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Evolution in time of an N-atom system. I. A physical basis set for the projection
of the master equation
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We study an aggregate df identical two-level atom$TLA's) coupled by the retarded interatomic interac-
tion, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system;
then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in
this basis the equations of motion for the level populations, as well as the expressions for the emission and
absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation.
To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and
present in the long wavelength limit tieascadpemission spectrum for a hexagon of atoms fully excited at
t=0. To illustrate its use for absorption processes, we tabuilatehe same limit the biexciton absorption
frequencies, linewidths, and relative intensities for polygons consistimg-e2,...,9 TLA’.
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The coherent interaction with the radiation field Nf Our starting point is the master equation, which describes
identical two-level quantum systems has received a goothe evolution in time of the system. There are two equivalent
deal of attention over the years. The initial impetus for theforms for this equation: One involves the reduced atomic
subject was an article by DicKd], in which he introduced density operator; the second, which we will use, describes
the concept of “superradiance.” A major advance was thethe time evolution of the expectation value of an arbitrary
introduction by Lehmberg2] and Agarwal 3] of the “mas- ~ atomic operatoQ, and has the form
ter equation,” which has provided the foundation for most of HQ) | N
the calculations since. Early interest in coherent excitation — <[HA,Q]>‘H”21 gij([Sfo QD

focused on such subjects as superradigdtand the theory ot

of molecular excitong5]. More recently, the coherent or N

entangled eigenstates of two-level “qubits” have become an _ £ ((STSTO+0S'S —25'0S"
active area of study in quantum information scieri6g E: (578 QTQS'S ~257QS ),
while spectroscopists have become interested in the optical 1)

properties of molecular clusters or aggregdfés many of
which properties are believed to be related to the coherenwvhereH , is the atomic Hamiltonian
interaction of the aggregates with the radiation field.

The master equation can be solved by projection onto any
complete set of basis states of the system. It is our purpose in
this article to introduce as the “natural” set for this projec-
tion the eigenstates of the retarded interatomic interactiom, is the transition frequenc” andS;~ are the raising and
operator. We demonstrate that in this basis the equations ¢dwering operators of atoy andg;; andf;; are the real and
motion for the level populations, as well as the expressiongmaginary parts, respectively, of the interatomic interaction
for the emission and absorption spectra, assume a simple;; . In this article, we will refer explicitly only to single-
mathematical structure and allow for a particularly transparphoton electric dipole transitions, for which;; is given by
ent physical interpretation.

We consider an aggregate bf identical monomers lo-
cated at positiong; , interacting cooperatively with and via
the electromagnetic field. Each monomer may be simply a
single atom for example, or a quantum dot, or even a large, +(f- B)hP(KR)
complicated molecule—regardless, we will focus on a single it k)Mo L
transition within the monomer between two of (tendegen-
erate energy levelsa;) and|b;), and refer to it simply as an [3], where y is half the Einstein A coefficient y
atom. Our focus is on how the cooperative interaction of the= 2| |?w(*/3h¢?, ;= wjy; is the atomic transition moment,
atoms with the field changes the spectroscopic properties @nd hff) is a spherical Hankel function of the second kind
the transition in the aggregate from those of the correspond8]. However, we point out that our general theory can be
ing transition in the individual atoms. applied to any other type of radiative transition as well, such

as magnetic dipole, electric quadrup¢®, or two-photon
electric dipole[10], simply by choosing the expression for
*Electronic address: hsf@yorku.ca Qj; which is appropriate to the transition in question. For

N
Ha=%2, 00S'S
i=1

1 . .
Qij =7 5 [3(&i-Rip (& Rij) = &+ 1057 (KRy)
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example, for linear transition quadrupoles oriented perpen- (3) The decay rate between any pair of states agrees com-
dicular to the plane of the ring, the interaction is pletely with the total energy radiated by the system in a
transition between the pair.

In this article, we illustrate these properties while confin-
ing our attention for general systems to thei=1 and 2
manifolds. As sample applications of the general theory, we

where y, is half the EinsteinA coefficient for the(quadru- ~ Study an isosceles triangle of atoms, a fully-excited system

9

5 1
28h£3>(kri,-)+ 53h<22>(kr”)+ Ehgz)(kr”) ,

Qjj=ivyq

pole) transition[9] of 6 atoms arranged on the vertices of a hexagon, and the
biexciton absorption by regular polygons consisting Nof
|g|?w® =2,...,9 atoms. In these examples we make use of the eigen-
IR states of a system df atoms arranged on the vertices of a

regular polygon which are calculated in an accompanying
article (along with then=1 or single excitoreigenstates for

a variety of other aggregates in 2 and 3 dimensions, includ-
ing “pyramid” and “diamond” structures, multiple layers,
icosahedra and dodecahedias].

Henceforth for simplicity we will suppress the expecta-
tion value brackets. We rewrite E€L) in the form

QN
= 185 +0,)STS
t 1,12:1(“)0 it )SS Q l. GENERAL THEORY

A. Eigenstates ofM

_i.z

ij=1 1. n=0: Ground state

N
(wgaij+Q§)Qs+sj‘+2ijZ:1 f;S' Qs .
) The ground state of the system has all atoms in their
ground states, and is denoted |®)=1I",|a;).

It is convenient to define the operatut, _ o
2. n=1: Single excitation eigenstates

N , ) . The state of the system in which atdns excited, while
MEiZI (0ot 0 +ifi)S' S +Hipe, all the others remain in their ground states, is denoted by
) Bi),

whereHisziﬂQijQSj‘ represents the interatomic inter- N
actlpn in the aggregate, an operator which exchanges the |Bi)=|b;) H la;). 3
excitation between the pairs of atoms. We note thay;; is j#i=1

the atomic Lamb shift, and “renormalize” the transition fre- These are eigenstates of the noninteracting HamiltoHign

quency to include it, i.e., we seio=wo+ g ; (2,2, f“f Y» but not ofH, which includes the atomic interactidfy,,,. We
the atomic self-damping constant; a® n,,==;_,S'S denote the eigenstates Kfby |a),
is an operator representing the number of excited atoms in

the system. Thusyl = (wq+iy)Nyp+Hine, and we may re- N
write Eq.(2) in the form |a>5i21 SHEDE
Q These satisfy the equation

N
WleQ—iQMTJrZ_Z fiS' Qs .
e Hla)=h QP @) =h (G +iF )|a), @

The master equation may be solved by projection ontdro find these states, we solve the eigenvalue equation of the
any complete set of basis states. However, as demonstratgfx N matrix representindd in the space spanned by the
previously for the simple cases bf=2 and 3[11], the natu-  states{|B;)}. Because();;=Q;;, this matrix is symmetric,
ral set for this projection are the eigenstates of then-  but not Hermitian. As a consequendd) its eigenvalues
Hermitiarb OperatoerhM: H is the effective Hamiltonian ﬁQS-) are Comp|ex;(2) its eigenvectorg(si‘l)} may be real
of the system of atoms “dressed” by the vacuum fil@].  or complex, depending on the system in question. In either

The noninteracting Hamiltonian H, has energy levels case, they obey the orthonormality and completeness rela-
nfiwg, which are Q‘)—fold degenerate. The interactidt,;  tions

splits this degeneracy and creates bands of eigenstates, which \ N
as we will demonstrate have the following properties. o -
(1) The real part of thgcomplex eigenvalue gives the ;1 S'S’ = %aar azl S'S| = Jj - ®)
shift of energy of the state due to local field effects.
(2) The imaginary part of the eigenvalue gives the total Then=1 eigenstates have been calculated over the years
decay constar(or inverse lifetim¢ of the state; this constant for many atomic systems, including=2 and 3[11], linear
is the sum of the individual decay constants to all states irthains[14], two-dimensional arraygl5|, and circular rings
the energy manifold below. and regular polygon§l6]. In an accompanying article, we
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extend these calculations to include “pyramid” and “dia- Here,
mond” structures, some multiple layers, icosahedra, and
dodecahedrf13]. Ci‘YB:E Sjadﬁ- )
7
3. n=2: Double excitation eigenstates
It is then straightforward to show that the average values of

The state of the system in which atomandj are excited,
dhe atomic operatorsQ={osc=|G)(G|,0.,c=|a)(G],

while all the others remain in their ground states, is denote

by |B;:) etc} obey the following set of equations:
ij
N .
|B”>:|bl>|bj>k];'|[] |ak>. (6) UGGZZE’ Taa’o-aa’ '
These are eigenstates Bf, but not of H; we denote the Taa =[1(GP -G = (FY+F N ]opa

eigenstates ofl by |3),
+2 2, NZ;/Uﬁﬁ’ ,

By= > d’[B;;),
(ij )pairs
— 2)_ 2 (2) (2) ,
which satisfy the eigenvalue equation Tpp =L1(Gy = Gp) —(Fg T Fg)]oge,
HIB)=h Q| B) =1 (G +iF )| B). 7pe=(IGF ~Fose,

They are found by first constructing and then diagonalizing ] ] N

the square matrix of dimensidw(N—1)/2 representing in UQG:(IG(al)_F(cyl))O-CVG_l_ZZ, Mgy Tgar s
the space spanned by the staft;;)}. B

The eigenvectord(d! )} obey the orthonormality and T.=[1(G2—GY)— (FR+F )]s
completeness relations. pa B Ta B e MV R
5 where
B _
(ij%awsd”d” Spp’ % deij dgij) = Sananr - (@

Taa’ = 2 Szf/.wsta, '
Then=2 eigenstates have been calculated for systems con- Hov
taining 2 and 3 atomgll], and forN atoms arranged on the

vertices of a regular polygofi3]. NS E C”‘Bf ,Cra'B

4. Eigenstates for p>2 q
. ) an
The eigenstates of the system corresponding tdsineul-

taneous excitation ofn>2 atoms are calculated in an analo- N

gous manner—e.g., the=3 eigenstates oN=6 and N MBarZE Czﬁfwsm :
=7 atoms arranged on the vertices of regular polygons are e
calculated in Ref[13]. However, for the general theory in
this article we will confine our attentioffor simplicity) to
systems in which no more than 2 atoms egienultaneously We focus first on the average populations of the levels,
excited; this is sufficient to establish the pattern. Examples o6 g5, 0,, andogg. In the secular approximatidi 7], these

full excitation of systems containing=3 andN=6 atoms obey the equations

are presented in Secs. IIA and II B.

1. Populations

o _op(2)
0pp=—2F5 0pp,
B. Time evolution of the system

We restrict ourselves to the subspace of the system corre- ZF(l)Uaa+ 22 N33T a5,
sponding ton<2. To study its evolution in time, we make
use of the following table of operations:

(}GGZZE Taao-aa'
M|G)=0, S'|G)=2 sf|a), «

The physical meaning of these equations is clear: The popu-
—_0W N apB lation of the ground statfS) increases because of the decay
Ml@) =0, Sla) % CIl8), into it of population from then=1 states{|«)}. Population

2 . decaysout of ) at the rate ZMo ., and into it from each
M[B)=Qz'|B), S'[B)=0. n=2 level|B) above at the rateR20z,. Because we are
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restricting ourselves to the states<2, there are no=3 2. Coherences

!evels to decay 22)@@ and so population decays only outof  rpq dipole moment operatord; are conveniently ex-

it, at the rate B0 g5. . Pressed in terms of the eigenstaffs} of the operatoH,
We stress that the simplicity of these equations and o

their physical interpretation is due entirely to the projection R e ) .
of thepmyaster equa?ion onto the eigenstatzH.oThe EseJ for Mi= E, [EXE[&lE")E"|= E, (#i)ee oee -
this projection of any other basis set—e.g., the noninteract- EE =E
ing states of Eqs(3) and (6)—would result in populations |f we again restrict ourselves to those eigenstatell abr-
coupled to one another within each manifeidy the inter- responding tan<2, this can be rewritten in the form
atomic interaction. Projection onto eigenstates of this inter-
action results in populations uncoupled to those of other
states within the same manifold, decaying independently into
states in the manifold below, and with population flowing in
from states in the manifold above. =4 (t)+a; (t).
Next, we evaluate the quantify,, . If the eigenvectors
{(s")} are real, the imaginary part of E@) is equivalent to

= ,&% (S} 90 46+ CF “Pag,) + conjugate
@,

Thus, there is a term ingi; corresponding to each of the
“coherences{17] o, ando g, , Which represent transitions

the sum _ "
between the system eigenstates. In general, the transition fre-
quencies are different from each other, so that in the secular
> f,,s¢=FWs approximation the coherence equations of motion can be
V2% a “u- .
v written
. . . . TG _ Wy (@ (1)
Using the orthonormality of the eigenvectors we then obtain 0p.=[1(Gg =G, ) = (Fg'+F ;) Jopa,
the result
a-aG:(IGE)zl)_ F(al))a-aG ’
_r1)
Tea =Fo baar - with the solutions
If the {(s{")} are complex however, we cannot proceed so Uﬁa(t):Uﬁa(o)e[i<G(BZ)—Gi,“)—(,:<62)+Ff)>]t,
simply. We have verified the above relationship algebraically
i i i cW_g®
for the complex eigenvectors of the isosceles trian§lec. 0 a(t)=0,a(0)el®a ~Fa It

Il A); for all other systems, we have contented ourselves with
a numerical verification. Similarly, we have verifi¢dlge-  Each coherence oscillates at the “Bohr” frequency of the
braically for the triangle and numerically for other syst¢ms transition to which it corresponds, and is damped at a rate
that EQN%:F(BZ), so that the sum of the transition rates equal to half the sum of the decay rates of the upper and
from |B) into all stateda) in the manifold below is equal to lower eigenstates involved in the transition.

the total decay rate out df3). These results are consistent

with the conservation of probabilityx;o; =0, where the C. Emission of radiation

sum is over all states of the system, as is required physically.

The solutions to these equations are The electric field operatdg(R) is written in terms of the

creation and annihilation operatoa$, anday, ,

@
t)= 0)e 2Fst, 27w\ ) )
Uﬁﬁ( ) Uﬁﬁ( ) E(R):|ﬁz éK}\(ak}\elk-R_al)\e—lk-R).
x| AV
(D
Taat) = 04a(0)e "% a t+% N30 35(0) The number of photons in the field at tirheith wave vector

k and polarizatiorg,, is then given by

(2) (1)
—2F 't —2F 7t
e 7 —e A —/at

X ! n(kiq<)ut)_<ak)\ak)\>t-

F(l)_ E(2) ’

‘ g Both the intensity and the spectrum of the emitted radiation
are found to be proportional to the two-time correlation func-

(1_e—2F(al)t)r o..(0) tion of the atomic dipole moment operatoe ™ (t) «~(t'))

“ [17]. The term(su;; (t) ™ (t')) satisfies the same equation of
motion for t=t’ as does the corresponding coherence
(crﬂ-’(t)) (quantum regression theordr8]). If we focus for
example on the term corresponding to the transition ff@m
to |G), P(t), the average power emitted at tirpés obtained
(in the Markov approximationby summing over all polar-
izations and directions of emission,

oga(t)=05s(0)+ ;

1
-2, N33 0)—1—=
Eﬁ‘, 58965(0) F;l)_,;;}z)]

(1)
a

72F(2) aa 1
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Sin(kRy; cogkR;;
P(t)=27hG Mo aa(t)E s{'s E | g |2e’ (RiTRYD L=4m (1—coszaij)n|iT_”)+(1—3 coéa”—)(ﬁ
ij 1]
[3], while the density of emitted photons of frequengyis _ sin(kR;) _ 8_77 .
kR)3 3y
( R|J) Y
n(w)=1lim 2 Re>. si“sl*“E |gin | 2€' (RiITRp) Thus,
t—oo |yJ K\
N
3y |87 87
t t . — _ @2, — *
Xj dt, | dtje g o(t)oga(ts), (9) J_8772 3 ;1| I 37; s's; T }
0 ty
1 a *
wheregy, = (2mw/hV)Y?i -8, . =;E sifiis “=—Taa, (10
We first evaluate the sums which appear in both expres- !
sions, and

1=3 ststeS @k (RRig, |2, P()=2AGT 0 ,4(1).

] KA
The average emitted power is equal to the energy of a photon
We choose ouz axis in the direction ofi, and denote by;; at the transition frequencysfll) multiplied by the rate of
the angle formed between andR;;=R;—R; and by (6,¢) decay of population fronfe) into |G), as obtained from the
the direction ofk. Performing first the sum over the polar- master equation for the evolution in time @ .
izations\, we obtain an expression for the angular distribu- ~ With Egs.(9) and(10), we find thatn(w), the density of
tion of the emitted radiation. We continue, replace the sunphotons at frequency emitted by an atom initially prepared
over wave vectok with an integral in the usual way, rein- in state|a), is given by

troduce the damping constaptand obtain ford the expres-
sion

37
=g

52|

The integral over all angles of $id is simply 8m/3. To
evaluate the integrals involving césR;;), we first expand
the cosine in the form

s¥ *“ff e’ Rij sir? dQ
|

2 |s72+ >, ststcogk-R;)) |sir? 6dQ.
=1 iZ]

cogk-Rj;)=cogA cosf)cog B sin 6 cos¢)
—sin(A cosf)sin(B sinf cos¢),
whereA=kR;; cosq;; andB=kR;; sina;; . The integral over

¢ of sinBsin#cosg) is 0, while from the integral represen-
tation of the Bessel functiof8] the integral

27
f cogBsindcosg)ddp=2mIy(B sinb).
0

With the substitutionx=cos#é, the integral overf can be
rewritten in the form

fl
-1
With the help of integral tablej0], L, is found to have the

value 2 sinkR;)/kR;. L, is evaluated by differentiating,
(twice) with respect toA, and added td ; to give the result

L:

cogAX)Jo(BV1—x?)(1—x%)dx=L,+L,.

1 FY
p (w—Ggl))va(F(al))z:

nN(w)=

a single Lorentzian line, centered at the transition frequency
G, with a width given by £V . If the system is prepared
initially in a linear combination ofn=1 eigenstates, it is
straightforward to show that the emission spectrum consists
of the corresponding linear combination of Lorentzians cor-
responding to transitions from the constituent eigenstates to
G).

If the system is prepared in am=2 eigenstatdg), the
resulting emission is a cascade: The system decays first into
states in thex=1 manifold, with branching ratios given by
N%% and a total decay constant oE2N2=2F ). The de-
cay processes from@) are described by the coherences
{aﬁa} The lines corresponding to these initial steps in the
emission cascade are centered{ai=G{)—G{"}, have
widths {2(F?+F(M)}, twice the sum of the decay con-
stants of the states involved in the transition, and weights
{Ngg}. There then follow decays from eadh) into |G),
descrlbed by the coherencls,c}: lines centered &G},
with widths {2F())}. In an analogous way, we can describe
the emission cascade resulting from an initial state which is a
linear combination oh=2 eigenstates. Because we are deal-
ing with eigenstates of the system, the decays in general do
not interfere.(An exception can occur in unusual systems in
which successive transitions happen to occur at the same
frequency. In such cases, there is a “transfer of coherence”
between the manifold$17], which will affect the line-
widths)

As a simple example, in Fig. 1 we display a complete
energy level diagram for an equilateral triangle of atoms
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Il. APPLICATIONS
=
: A. Isosceles triangle

[}
I -
FARTRN : To illustrate the general theory, we present in this subsec-
@f’ i @ tion the simple example of 3 atoms arranged on the vertices
> ! . : of an isosceles triangléln fact, the same analysis applies to
K @ \ ;(D a linear chain of 3 equally spaced atoms, with the middle
/ £ : atom labeled atom LThe interactions between the atoms are
7/ . \ 5 denoted by

OQp=Qg3=a=g,tif,, Qp=b=g,+ify,

so that the matrix representiid in the n=1 subspace is

-
- /
/
/
/
/
Fm————

N
~

wotiy a a
D= a wotiy b

! :
A E
ll \\\: ’ Q) M .
eV @ a b wotiy

Its eigenvalues and associated eigenvectors are found to be

1
[—
1+
N
S

1
QP =wtiy=b, sP==(0-1D, (1
1 0 Y Vi( )

\\\ @ // (1) . 1 2
, 4 : Q3 ' =wetiy+ =(bxD), s8=—(1x.,Xs),
® 10) : 2
: (12)

’ where

2|

¢ : D?=b%+8a% x.=(b*xD)/4a, Ni=1+2x3.

= (13

s
(R S
<

~

FIG. 1. Energy levels and decay rates for an equilateral triangl

of atoms, in units ofi, y=1. eChoosing the basis states in the ordB;,),|B,3),|Bsy)},

we write the matrix representing in the n=2 subspace in

the form
[19]. All atomic separations are equal, so that the system is 2 wg+i7) a b
described by a single interaction potent@l=g+if. On (wotly _
each state is indicated its total decay constant, while decay M@= a 2(wotivy) a
constants between states are indicated on the dashed b a 2(wo+iy)

lines connecting them. For example, the=2 eigenstate

(173)(1,1,) has energyi2(wy+g) and a total decay con- Its eigenvalues and associated eigenvectors are then found to
stant of 2(y+f); it decays with a constant of ¢4+-8f)/3  be
to the (symmetri¢ (1~//3)(1,1,)) state, and ¥—f )/3 to each

of the 2 antisymmetric states in thre=1 manifold below.
Similarly, each of the other two=2 eigenstates has energy
fi(2wy—g) and a total decay constant ofy2 f.

It is straightforward to extend the general theory pre-
sented above to higher degregs of excitation of the system, 9(22)22(w0+i7)+ E(biD), d@): i(xi,l,xi).
but unnecessary: the pattern is clear. Instead, in Sec. Il we 2 N.
illustrate the general theory using three specific examples: In (15
Sec. Il A we study in detail a system consisting of 3 atom t
arranged on the vertices of an isosceles triangle; in Sec. I 211
we study the emission from a fully-excited hexagon of atoms We now consider the evolution in time of the system, as

in the long-wavelength limitR;; —0, alli andj; and in Sec.  jetermined using the master equation. In the secular approxi-
I1C, we tabulate the biexciton energy levels, absorption freination. the level populations obey the equations
guencies, linewidths, and relative intensities for polygons

consisting ofN=2,...,9 atoms, in the same limit. oge= —6Yy0EE,

1
QP =2(wp+iy)—b, d¥P=—(-1,01, (14
V2

is easily verified that the eigenvectors satisfy the orthonor-
ality and completeness relatio(® and (7).
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Tpg=— 2F532)05ﬁ+ 2T e, Dividing by [N |? and comparing with E¢(12), we find that
2 (1) aa T :1+2|X+|2F(1)
Taa="2F, Uaa”% N 27w 2l 2

It is easy to verify that the factor (£2|x.|%)/|1+2x2] in
&GezzE Tpal aa> the above expression differs from 1 by an amount of order
“« Im(b+D)/Rep+D), an error which was introduced by our
having made the secular approximation. Becatige f
<1y, while g,, g,=(kR) 3y, this difference in practice is
<105, and therefore negligible, so that,=F$ (within

where

_ B *B . . .
T'gé— ;(ij) d(ij)f,uvd(ij)" the accuracy of the secular approximajiohhe equivalent
:;(ij), relation forT5 is obtained in an identical way. Thus we have

. ._ . ~ demonstrated directly that the decay of population out of
For the conservation of probability, we require the following eachn=1 eigenstate is equal to the rate at which it flows

three identities to hold: into the ground statiG), which in turn agreegexactly) with
e the rate at which energy is radiated by a system prepared in
(1) Teu=Fa", the eigenstat€Sec. 1 Q.
(2) Here we must verify thak ,Nzz, the sum of the
(2) z Ngg=F(BZ>, Qecay constants of the populatl_on from each?2 state|B)
« into then=1 states{|a)} below, is equal to the total decay

constant of|8), as given by the imaginary part of its energy
eigenvaluer(?). This is a straightforward but tedious calcu-
lation, and we will content ourselves with its demonstration
for B=1 only.

(1) The rate of decay of population out faf) is given by We begin by calculating the vectof€“'}. Using Egs.
ZFS})UM, while the associated emission of energy and flow(8), (11), (14), and(15), we obtain the results
of population into|G) is given by 2T ,,0,,. It is trivial to

(3) % TEE=Fc=3y.

demonstrate thaf;;=F{¥=y—f,; instead, we calculate 1
T 11 1 Y= Tp Cll=(1,0,0), o= (0,_ 1,1),
22 ‘/2 .
1 Y fa fa 1 1
T,.= 1 xt x| fa v follx Cc¥=——(0,-1,1).
22 |N+|2 + A+ a X+ \/2N,( )
fa fp ¥ +
Proceeding with the multiplication of these vectors with the
= W[(1+2|xi|)y+2 fo|x2|+4f, Rex, . matrix (f,,) as in the calculation of », above, we find that

By substitution into the eigenvalue equation féf%), we

Ni=y, NB=r o (y—fy), NE=r o (y—fy)
find that the quantityl{+D)/2 can be written in two ways: T NG B ’

b+D whose sum isy+ (y—f,) (1N, |+ 1/|N_|?). Substituting

a
5 —2axy=b+ —. (16)  for |N.|? from Eq. (13), we find that (N |>+ 1/N_|?)
- =1+terms of ordef Im(b+D)/Re(b+D)], so that within the
Writing x, =|x.|e'?, we rewrite Eq.(16) in the form secular approximation
| b+ D /2 =| 2 aa
m(( )[2)=Im(2ax, ) 2 N11=27_fb=':(12)1

=2|x.|(facos¢+g,sing)
as required. The corresponding relations fior 2 and 3 are

a
=Im| b+ " verified in an equivalent way.
* (3) It is simple to demonstrate that because of the sym-
=fyt (X, |)(f, cOSh—gqSingh). metry of the systerTpe=T;=F") for i=1,...,3, so that
We multiply the second of these equations byfﬂ and add BB _ (1) _
it to the first to obtain > TEE_% Fs =3,

(1+2|Xi|)|m((b+ D)/Z):Z fb|Xi| +4fa ReX+ . as required_
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Thus, we have demonstrated the validity of all 3 identi-Ngg/F(Bz), the decay rate fronp) to |a) divided by the total
ties, and therefore too the conservation of probability in thegecay rate from). There are 9 Lorentzian lines correspond-
system. ing to the emission of thigsecond photon, 1 line for each

If the system is fully excited at=0, i.e.o0ee(0)=1, the |8y, |4) transition, with a total area of 1.
solutions of the population equations can be written in the' (3) From each statky), the system decays into the ground

form state|G), emitting a Lorentzian lind_(«,G). The weight
oee(t) =e o7, W(«) of the line beginning fronja) corresponds to the frac-
tion of the population which has arrived |} via its various
TEE ) routes W(a) = 3 5(TEZ/Fg) X (N53/F ), and the total area
Tpp(0= 5o —Fr (e 8 me ™, of the linesS ,W(a)L(a,G) is 1.
LA There is a well-known classical model which can be used

to describe cooperative transitions of a systenNo&toms

—2F g 2F between its ground and single exciton states, which helps
illuminate the physics of the process. In it, atom replaced
by an oscillating electric dipolg; at the positiorR; . Dipole

TaaD=2,

_ g2
B 3y Fﬁ

NESTER 1
FO_F (e

—%(e‘”(al)‘—e‘ey‘)}, i creates an electric fiel&;(R;) at the position of(every
3y—F} othen dipolej, which can be divided into two parts: One part
is in phase with the displacemepy oscillator j, and thus
F;l)Ngnglé 1 1—e 2F changes its effective frequency. The second is in phase with
UGG(t):ZB 3y—F? |F@_FD FD its velocity z;, and alters its rate of damping.
@ B B a a : At
We first calculate the normal modes of oscillation of the
1—e 2Ft 1 1—e 2F St system, a step equivalent to the quantum-mechanical calcu-
£ ~ 3. FD =6y lation of the(single exciton eigenstates. The normal mode
B Y Fa a eigenvalues are complex: The real part gives the effective
1— e 6 frequency of oscillation of each dipole in thocal) field
_ _) created by all the others, and the imaginary part its net rate of
3y damping, under the influence of its own force of radiative

reaction plus that exerted on it by all the others. In a normal
To calculate the spectrum of the radiation emitted in thismode, the relative amplitudes and phases of oscillation of the
cascade to the ground state, we proceed as in the genegfiholes adjust themselves so that the effective frequencies
theory: We calculate the dipole moment operafiorsolve  and dampings of all are equal; hence, no dephasing occurs
the equations of motion for each of the coherencesjuring the oscillation. The eigenvectors, which are also com-
{oep, 044,046t Which appear inu and for the two-time  plex, give these relative amplitudes and phases: The radiative
correlation function(u™(t)u—(t")), and finally calculate properties of the system in a transition betwéenand|G)
n(w), for which we obtain the expression are the same as those of a set of classical oscillating dipoles
of momentg,; = i{a|S'|G)=as" at the positionsR; of the
atoms. The ratio of the absolute values of the coefficients
|si/s| gives their relative amplitude; if we writes"
_ _ _ =|s?|e'?, then their relative phase i — &; .
where L(X,Y) is the Lorentzian function of area 1 corre-  The dynamics of the system are best described in terms of
sponding to the transition from levgX) to level[Y), these normal modes, which evolve independently of each

other. Unlike the master equation calculation, which pro-

TEE Ngs
n(w)=2 | £ | L(E.B)+ =7 [L(B,a) +L(,G)]
a,B E B

L(X,Y)= i FX+2FY - duces a balance correct only to within the accuracy of the
' T (0—Gx+Gy)“+ (Fx+Fy) secular approximation, here we find that the energy radiated
L ) i o by the atomic system into the field éxactlybalanced by the
The physical interpretation of this expression is clear. decay of the energy of oscillation due to the dampiigg.

(1) The system begins in sta{€) which has an €nergy The total work performed by the oscillators against the net
corresponding to that of 3 photons;@,. It then emits its  gamping force acting on each gives the same result. If the
first photon: Because the emission is a coherent process iRystem is set oscillating in one of its normal modes, the total
volving all 3 atoms, the decay occuien averagginto the 3 intensity of emission decays exponentially at a rate given by
n=2 coherently excited state§s)}, with a branching ratio  the imaginary part of the eigenvalue, and the spectrum of the
of TEZ/Fe equal to the decay raf€gg from [E) to |8) di-  emitted radiation consists of a single Lorentzian line, cen-
vided by the total decay rafé from |E). The sum of these tered at the effective frequency and with a width equal to the
branching ratios igof coursg 1, and each emission line is damping rate of the mode. If the initial state is a linear com-
the LorentzianL (E,8), centered at the transition frequency bination of modes, the intensity of emission is a linear com-
Ge— G, with width 2(Fe+F§)). bination of exponentials and the emission spectrum the

(2) From each statg8), the system decays coherently into equivalent linear combination of Lorentzians corresponding
the n=1 states{|a)}, with (a secony branching ratio of to the constituent modes.
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There is no existing classical model by which one can TABLE I. Cascade emission lines from a fully-excited hexagon,
calculate then=2 (or highej eigenstates of the atomic sys- long-x limit.
tem. In that connection however it is interesting to note that =
the radiative properties of the system in a transition between Transition

. . . Shift Half-width
ann=2 eigenstates) and ann=1 elge_rlstat¢a> are |d(in- Ny ny (units of V) (units of ) Weight
tical with those of a set of classical dipoles of momeint
= i(B|S'|a)=aC located at the atomic positiorg;; 6 5 —2.511 16 1
and so on for transitions among eigenstates corresponding to 5 4 —1.651 21.687 0.9687
higher values oh. 2.801 12.293 0.0293
5.611 12.020 0.0020
B. Hexagon 4 3 —0.5747 23.235 0.9492
In Ref.[13], we calculate the complete set of eigenstates g’é;ii gégg <01'8,l? °
for a system of atoms arranged at the vertices of a hexagon _5' 0267 13.841 90012
of arbitrary size relative to the radiation wavelength. If the ' ' '
system is prepared in the fully-excited stéE, it will emit —0.2394 4.742 0.0219
radiation and cascade down its energy-level ladder 1.6351 4.295 0'09f2
to the ground statéG). As the number of states in the —7.8367 13568 <10
manifold corresponding to excited atoms isﬁo, in general —3.0494 4.469 0.0005
this gives rise to a very large number of emission lines: —1.1749 4.022 0.0015
55 o8 )& ). In the long-wavelength limit however, the 3 2 0.5747 21.235 0.9424
emission(like the absorptionis confined to the subspace of 5.0267 11.841 0.0080
totally symmetric eigenstates; for the hexagon, there remain 7.8367 11.568 <10
26 spectral lines in the cascade. Their calculation is a —4.2126 12.136 0.0040
straightforward extension thi=n=6 of the general theory 0.2394 2.742 0.0294
described in this paper. We use the eigenstat¢43ifin the 3.0494 2.469 0.0085
long-wavelength limit to calculate the shifts, widths, and —6.0871 11.689 <10*
weights of these cascade emission lines. —1.6351 2.295 0.0019
For long wavelengths, there is only one optically active 1.1749 2.022 0.0058
n=1 state |a), namely that corresponding tos{® 2 1 1.651 15.687 0.9464
=1/\/6. (Similarly, the only optically active state in —2.801 6.293 0.0393
the n=5 subspace ige)=(1/\6)2_,|A), where |A)) —5.611 6.020 0.0143
=[a)I1?,;_4|b;).) Forn=2 (and by symmetryn=4), it 1 0 2,511 6 1
can be shown that the active states are described by vectors
of the form
X;=1.52771.5355/Vg, y;=2.0144-3.0116/V¢,
1
1B1)= T LT e F388:8) X,=—0.05194-0.3278/Vg, Y,=—1.2530-0.6190/V,,
rs
(in  the  basis  {|By)....|Be):|B1a),....|Be); X3=—0.9028-0.07839/Vs, y3=2.6189+0.1431/V,

|B14),|B2s),|Bag)}), wherer ands take the values o _
and the normalization constaM ,,=6+ 12x2+2y2. It is

r{=1417-1.261/Vg, s;=1.548-1.732/Vg, then straightforward to show that the transition probability
from |a) to |G) (and from|E) to |e)) is 6y, while those from
r,=—0.114-0.373/Vg, s,=—1.087-0.550/Vg, | i) to |a) are given by the expression

ra=—1.940-0.312/Vg, S3=2.252+0.200/Vs, _|2+2r+sf?
No«=OY T
hVgy is the nearest-neighbor interaction energy in the hexa-
gon, and the normalization constaMt,=6+6r2+3s%. For  and those fromy;) to | B;) by
n= 3, the active states are of the form
|24 2x+r(1+2x+Yy)+2sX?

T, ;=36
UL (Mo [[M ]

1
[vi)= —=—=(1,..1X,... X;X,....X;Y,Y)
i /—Mxy

We list the frequency shift&Sy— Gy— wq, half-widths
(in the basis  {|B129,..-/Be12i|B124):---1|Be12;  Fx+Fy, and weightsPy(Fyy/Fy) of the cascade emission
[Bi13g)-- | Be23:|B13s),|Basg)}), Wherex andy take the val-  lines from a fully-excited hexagon in Table 1. Heb¢éandY
ues refer to the upper and lower states involved in the transition,
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TABLE Il. n=1 frequency shifts in the long-wavelength limit with an N-fold symmetry axis, whose electronic excitations

(units of V).

Linear

Nearest dipoles,
neighbors all

N v Frequency shift only

Linear

quadrupoles,

all

neighbors neighbors

5 1,4 0.618-1.61% 0.618 0.239
2,3 -161&+0.61% —1.618 —1.473

5 2a+2b 2
6 1,5 a—b-c 1
2,4 —a—b+c -1
3 —2a+2b—c -2
6 2a+2b+c 2

2.468
0.683
—1.067
—-1.741
2.509

0.474
—1.563
2.178
0.905
—1.033
—1.902
2.159

Py is the population passing through sta¥ during the
cascade process, afgy/Fy is the branching ratio fronx)

to |Y).

C. Absorption by regular polygon systems

have been found to extend coherently over the entire ring
[22]. A calculation of then=1 andn=2 eigenstates of regu-

lar polygon systems of odN for electric dipole interactions

in the long-wavelength limit has in fact been carried pdt

but in that reference the authors included only nearest-
neighbor coupling for the real part of the interaction. For the
n=1 subspace, the resulting eigenstates are the same as ours
(which however include interactions betwealh neighbors
and are valid for arbitrary wavelengttbut the energies are
very different: This difference is illustrated in Table I, where
we list then=1 frequency shifts in the long-wavelength
limit for polygons havingN=5 and N=6 for nearest-
neighbor interactions only, for linear dipoles with all neigh-
bors included, and for linear quadrupoles with all neighbors
included.(All shifts are expressed in units of the static inter-
action energyVy between a pair of nearest neighbpiSor

the n=2 subspace, the eigenstates themselves are very dif-
ferent from those obtained when only nearest-neighbor inter-
actions are included, and a numerical comparison of the en-
ergies is not meaningful. Because the retarded interactions
are intrinsically long-ranged, a correct calculation of the

There exist in biology molecular aggregates known asigenstates of the physical systenustinclude interactions
“light-harvesting complexes,” in which large identical build- between all atom pairs: Only in these states will the “local
ing blocks or monomers are arranged symmetrically in ringdield” shifts be the same, and only in these states will the

TABLE Ill. Frequency shifts and widths of the exciton and biexciton energy leflefgy-wavelength limig shifts are in units oWy,

widths in units ofy.

N AGH) n=2 eigenvectors AGE) F)
2 1 1 0 2
3 2 (1,1, 2 4
4 2.354 (1,1,1,1;x,%
x=1.248-0.283/V 3.204 5.930
x=—1.602-0.363/V —2.496 0.070
5 2.472 (1,1,1,1,1;%,%,X,X,%
x=1.356+0.649/V 3.823 7.821
x=-—0.737-0.352/V —-1.351 0.179
6 2.511 (1,1,1,1,2,16,X,X,X,X,X; V,Y,.y
x=1.417-1.261/V; y=1.548-1.732/V 4.162 9.687
x=-0.114-0.373/V; y=—1.087-0.550/V —-0.290 0.293
x=—1.940-0.312/V; y=2.252+0.200/V —-3.100 0.020
7 2.518 (1,1,1,1,1,1, 1X,X,X,X,X,X,X; V,Y,Y.Y,Y.V,Y
x=1.45-1.602/V; y=1.66-2.738/V 4.358 11.534
x=0.314-0.433/V; y=—0.877-0.765/V 0.570 0.410
x=-1.416-0.379/V; y=0.634+0.011/V —-2.410 0.056
8 2.515 (%, %,%,%,%,%,x1,1,1,1,1,1,1,1y,y,V.Y,V.Y,Y.Y; Z,2,2,Z
x=0+59.68/V; y=1.177-0.949/V; z=1.237-1.444/V 4.478 13.37
x=1.635+69.72/V; y=0-0.0714/V; z=—1.809-132.87/V 1.248 0.528
x=—1.0914-285ii/V; y=0.4523+0.0204/V; z= —1.284+0.453/V -1.60 0.097
x=—0.490-63.44/V; y=—1.33-43.48/V; z=1.451-34.91/V -3.322 0.008
9 2.508 A, L% X Y,y Z,..02)
x=1.493-2.834/V; y=1.793-5.665/V; z=1.939-7.341/V 4.559 15.19
x=0.822-0.583/V; y=—0.144-1.184/V; z=—1.015-1.518/V 1.780 0.644
x=—0.496-0.429/V; y=—0.916-0.396/V; z=0.713-0.0443/V 0.958 0.140
x=-—1.713-0.386/V; y=1.538+0.171/V; z=—-0.619-0.23/V —-2.874 0.025
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TABLE IV. Biexciton excitation frequency shifts, natural line- =400 nm, so that the long-wavelength limit applies. In this

widths, and relative intensitiggong-wavelength limit limit, the dependence ok in the absorption probability is
negligible, and it is easy to verify that only those
Frequency shifts  Half-widths states{u,)} which are totally symmetric in the atomic
N (units of Viy) (units of y) Relative intensities  positions are optically active, namely the statagy,
5 1 4 1 =(1/yN)(1,...,1). This gives rise to Lorentzigaxciton ab-
3 0 7 N sorption lines, centered at the shifted frequen@el = w,
4 0.85 9.93 0.988 +AG(), with (natura) widths 2F ) =2N.,.
485 407 0.012 Wezdenote the frequency of stag.é(,,i) by Gg_i))z_Zwo
5 1351 12.821 0.978 +AGH), r;md its decay cohnstant 152 .hThe excnauonfof
stateU,;y from a ring in the statei, then occurs at fre-
-3.823 5.179 0.022 (i) ;oM &) 9 (n) INE Irs atir
6 1.651 15.687 0.969 quencyG,i,— Gy - Like the corresponding emission line,
2801 6.293 0.029 the width of the absorption line is E(?) +F{y}), and in the
_ long-wavelength limit the relative intensities of the biexciton
5.611 6.020 0.002
. 1.840 18534 0.961 absorption lines are simply given kﬁ{ﬁ,)e
_ In Table 11l we list then=1 shiftsAG{, the (unnormal-
1.948 7.410 0.034 (N)
. . . . . ; 2
_4.929 7056 0.005 ized) n=2 e|genvect0rs{(L2J)(vi)}, and then=2 .sh|ftsAG§Ui))
8 1.964 21.370 0.9550 and decay constant§;; for N=2,..9 in the long-
—1.266 8.528 0.0377 wavelength limit, obtained from the general solutions of Ref.
_ [13]. The vectordU ,iy} correspond to basis states arranged
4.174 8.097 0.0069 L (vi)
—5.836 8.008 0.0006 in the order {|BlZ>v|B_23>!"'1|BN1>;|BlS>v_BZ4>-_---1|_BN2>;
9 2052 24.190 0.9494 etc}. In Table IV we list the corresponding biexciton fre-
70'727 9.644 0'0403 quency shifts(natura) half widths, and relative intensities.
' ' ‘ All frequencies are expressed in units\6y, and widths in
—3.465 9.410 0.0088 units of .
—5.381 9.025 0.0016

Ill. CONCLUSIONS

damping be the same for all atoms, so that no dephasing The evolution in time and the spectroscopic properties of
occurs during the evolution in timg23]. As well, in some  an aggregate dl identical two-level atoms interacting with

systems the energy of interaction between secondiighe) and via the radiation field are most eaS|I_y studlec_i using the
nearest neighbors can actuatiyceedhat between adjacent Lehmberg-Agarwal master equation. This equation can be
pairs(depending on the relative phases of the moments in thé@lved by projection onto any complete set of basis states of
given eigenstate, and/or on the relative orientations of théh€ system. We have demonstrated that the “natural” basis
transition moments ang;;). §et for thl_s prOJecthn is the set of elggnstatgs of the retarded

If a system in its ground state is placed in a weak externalnteratomic interaction operator: In this basis, the equations
field of wave vectork and polarizatiorg,, , only then=1 o_f motion for the Ievel_ populat|ons_, as well as the expres-
states are excited, with a relative probability proportional toSions for the absorption and emission spectra, assume a
|<u(v)|2isl+[i_Aq()\eik-Ri|G>|2' If the field is sufficiently in- simple mathema_tlcal_structure .and allow for a particularly
tense and the losses sufficiently low, population can remaiff@nsParent physical interpretation.
in the{u(,} states for long enough to allow excitation of the
n=2 states; and so on.

In recent years, there has been interest in the excitation of | would like to thank Dr. Terry Rudolph and Itay Yavin for
the exciton and biexciton states of the light-harvesting commany stimulating and helpful conversations, and the Depart-
plexes, in connection with the calculation of their third-orderment of Physics at the University of Toronto where this work
nonlinear optical susceptibilitids,22]. The complexes dis- was completed for its kind hospitality. This research was
covered so far have diameters of the order of 10 nm and theBupported in part by the Natural Sciences and Engineering
absorption frequencies correspond typically to wavelengthResearch Council of Canada.
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