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Entanglement of distant electron interference experiments
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Two electron interference experiments which are far from each other are considered. They are irradiated with
correlated nonclassical electromagnetic fields, produced by the same source. The phase factors are in this case
operators, and their expectation values with respect to the density matrix of the electromagnetic field quantify
the observed electron fringes. The correlated photons create correlations between the observed electron inten-
sities. Both cases of classically correlatseparableand quantum mechanically correlat@shtangled elec-
tromagnetic fields are considered. It is shown that the induced correlation between the distant electron inter-
ferences is sensitive to the nature of the correlation between the irradiating photons.
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[. INTRODUCTION rable and entangledB]. We conclude in Sec. IV with a dis-
cussion of the results.

Interference of electrons encircling a magnetostatic flux
has been studied e>.<tensively since the wqu qf Aharonov and Il. ELECTRON INTERFERENCE
Bohm[1,2]. These ideas have been applied in various con-
texts, for example, in magnetoconductance oscillations in We consider two electron interference experiments far
mesoscopic ringg3], “which-path” experiments[4], and  apart from each other, which we refer toAsandB (Fig. 1).
neutron interferometrys]. They are irradiated with electromagnetic fields. Each elec-

The Aharonov-Bohm effect can be generalized by replacfron beam splits into two patf@,o,Ca; andCgo,Cp; (paths
ing the magnetostatic flux with an electromagnetic field. TheVith higher winding numbers are ignoned _
objective in this “ac Aharonov-Bohm” effect is very differ- Let ¢ be the time-dependent flux threading the loop
ent from the “dc Aharonov-Bohm” effectwith magneto- Ca1=Cao. The electron wave function at the poirj is
static fluy. In the latter case the physical reality of the vector91Ven by[6.7]
potential has been demonstrated and the subtleties of quan- )
tum mechanics in nontrivial topologies have been studied. WA(Xa) = thao(Xa) +eXpi€ da) Par(Xa), )
The former case constitutes a nonlinear device, where the
interaction between the interfering electrons and the photonghereyino(Xa) and#a1(xa) are the electron wave functions
leads to interesting nonlinear phenomena. Indeed the nonliessociated with the path€,, and C,;, correspondingly.
earity can be seen in the intensity of the interfering electrond his leads to the electron intensity
which is a sinusoidal function of the time-dependent mag-
netic flux. In Refs[6,7] the interference of electric charges Ia(op)=1+cogopteda), 2
in the presence of both classical and nonclassical electromag-
netic fields has been studied. It has been shown that the
guantum noise of the electromagnetic field affects the phase
factor.

In this paper we consider two Aharonov-Bohm interfer- X b,
ence devices which are far from each other. Each of them is
irradiated with a nonclassical electromagnetic field. The aim Cai
of the paper is to consider entanglement between the two
electromagnetic modes irradiating the two Aharonov-Bohm EEQ
interference devices and study the correlations between the
interfering electrons in the two devices. We note that in Ref. Cgo
[7] we have studied the effect of photon entanglement on a
single Aharonov-Bohm interference device. Here we con- ® ¢
sider two electron interference devices far apart from each Cgi s
other, and show that the two electron interferences are cor-
related due to the entanglement between the two electromag-
netic fields.

In Sec. Il we describe the experiment. We show that the F|G. 1. Two electron interference experiments which are far
joint electron intensity depends on the density operator defrom each other are irradiated with nonclassical electromagnetic
scribing the two-mode electromagnetic field. In Sec. 11l wefields. The two electromagnetic fields in the two experiments are
consider two cases for the density operator of the field, separoduced by the sourcg:,, and are correlated.
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oa=ard yai(Xa)]—ard Yao(Xa)] Ia(oa)=Tr{pa[1+cogopateds)]}

for the case of equal splitting between the two wave func- =1+|W(\p)|cogoptardW(Aa)]}, (5
tions[ | Yao(Xa) |?=1/2=| a1 (Xa)|?]. We note that the phase
difference o, is effectively a rescaled positior, on the  where\,=iq exp(w;t). As we have explained in detail in

screen. All the results below are in termsaf (and o). our previous worK6,7], the visibility in this case i$W(\ )|
_ o which takes values less than 1. It has been shown there that
A. Nonclassical electromagnetic fields this is intimately related to the quantum uncertainties in the

As explained in our previous woflé,7] for a nonclassical  €lectric and magnetic fields and consequently the reduction
electromagnetic field of frequenay the flux ¢ is an opera-  of the visibility from 1 to|W(\,)| is due to the quantum
tor. The dual quantum variables of the electromagnetic fieldioise in the nonclassical fields.

are the vector potentidl; and the electric fieldE; . Although Similarly the electron intensity in experimeBtis
the dual quantum variables are local quantities, we consider R
loops which are small in comparison to the wavelength and lg(og)=Tr{pg[1l+cogog+edg)]}

after integration we gef{)=4icAidxi and the electromotive ~ ~
~ . . =1+ |W(\p)|CO +ard W(A , 6

force V=§E;dx as dual quantum variables. We next intro- [W(kg)|cod g+ ard W(ke) 1} ©
guce the corrgspondinAg creatiqn and annihilation OFjerator%vhere)\B=iq explwst).
a'=2"Y:"Yp—iw V) and a=2"Y%¢"Hp+iw V), We next consider the joint electron intensity in the two
whereé is a constant proportional to the area enclosed by thexperiments. It is given by
loop and in unitskg=%Z=c=1. We work in the “external . .
field approximation” where Fhe_ bac'k reaction from th elec_- [(op,08)=Tr{p[1l+cogopteda)][1+cogog+eds)]}
trons on the electromagnetic field is neglected. This is valid 7
for external fields which are strong in comparison to those . ] .
produced dynamically by the electrofisack reaction In ~ The correlations between the electron interferences in the
this case we geb(t) =2~ Y2 explwt)a’ +exp(iwt)a]. two experiments are quantified with the ratio

Exponentiation of the magnetic-flux operator yields the

phase factor exjed(t)], which becomes

exdied(t)]=D[igexpint)], q=2"Y%e, (3

_ I (O-A10-B)
MECAIRCS) ®
I1l. EXAMPLES

whereD(x) = expi&a —x*a) is the displacement operator. In . . )
order to find expectation values we take the trace of the Two mode density matrices are factorizaplacorrelatel

oA , ) i if they can be written ap=pa®pg. They are separable
exp_['?fﬁ(‘)] operator W.'th respect to the c_ien_sny matpbde- (classically correlated if they can be written asp
scribing the nonclassical electromagnetic field:

=Zipipai®ps,i, Wherep; are probabilities. Density matri-
ces which cannot be written in one of these two forms are
entangled (quantum-mechanically correlagedThere has
4) been a lot of work on criteria which distinguish separable
and entangled stat¢8]. In this paper we compare and con-
trast the influence of separable and entangled photon states

Tr{p exied(t) 1} =TI pD(A)]=W(r),
A=iqg expiwt).

HereW is the Weyl or characteristic or ambiguity function on two distant electron interference experiments
(cf. Ref.[9], and references therginThe tilde in the notation We consider two cases for the densl?it oper .cmf the
reflects the fact that the Weyl function is the two-dimensional y operat

Fourier transform of the Wigner functiofwhich is usually ?évlg'sr;%gﬁ eéi?:;?;?ggdneerfgtﬂen|1dast.ri>-<rhe first is the separable
denoted byw). y y
Psep:%(|01><01|+|10><lo|)- 9

geThe second is the entangled std® =2""4|01)+10))
Yvith corresponding density matrix

Pent= Psept %(|01><10| + | 1O><01| )s (10

B. Correlated electron intensities

Let p be the density operator describing the two-mo
nonclassical electromagnetic field in both devices. The firs
mode of frequencyo, interacts with electrons in experiment
A and its density matrix ip,=Trgp. The second mode of

frequencyw, interacts with electrons in experimeatand its where peepis given by Eq.(9). The difference betweeps,,

density matrix 'S,pBETrAp' o and p. lies in the above nondiagonal elements.
For nonclassical electromagnetic fields the flux and con-

sequently the intensity of Eq2) are operators. In order to
find the expectation value of the intensity we calculate its
trace with respect to the appropriate density matrix and using In the case of separable electromagnetic fields of(Ex.
Eqg. (4) we find the electron intensities are

A. Classically correlated number eigenstates
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IA((TA):1+C¥COS(TA, (11)
IB((TB):]."FCYCOSO'B,
where
2 2 2
a= 2q exp(—q?). (12

As explained in detail in Ref$6,7] the visibility correspond-

ing tol, orlgis a<1, due to the noise in the nonclassical

electromagnetic fields.
We also calculate the joint intensity

lsed oA 08) =1+ a(COSop+COSTR) + 2 COSOACOSOR,
(13

where

2

p= " ext~ ). 14

The ratioR of Eq. (8) is

1+ a(cosop+ CcoSog) + 28 COrACOSTR
(1+ acosop)(1l+ acosog) '

Rser( Op,08)=

(19

Rsedoa,0g) is periodic inos and og with period 2 for

each of the screen positions. Its stationary points are sudfuencyw;—
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FIG. 2. I sepas a function ooy ,05 €[ —27,27]. The frequen-
cies arew;=1.2x10"% and w,=10"*, in units wherekg=#A=c
=1.

ser(O'A og)—q exp( q2)
SiNoaSINogCOY (w1 — wy)t]
(1+acosop)(l+acosog)’

Ren{oa,08) =

(18)

It is seen thatl\{oa,08) is equal tols{oa,0) of Eq.
(13 plus an extra term, which oscillates in time with fre-
w, around this value. In the case;= w, the

that IRgey/ doa=0=3dRe/dog and it can easily be shown electron intensityl o,( o5 ,0) differs from the electron in-

that

1-2a+2p
(1-a)?

1+2a+283

(1+a)? (18

= Rsey{ Op,0)S

The global minimum occurs at the point{=7,05= )
and the global maxima at the pointsr{=0 or 27,0
=0 or 2m).

We note that for factorizabléuncorrelategl electromag-
netic fieldsR=1. In the example of separablelassically
correlated electromagnetic fields of Eq9) we getRg,in-
dependent of time, which takes values less thathé& upper
bound in the inequality16) is slightly less than 1L

B. Entangled number eigenstates

tensity Ise{oa,08) by a constantwhich depends omrp,
og). Similar comments apply toRs{oa,08) and
Ren{oa,08)

C. Numerical results

In all numerical results the electromagnetic fields have
frequenciesw;=1.2x10"% and w,=10 *, and the param-
eteré=1. Figure 2 shows$e. o ,0) of Eq.(13) as a func-
tion of 05 andog . Figure 3 showRg.{oa,0g) of Eq.(15).

We note that in our example thie,is time independent and
min(Rsep =0.7557, maxRse) =0.995.

Figure 4 showRR,;at (w;— w,)t= 7 as a function obr,
andog. Figure 5 is a slice of Fig. 4 fotrg= — 1.17. Figure
6 shows the time variation of the two ratié&,,, (line of
circles and Rg; (continuous ling for o,=0.987 and og

We now consider the entangled electromagnetic fields off —1.1m.

Eqg. (10). In this case the electron intensitiég(o,) and
Ig(og) are the same as in E€L1). The joint electron inten-
sity is
Ient(O'Aﬂ'B):Iser{a'A’UB)_qz
X exp( —q?)sinoASinogcod (w; — w,)t],

17

and the ratio of Eq(8) is

The results show that both classically and quantum-
mechanically correlated photons induce correlations on the
distant electron interference experiments. We have compared
and contrasted two examplegs, of Eq. (9), which is a
mixed state, ang.; of Eq. (10), which is a maximally en-
tangled pure state. These two density matrices of the electro-
magnetic field differ only by off-diagonal elements. We have
shown that the effect of these off-diagonal elements on the
correlations between the electron interference experiments is
drastic(compare and contrast Figs. 3 and 4
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FIG. 3. Rgp as a function ofop,05e[—27,27]. Here . ) . .
Min(Rsep =0.7557 and maRs.) =0.995. The frequencies are; ~ FIG. 5. Comparison oRey (continuous ling and Reep (line of
=1.2x10"* and w,=10"%, in units wherekg=%=c=1. circles againsto, for (w;— w,)t=7 and og=—1.17. Note that

maxRsep =0.995. The frequencies are;=1.2X 104 and w,

_ —4 H ¥~
IV. DISCUSSION =107, in units wherekg=A=c=1.

We have considered electron interference experiments "etic fields, correspondingly. Due to the correlations in the

radiated with nonclassical electromagnetic fields. In this case o )
electromagnetic field the electron fringes are also correlated.

the phase factor is the quantum-mechanical operator of EQ., . o i
(3) and its expectation value with respect to the density macj-hls h?s been_ dqua;tlﬂeoé W'tESt he_ r?‘“”f I(qu' (8).d|n the q
trix of the electromagnetic field affects the interference. In€Xamplé consiaere sep EQ. (19)] is time independent an

this general context, we have studied the case of two electrdfiKeS values less than 1. TRy [Eq. (18)] oscillates sinu-

interference experiments that are far from each other and a@dally in time (with frequencyw, — w,) around the value
irradiated with two electromagnetic fields of frequenciesRsep: IN the casew; =w, the ratioRey{ s, 0g) differs from
1,0, The two electromagnetic fields are produced by theRsed 7a,08) by a constantwhich depends ow,, o).

same source and are correlated; consequently the expectationOther examples can also be calculated. But the examples

values of the two phase factor operators in the two expericonsidered show clearly the main point of the paper, which is

ments are also correlated. that distant electron interference experiments can be corre-
The examples of Eqg9) and(10) have been considered. lated through correlated photons. We have also shown that
They represent classically correlatetseparable and the correlations of these distant electron interference fringes

guantum-mechanically correlatetentangled electromag-
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FIG. 6. Comparison oRg (continuous ling and Ry, (line of
FIG. 4. R, @as a function ofop,05e[—27,27], att=(w; circles for o,=0.987 andog= — 1.1 as a function of dimension-
—w,) tar. The frequencies are;=1.2x10"% andw,=10"%, in  less time. The frequencies amg=1.2X10 % and w,=10"%. We
units wherekg=#=c=1. use units wheré&g=%f=c=1.
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are sensitive to the off-diagonal elements of the electromagelectromagnetic fields and concepts from nonclassical corre-
netic density matrix. lations and entanglement. The results demonstrate that en-

The work brings together concepts from generalizedangled electromagnetic fields interacting with electrons pro-
Aharonov-Bohm phenomena irradiated with nonclassicaluce entangled electrons.
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