigenvectors;
complete orthogonal basis set is listed in Table I.

In general, the eigenvalue equation for then52 excita-
tions of any odd-N array of TLA’s is solved in the same way

~i! The interaction matrixM (2) is partitioned into an array
of square submatrices, each of dimensionN3N.

~ii ! The eigenvalue equation of matrixMi j (P) is solved,
whereP is theN3N matrix analogous to Eq.~1!.

~iii ! The eigenvalue equation is solved for the correspo
ing (N21)/23(N21)/2 matrixM (x), yielding eigenvalues
$m ( i )(x)% and eigenvectors$V( i )(x)%.

~iv! The eigenvalues and eigenvectors ofM (2) are then
given by $m ( i )(l

v)[G(v i )
(2) 1 iF (v i )

(2) % and $U (v i )5V( i )(l
v)

^ u(v)%, where v51,...,N, i 51,...,b(N21)/2c, l5e2p i /N,
and the vectors$u(v)% are the eigenvectors of the matrixP
corresponding to theN-sided polygon.

2. Even values of N

The calculations for then52 energies and eigenstates f
even values ofN cannot be described~or performed! so suc-
cinctly. This is due to the fact that (N21)/2 is an odd half-
integer. As a result, the matrix forM (2) consists of 2 parts: an
inner ‘‘core’’ of b(N21)/2c3 b(N21)/2c square submatrices
each of dimensionN3N, plus an outer section ofN/2 extra
01381
e

-

columns to the right and rows at the bottom of the core. F
example, then52 interaction matrix forN54 is given by

M ~2!5S 0 b 0 b a a

b 0 b 0 a a

0 b 0 b a a

b 0 b 0 a a

a a a a 0 0

a a a a 0 0

D ,

with an inner core matrixM (P)5b(P1P3), where P is
now the 4-dimensional analogue of Eq.~1!.

The calculations are performed in the following mann
we illustrate the general procedure with the example ofN
54.

~i! The energy eigenvalues and vectors of the ‘‘core’’ m
trix are obtained, in exactly the same way as described in
previous section for odd values ofN.

For the case ofN54, the eigenvectors ofM (P) are the
same as those ofN54, n51, which in turn are the same a
those ofP. They appear in Table II.

~ii ! These eigenvectors are then divided into 2 grou
according to their symmetry or antisymmetry. The vecto
~1,1,...,1,1! and ~1,21,1,21,...,1,21! are always eigenvec
tors, the former symmetric, the latter antisymmetric; the
mainder are classified according to their symmetry under
tations ofp about the symmetry axis.

In the case ofN54, three of these eigenvectors~those
corresponding tov51, 2, and 3 as listed in Table II! are
antisymmetric, while that corresponding tov54 is symmet-
ric.

~iii ! The antisymmetric eigenvectors are appended w
N/2 0’s; the resulting vectors are eigenvectors ofM (2), and
the corresponding energies are found by direct substituti

In the case ofN54, by appending two 0’s to the ends o
the antisymmetric vectors, we obtain the following thr
eigenvectors ofM (2):
5-4
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U ~1!5S 1
0

21
0
0
0

D , U ~2!5S 21
1

21
1
0
0

D , U ~3!5S 0
1
0

21
0
0

D .

The corresponding eigenvalues are found by substitution
symmetry, we see that a fourth~antisymmetric! eigenvector
of M (2) is U5(0,0,0,0,1,21).

~iv! The symmetric eigenvectors are extended into the
of the n52 subspace in a symmetric fashion.

For the example ofN54, the remaining 2 eigenvector
are found from the symmetric eigenvectoru(4)5(1,1,1,1) of
M (1). We substitute into the eigenvalue equation forM (2) the
trial vector U5(1,1,1,1,x,x), obtaining 2 ~independent!
equations forx and the eigenvaluesm:

2b12ax5m, 4a5mx.

These have the solutions

m65b6R, x65
4a

b6R
,

whereR5Ab218a2. This completes our set of 6 eigenve
tors of M (2). They are listed together with their correspon
ing eigenvalues in Table II.

A number of simple properties are immediately evident
these eigenvalues and vectors. For example, in the lo
wavelength limit only onen51 state is optically active in
absorption and emission, and it is superradiant, having
eigenvalue whose imaginary part→Ng; the N21 other
single-excitation states are subradiant, with the imagin
parts of their eigenvalues→0. In general, there arebN/2c ~op-
tically active! n52 states which can be excited sequentia
via two-photon absorption from the ground state. In gene
too, then52 states decay inton51 states~although these in
turn may be subradiant!; however, for even-N polygons,
there is~at least! one n52 state which is itself completely
subradiant. We point out that theN54, n52 eigenstates are
the first which depend on the actual strength of the inter
tion, and not merely on its symmetry. In Fig. 2, we illustra
the distance dependence of their decay rates. In the lo
wavelength limit, three of the eigenstates have their de
rates unchanged from the noninteracting value of 2g, and
one state is superradiant, with an asymptotic value of 5.9g
~@8#, Table III!. The remaining two states are subradiant: O
shows weak optical activity, with asymptotic decay ra
0.070g, and one iscompletelysubradiant, with decay rat
→0; thus, this state is of possible interest for the encoding
quantum information.~We have cut off the figure atl/r
510, wherer is the nearest-neighbor distance, in order
retain the visibility of some of the oscillations at low valu
of the argument, which correspond to shorter wavelength!
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C. Triple excitation eigenstates

To complete the sets of eigenstates for theN56 andN
57 polygons, we require those corresponding to then53
excitations. These are obtained with methods very simila
those used for then52 states. ForN57, theM (3) matrix is
first partitioned into a 535 array of square submatrices, ea
of dimension 737. The solution then requires the~prelimi-
nary! diagonalization of a 535 matrix M (P), but is other-
wise a direct extension of the method used forn52.
For N56, we choose the basis vectors in th
order: $uB124&,uB235&,...,uB613&;uB134&,uB245&,...,uB623&;
uB135&,uB246&%. Doing so we find that the matrixM (3) con-
sists of a core array of 333 submatrices, each of dimensio
636, together with an outer section of 2 columns to the rig
and 2 rows at the bottom of the core. The solution consist
2 stages: In the first stage, the eigenvalues and eigenve
of the core matrix are found, and in the second the symm
ric and antisymmetric eigenvectors of the core are exten
to become those of the full 20320 matrix, in a manner en
tirely analogous to that employed forN56, n52. The com-
plete set of eigenvalues and eigenvectors forN56 is listed
in Table III. Those forN57 are available upon request.

II. OTHER STRUCTURES

We have calculated the eigenstates of a number of o
simple structures as well~such as short linear chains, para
lelograms, trapezoids, etc.!, using symmetry consideration
and brute force; results for these are available upon requ
In this section, we present a few examples of~3-dimensional!
structures for which the energy levels and eigenstates ca
calculated by adapting the methods developed in Se
above.

A. ‘‘Diamond’’ structures

We consider a system consisting of anN-sided polygon of
TLA’s, together with one TLA above, and one below th
center of the polygon. Then51 eigenstates of this system

FIG. 2. Distance dependence of the decay rates of theN54, n
52 eigenstates.
5-5



c.

gh
te

ar

0

b

nd

by
e

th

f
n
f t

n

rst
g

ta-
n

n-

ual

t a
n all
with

e.

s

RUDOLPH, YAVIN, AND FREEDHOFF PHYSICAL REVIEW A69, 013815 ~2004!
can be obtained by the same method as that used in Se
for the calculation of then52 eigenstates of theN54 poly-
gon: The interaction matrix consists of anN3N ‘‘core’’
which is the interaction matrixM (1) of the polygon, aug-
mented by an outer section of 2 extra columns to the ri
and rows at the bottom of the core. For example, the in
action matrix for a ‘‘diamond’’ based on anN56 polygon is

M51
0 a b c b a d e

a 0 a b c b d e

b a 0 a b c d e

c b a 0 a b d e

b c b a 0 a d e

a b c b a 0 d e

d d d d d d 0 f

e e e e e e f 0

2 ,

whereV i7[d for i 51, . . . ,6,V i8[e, andV78[ f .
The first 5 eigenvectors and eigenvalues of this matrix

those listed in Table III, corresponding to then51, v
51,...,5 states of the hexagon, each appended by two
The remaining 3 eigenvectors are of the formu
5(1,1,1,1,1,1;x,y) and correspond to eigenvaluesm such
that x, y andm satisfy the equations

m2dx2ey52a12b1c, mx2 f y56d, my2 f x56e.

For a symmetric diamond,e5d andy5x and there remain
only 2 such symmetric eigenstates; the third is replaced
the antisymmetric vectoru5(0,0,0,0,0,0;1,21) and corre-
sponds to eigenvaluem52 f . ~For a ‘‘pyramid,’’ e5 f 5y
50, and there remain 2 symmetric eigenstates.!

In the long wavelength limit, the antisymmetric state a
the states corresponding tov51,...,5 are all optically inac-
tive, while the 2 symmetricv56 states are~in general! ac-
tive. For example, for a structure having atoms 7 and
equally spaced above and below the hexagon center
distance equal to the nearest-neighbor separation in the h
gon, the following values result:

m15~2.64V14.423i !g, x1520.36710.0024i ,

m25~20.38V13.577i !g, x258.12310.053i .

Here,\Vg is the nearest-neighbor interaction energy in
hexagon.

B. Polygon multilayers

The method introduced in Sec. I B can also be used
calculate then51 eigenstates of structures consisting ol
layers of N-sided polygons, arrayed in parallel planes a
centered on the same axis. The polygons need not be o
same linear dimension, and/or may be rotated relative
each other by an arbitrary angle~although aligned vertically
or rotated by angles which are integer multiples ofp/N give
the simplest solutions!. The interaction matrix consists of a
l 3 l array of square submatrices, each of dimensionN3N.
Each submatrix has as its eigenvectors those of theN-sided
01381
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polygon, and those of the full matrix are obtained by fi
diagonalizing thel 3 l auxiliary matrix and then proceedin
as in Sec. I B.

For example, the interaction matrix for 2 layers of pen
gons, either aligned vertically or with a relative rotatio
angle ofp/5, has the form

M ~P!5S M11~P! M12~P!

M21~P! M22~P!
D ,

where the submatrices are given byM11(P)5a(P1P4)
1b(P21P3), M12(P)5M21(P)5cI1d(P1P4)1e(P2

1P3), and M22(P)5a(P1P4)1b(P21P3). The eigen-
vectors of each submatrix are the vectorsu(v) of the penta-
gon listed in Table I forn51, v51,...,5; their eigenvalues
are m11(v)52ac2v12bc4v , m12(v)5m21(v)5c12dc2v
12ec4v , and m22(v)52ac2v12bc4v , where cj
[cos(jp/5). Proceeding as in Sec. I B, we find for the eige
values ofM (P) the results

m6~v !5
1

2
@m11~v !1m22~v !6Q~v !#,

where

Q2~v !54@~a2a!c2v1~b2b!c4v#2

14@c12dc2v12ec4v#2.

The associated eigenvectors are U6(v)
5(V1

6(v)u(v) ;V2
6(v)u(v)), where V1

6(v)5m11(v)
1m22(v)6Q(v) andV2

6(v)52m12(v).

C. Icosahedron

The icosahedron consists of 2 pentagon layers of eq
size, rotated relative to each other by an angle ofp/5, with 2
additional atoms~symmetrically! placed on the symmetry
axis above and below the center of the double layer a
height such that the nearest neighbor distances betwee
pairs of atoms are equal. Its eigenstates can be obtained
a combination of the methods in Secs. II A and II B abov

The double layer of pentagons hasa5a and b5b. Its
eigenvalues are therefore given by

m6~v !52ac2v12bc4v6~c12dc2v12ec4v!, ~2!

and eigenvectors byU6(v)5(u(v) ;6u(v)). The first 8 ei-
genvalues of the icosahedron are then given bym6(v) @Eq.
~2!#, and the associated eigenvectors byW6(v)
5@U6(v);0,0#, v51,...,4.

We denote byf [V i 11[V j 12, g[V j 11[V i 12 and h
[V11 12, i 51,...,5 andj 56,...,10. Two more eigenvector
are thenW1(5)5(1,1,1,1,1;1,1,1,1,1;x,x) and correspond
to eigenvaluesm such thatx andm are given by

m65
1

2
@m1~5!1h6R#, 2~ f 1g!x65h2m1~5!6R,

whereR2[„h2m1(5)…2120(f 1g)2. The last 2 eigenvec-
tors are of the form
5-6
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TABLE III. Eigenvalues and eigenvectors of 6 TLA’s arranged on the vertices of a regular hexagon.

n v Eigenvalues Eigenvectors

1 1,5 a2b2c ~1,21,22,21,1,2!; ~1,1,0,21,21,0!
2,4 2a2b1c ~21,21,2,21,21,2!; ~1,21,0,1,21,0!
3 22a12b2c ~21,1,21,1,21,1!
6 2a12b1c ~1,1,1,1,1,1!

2 1,5 6Ab213a2 ~1,21,22,21,1,2; 0,2u6 ,2u6,0,u6 ,u6 ; 0,0,0!
~3,3,0,23,23,0; 2u6 ,u6 ,2u6 ,22u62u6 ,u6 ; 0,0,0!

2,4 n ~21,21,2,21,21,2; 22x,x,x,22x,x,x; 2y,2y,2y)
~1,21,0,1,21,0; 0,2x,x,0,2x,x; 2y,0,y)

3 22b ~21,1,21,1,21,1; 0,0,0,0,0,0; 0,0,0!
2b ~0,0,0,0,0,0;21,1,21,1,21,1; 0,0,0!

6 m ~1,1,1,1,1,1;r,r,r,r,r,r; s,s,s!

n312bn21(4ac2b223a224c2)n12b(b22a214ac)50
x5(n21bn22b2)/@n(a22c)22ab#

m324bm224(2ac1b213a21c2)m116b(b22a222ac)50
y52(an12bc)/@n(a22c)22ab#

r 5(m222bm28b2)/2@m(a1c)14ab#

s52(am12bc)/@m(a1c)14ab#

u652b6Ab213a2

3 1,5 a2b2c (m6 ,2m6 ,22m6 ,2m6 ,m6,2m6 ; 1, 21, 22, 21, 1, 2;21, 22, 21,1, 2, 1; 0,0!
1(a1b)m6 (m6 ,m6,0,2m6 ,2m6,0; 1,1,0,21,21,0; 1,0,21,21,0,1; 0,0!

1,5
2,4

b7a7c ~0,0,0,0,0,0;22,71,1,62,1,71; 61,21,72,21,61,2; 0,0!

~0,0,0,0,0,0; 0,21,71,0,61,1; 1,61,0,71,21,0; 0,0!
2,4 c2a2b (n6 ,n6 ,22n6 ,n6 ,n6 ,22n6 ; 1,1,22,1,1,22; 1,22,1,1,22,1; 0,0!

1(a2b)n6 (n6 ,2n6,0,n6 ,2n6,0; 1,21,0,121,0; 21,0,1,21,0,1; 0,0!
3 s2 (2p2 ,p2 ,2p2 ,p2 ,2p2 ,p2 ; 1,21,1,21,1,21; 21,1,21,1,21,1; 2q2 ,q2)
3
6

7c62a22b ~0,0,0,0,0,0;71,1,71,1,71,1; 21,61,21,61,21,61; 0,0!

6 s1 (p1 ,p1 ,p1 ,p1 ,p1 ,p1 ; 1,1,1,1,1,1; 1,1,1,1,1,1;q1 ,q1)

s6
3 22b63c62a)s6

2 2@4(a21b2)1(2a62b2c)2#s663c@c212(6bc74ab1ac)#50
p652@(2b6a)s613ca#/@s6

2 72cs623c2#

q656@as67ac12bc#/@s6
2 72cs623c2#

m65@2c1b2a6A(2c1b2a)218(a1b)2#/@2(a1b)#

n65@a1b22c6A(2c2b2a)218(a2b)2#/@2(a2b)#
tom
en-

e

W2~5!5~1,1,1,1,1;21,21,21,21,21;y,2y!

and correspond to eigenvaluesn such thaty andn are given
by

n65
1

2
@m2~5!2h6S#, 2~ f 2g!y652„h1m2~5!…6S,

~3!

where S2[„h1m2(5)…2120(f 2g)2. In the long wave-
length limit, only the statesW1(5) are optically active, with
eigenvalues and vectors given by

m15~0.00002V111.98882i !g, x150.9987410.08190i ,

m25~20.02137V10.01118i !g,
01381
x2524.9728810.40782i .

D. Body-centered icosahedron

The eigenstates of an icosahedron with one more a
added at its body center are very similar. There are 8 eig
valuesm6(v) corresponding tov51,...,4, with the associ-
ated eigenvectors„U6(v);0,0,0…. Two more eigenvectors
are given by (1,1,1,1,1;21,21,21,21,21;y,2y,0), with
eigenvaluesn6 of Eq. ~3!. Finally, the last 3 eigenvectors ar
of the form (1,1,1,1,1;1,1,1,1,1;x,x,y) and correspond to
eigenvaluesm such thatx, y andm satisfy the equations

m2~ f 1g!x2 jy5m1~5!,

~m2h!x2ky55~ f 1g!,
5-7
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22kx1my510j ,

where j [V i 13, i 51,...,10, andk[V11 13[V12 13. In the
long wavelength limit, these last 3 states are optically act
with eigenvalues and vectors given by

m15~21.55290V112.95930i !g,

x151.0323510.12245i , y150.9494920.09023i ,

m25~3.34074V10.03909i !g,

x25211.4727214.74688i ,

y2516.1938125.82416i ,

m35~23.80918V10.00161i !g,

x3522.7600610.08068i ,

y3524.5195010.10698i .

E. Dodecahedron

The dodecahedron can be considered as consisting
layers of pentagons, of which those in layers 1~top! and 4
~bottom! are of equal size but smaller than those in layer
and 3. Layers 1 and 2 are aligned with each other, as
layers 3 and 4; however, the top pair is rotated relative to
bottom by an angle ofp/5. The layers are sized and spac
such that the distances between all pairs of nearest neigh
are equal.

The interaction matrix consists of a 434 array of subma-
trices, each of dimension 535. Using the method of Sec
II B, we first find the eigenvalues and vectors of the auxilia
matrix M,

M5S A C D F

C B E D

D E B C

F D C A

D .

Here,A is the 535 submatrix representing the interactio
between the atoms within layer 1~and 4!; B represents the
interactions between the atoms within layer 2~and 3!; C
represents those between the atoms of layers 1 and 2~and 3
and 4!, D those between the atoms of layers 1 and 3~and 2
and 4!, E those between atoms of layers 2 and 3, andF those
between atoms of layers 1 and 4. The eigenvalues ofM are
given by

m65
1

2
~A1B1E1F6R!

corresponding to the eigenvectors
01381
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U65S A2B2E1F6R
2~C1D !

2~C1D !

A2B2E1F6R
D ,

and

n65
1

2
~A1B2E2F6S!

corresponding to the eigenvectors

V65S A2B1E2F6S
2~C2D !

22~C2D !

2~A2B1E2F6S!

D ,

where R25(B2A2E1F)214(C2D)2 and S25(B2A
1E2F)214(C2D)2.

The eigenvalues and vectors of the dodecahedron are
found by substituting the eigenvaluesa(v) for A, b(v) for B,
etc.; they are given by

m6~v !5
1

2
@a~v !1b~v !1e~v !1 f ~v !6R~v !#

corresponding to the eigenvectors

W6~v !5„U1
6~v !u~v ! ;U2

6~v !u~v ! ;U3
6~v !u~v ! ;U4

6~v !u~v !…

and

n6~v !5
1

2
@a~v !1b~v !2e~v !2 f ~v !6S~v !#

corresponding to the eigenvectors

Z6~v !5„V1
6~v !u~v ! ;V2

6~v !u~v ! ;V3
6~v !u~v ! ;V4

6~v !u~v !…,

where u(v) are the eigenvectors of the pentagon andv
51,...,5. In the long-wavelength limit, only the statesW6(5)
are optically active, with eigenvalues and eigenvectors gi
by

m15~3.05984V110i !g,

U1
15U4

150.558810.6906i /V,

U2
15U3

1520.439612.2882i /V,

m25~0.04101V110i !g,

U1
25U4

250.400510.8775i /V5,

U2
25U3

250.582722.4829i /V.
5-8
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III. CONCLUSIONS

We have calculated the eigenstates corresponding to
herent single and multiple excitations of an array ofN iden-
tical TLA’s arranged on the vertices of a regular polygo
and of a number of related 3-dimensional structures. T
atomic coupling occurs via an exchange interaction wh
depends only on their separation. We include the interact
between all pairs, and our results are valid for arbitrary d
tances relative to the radiation wavelength. These states
used in@8# to study the absorptive and emissive properties
a number of polygon systems.
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