PHYSICAL REVIEW A 69, 013815 (2004
Evolution in time of an N-atom system. Il. Calculation of the eigenstates
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We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excita-
tions of a number of different arrays of identical two-level atomgTLAS) or qubits, including polygons,
“diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling
occurs via an exchange interaction which depends on the separation between the atoms. We include the
interactions betweemll pairs of atoms, and our results are valid for arbitrary separations relative to the
radiation wavelength.
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In this paper, we calculate the eigenstates of some regular The eigenstates of regular polygons are calculated in Sec.
geometrical arrangements Nfidentical(coherently excited I. In Sec. | A, we begin by reviewing the calculation of the
two-level quantum systems. Such systems are known as geigenstates for singlen 1) excitations of a system dfl
bits to the quantum information community and as two-levelTLA's arranged at the vertices of a regular polygon and in-
atoms(TLAs) to the quantum optics/spectroscopy commu-teracting via an exchange interaction, valid for arbitrsryn
nity. The coherent excitation of identical TLAs has long Sec. | B we present a method for calculating the eigenstates
been of interest to spectroscopists, in connection with théor double f=2) excitations of the system, also for arbi-
theory of molecular excitorid | for example, or the phenom- trary N. Finally in Sec. | C, we outline the calculation of the
enon of superradiancg2]. More recently, the interest has triplet (n=3) eigenstates foN=6 and 7, and present in
been in connection with the optical properties of molecularTables 111l the complete set of eigenstates for all regular
clusters or aggregat¢8], many of which properties are be- polygons up to and including=6; results forN=7 are
lieved to be related to the coherent interaction of the aggreavailable upon request.
gates with the radiation field. At the same time, multiparticle In Sec. I, we adapt the methods of Sec. | to study other
entangled states of qubits have become an active area sfructures: “diamonds” and “pyramids” in Sec. Il A, poly-
study in the field of quantum information theory. The resultsgon multilayers in Sec. Il B, icosahedra in Secs. IIC and
presented here are of relevance to this community in thél D, and dodecahedra in Sec. Il E. As discussed8h the
studies of decoherence-free subspddésnd investigations optical activity or inactivity of the eigenstates in absorption,
into the entanglement properties of rings of quibg$ as well as their total decay rates in emission, is immediately

We emphasize the complete generality of the majority ofevident in the imaginary parts of their eigenvalues. For quan-
the results obtained herein: our results are applicable to atum information theorists, there is special interest in these
systems in which excitation is exchanged between the pairotal decay rates in order to identify particularly long lived
of interacting TLAs. Such exchange interactions occurstates, which might be useful for encoding quantum informa-
widely: For example, our theory is applicable to systems intion. To quantum information theorists, these are known as
which the coupling is via a spin-exchange interaction, or via‘decoherence-free” states, and to spectroscopists as “subra-
a retarded dipole-dipol@uadrupole-quadrupdlénteraction,  diant” states[9]. In general, complete subradiance exists
such as exists in coherent dipd&| (quadrupolg7]) radia- only in the small sample limit, when distance effects are
tive excitation of atoms or molecules. Our calculations aregnored. Since our calculations contain the complete distance
valid for arbitrary distances relative to the radiation wave-dependence, they can be used to examine deviations from the
length, and we damot make the common approximation of “long wavelength” or “equal collective decoherence” as-
including only nearest-neighbor interactions, but rather wesumption commonly made in the theory of decoherence-free
diagonalize the full Hamiltonian: This is important becausesubspaces.
for many physically realistic systems the coupling between In the spectroscopy community, the study of collective
nonnearest neighbors can exceed that between adjacent atomic phenomena is many years old, beginning with
oms. Dicke’s pioneering articl¢6]; for the early work, se€2,11],

and references therein. A detailed study of the cooperative
emission by a fully-excited system of 3 identical atoms in
*Electronic address: hsf@yorku.ca some specific geometrical configurations was performed by
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cussed there, the real part f; is the interatomic interac-
tion energy, and the imaginary part the interatomic damping.
[In many systems as well an interaction exists between near-
est neighborge.g., due to atomic overlan additionto the
electromagnetic exchange interaction which occurs between
all pairs. These forces too can be included trivially in our
analysis, simply by incorporating them into the nearest-
neighbor interaction(}; ;.;=a.] This results in a non-
Hermitian Hamiltonian, with complex eigenvalues. As dem-
onstrated irf 8], the real part of the eigenvalue gives the shift
of energy of the state due to local field effects, and the imagi-
nary part gives its total decay constdat inverse lifetime.

Richter [10], while the complete eigenstates for two- and 'Lhe fH” Hamiltonian to be d.ia.gonalized.is repre;ented by
three-atom systems of arbitrary geometrical arrangement cdh 2 <2 matrix. Fortunately, it is block-diagonal in struc-

be found in Ref[11]. The single-excitation eigenstates of (U'€, Preaking up into a series of submatrices, in each of
linear chains were presented[it2], of two-dimensional ar- which the coupled subsets of states all have the same number

rays in[13], and of rings and regular polygonslit4]. Single N of excited TLAs. The submatrices are of dimensid)) ,(
and double excitations of regular polygons in the long-a@nd the submatrix fon excited atoms is the same as that for
wavelength limit were considered by Spano and MukameN—n excited, a general property of exchange interactions;
[3]; however, they included in their calculations only nearestthis halves the amount of work we must dand conse-
neighbor interactions, so that our energy eigenvalues an@uently we tabulate results only for=1,...[N/2]). The n

FIG. 1. Aregular hexagon of interacting TLA'.

eigenstates differ considerably from theirs. =0 andn=N eigenstates are juffs) and |E), respectively.
. REGULAR POLYGONS A. n=1: Single excitation eigenstates
We consider systems o identical TLA's located at po- The single excitatioior n=1) eigenstates of a system of

sitionsR; , each with ground stat@;), excited statéb;) and N TLAs arranged at the vertices of a regular polygon were

transition frequencyw,. The atomic Hamiltonian is then calculated years agfil4], guided by the symmetry of the
system under rotation about an axis perpendicular to the

given by ) !
polygon plane; then=1 eigenvalues and eigenstates For
N =1-6 are tabulated there. Here we rewrite these calcula-
HA=2l fiwo|bi){by]. tions in a notation which allows us to extend them to states
<

containing higher numbers of excited TLA's, using the case
" pa- Of N=5 as an example.
In the subspace spanned by the basis vectors
I?Bl),|Bz),...,|BS)}, the matrix to be diagonalized has the
gorm

Henceforth, we will label states in the “computational
sis, i.e., the bare noninteracting states, according to whic
atoms are excited therein; for example, the state ofNhe

=5 system in which atoms 2 and 5 are excited is written a

|Bos)=|ai)|by)|as)|as)|bs). The state with all atoms in the 0 ab b a
state|a) (|b)) is denoted byG) (|E)).
The generic(excitation) exchange interaction Hamil- a 0 abwb
tonian of the TLAs is given by MP=| b a 0 a b
N b b a 0 a
Him=i12:l nQy;S'S a b b ao
i

. B o ) We introduce the matri®, a generator of the 5-dimensional
whereS™ andS~ are the raising and lowering operators of representation ofs (the cyclic group of order 5
atomi. The sole assumption we make regarding the interac-
tion potential();; is that it is a function only of the separation
between atomsandj, R;j;=R;—R; . We focus in this section
on atoms arranged at the vertices of regular polygons, and
number them sequentially around the polygsee Fig. 1 pP=
For nearest-neighbor atoms, we defldg;.;=a; similarly,
Q; j+,=Db; for N atoms there argN/2| characteristic inter-
actions, which we label sequentially alphabetically. For use
with the master equation, we will include in the full Hamil-
tonian the free-atom  radiation damping Hy;  The eigenvalue equation &fis given by
=3 fiy|b)(b;| as well, and allow theQ;; to be
complex—their exact expressions are giver{&. As dis- PuU,) =\Ug,),

(€

~ O O O O
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TABLE |. Eigenvalues and eigenvectors of 5 TLAs arranged on the vertices of a regular pentagon.

n v Eigenvalues Eigenvectors
1 14 2(ca—cyb) (C2,C4,C6,C3,C10); (S2,54:S6,S8,510
2,3 2(-cjat+cyb) (€4,C8,C12,C16,C20); (Sa:Sg,S12,S16,520)
5 2a+2b 11,112
2 1,4 E.(—c4a,c5b) (cs,—€1,—C1,C5,1; v.Cy,U+ ,0+Cy,—V+Cq,—V+Cq)
(—=1,-2¢5,2¢5,1,0;0+,0,—v+,—20+C5,20-Cy)
2,3 E.(coa,—cb) (—=c¢4,C5,C5,—Cq,1; —W.Cq ,W.,—W.Cq,W.Cy,W.C))
(—2¢,,1,—1,2¢,,0; 2W-..C»,0,—2W.Cy, W ,—W-)
5 E_.(a,b) (1,1,1,1,2;u,u,u,u,u
E_(a,b) (uu,uuy—-1,-1,-1,-1,-1)
c;=cos(m/5) u=G,(a,b)
sj=sin(jm/5) v.=G.(—cya,c,b)
Fla,B)=V5(a+p) —4ap w.=G.(cza,—cqb)
E.(a,B)=a+B*F(a,p) G.(a,p)=[a—B=F(a,B)]/2(a,B)
where )\EeZ’T”E’., u(,,)=()\”,)\2”,.)\3”,)\4",)\5”), and v M (P) Mio(P)
=1,...,5. We define the polynomiadl (x) = a(x+x*) +b(x? M@(P)= :
+x%), in terms of whichM®=M(P). SinceM™®) is a sum M21(P)  Moy(P)

of powers ofP, the eigenvectors,, of P will be eigenvec-

() | iti i -
tors of M) as well, and we write the eigenvalue equation Thus,M™ is partitioned into a X 2 array of square subma

trices, each of dimension>5. The ability to write the ma-
trix in this form is directly due to the ordering of the basis
vectors, which allows the rotational symmetry of the penta-
gon to be reflected in each of the submatrices. It is easy to

_ _ show that for any odd value &, M(?) can be partitioned in
1 nondegenerate eigenvalue corresponding 5, M) this way into an array of l—1)/2x (N—1)/2 square sub-

=2a+2b, and (5-1)/2 degenerate pairs of eigenvalues, n\auices, each of dimensidix N. This results in a dramatic
corresponding to roots which are complex conjugates of eaclmification of the problem, for instance here we need di-

. _ 57 . -
other:A”=(\>"")". The eigenvector correspondings)  agonalize only a 2-dimensional matrix instead of the original
is simplyu(s)=(1,1,1,1,1). For the eigenvectors correspond-1_dimensional one.

ing to the degenerate pairs of eigenvalues, we choose the real p5 with the n=1 case discussed above. each matrix

linear combinations ofi,) andu(s ), M;;(P) is a linear combination oP and its powers, and
therefore has the eigenvalue equation

1 _
M@ U, =m, U, ,

where the eigenvalues,,=M(\")=G{J+iF(}). There is

1
N
Uy =5 (U FUis—o),

M;j(P)Ug)=M;j(N") Uy,

(=) 1 where\” andu, are the eigenvalues and eigenvector® of
U :E(”w)_U(S—v))- In order to obtain the eigenvalues and eigenvectons! &7,
we first solve the eigenvalue equation

Together withus), these form an orthogonal basis set for
then=1 subspace. They are listed in Table I. MX)V(X)=u(x)V(x),

whereV(x) is an eigenvector and(x) an eigenvalue of the
two-dimensional matrixM(x). The solutions are easily
1. Odd values of N found to be

B. n=2: Double excitation eigenstates

We continue with the example di=5 to demonstrate 1
how to calculate the=2 (biexciton) eigenstates for general wE(X)= §[M11(X)+ M ys(X) = R(X)],
odd values ofN. The subspace corresponding N=5, n
=2 has 10 basis states, which we take in the order

{IB12),|B23),...[B51);|B13),[B2g),-...[Bs)}- where
If we define the four polynomialdvi,,(x)=b(x+x?),
M 1o(X) =a(x*+x%) +b(x+x%), My (x)=a(x+x°)+b(x? R(X) = V(M 11(X) = M2o(X))?+4M 15 X) M 4(X)
+x%) and M,(x)=a(x?+x%), then the interaction can be
represented by the X010 matrix, and
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TABLE II. Eigenvalues and eigenvectors of a single p&le<(2), equilateral triangleN=3), and square
array N=4) of TLA’s.

N n v Eigenvalues Eigenvectors

2 1 1 —-a (-1,
2 a (1,9

3 1 1,2 -a (-1,-1,2; 1,-1,0
3 2a (1,1,

4 1 1,3 -b (0,-1,0,9; (1,0-1,0
2 —2a+tb (-1,1-1,1
4 2a+b (11,12

2 1,3 0 (0,-1,0,1;0,0; (1,0-1,0;0,0; (0,0,0,0;1-1)

2 —2b (-1,1-1,1,0,0
4 b=R (1,1,1,1x+ ,x+)

R=\b’+8a’ x.=(—b*R)/2a

- M 13(X) = M22(X) ZR(X) columns to the right and rows at the bottom of the core. For
V= (x)= 2M ,(X) : example, then=2 interaction matrix foN=4 is given by

O b Ob a a

The eigenvalues and eigenvectorsw?) can then be shown b 0 b0 aa
by direct substitution to béu*(\")} and V@ O b 0Ob a a

| b 0b o0 a af’
a a a ao0o 0
Vi (M), a aaab0ao

U =VE(\)QU =],
0=V (NS U (Vz‘(k”)um

with an inner core matrixM (P)=Db(P+ P3), whereP is
wherev=1,...,5. As withn=1, for degenerate eigenvalues NOW the 4-dimensional analogue of Hd). _
we form the real linear combinations of the eigenvectors; the The calculations are performed in the following manner;
complete orthogonal basis set is listed in Table I. we illustrate the general procedure with the exampleNof
In general, the eigenvalue equation for the 2 excita- =4-

tions of any oddN array of TLASs is solved in the same way. (i) The energy eigenvalues and vectors of the “core” ma-
(i) The interaction matriM ) is partitioned into an array ~trix are obtained, in exactly the same way as described in the

of square submatrices, each of dimensitx N. previous section for odd values bE
(i) The eigenvalue equation of matri;;(P) is solved, For the case oN=4, the eigenvectors dfI(P) are the
whereP is theNx N matrix analogous to Eq1). same as those ®i=4, n=1, which in turn are the same as

(iii) The eigenvalue equation is solved for the correspondthose ofP. They appear in Table Il. .~~~
ing (N—1)/2x (N—1)/2 matrixM(x), yielding eigenvalues (i) These eigenvectors are then divided into 2 groups,
{wm(¥)} and eigenvectorsV;,(x)}. according to their symmetry or antisymmetry. The vectors

() The eigenvalues and eigenvectorsaf® are then oo T E L eymmetnc: the re

i (=G i) N/ (\V ) Y IC, ISy IC; -
given by {’u(')()\_) San .I_F(’”)} and {U) Y(BQ\,N) mainder are classified according to their symmetry under ro-
®U,}, wherev=1,.N, i=1..[(N-1)/2], \=e , tati )

: ations of7r about the symmetry axis.
and the vectorgu,} are the eigenvectors of the matifx h N=4 th f th .
corresponding to thél-sided polygon. In the case o =4, three of t ese elggnvecto(mose
corresponding tav=1, 2, and 3 as listed in Table)llare
antisymmetric, while that correspondingde-4 is symmet-
ric.

The calculations for the=2 energies and eigenstates for (i) The antisymmetric eigenvectors are appended with
even values oN cannot be describe@r performed so suc- N/2 O’s; the resulting vectors are eigenvectorsl\b(fz), and
cinctly. This is due to the fact thatN(—1)/2 is an odd half- the corresponding energies are found by direct substitution.
integer. As a result, the matrix fol %) consists of 2 parts: an In the case oN=4, by appending two O’s to the ends of
inner “core” of | (N—1)/2|X|(N—1)/2] square submatrices, the antisymmetric vectors, we obtain the following three
each of dimensioNx N, plus an outer section d/2 extra  eigenvectors oM (?):

2. Even values of N

013815-4
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1 -1 0 N —=
0 1 1 - | p— 24b-(p%+8Y)"2 | T
-1 -1 0 O 5091 2+b+(b%+82°) ™
Un=| o | Yo=| 1 | Ye=| _1 £ 45
S 401
0 0 0 p= 4.0+
0 0 0 © 357
& 3.0 I
The corresponding eigenvalues are found by substitution. By & "’-5'_.;" K tural biexciton d t
symmetry, we see that a fourfantisymmetri¢ eigenvector & 20 ) '\/ - halura’ biexcifon decay rale
of M@ is U=(0,0,0,0,1;-1). TR LGS subradiant states
(iv) The symmetric eigenvectors are extended into the rest ;5] *..° ™.
of then=2 subspace in a symmetric fashion. 05.] Tl
For the example oN=4, the remaining 2 eigenvectors 1 T N T
are found from the symmetric eigenvectqy,=(1,1,1,1) of R - S A S S
M1, We substitute into the eigenvalue equationNti?) the Ar
trial vector U=(1,1,1,1x,x), obtaining 2 (independent
equations forx and the eigenvalues: FIG. 2. Distance dependence of the decay rates ofthel, n
=2 eigenstates.
2b+2ax=pu, 4a=ux. C. Triple excitation eigenstates

To complete the sets of eigenstates for Me6 andN
These have the solutions =7 polygons, we require those corresponding to i3
excitations. These are obtained with methods very similar to
4 those used for tha=2 states. FON=7, theM ) matrix is
a : o . .
u =b*R, x'=—-x, first partitioned into a X5 array of square submatrices, each

+R of dimension 7 7. The solution then requires ttprelimi-
nary) diagonalization of a %5 matrix M (P), but is other-

whereR= bZ+8aZ This completes our set of 6 eigenvec- ViS€ a_direct extension of the method used for2.
tors of M(®). They are listed together with their correspond- 0" N=6, we  choose the basis vectors in the
ing eigenva|ues in Table II. order: {|8124>3|B235>!'"v|3613>'|Bl34>'|BZ45>1."'(’|3)BGZ3>!

A number of simple properties are immediately evident in|B133),|B24g)}. Doing so we find that the matrik1® con-

these eigenvalues and vectors. For example, in the long!Sts Of & core array of83 submatrices, each of dimension
wavelength limit only onen=1 state is optically active in X 6, together with an outer section of 2 columns to the_ right
absorption and emission, and it is superradiant, having a@nd 2 rows at the_bottom of the core. The solution 90n5|sts of
eigenvalue whose imaginary parNy; the N—1 other 2 stages: In the_ﬂrst stage, the e|genvalues and eigenvectors
single-excitation states are subradiant, with the imaginary the core matrix are found, and in the second the symmet-
parts of their eigenvalues0. In general, there at&/2] (op- i€ and antisymmetric eigenvectors of _the_ core are extended
tically active n=2 states which can be excited sequentially!® Pecome those of the full 2020 matrix, in a manner en-

via two-photon absorption from the ground state. In generali"®ly @nalogous to that employed fbr=6, n=2. The com-

too, then= 2 states decay into=1 stategalthough these in plete set of eigenvalues and elgen_vectorsNGfG is listed

turn may be subradiant however, for everN polygons, " Table lll. Those forN=7 are available upon request.

there is(at least onen=2 state which is itself completely

subradiant. We point out that ti=4, n=2 eigenstates are Il. OTHER STRUCTURES

the first which depend on the actual strength of the interac-

tion, gnd not merely on its symmetry. In Fig. 2, we IIIUStratesimple structures as welsuch as short linear chains, paral-
the dlstance.dgpendence of th?'r decay rates. In t.he Ionfl’élograms, trapezoids, efc.using symmetry considerations
wavelength limit, three of the eigenstates have their decay,q"hyte force; results for these are available upon request.
rates unchanged from the noninteracting value of @d | s section, we present a few exampleg®tiimensional

one state is superradiant, with an asymptotic value of %930 g,ctres for which the energy levels and eigenstates can be
([8], Table ll). The remaining two states are subradiant: One 9y 9

. L . ) calculated by adapting the methods developed in Sec. |
shows weak optical activity, with asymptotic decay rate gpove.
0.070y, and one iscompletelysubradiant, with decay rate
—0; thus, this state is of possible interest for the encoding of
quantum information(We have cut off the figure ak/r
=10, wherer is the nearest-neighbor distance, in order to We consider a system consisting ofldssided polygon of
retain the visibility of some of the oscillations at low values TLAS, together with one TLA above, and one below the
of the argument, which correspond to shorter wavelengths.center of the polygon. Tha=1 eigenstates of this system

We have calculated the eigenstates of a number of other

A. “Diamond” structures
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can be obtained by the same method as that used in Sec. I@lygon, and those of the full matrix are obtained by first
for the calculation of then=2 eigenstates of thd=4 poly-  diagonalizing thd X1 auxiliary matrix and then proceeding
gon: The interaction matrix consists of a&hxN “core” as in Sec. IB.

which is the interaction matrisM®) of the polygon, aug- For example, the interaction matrix for 2 layers of penta-
mented by an outer section of 2 extra columns to the righgons, either aligned vertically or with a relative rotation
and rows at the bottom of the core. For example, the interangle of#/5, has the form

action matrix for a “diamond” based on ad=6 polygon is

M(P (Mll(P) MlZ(P))
0 abechbad P = MauP) MoaP))"
a 0 ab c b d e ) )
where the submatrices are given b§,,(P)=a(P+P?)
b a0Oabocde +b(P2+P3),  Mi(P)=My(P)=cl+d(P+P*+e(P?
c b a0Oawbde +P3), and M,(P)=a(P+P* + B(P?+P?). The eigen-
M= b cbaoadel vectors of gach submatrix are the vectags, pf t_he penta-
gon listed in Table | fom=1, v=1,...,5; their eigenvalues
a b c b al0de are myy(v)=2acy,+2bcs,, Miv)=my(v)=c+2dcy,,
d d d d d do f +2ec,,, and my(v)=2acC,,+2BCs,, Where c;
e e e e e e 10 =cos(n/5). Proceeding as in Sec. | B, we find for the eigen-

values ofM(P) the results
whereQ;=d fori=1,...,6,Q;3=e, andQ,g=f.
. . . . . 1

The first 5 eigenvectors and eigenvalues of this matrix are M. (v)= = [My(v) +My(v) =Q(v)],
those listed in Table 1, corresponding to the=1, v N 2
=1,...,5 states of the hexagon, each appended by two O’s.

- . Where
The remaining 3 eigenvectors are of the form
=(1,1,1,1,1,1x,y) and correspond to eigenvalues such Q2(v)=4[(a— a)Cy,+ (b—B)Cy, 12
thatx, y and m satisfy the equations
+4[c+2dc,, +2ec,, ]2

m—dx—ey=2a+2b+c, mx—fy=6d, my—fx=6e.

E ic di &=d andy= dth . The associated eigenvectors are U™ (v)
or a symmetric diamond=d andy=x and there remain = (V3 () U V3 () Ugey), where V() =myy(v)

only 2 such symmetric eigenstates; the third is replaced b £y
the antisymmetric vectou=(0,0,0,0,0,0;1-1) and corre- Mao(v) = Q(v) andV; (v)=2My(v).
sponds to eigenvalum=—f. (For a “pyramid,” e=f=y
=0, and there remain 2 symmetric eigenstates.
In the long wavelength limit, the antisymmetric state and The icosahedron consists of 2 pentagon layers of equal
the states corresponding to=1,...,5 are all optically inac- size, rotated relative to each other by an angler/&f, with 2
tive, while the 2 symmetrio =6 states aréin general ac-  additional atoms(symmetrically placed on the symmetry
tive. For example, for a structure having atoms 7 and &xis above and below the center of the double layer at a
equally spaced above and below the hexagon center by leeight such that the nearest neighbor distances between all
distance equal to the nearest-neighbor separation in the hexaairs of atoms are equal. Its eigenstates can be obtained with
gon, the following values result: a combination of the methods in Secs. Il A and II B above.
The double layer of pentagons has=a and B=b. lIts
eigenvalues are therefore given by

C. Icosahedron

m,=(2.64/+4.423)y, x,=—0.367+0.0024,

my=(—0.38V+3.577)y, X,=8.123+0.053. M. (v)=2acy, + 2bc,, + (C+2dCy, +266,,),  (2)

Here,7iVy is the nearest-neighbor interaction energy in they

nd eigenvectors by = (v)= (U, ;*Uy). The first 8 ei-
hexagon. g W= (v) =(Ug) ;£ Ug))

genvalues of the icosahedron are then givenmhy(v) [Eqg.
(2], and the associated eigenvectors bw=(v)
=[U*(v);0,0], v=1,...,4.

The method introduced in Sec. IB can also be used to We denote byf=0;,=Q;1,, 9=0;1,=0;;, and h
calculate then=1 eigenstates of structures consistinglof =Q,,,,, i=1,...,5 andj=6,...,10. Two more eigenvectors
layers of N-sided polygons, arrayed in parallel planes andare thenw*(5)=(1,1,1,1,1;1,1,1,1,%,x) and correspond
centered on the same axis. The polygons need not be of the eigenvalues: such thatx and . are given by
same linear dimension, and/or may be rotated relative to
each other by an arbitrary anglalthough aligned vertically 1
or rotated by angles which are integer multiplesréN give M= :E[m+(5) +hxR], 2(f+g)x.=h-m,(5)=R,
the simplest solutions The interaction matrix consists of an
I X1 array of square submatrices, each of dimensionN.  whereR?>=(h—m_ (5))?+20(f+g)2. The last 2 eigenvec-
Each submatrix has as its eigenvectors those oNHs@ed  tors are of the form

B. Polygon multilayers

013815-6



EVOLUTION IN TIME OF AN N-... 1. ... PHYSICAL REVIEW A 69, 013815 (2004

TABLE lll. Eigenvalues and eigenvectors of 6 TLAs arranged on the vertices of a regular hexagon.

n v Eigenvalues Eigenvectors
1 15 a-b-c (1,-1-2,-1,1,2; (1,1,0-1,~1,0
2,4 —a—b+c (-1,-12-1-1,2;(1,-1,0,1-1,0
3 —2a+2b—c (-1,1-11-11
6 2a+2b+c (11,1111
2 15 +b?+3aZ 1-1,-2,-1,12; 0+-u.,—u.,0u. ,u.; 0,0,0
(3,3,0-3,-3,0; 2u. ,us ,—U+,—2Us—U. ,Us; 0,0,0
2,4 v (=1,-1,2,-1,-1,2; = 2X,X,X, = 2X,X,X; —VY,2¥,~Y)
(1,-1,0,1-1,0; 0~ x,%x,0,—x,%; —V,0y)
3 —2b (-11-11-1,1,;0,0,0,0,0,0; 0,0)0
2b (0,0,0,0,00-1,1-1,1-1,1; 0,0,0
6 o (1,1,2,1,2,1y,5,5,1,1,1; S,8,9
v3+2bv?+ (4ac—b?—3a’—4c?) v+ 2b(b?—a?+4ac)=0
x=(v*+bv—2b?)/[v(a—2c)—2ab]
w3—4bu?—4(2ac+b?+3a’+c?) u+ 16b(b?—a%—2ac)=0
y=2(av+2bc)/[v(a—2c)—2ab]
r=(u2—2bu—8b?)/2[ w(a+c)+4ab]
s=2(ap+2bc)/[ u(a+c)+4ab]
u.=—-b=x JbZ+3a?
3 1,5 a—b—c (ms,—m.,—2m, ,—m. ,m.2m.; 1, -1,-2,-1,1,2;-1,-2,-1,1,2,1; 0,0
+(a+b)m. (m.+,m-,0-m.,-m.,0; 1,1,0-1,-1,0; 1,0-1,-1,0,1; 0,0
15 b¥a¥c (0,0,0,0,0,0-2,+1,1,+2,1+1; =1,-1,2,-1,+1,2; 0,0
2,4
(0,0,0,0,0,0; 0+1,+1,0,+1,1; 1+1,01,-1,0; 0,0
2,4 c—a—b (ne,n.,—2n,,n. N ,—2n.; 1,1-2,11-2;1-2,1,1-2,1; 0,0
+(a—b)n. (n.,-n.0n.,-n.0; 1-1,0,2-1,0; -1,0,1-1,0,1; 0,0
3 o_ (-p_,p_,—p-.p-,—p-,p-;1,-11-11-2;-11-11-11;-q9_,9-)
3 Fcx2a—2b (0,0,00,0,0+11+11+11;-1,+#1,-1,+#1,-1,+1; 0,0
6
6 o4 (P+,P+ P+ PP+ ,P+; 11,121,115 1,111, ,9,)
o2 —2b+3c*2a)c? —[4(a®+b?) +(2a*+2b—c)?]o. +3c[c®+2(+bcF 4ab+ac)]=0
p.=2[(2b+a)o. +3ca)/[oiF2co. —3c?]
q.=6[ac.Fac+2bc]/[o2 F2¢co. —3c?]
m.=[2c+b—ax*(2c+b—a)?+8(a+b)?]/[2(a+b)]
n.=[a+b—2c* (2c—b—a)?+8(a—b)?]/[2(a—b)]
W (5)=(11111-1-1-1-1-1;y,~y) X_=—4.97288+0.40782.

and correspond to eigenvaluesuch thaty and v are given

by

1
ve=5[m-(5)=hx8], 2(f-gly.=—-(h+m_(5)=S,

D. Body-centered icosahedron

The eigenstates of an icosahedron with one more atom
added at its body center are very similar. There are 8 eigen-
valuesm..(v) corresponding tw=1,...,4, with the associ-
(3)  ated eigenvectorgU=(v);0,0,0). Two more eigenvectors

are given by (1,1,1,1,%1-1,-1,-1,—-1;y,—vy,0), with

where S?’=(h+m_(5))?+20(f—g)?. In the long wave- eigenvalues . of Eq.(3). Finally, the last 3 eigenvectors are
length limit, only the state®v*(5) are optically active, with  of the form (1,1,1,1,1;1,1,1,1,4,x,y) and correspond to

eigenvalues and vectors given by eigenvaluesu such thatx, y and u satisfy the equations
w4 =(0.0000%+11.98882)y, X, =0.99874+0.08190), p=(f+g)x=jy=m.(5),
pm_=(—0.0213%+0.01118) y, (p—h)x—ky=5(f+g),
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—2kx+ uy=10j, A-B—-E+F=*R
. 2(C+D)
where j=0; 13, i=1,...,10, andk=0Q1; ;7=01513. In the U-= 2(C+D) ;
long wavelength limit, these last 3 states are optically active, A—-B—E+F+R

with eigenvalues and vectors given by

and
mq=(—1.5529W +12.95930) y,

= = 1
x,=1.03235+0.12245, y,=0.94949-0.09023, v (ATB-E-FiS)

uo=1(3.34074/+0.03909) v, ) .
corresponding to the eigenvectors

Xp= —11.47272- 4.74688,
A-B+E-F=S

y,=16.193815.82416, Vi 2(C-D)
—2(C-D) ’
ws=(—3.80918/+0.00161)y, —(A-B+E-F=xY9)
_ where R?>=(B—A—E+F)?+4(C—D)? and S°=(B—A
X3= —2.76006t+ 0.08068, YE-F)2+4(C-D)2
The eigenvalues and vectors of the dodecahedron are then
y3=—4.51950+0.10698. found by substituting the eigenvalua&) for A, b(v) for B,

etc.; they are given by

E. Dodecahedron

1
The dodecahedron can be considered as consisting of 4 ~ #=(v)= §[a(v)+b(v)+e(v)+f(v)iR(U)]

layers of pentagons, of which those in layers$tdp) and 4

(bottom are of equal size but smaller than those in layers Zorresponding to the eigenvectors

and 3. Layers 1 and 2 are aligned with each other, as are

layers 3 and 4; however, the top pair is rotated relative to theWi(v)z(Uf(u)u(v) ;U5 (0) Uy sU3 (0) UGy ;UG (0)UG,))
bottom by an angle ofr/5. The layers are sized and spaced

such that the distances between all pairs of nearest neighbogg

are equal.
The interaction matrix consists of ax#4 array of subma- 1

trices, each of dimension»65. Using the method of Sec. ve(v)=5[alv)+b(v)—e(w)—f(v)=S(v)]
II B, we first find the eigenvalues and vectors of the auxiliary
matrix M, corresponding to the eigenvectors

A CDF . . . . .

c B E D Z=(v)=(V{(v)U(): Vo (VU V3 (0)U) Ve (V) U,),

M= . .
D E B C where u,, are the eigenvectors of the pentagon and
EDC A =1,...,5. In the long-wavelength limit, only the stai&'s (5)
are optically active, with eigenvalues and eigenvectors given
Here, A is the 5X5 submatrix representing the interactions by
between the atoms within layer (And 4; B represents the —(3.05984/+ 10i
interactions between the atoms within layer(@hd 3; C pe=(3 )7,
represents those between the atoms of layers 1 gad®3 A
and 4, D those between the atoms of layers 1 an@i3d 2 Uy =U,4 =0.5588+0.6908/V,
and 4, E those between atoms of layers 2 and 3, Brilose N N
between atoms of layers 1 and 4. The eigenvalue! afre U; =Uz =-0.4396+2.2881/V,
given by
u_=(0.0410V+10i)y,
1
pe=5(A+B+E+FER) U, =U, =0.4005+0.8775/V5,

corresponding to the eigenvectors U, =U; =0.5827-2.4829/V.
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