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Evolution in time of an N-atom system. I. A physical basis set for the projection
of the master equation

Helen Freedhoff*
Department of Physics and Astronomy, York University, 4700 Keele St., Toronto, Canada, ON M3J 1P3

~Received 17 July 2003; published 23 January 2004!

We study an aggregate ofN identical two-level atoms~TLA’s ! coupled by the retarded interatomic interac-
tion, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system;
then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in
this basis the equations of motion for the level populations, as well as the expressions for the emission and
absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation.
To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and
present in the long wavelength limit the~cascade! emission spectrum for a hexagon of atoms fully excited at
t50. To illustrate its use for absorption processes, we tabulate~in the same limit! the biexciton absorption
frequencies, linewidths, and relative intensities for polygons consisting ofN52,...,9 TLA’s.
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The coherent interaction with the radiation field ofN
identical two-level quantum systems has received a g
deal of attention over the years. The initial impetus for t
subject was an article by Dicke@1#, in which he introduced
the concept of ‘‘superradiance.’’ A major advance was
introduction by Lehmberg@2# and Agarwal@3# of the ‘‘mas-
ter equation,’’ which has provided the foundation for most
the calculations since. Early interest in coherent excitat
focused on such subjects as superradiance@4# and the theory
of molecular excitons@5#. More recently, the coherent o
entangled eigenstates of two-level ‘‘qubits’’ have become
active area of study in quantum information science@6#,
while spectroscopists have become interested in the op
properties of molecular clusters or aggregates@7#, many of
which properties are believed to be related to the cohe
interaction of the aggregates with the radiation field.

The master equation can be solved by projection onto
complete set of basis states of the system. It is our purpos
this article to introduce as the ‘‘natural’’ set for this proje
tion the eigenstates of the retarded interatomic interac
operator. We demonstrate that in this basis the equation
motion for the level populations, as well as the expressi
for the emission and absorption spectra, assume a sim
mathematical structure and allow for a particularly transp
ent physical interpretation.

We consider an aggregate ofN identical monomers lo-
cated at positionsRi , interacting cooperatively with and vi
the electromagnetic field. Each monomer may be simpl
single atom for example, or a quantum dot, or even a la
complicated molecule—regardless, we will focus on a sin
transition within the monomer between two of its~nondegen-
erate! energy levelsuai& andubi&, and refer to it simply as an
atom. Our focus is on how the cooperative interaction of
atoms with the field changes the spectroscopic propertie
the transition in the aggregate from those of the correspo
ing transition in the individual atoms.

*Electronic address: hsf@yorku.ca
1050-2947/2004/69~1!/013814~12!/$22.50 69 0138
d
e

e

f
n

n

al

nt

y
in

n
of
s
le

r-

a
e,
e

e
of
d-

Our starting point is the master equation, which descri
the evolution in time of the system. There are two equival
forms for this equation: One involves the reduced atom
density operator; the second, which we will use, descri
the time evolution of the expectation value of an arbitra
atomic operatorQ, and has the form

]^Q&
]t

5
i

\
^@HA ,Q#&1 i (

i , j 51

N

gi j ^@Si
1Sj

2 ,Q#&

2 (
i , j 51
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f i j ^~Si
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2Q1QSi
1Sj

222Si
1QSj

2!&,

~1!

whereHA is the atomic Hamiltonian

HA5\(
i 51

N

v08Si
1Si

2 ,

v08 is the transition frequency,Si
1 andSi

2 are the raising and
lowering operators of atomi, andgi j and f i j are the real and
imaginary parts, respectively, of the interatomic interact
V i j . In this article, we will refer explicitly only to single-
photon electric dipole transitions, for whichV i j is given by

V i j 5gF1

2
@3~m̂ i•R̂i j !~m̂ j•R̂i j !2m̂ i•m̂ j #h2

~2!~kRi j !

1~m̂ i•m̂ j !h0
~2!~kRi j !G .

@3#, where g is half the Einstein A coefficient g
52umu2v08

3/3\c3, mW i5mm̂ i is the atomic transition moment
and hn

(2) is a spherical Hankel function of the second kin
@8#. However, we point out that our general theory can
applied to any other type of radiative transition as well, su
as magnetic dipole, electric quadrupole@9#, or two-photon
electric dipole@10#, simply by choosing the expression fo
V i j which is appropriate to the transition in question. F
©2004 The American Physical Society14-1
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example, for linear transition quadrupoles oriented perp
dicular to the plane of the ring, the interaction is

V i j 5 igqF2
9

28
h4

~2!~kri j !1
5

28
h2

~2!~kri j !1
1

2
h0

~2!~kri j !G ,
wheregq is half the EinsteinA coefficient for the~quadru-
pole! transition@9#

gq5
uqu2v5

15\c5 .

Henceforth for simplicity we will suppress the expect
tion value brackets. We rewrite Eq.~1! in the form

]Q

]t
5 i (

i , j 51

N

~v08d i j 1V i j !Si
1Sj

2Q

2 i (
i , j 51

N

~v08d i j 1V i j* !QSi
1Sj

212 (
i , j 51

N

f i j Si
1QSj

2 .

~2!

It is convenient to define the operatorM,

M[(
i 51

N

~v081gii 1 i f i i !Si
1Si

21Hint ,

whereHint5( iÞ jV i j Si
1Sj

2 represents the interatomic inte
action in the aggregate, an operator which exchanges
excitation between the pairs of atoms. We note that~1! gii is
the atomic Lamb shift, and ‘‘renormalize’’ the transition fre
quency to include it, i.e., we setv05v081gii ; ~2! f i i 5g,
the atomic self-damping constant; and~3! n̂op[( i 51

N Si
1Si

2

is an operator representing the number of excited atom
the system. Thus,M5(v01 ig)n̂op1Hint , and we may re-
write Eq. ~2! in the form

]Q

]t
5 iMQ2 iQM†12 (

i , j 51

N

f i j Si
1QSj

2 .

The master equation may be solved by projection o
any complete set of basis states. However, as demonst
previously for the simple cases ofN52 and 3@11#, the natu-
ral set for this projection are the eigenstates of the~non-
Hermitian! operatorH5\M : H is the effective Hamiltonian
of the system of atoms ‘‘dressed’’ by the vacuum field@12#.
The noninteracting Hamiltonian HA has energy levels
n\v0 , which are (n

N)-fold degenerate. The interactionHint

splits this degeneracy and creates bands of eigenstates, w
as we will demonstrate have the following properties.

~1! The real part of the~complex! eigenvalue gives the
shift of energy of the state due to local field effects.

~2! The imaginary part of the eigenvalue gives the to
decay constant~or inverse lifetime! of the state; this constan
is the sum of the individual decay constants to all states
the energy manifold below.
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~3! The decay rate between any pair of states agrees c
pletely with the total energy radiated by the system in
transition between the pair.

In this article, we illustrate these properties while confi
ing our attention for general systems to theirn51 and 2
manifolds. As sample applications of the general theory,
study an isosceles triangle of atoms, a fully-excited syst
of 6 atoms arranged on the vertices of a hexagon, and
biexciton absorption by regular polygons consisting ofN
52,...,9 atoms. In these examples we make use of the ei
states of a system ofN atoms arranged on the vertices of
regular polygon which are calculated in an accompany
article ~along with then51 or single excitoneigenstates for
a variety of other aggregates in 2 and 3 dimensions, incl
ing ‘‘pyramid’’ and ‘‘diamond’’ structures, multiple layers
icosahedra and dodecahedra! @13#.

I. GENERAL THEORY

A. Eigenstates ofM

1. nÄ0: Ground state

The ground state of the system has all atoms in th
ground states, and is denoted byuG&5P i 51

N uai&.

2. nÄ1: Single excitation eigenstates

The state of the system in which atomi is excited, while
all the others remain in their ground states, is denoted
uBi&,

uBi&5ubi& )
j Þ i 51

N

uaj&. ~3!

These are eigenstates of the noninteracting HamiltonianHA ,
but not ofH, which includes the atomic interactionHint . We
denote the eigenstates ofH by ua&,

ua&[(
i 51

N

si
auBi&.

These satisfy the equation

Hua&5\Va
~1!ua&5\~Ga

~1!1 iF a
~1!!ua&. ~4!

To find these states, we solve the eigenvalue equation o
N3N matrix representingH in the space spanned by th
states$uBi&%. BecauseV i j 5V j i , this matrix is symmetric,
but not Hermitian. As a consequence,~1! its eigenvalues
\Va

(1) are complex;~2! its eigenvectors$(si
a)% may be real

or complex, depending on the system in question. In eit
case, they obey the orthonormality and completeness r
tions

(
i 51

N

si
asi

a85daa8 , (
a51

N

si
asj

a5d i j . ~5!

Then51 eigenstates have been calculated over the y
for many atomic systems, includingN52 and 3@11#, linear
chains@14#, two-dimensional arrays@15#, and circular rings
and regular polygons@16#. In an accompanying article, w
4-2
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extend these calculations to include ‘‘pyramid’’ and ‘‘dia
mond’’ structures, some multiple layers, icosahedra, a
dodecahedra@13#.

3. nÄ2: Double excitation eigenstates

The state of the system in which atomsi andj are excited,
while all the others remain in their ground states, is deno
by uBi j &,

uBi j &5ubi&ubj& )
kÞ i , j

N

uak&. ~6!

These are eigenstates ofHA but not of H; we denote the
eigenstates ofH by ub&,

ub&[ (
~ i j !pairs

di j
b uBi j &,

which satisfy the eigenvalue equation

Hub&5\Vb
~2!ub&5\~Gb

~2!1 iF b
~2!!ub&.

They are found by first constructing and then diagonaliz
the square matrix of dimensionN(N21)/2 representingH in
the space spanned by the states$uBi j &%.

The eigenvectors$(di j
b )% obey the orthonormality and

completeness relations

(
~ i j !pairs

di j
b di j

b85dbb8 , (
b

d~ i j !
b d~ i j !8

b
5d~ i j !~ i j !8 . ~7!

The n52 eigenstates have been calculated for systems
taining 2 and 3 atoms@11#, and forN atoms arranged on th
vertices of a regular polygon@13#.

4. Eigenstates for nÌ2

The eigenstates of the system corresponding to the~simul-
taneous! excitation ofn.2 atoms are calculated in an anal
gous manner—e.g., then53 eigenstates ofN56 and N
57 atoms arranged on the vertices of regular polygons
calculated in Ref.@13#. However, for the general theory i
this article we will confine our attention~for simplicity! to
systems in which no more than 2 atoms are~simultaneously!
excited; this is sufficient to establish the pattern. Example
full excitation of systems containingN53 andN56 atoms
are presented in Secs. II A and II B.

B. Time evolution of the system

We restrict ourselves to the subspace of the system co
sponding ton<2. To study its evolution in time, we mak
use of the following table of operations:

M uG&50, Si
1uG&5(

a
si

aua&,

M ua&5Va
~1!ua&, Si

1ua&5(
b

Ci
abub&,

M ub&5Vb
~2!ub&, Si

1ub&50.
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Ci
ab5(

j Þ i
sj

adi j
b . ~8!

It is then straightforward to show that the average values
the atomic operatorsQ5$sGG[uG&^Gu,saG[ua&^Gu,
etc.% obey the following set of equations:

ṡGG52 (
a,a8

Taa8saa8 ,

ṡaa85@ i ~Ga
~1!2Ga8

~1!
!2~Fa

~1!1Fa8
~1!

!#saa8

12 (
b,b8

Nbb8
aa8sbb8 ,

ṡbb85@ i ~Gb
~2!2Gb8

~2!
!2~Fb

~2!1Fb8
~2!

!#sbb8 ,

ṡbG5~ iGb
~2!2Fb

~2!!sbG ,

ṡaG5~ iGa
~1!2Fa

~1!!saG12 (
b,a8

Mba8
a sba8 ,

ṡba5@ i ~Gb
~2!2Ga

~1!!2~Fb
~2!1Fa

~1!!#sba ,

where

Taa85(
m,n

sm
a f mnsn*

a8 ,

Nbb8
aa85(

m,n
Cm

ab f mnCn*
a8b8 ,

and

Mba8
a

5(
m,n

Cm
ab f mnsn*

a8 .

1. Populations

We focus first on the average populations of the leve
sbb , saa andsGG . In the secular approximation@17#, these
obey the equations

ṡbb522Fb
~2!sbb ,

ṡaa522Fa
~1!saa12(

b
Nbb

aasbb ,

ṡGG52(
a

Taasaa .

The physical meaning of these equations is clear: The po
lation of the ground stateuG& increases because of the dec
into it of population from then51 states$ua&%. Population
decaysout of ua& at the rate 2Fa

(1)saa , and into it from each
n52 level ub& above at the rate 2Nbb

aasbb . Because we are
4-3
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restricting ourselves to the statesn<2, there are non53
levels to decay intoub&, and so population decays only out
it, at the rate 2Fb

(2)sbb .
We stress that the simplicity of these equations and

their physical interpretation is due entirely to the projecti
of the master equation onto the eigenstates ofH. The use for
this projection of any other basis set—e.g., the noninter
ing states of Eqs.~3! and ~6!—would result in populations
coupled to one another within each manifoldn by the inter-
atomic interaction. Projection onto eigenstates of this in
action results in populations uncoupled to those of ot
states within the same manifold, decaying independently
states in the manifold below, and with population flowing
from states in the manifold above.

Next, we evaluate the quantityTaa8 . If the eigenvectors
$(si

a)% are real, the imaginary part of Eq.~4! is equivalent to
the sum

(
n

f mnsn
a5Fa

~1!sm
a .

Using the orthonormality of the eigenvectors we then obt
the result

Taa85Fa
~1!daa8 .

If the $(si
a)% are complex however, we cannot proceed

simply. We have verified the above relationship algebraica
for the complex eigenvectors of the isosceles triangle~Sec.
II A !; for all other systems, we have contented ourselves w
a numerical verification. Similarly, we have verified~alge-
braically for the triangle and numerically for other system!
that (aNbb

aa5Fb
(2) , so that the sum of the transition rate

from ub& into all statesua& in the manifold below is equal to
the total decay rate out ofub&. These results are consiste
with the conservation of probability,( i ṡ i i 50, where the
sum is over all states of the system, as is required physic

The solutions to these equations are

sbb~ t !5sbb~0!e22Fb
~2!t,

saa~ t !5saa~0!e22Fa
~1!t1(

b
Nbb

aasbb~0!

3
e22Fb

~2!t2e22Fa
~1!t

Fa
~1!2Fb

~2! ,

sGG~ t !5sGG~0!1(
a

F ~12e22Fa
~1!t!H saa~0!

2(
b

Nbb
aasbb~0!

1

Fa
~1!2Fb

~2!J
1(

b
~12e22Fb

~2!t!
Fa

~1!

Fb
~2! Nbb

aasbb~0!
1

Fa
~1!2Fb

~2!G .
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2. Coherences

The dipole moment operatorsmW i are conveniently ex-
pressed in terms of the eigenstates$uE&% of the operatorH,

mW i5 (
E,E8

uE&^EumW i uE8&^E8u5 (
E,E8

~mW i !EE8sEE8 .

If we again restrict ourselves to those eigenstates ofH cor-
responding ton<2, this can be rewritten in the form

mW i5mW (
a,b

~si*
asaG1Ci*

absba!1conjugate

[mW i
1~ t !1mW i

2~ t !.

Thus, there is a term inmW i corresponding to each of th
‘‘coherences’’@17# saG andsba , which represent transition
between the system eigenstates. In general, the transition
quencies are different from each other, so that in the sec
approximation the coherence equations of motion can
written

ṡba5@ i ~Gb
~2!2Ga

~1!!2~Fb
~2!1Fa

~1!!#sba ,

ṡaG5~ iGa
~1!2Fa

~1!!saG ,

with the solutions

sba~ t !5sba~0!e@ i ~Gb
~2!

2Ga
~1!

!2~Fb
~2!

1Fa
~1!

!#t,

saG~ t !5saG~0!e~ iGa
~1!

2Fa
~1!

!t.

Each coherence oscillates at the ‘‘Bohr’’ frequency of t
transition to which it corresponds, and is damped at a r
equal to half the sum of the decay rates of the upper
lower eigenstates involved in the transition.

C. Emission of radiation

The electric field operatorE~R! is written in terms of the
creation and annihilation operatorsakl

† andakl ,

E~R!5 i\(
k,l

S 2pv

\V D 1/2

êkl~akleik•R2akl
† e2 ik•R!.

The number of photons in the field at timet with wave vector
k and polarizationêkl is then given by

n~k,êkl ,t !5^akl
† akl& t .

Both the intensity and the spectrum of the emitted radiat
are found to be proportional to the two-time correlation fun
tion of the atomic dipole moment operator^m1(t)m2(t8)&
@17#. The term^m i j

1(t)m2(t8)& satisfies the same equation
motion for t>t8 as does the corresponding coheren
^s i j

1(t)& ~quantum regression theorem@18#!. If we focus for
example on the term corresponding to the transition fromua&
to uG&, P(t), the average power emitted at timet, is obtained
~in the Markov approximation! by summing over all polar-
izations and directions of emission,
4-4
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P~ t !52p\Ga
~1!saa~ t !(

i , j
si

asj*
a(

k,l
ugklu2eik•~Ri2Rj !

@3#, while the density of emitted photons of frequencyv is

n~v!5 lim
t→`

2 Re(
i , j

si
asj*

a(
k,l

ugklu2eik•~Ri2Rj !

3E
0

t

dt2E
t2

t

dt1e2 iv~ t12t2!saG~ t1!sGa~ t2!, ~9!

wheregkl5(2pv/\V)1/2mW •êkl .
We first evaluate the sums which appear in both exp

sions,

J[(
i , j

si
asj*

a(
k,l

eik•~Ri2Rj !ugklu2.

We choose ourz axis in the direction ofmW , and denote bya i j
the angle formed betweenmW andRi j 5Ri2Rj and by~u,f!
the direction ofk. Performing first the sum over the pola
izationsl, we obtain an expression for the angular distrib
tion of the emitted radiation. We continue, replace the s
over wave vectork with an integral in the usual way, rein
troduce the damping constantg, and obtain forJ the expres-
sion

J5
3g

8p2 (
i , j

si
asj*

aE E eik•Ri j sin2 udV

5
3g

8p2 E E F(
i 51

N

usi
au21(

iÞ j
si

asj*
a cos~k•Ri j !Gsin2 udV.

The integral over all angles of sin2 u is simply 8p/3. To
evaluate the integrals involving cos(k•Ri j ), we first expand
the cosine in the form

cos~k•Ri j !5cos~A cosu!cos~B sinu cosf!

2sin~A cosu!sin~B sinu cosf!,

whereA5kRi j cosaij andB5kRi j sinaij . The integral over
f of sin(Bsinu cosf) is 0, while from the integral represen
tation of the Bessel function@8# the integral

E
0

2p

cos~B sinu cosf!df52pJ0~B sinu!.

With the substitutionx5cosu, the integral overu can be
rewritten in the form

L5E
21

1

cos~Ax!J0~BA12x2!~12x2!dx[L11L2 .

With the help of integral tables@20#, L1 is found to have the
value 2 sin(kRij)/kRij . L2 is evaluated by differentiatingL1
~twice! with respect toA, and added toL1 to give the result
01381
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-

L54pF ~12cos2 a i j !
sin~kRi j !

kRi j
1~123 cos2 a i j !S cos~kRi j !

~kRi j !
2

2
sin~kRi j !

~kRi j !
3 D G5

8p

3g
f i j .

Thus,

J5
3g

8p2 F8p

3 (
i 51

N

usi
au21

8p

3g (
iÞ j

si
asj*

a f i j G
5

1

p (
i , j

si
a f i j sj*

a5
1

p
Taa , ~10!

and

P~ t !52\Ga
~1!Taasaa~ t !.

The average emitted power is equal to the energy of a pho
at the transition frequencyGa

(1) multiplied by the rate of
decay of population fromua& into uG&, as obtained from the
master equation for the evolution in time ofsGG .

With Eqs.~9! and~10!, we find thatn(v), the density of
photons at frequencyv emitted by an atom initially prepare
in stateua&, is given by

n~v!5
1

p

Fa
~1!

~v2Ga
~1!!21~Fa

~1!!2 :

a single Lorentzian line, centered at the transition freque
Ga

(1) , with a width given by 2Fa
(1) . If the system is prepared

initially in a linear combination ofn51 eigenstates, it is
straightforward to show that the emission spectrum cons
of the corresponding linear combination of Lorentzians c
responding to transitions from the constituent eigenstate
uG&.

If the system is prepared in ann52 eigenstateub&, the
resulting emission is a cascade: The system decays first
states in then51 manifold, with branching ratios given b
Nbb

aa and a total decay constant of 2(aNbb
aa52Fb

(2) . The de-
cay processes fromub& are described by the coherenc
$sba%. The lines corresponding to these initial steps in t
emission cascade are centered at$v5Gb

(2)2Ga
(1)%, have

widths $2(Fb
(2)1Fa

(1))%, twice the sum of the decay con
stants of the states involved in the transition, and weig
$Nbb

aa%. There then follow decays from eachua& into uG&,
described by the coherences$saG%: lines centered at$Ga

(1)%,
with widths $2Fa

(1)%. In an analogous way, we can descri
the emission cascade resulting from an initial state which
linear combination ofn52 eigenstates. Because we are de
ing with eigenstates of the system, the decays in genera
not interfere.~An exception can occur in unusual systems
which successive transitions happen to occur at the s
frequency. In such cases, there is a ‘‘transfer of coheren
between the manifolds@17#, which will affect the line-
widths.!

As a simple example, in Fig. 1 we display a comple
energy level diagram for an equilateral triangle of ato
4-5
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HELEN FREEDHOFF PHYSICAL REVIEW A69, 013814 ~2004!
@19#. All atomic separations are equal, so that the system
described by a single interaction potentialV5g1 i f . On
each state is indicated its total decay constant, while de
constants between states are indicated on the da
lines connecting them. For example, then52 eigenstate
~1/)!~1,1,1! has energy\2(v01g) and a total decay con
stant of 2(g1 f ); it decays with a constant of (4g18 f )/3
to the ~symmetric! ~1/)!~1,1,1! state, and (g2 f )/3 to each
of the 2 antisymmetric states in then51 manifold below.
Similarly, each of the other twon52 eigenstates has energ
\(2v02g) and a total decay constant of 2g2 f .

It is straightforward to extend the general theory p
sented above to higher degrees of excitation of the sys
but unnecessary: the pattern is clear. Instead, in Sec. II
illustrate the general theory using three specific examples
Sec. II A we study in detail a system consisting of 3 ato
arranged on the vertices of an isosceles triangle; in Sec.
we study the emission from a fully-excited hexagon of ato
in the long-wavelength limit,kRi j →0, all i andj; and in Sec.
II C, we tabulate the biexciton energy levels, absorption f
quencies, linewidths, and relative intensities for polygo
consisting ofN52,...,9 atoms, in the same limit.

FIG. 1. Energy levels and decay rates for an equilateral trian
of atoms, in units of\, g51.
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II. APPLICATIONS

A. Isosceles triangle

To illustrate the general theory, we present in this subs
tion the simple example of 3 atoms arranged on the vert
of an isosceles triangle.~In fact, the same analysis applies
a linear chain of 3 equally spaced atoms, with the mid
atom labeled atom 1.! The interactions between the atoms a
denoted by

V125V13[a5ga1 i f a , V23[b5gb1 i f b ,

so that the matrix representingM in the n51 subspace is

M ~1!5S v01 ig a a

a v01 ig b

a b v01 ig
D .

Its eigenvalues and associated eigenvectors are found to

V1
~1!5v01 ig2b, s~1!5

1

&
~0,21,1!, ~11!

V
3
2
~1!

5v01 ig1
1

2
~b6D !, s~3

2
!5

1

N6
~1,x6 ,x6!,

~12!

where

D25b218a2, x65~b6D !/4a, N6
2 5112x6

2 .
~13!

Choosing the basis states in the order$uB12&,uB23&,uB31&%,
we write the matrix representingM in the n52 subspace in
the form

M ~2!5S 2~v01 ig! a b

a 2~v01 ig! a

b a 2~v01 ig!
D .

Its eigenvalues and associated eigenvectors are then fou
be

V1
~2!52~v01 ig!2b, d~1!5

1

&
~21,0,1!, ~14!

V
3
2
~2!

52~v01 ig!1
1

2
~b6D !, d~3

2
!5

1

N6
~x6,1,x6!.

~15!

It is easily verified that the eigenvectors satisfy the orthon
mality and completeness relations~5! and ~7!.

We now consider the evolution in time of the system,
determined using the master equation. In the secular appr
mation, the level populations obey the equations

ṡEE526gsEE ,

le
4-6
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ṡbb522Fb
~2!sbb12TEE

bbsEE ,

ṡaa522Fa
~1!saa12(

b
Nbb

aasbb ,

ṡGG52(
a

saaTaa ,

where

TEE
bb5 (

mÞ~ i j !

nÞ~ i j !8

d~ i j !
b f mnd~ i j !8

* b .

For the conservation of probability, we require the followin
three identities to hold:

~1! Taa5Fa
~1! ,

~2! (
a

Nbb
aa5Fb

~2! ,

~3! (
b

TEE
bb5FE53g.

~1! The rate of decay of population out ofua& is given by
2Fa

(1)saa , while the associated emission of energy and fl
of population intouG& is given by 2Taasaa . It is trivial to
demonstrate thatT115F1

(1)5g2 f b ; instead, we calculate
T22,

T225
1

uN1u2 ~1 x1* x1* !S g f a f a

f a g f b

f a f b g
D S 1

x1

x1

D
5

1

uN1u2 @~112ux1
2 u!g12 f bux1

2 u14 f a Rex1#.

By substitution into the eigenvalue equation forM (1), we
find that the quantity (b1D)/2 can be written in two ways

b1D

2
52ax15b1

a

x1
. ~16!

Writing x15ux1ueif, we rewrite Eq.~16! in the form

Im„~b1D !/2…5Im~2ax1!

52ux1u~ f a cosf1ga sinf!

5ImS b1
a

x1
D

5 f b1~1/ux1u!~ f a cosf2ga sinf!.

We multiply the second of these equations by 2ux1
2 u and add

it to the first to obtain

~112ux1
2 u!Im„~b1D !/2…52 f bux1

2 u14 f a Rex1 .
01381
Dividing by uN1u2 and comparing with Eq.~12!, we find that

T225
112ux1u2

u112x1
2 u

F2
~1! .

It is easy to verify that the factor (112ux1u2)/u112x1
2 u in

the above expression differs from 1 by an amount of or
Im(b1D)/Re(b1D), an error which was introduced by ou
having made the secular approximation. Becausef a , f b
<g, while ga , gb.(kR)23g, this difference in practice is
<1026, and therefore negligible, so thatT225F2

(1) ~within
the accuracy of the secular approximation!. The equivalent
relation forT33 is obtained in an identical way. Thus we hav
demonstrated directly that the decay of population out
eachn51 eigenstate is equal to the rate at which it flow
into the ground stateuG&, which in turn agrees~exactly! with
the rate at which energy is radiated by a system prepare
the eigenstate~Sec. I C!.

~2! Here we must verify that(aNbb
aa , the sum of the

decay constants of the population from eachn52 stateub&
into the n51 states$ua&% below, is equal to the total deca
constant ofub&, as given by the imaginary part of its energ
eigenvalueFb

(2) . This is a straightforward but tedious calcu
lation, and we will content ourselves with its demonstrati
for b51 only.

We begin by calculating the vectors$Ca1%. Using Eqs.
~8!, ~11!, ~14!, and~15!, we obtain the results

C115~1,0,0!, C215
1

&N1

~0,21,1!,

C315
1

&N2

~0,21,1!.

Proceeding with the multiplication of these vectors with t
matrix (f mn) as in the calculation ofT22 above, we find that

N11
115g, N11

225
1

uN1u2 ~g2 f b!, N11
335

1

uN2u2 ~g2 f b!,

whose sum isg1(g2 f b)(1/uN1u211/uN2u2). Substituting
for uN6u2 from Eq. ~13!, we find that (1/uN1u211/uN2u2)
511terms of order@ Im(b1D)/Re(b1D)#, so that within the
secular approximation

(
a

N11
aa52g2 f b5F1

~2! ,

as required. The corresponding relations forb52 and 3 are
verified in an equivalent way.

~3! It is simple to demonstrate that because of the sy
metry of the systemTEE

ii 5Tii 5Fi
(1) for i 51,...,3, so that

(
b

TEE
bb5(

b
Fb

~1!53g,

as required.
4-7



ti
th

th

hi
ne

ce

-

s

s
y

to

d-

d

-

ed

lps

rt

with

he
lcu-
e

tive

e of
ve

al
the
cies
curs
m-
tive

oles

nts

s of
ach
ro-
the
ted

net
the
tal
by
the
n-

the
m-
m-
the
ing

HELEN FREEDHOFF PHYSICAL REVIEW A69, 013814 ~2004!
Thus, we have demonstrated the validity of all 3 iden
ties, and therefore too the conservation of probability in
system.

If the system is fully excited att50, i.e. sEE(0)51, the
solutions of the population equations can be written in
form

sEE~ t !5e26gt,

sbb~ t !5
TEE

bb

3g2Fb
~2! ~e22Fb

~2!t2e26gt!,

saa~ t !5(
b

Nbb
aaTEE

bb

3g2Fb
~2! F 1

Fb
~2!2Fa

~1! ~e22Fa
~1!t2e22Fb

~2!t!

2
1

3g2Fa
~1! ~e22Fa

~1!t2e26gt!G ,
sGG~ t !5(

a,b

Fa
~1!Nbb

aaTEE
bb

3g2Fb
~2! F 1

Fb
~2!2Fa

~1! S 12e22Fa
~1!t

Fa
~1!

2
12e22Fb

~2!t

Fb
~2! D 2

1

3g2Fa
~1! S 12e22Fa

~1!t

Fa
~1!

2
12e26gt

3g D G .

To calculate the spectrum of the radiation emitted in t
cascade to the ground state, we proceed as in the ge
theory: We calculate the dipole moment operatormW , solve
the equations of motion for each of the coheren
$sEb ,sba ,saG% which appear inmW and for the two-time
correlation function^m1(t)m2(t8)&, and finally calculate
n(v), for which we obtain the expression

n~v!5(
a,b

FTEE
bb

FE
H L~E,b!1

Nbb
aa

Fb
~2! @L~b,a!1L~a,G!#J G ,

where L(X,Y) is the Lorentzian function of area 1 corre
sponding to the transition from leveluX& to level uY&,

L~X,Y!5
1

p

FX1FY

~v2GX1GY!21~FX1FY!2 .

The physical interpretation of this expression is clear.
~1! The system begins in stateuE& which has an energy

corresponding to that of 3 photons, 3\v0 . It then emits its
first photon: Because the emission is a coherent proces
volving all 3 atoms, the decay occurs~on average! into the 3
n52 coherently excited states$ub&%, with a branching ratio
of TEE

bb/FE equal to the decay rateTEE
bb from uE& to ub& di-

vided by the total decay rateFE from uE&. The sum of these
branching ratios is~of course! 1, and each emission line i
the LorentzianL(E,b), centered at the transition frequenc
GE2Gb

(2) , with width 2(FE1Fb
(2)).

~2! From each stateub&, the system decays coherently in
the n51 states$ua&%, with ~a second! branching ratio of
01381
-
e

e

s
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s

in-

Nbb
aa/Fb

(2) , the decay rate fromub& to ua& divided by the total
decay rate fromub&. There are 9 Lorentzian lines correspon
ing to the emission of this~second! photon, 1 line for each
ub&→ua& transition, with a total area of 1.

~3! From each stateua&, the system decays into the groun
state uG&, emitting a Lorentzian lineL(a,G). The weight
W(a) of the line beginning fromua& corresponds to the frac
tion of the population which has arrived inua& via its various
routes,W(a)5(b(TEE

bb/FE)3(Nbb
aa/Fb

(2)), and the total area
of the lines(aW(a)L(a,G) is 1.

There is a well-known classical model which can be us
to describe cooperative transitions of a system ofN atoms
between its ground and single exciton states, which he
illuminate the physics of the process. In it, atomi is replaced
by an oscillating electric dipolemW i at the positionRi . Dipole
i creates an electric fieldEi(Rj ) at the position of~every
other! dipole j, which can be divided into two parts: One pa
is in phase with the displacementmW j oscillator j, and thus
changes its effective frequency. The second is in phase
its velocity mẆ j , and alters its rate of damping.

We first calculate the normal modes of oscillation of t
system, a step equivalent to the quantum-mechanical ca
lation of the~single! exciton eigenstates. The normal mod
eigenvalues are complex: The real part gives the effec
frequency of oscillation of each dipole in the~local! field
created by all the others, and the imaginary part its net rat
damping, under the influence of its own force of radiati
reaction plus that exerted on it by all the others. In a norm
mode, the relative amplitudes and phases of oscillation of
dipoles adjust themselves so that the effective frequen
and dampings of all are equal; hence, no dephasing oc
during the oscillation. The eigenvectors, which are also co
plex, give these relative amplitudes and phases: The radia
properties of the system in a transition betweenua& and uG&
are the same as those of a set of classical oscillating dip
of momentmW i5mW ^auSi

1uG&5mW si
a at the positionsRi of the

atoms. The ratio of the absolute values of the coefficie
usi

a/sj
au gives their relative amplitude; if we writesi

a

[usi
aueif i, then their relative phase isf i2f j .

The dynamics of the system are best described in term
these normal modes, which evolve independently of e
other. Unlike the master equation calculation, which p
duces a balance correct only to within the accuracy of
secular approximation, here we find that the energy radia
by the atomic system into the field isexactlybalanced by the
decay of the energy of oscillation due to the damping@21#.
The total work performed by the oscillators against the
damping force acting on each gives the same result. If
system is set oscillating in one of its normal modes, the to
intensity of emission decays exponentially at a rate given
the imaginary part of the eigenvalue, and the spectrum of
emitted radiation consists of a single Lorentzian line, ce
tered at the effective frequency and with a width equal to
damping rate of the mode. If the initial state is a linear co
bination of modes, the intensity of emission is a linear co
bination of exponentials and the emission spectrum
equivalent linear combination of Lorentzians correspond
to the constituent modes.
4-8
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There is no existing classical model by which one c
calculate then52 ~or higher! eigenstates of the atomic sy
tem. In that connection however it is interesting to note t
the radiative properties of the system in a transition betw
an n52 eigenstateub& and ann51 eigenstateua& are iden-
tical with those of a set of classical dipoles of momentmW i

5mW ^buSi
1ua&5mW Ci

ab located at the atomic positionsRi ;
and so on for transitions among eigenstates correspondin
higher values ofn.

B. Hexagon

In Ref. @13#, we calculate the complete set of eigensta
for a system of atoms arranged at the vertices of a hexa
of arbitrary size relative to the radiation wavelength. If t
system is prepared in the fully-excited stateuE&, it will emit
radiation and cascade down its energy-level lad
to the ground stateuG&. As the number of states in th
manifold corresponding ton excited atoms is (n

6), in general
this gives rise to a very large number of emission lin
(n50

5 (62n
6 )(52n

6 ). In the long-wavelength limit however, th
emission~like the absorption! is confined to the subspace o
totally symmetric eigenstates; for the hexagon, there rem
26 spectral lines in the cascade. Their calculation is
straightforward extension toN5n56 of the general theory
described in this paper. We use the eigenstates of@13# in the
long-wavelength limit to calculate the shifts, widths, a
weights of these cascade emission lines.

For long wavelengths, there is only one optically acti
n51 state ua&, namely that corresponding tosi

(a)

51/A6. ~Similarly, the only optically active state in
the n55 subspace isue&5(1/A6)( i 51

6 uAi&, where uAi&
5uai&P j Þ i 51

6 ubj&.) For n52 ~and by symmetryn54), it
can be shown that the active states are described by ve
of the form

ub i&5
1

AMrs

~1,...,1;r ,...,r ;s,s,s!

~in the basis $uB12&,...,uB61&;uB13&,...,uB62&;
uB14&,uB25&,uB36&%), wherer ands take the values

r 151.41721.261i /V6 , s151.54821.732i /V6 ,

r 2520.11420.373i /V6 , s2521.08720.550i /V6 ,

r 3521.94020.312i /V6 , s352.25210.200i /V6 ,

\V6g is the nearest-neighbor interaction energy in the he
gon, and the normalization constantMrs5616r 213s2. For
n53, the active states are of the form

ug i&5
1

AMxy

~1,...,1;x,...,x;x,...,x;y,y!

~in the basis $uB123&,...,uB612&;uB124&,...,uB613&;
uB134&,...,uB623&;uB135&,uB246&%), wherex andy take the val-
ues
01381
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x151.527721.5355i /V6 , y152.014423.0116i /V6 ,

x2520.0519420.3278i /V6 , y2521.253020.6190i /V6 ,

x3520.902820.07839i /V6 , y352.618910.1431i /V6 ,

and the normalization constantMxy56112x212y2. It is
then straightforward to show that the transition probabil
from ua& to uG& ~and fromuE& to ue&! is 6g, while those from
ub i& to ua& are given by the expression

Nb i ,a56g
u212r 1su2

uMrsu
,

and those fromug j& to ub i& by

Tg jb i
536g

u212x1r ~112x1y!12sxu2

uMxyuuMrsu
.

We list the frequency shiftsGX2GY2v0 , half-widths
FX1FY , and weightsPX(FXY /FX) of the cascade emissio
lines from a fully-excited hexagon in Table I. Here,X andY
refer to the upper and lower states involved in the transiti

TABLE I. Cascade emission lines from a fully-excited hexago
long-l limit.

Transition
Shift

~units of V6g)
Half-width
~units of g! WeightnX nY

6 5 22.511 16 1
5 4 21.651 21.687 0.9687

2.801 12.293 0.0293
5.611 12.020 0.0020

4 3 20.5747 23.235 0.9492
4.2126 14.136 0.0195
6.0871 13.689 ,1024

25.0267 13.841 0.0012
20.2394 4.742 0.0219

1.6351 4.295 0.0062
27.8367 13.568 ,1024

23.0494 4.469 0.0005
21.1749 4.022 0.0015

3 2 0.5747 21.235 0.9424
5.0267 11.841 0.0080
7.8367 11.568 ,1024

24.2126 12.136 0.0040
0.2394 2.742 0.0294
3.0494 2.469 0.0085

26.0871 11.689 ,1024

21.6351 2.295 0.0019
1.1749 2.022 0.0058

2 1 1.651 15.687 0.9464
22.801 6.293 0.0393
25.611 6.020 0.0143

1 0 2.511 6 1
4-9
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HELEN FREEDHOFF PHYSICAL REVIEW A69, 013814 ~2004!
PX is the population passing through stateuX& during the
cascade process, andFXY /FX is the branching ratio fromuX&
to uY&.

C. Absorption by regular polygon systems

There exist in biology molecular aggregates known
‘‘light-harvesting complexes,’’ in which large identical build
ing blocks or monomers are arranged symmetrically in rin

TABLE II. n51 frequency shifts in the long-wavelength lim
~units of Vg).

N v Frequency shift

Nearest
neighbors

only

Linear
dipoles,

all
neighbors

Linear
quadrupoles,

all
neighbors

5 1, 4 0.618a21.618b 0.618 0.239 0.474
2, 3 21.618a10.618b 21.618 21.473 21.563
5 2a12b 2 2.468 2.178

6 1, 5 a2b2c 1 0.683 0.905
2, 4 2a2b1c 21 21.067 21.033
3 22a12b2c 22 21.741 21.902
6 2a12b1c 2 2.509 2.159
01381
s

s

with an N-fold symmetry axis, whose electronic excitation
have been found to extend coherently over the entire r
@22#. A calculation of then51 andn52 eigenstates of regu
lar polygon systems of oddN for electric dipole interactions
in the long-wavelength limit has in fact been carried out@7#,
but in that reference the authors included only neare
neighbor coupling for the real part of the interaction. For t
n51 subspace, the resulting eigenstates are the same as
~which however include interactions betweenall neighbors
and are valid for arbitrary wavelength!, but the energies are
very different: This difference is illustrated in Table II, whe
we list the n51 frequency shifts in the long-wavelengt
limit for polygons having N55 and N56 for nearest-
neighbor interactions only, for linear dipoles with all neig
bors included, and for linear quadrupoles with all neighb
included.~All shifts are expressed in units of the static inte
action energyVg between a pair of nearest neighbors.! For
the n52 subspace, the eigenstates themselves are very
ferent from those obtained when only nearest-neighbor in
actions are included, and a numerical comparison of the
ergies is not meaningful. Because the retarded interact
are intrinsically long-ranged, a correct calculation of t
eigenstates of the physical systemmust include interactions
between all atom pairs: Only in these states will the ‘‘loc
field’’ shifts be the same, and only in these states will t
TABLE III. Frequency shifts and widths of the exciton and biexciton energy levels~long-wavelength limit!; shifts are in units ofVg ,
widths in units ofg.

N DG(N)
(1) n52 eigenvectors DG(v i )

(2) F (v i )
(2)

2 1 ~1! 0 2
3 2 ~1,1,1! 2 4
4 2.354 ~1,1,1,1;x,x!

x51.24820.283i /V 3.204 5.930
x521.60220.363i /V 22.496 0.070

5 2.472 ~1,1,1,1,1;x,x,x,x,x!
x51.35610.649i /V 3.823 7.821

x520.73720.352i /V 21.351 0.179
6 2.511 ~1,1,1,1,1,1;x,x,x,x,x,x; y,y,y!

x51.41721.261i /V; y51.54821.732i /V 4.162 9.687
x520.11420.373i /V; y521.08720.550i /V 20.290 0.293
x521.94020.312i /V; y52.25210.200i /V 23.100 0.020

7 2.518 ~1,1,1,1,1,1,1;x,x,x,x,x,x,x; y,y,y,y,y,y,y!

x51.4521.602i /V; y51.6622.738i /V 4.358 11.534
x50.31420.433i /V; y520.87720.765i /V 0.570 0.410
x521.41620.379i /V; y50.63410.011i /V 22.410 0.056

8 2.515 ~x,x,x,x,x,x,x,x;1,1,1,1,1,1,1,1;y,y,y,y,y,y,y,y; z,z,z,z!

x50159.68i /V; y51.17720.949i /V; z51.23721.444i /V 4.478 13.37
x51.635169.72i /V; y5020.0714i /V; z521.8092132.87i /V 1.248 0.528

x521.09142285.i i /V; y50.452310.0204i /V; z521.28410.453i /V 21.60 0.097
x520.490263.44i /V; y521.33243.48i /V; z51.451234.91i /V 23.322 0.008

9 2.508 ~1,...,1;x,...,x; y,...,y; z,...,z)
x51.49322.834i /V; y51.79325.665i /V; z51.93927.341i /V 4.559 15.19

x50.82220.583i /V; y520.14421.184i /V; z521.01521.518i /V 1.780 0.644
x520.49620.429i /V; y520.91620.396i /V; z50.71320.0443i /V 0.958 0.140
x521.71320.386i /V; y51.53810.177i /V; z520.61920.22i /V 22.874 0.025
4-10
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EVOLUTION IN TIME OF AN N-ATOM SYSTEM. I. . . . PHYSICAL REVIEW A69, 013814 ~2004!
damping be the same for all atoms, so that no depha
occurs during the evolution in time@23#. As well, in some
systems the energy of interaction between second~or higher!
nearest neighbors can actuallyexceedthat between adjacen
pairs~depending on the relative phases of the moments in
given eigenstate, and/or on the relative orientations of
transition moments andRi j ).

If a system in its ground state is placed in a weak exter
field of wave vectork and polarizationêkl , only then51
states are excited, with a relative probability proportional
u^u(v)u( iSi

1mW •êkleik•RiuG&u2. If the field is sufficiently in-
tense and the losses sufficiently low, population can rem
in the $u(v)% states for long enough to allow excitation of th
n52 states; and so on.

In recent years, there has been interest in the excitatio
the exciton and biexciton states of the light-harvesting co
plexes, in connection with the calculation of their third-ord
nonlinear optical susceptibilities@7,22#. The complexes dis-
covered so far have diameters of the order of 10 nm and t
absorption frequencies correspond typically to waveleng

TABLE IV. Biexciton excitation frequency shifts, natural line
widths, and relative intensities~long-wavelength limit!.

N
Frequency shifts

~units of Vg)
Half-widths
~units of g! Relative intensities

2 21 4 1
3 0 7 1
4 0.85 9.93 0.988

24.85 4.07 0.012
5 1.351 12.821 0.978

23.823 5.179 0.022
6 1.651 15.687 0.969

22.801 6.293 0.029
25.611 6.020 0.002

7 1.840 18.534 0.961
21.948 7.410 0.034
24.929 7.056 0.005

8 1.964 21.370 0.9550
21.266 8.528 0.0377
24.174 8.097 0.0069
25.836 8.008 0.0006

9 2.052 24.190 0.9494
20.727 9.644 0.0403
23.465 9.410 0.0088
25.381 9.025 0.0016
us
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>400 nm, so that the long-wavelength limit applies. In th
limit, the dependence onk in the absorption probability is
negligible, and it is easy to verify that only thos
states $u(v)% which are totally symmetric in the atomi
positions are optically active, namely the statesu(N)
5(1/AN)(1,...,1). This gives rise to Lorentzian~exciton! ab-
sorption lines, centered at the shifted frequenciesG(N)

(1) [v0

1DG(N)
(1) , with ~natural! widths 2F (N)

(1) 52Ng .
We denote the frequency of stateU (v i ) by G(v i )

(2) 52v0

1DG(v i )
(2) , and its decay constant byF (v i )

(2) . The excitation of
stateU (v i ) from a ring in the stateu(N) then occurs at fre-
quencyG(v i )

(2) 2G(N)
(1) . Like the corresponding emission line

the width of the absorption line is 2(F (v i )
(2) 1F (N)

(1) ), and in the
long-wavelength limit the relative intensities of the biexcito
absorption lines are simply given byF (v i )

(2) .
In Table III we list then51 shiftsDG(N)

(1) , the~unnormal-
ized! n52 eigenvectors$U (v i )%, and then52 shiftsDG(v i )

(2)

and decay constantsF (v i )
(2) for N52,...,9 in the long-

wavelength limit, obtained from the general solutions of R
@13#. The vectors$U (v i )% correspond to basis states arrang
in the order $uB12&,uB23&,...,uBN1&;uB13&,uB24&,...,uBN2&;
etc.%. In Table IV we list the corresponding biexciton fre
quency shifts,~natural! half widths, and relative intensities
All frequencies are expressed in units ofVg, and widths in
units of g.

III. CONCLUSIONS

The evolution in time and the spectroscopic properties
an aggregate ofN identical two-level atoms interacting with
and via the radiation field are most easily studied using
Lehmberg-Agarwal master equation. This equation can
solved by projection onto any complete set of basis state
the system. We have demonstrated that the ‘‘natural’’ ba
set for this projection is the set of eigenstates of the retar
interatomic interaction operator: In this basis, the equati
of motion for the level populations, as well as the expre
sions for the absorption and emission spectra, assum
simple mathematical structure and allow for a particula
transparent physical interpretation.
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