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Entanglement of distant electron interference experiments
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Two electron interference experiments which are far from each other are considered. They are irradiated with
correlated nonclassical electromagnetic fields, produced by the same source. The phase factors are in this case
operators, and their expectation values with respect to the density matrix of the electromagnetic field quantify
the observed electron fringes. The correlated photons create correlations between the observed electron inten-
sities. Both cases of classically correlated~separable! and quantum mechanically correlated~entangled! elec-
tromagnetic fields are considered. It is shown that the induced correlation between the distant electron inter-
ferences is sensitive to the nature of the correlation between the irradiating photons.
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I. INTRODUCTION

Interference of electrons encircling a magnetostatic fl
has been studied extensively since the work of Aharonov
Bohm @1,2#. These ideas have been applied in various c
texts, for example, in magnetoconductance oscillations
mesoscopic rings@3#, ‘‘which-path’’ experiments@4#, and
neutron interferometry@5#.

The Aharonov-Bohm effect can be generalized by repl
ing the magnetostatic flux with an electromagnetic field. T
objective in this ‘‘ac Aharonov-Bohm’’ effect is very differ
ent from the ‘‘dc Aharonov-Bohm’’ effect~with magneto-
static flux!. In the latter case the physical reality of the vec
potential has been demonstrated and the subtleties of q
tum mechanics in nontrivial topologies have been stud
The former case constitutes a nonlinear device, where
interaction between the interfering electrons and the pho
leads to interesting nonlinear phenomena. Indeed the no
earity can be seen in the intensity of the interfering electr
which is a sinusoidal function of the time-dependent m
netic flux. In Refs.@6,7# the interference of electric charge
in the presence of both classical and nonclassical electrom
netic fields has been studied. It has been shown that
quantum noise of the electromagnetic field affects the ph
factor.

In this paper we consider two Aharonov-Bohm interfe
ence devices which are far from each other. Each of them
irradiated with a nonclassical electromagnetic field. The a
of the paper is to consider entanglement between the
electromagnetic modes irradiating the two Aharonov-Bo
interference devices and study the correlations between
interfering electrons in the two devices. We note that in R
@7# we have studied the effect of photon entanglement o
single Aharonov-Bohm interference device. Here we c
sider two electron interference devices far apart from e
other, and show that the two electron interferences are
related due to the entanglement between the two electrom
netic fields.

In Sec. II we describe the experiment. We show that
joint electron intensity depends on the density operator
scribing the two-mode electromagnetic field. In Sec. III w
consider two cases for the density operator of the field, se
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rable and entangled@8#. We conclude in Sec. IV with a dis
cussion of the results.

II. ELECTRON INTERFERENCE

We consider two electron interference experiments
apart from each other, which we refer to asA andB ~Fig. 1!.
They are irradiated with electromagnetic fields. Each el
tron beam splits into two pathsCA0 ,CA1 andCB0 ,CB1 ~paths
with higher winding numbers are ignored!.

Let fA be the time-dependent flux threading the lo
CA1–CA0. The electron wave function at the pointxA is
given by @6,7#

CA~xA!5cA0~xA!1exp~ iefA!cA1~xA!, ~1!

wherecA0(xA) andcA1(xA) are the electron wave function
associated with the pathsCA0 and CA1, correspondingly.
This leads to the electron intensity

I A~sA!511cos~sA1efA!, ~2!

FIG. 1. Two electron interference experiments which are
from each other are irradiated with nonclassical electromagn
fields. The two electromagnetic fields in the two experiments
produced by the sourceSEM and are correlated.
©2004 The American Physical Society10-1
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sA[arg@cA1~xA!#2arg@cA0~xA!#

for the case of equal splitting between the two wave fu
tions@ ucA0(xA)u251/25ucA1(xA)u2#. We note that the phas
differencesA is effectively a rescaled positionxA on the
screen. All the results below are in terms ofsA ~andsB).

A. Nonclassical electromagnetic fields

As explained in our previous work@6,7# for a nonclassical
electromagnetic field of frequencyv the flux f is an opera-
tor. The dual quantum variables of the electromagnetic fi
are the vector potentialAi and the electric fieldEi . Although
the dual quantum variables are local quantities, we cons
loops which are small in comparison to the wavelength a
after integration we getf̂5rCAidxi and the electromotive
force V̂5rCEidxi as dual quantum variables. We next intr
duce the corresponding creation and annihilation operat
â†5221/2j21(f̂2 iv21V̂) and â5221/2j21(f̂1 iv21V̂),
wherej is a constant proportional to the area enclosed by
loop and in unitskB5\5c51. We work in the ‘‘external
field approximation’’ where the back reaction from the ele
trons on the electromagnetic field is neglected. This is va
for external fields which are strong in comparison to tho
produced dynamically by the electrons~back reaction!. In
this case we getf̂(t)5221/2j@exp(ivt)â†1exp(2ivt)â#.

Exponentiation of the magnetic-flux operator yields t
phase factor exp@ief̂(t)#, which becomes

exp@ ief̂~ t !#5D@ iq exp~ ivt !#, q5221/2je, ~3!

whereD(x)5exp(xâ†2x* â) is the displacement operator. I
order to find expectation values we take the trace of
exp@ief̂(t)# operator with respect to the density matrixr de-
scribing the nonclassical electromagnetic field:

Tr$r exp@ ief̂~ t !#%5Tr@rD~l!#[W̃~l!,

l5 iq exp~ ivt !. ~4!

Here W̃ is the Weyl or characteristic or ambiguity functio
~cf. Ref.@9#, and references therein!. The tilde in the notation
reflects the fact that the Weyl function is the two-dimensio
Fourier transform of the Wigner function~which is usually
denoted byW).

B. Correlated electron intensities

Let r be the density operator describing the two-mo
nonclassical electromagnetic field in both devices. The fi
mode of frequencyv1 interacts with electrons in experimen
A and its density matrix isrA[TrBr. The second mode o
frequencyv2 interacts with electrons in experimentB and its
density matrix isrB[TrAr.

For nonclassical electromagnetic fields the flux and c
sequently the intensity of Eq.~2! are operators. In order to
find the expectation value of the intensity we calculate
trace with respect to the appropriate density matrix and us
Eq. ~4! we find
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I A~sA!5Tr$rA@11cos~sA1ef̂A!#%

511uW̃~lA!ucos$sA1arg@W̃~lA!#%, ~5!

wherelA5 iq exp(iv1t). As we have explained in detail in
our previous work@6,7#, the visibility in this case isuW̃(lA)u
which takes values less than 1. It has been shown there
this is intimately related to the quantum uncertainties in
electric and magnetic fields and consequently the reduc
of the visibility from 1 to uW̃(lA)u is due to the quantum
noise in the nonclassical fields.

Similarly the electron intensity in experimentB is

I B~sB!5Tr$rB@11cos~sB1ef̂B!#%

511uW̃~lB!ucos$sB1arg@W̃~lB!#%, ~6!

wherelB5 iq exp(iv2t).
We next consider the joint electron intensity in the tw

experiments. It is given by

I ~sA ,sB!5Tr$r@11cos~sA1ef̂A!#@11cos~sB1ef̂B!#%.
~7!

The correlations between the electron interferences in
two experiments are quantified with the ratio

R5
I ~sA ,sB!

I A~sA!I B~sB!
. ~8!

III. EXAMPLES

Two mode density matrices are factorizable~uncorrelated!
if they can be written asr5rA^ rB . They are separable
~classically correlated! if they can be written asr
5( i pirA,i ^ rB,i , wherepi are probabilities. Density matri
ces which cannot be written in one of these two forms
entangled ~quantum-mechanically correlated!. There has
been a lot of work on criteria which distinguish separab
and entangled states@8#. In this paper we compare and con
trast the influence of separable and entangled photon s
on two distant electron interference experiments.

We consider two cases for the density operatorr of the
two-mode electromagnetic fields. The first is the separa
~classically correlated! density matrix

rsep5
1
2 ~ u01&^01u1u10&^10u!. ~9!

The second is the entangled stateuS&5221/2(u01&1u10&)
with corresponding density matrix

rent5rsep1
1
2 ~ u01&^10u1u10&^01u!, ~10!

wherersep is given by Eq.~9!. The difference betweenrsep
andrent lies in the above nondiagonal elements.

A. Classically correlated number eigenstates

In the case of separable electromagnetic fields of Eq.~9!
the electron intensities are
0-2
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I A~sA!511a cossA , ~11!

I B~sB!511a cossB ,

where

a5
22q2

2
expS 2

q2

2 D . ~12!

As explained in detail in Refs.@6,7# the visibility correspond-
ing to I A or I B is a,1, due to the noise in the nonclassic
electromagnetic fields.

We also calculate the joint intensity

I sep~sA ,sB!511a~cossA1cossB!12b cossAcossB ,
~13!

where

b5
12q2

2
exp~2q2!. ~14!

The ratioR of Eq. ~8! is

Rsep~sA ,sB!5
11a~cossA1cossB!12b cossAcossB

~11a cossA!~11a cossB!
.

~15!

Rsep(sA ,sB) is periodic insA and sB with period 2p for
each of the screen positions. Its stationary points are s
that ]Rsep/]sA505]Rsep/]sB and it can easily be show
that

122a12b

~12a!2
<Rsep~sA ,sB!<

112a12b

~11a!2
. ~16!

The global minimum occurs at the point (sA5p,sB5p)
and the global maxima at the points (sA50 or 2p,sB
50 or 2p).

We note that for factorizable~uncorrelated! electromag-
netic fieldsR51. In the example of separable~classically
correlated! electromagnetic fields of Eq.~9! we getRsep in-
dependent of time, which takes values less than 1@the upper
bound in the inequality~16! is slightly less than 1#.

B. Entangled number eigenstates

We now consider the entangled electromagnetic fields
Eq. ~10!. In this case the electron intensitiesI A(sA) and
I B(sB) are the same as in Eq.~11!. The joint electron inten-
sity is

I ent~sA ,sB!5I sep~sA ,sB!2q2

3exp~2q2!sinsAsinsBcos@~v12v2!t#,

~17!

and the ratio of Eq.~8! is
01381
l

ch

f

Rent~sA ,sB!5Rsep~sA ,sB!2q2exp~2q2!

3
sinsAsinsBcos@~v12v2!t#

~11a cossA!~11a cossB!
. ~18!

It is seen thatI ent(sA ,sB) is equal toI sep(sA ,sB) of Eq.
~13! plus an extra term, which oscillates in time with fre
quencyv12v2 around this value. In the casev15v2 the
electron intensityI ent(sA ,sB) differs from the electron in-
tensity I sep(sA ,sB) by a constant~which depends onsA ,
sB). Similar comments apply toRsep(sA ,sB) and
Rent(sA ,sB)

C. Numerical results

In all numerical results the electromagnetic fields ha
frequenciesv151.231024 and v251024, and the param-
eterj51. Figure 2 showsI sep(sA ,sB) of Eq. ~13! as a func-
tion of sA andsB . Figure 3 showsRsep(sA ,sB) of Eq. ~15!.
We note that in our example theRsepis time independent and
min(Rsep)50.7557, max(Rsep)50.995.

Figure 4 showsRent at (v12v2)t5p as a function ofsA
andsB . Figure 5 is a slice of Fig. 4 forsB521.1p. Figure
6 shows the time variation of the two ratiosRsep ~line of
circles! and Rent ~continuous line! for sA50.98p and sB
521.1p.

The results show that both classically and quantu
mechanically correlated photons induce correlations on
distant electron interference experiments. We have comp
and contrasted two examples:rsep of Eq. ~9!, which is a
mixed state, andrent of Eq. ~10!, which is a maximally en-
tangled pure state. These two density matrices of the elec
magnetic field differ only by off-diagonal elements. We ha
shown that the effect of these off-diagonal elements on
correlations between the electron interference experimen
drastic~compare and contrast Figs. 3 and 4!.

FIG. 2. I sep as a function ofsA ,sBP@22p,2p#. The frequen-
cies arev151.231024 and v251024, in units wherekB5\5c
51.
0-3
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IV. DISCUSSION

We have considered electron interference experiment
radiated with nonclassical electromagnetic fields. In this c
the phase factor is the quantum-mechanical operator of
~3! and its expectation value with respect to the density m
trix of the electromagnetic field affects the interference.
this general context, we have studied the case of two elec
interference experiments that are far from each other and
irradiated with two electromagnetic fields of frequenc
v1 ,v2. The two electromagnetic fields are produced by
same source and are correlated; consequently the expec
values of the two phase factor operators in the two exp
ments are also correlated.

The examples of Eqs.~9! and~10! have been considered
They represent classically correlated~separable! and
quantum-mechanically correlated~entangled! electromag-

FIG. 3. Rsep as a function of sA ,sBP@22p,2p#. Here
min(Rsep)50.7557 and max(Rsep)50.995. The frequencies arev1

51.231024 andv251024, in units wherekB5\5c51.

FIG. 4. Rent as a function ofsA ,sBP@22p,2p#, at t5(v1

2v2)21p. The frequencies arev151.231024 andv251024, in
units wherekB5\5c51.
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netic fields, correspondingly. Due to the correlations in
electromagnetic field the electron fringes are also correla
This has been quantified with the ratioR of Eq. ~8!. In the
example consideredRsep @Eq. ~15!# is time independent and
takes values less than 1. TheRent @Eq. ~18!# oscillates sinu-
soidally in time~with frequencyv12v2) around the value
Rsep. In the casev15v2 the ratioRent(sA ,sB) differs from
Rsep(sA ,sB) by a constant~which depends onsA , sB).

Other examples can also be calculated. But the exam
considered show clearly the main point of the paper, whic
that distant electron interference experiments can be co
lated through correlated photons. We have also shown
the correlations of these distant electron interference frin

FIG. 5. Comparison ofRent ~continuous line! and Rsep ~line of
circles! againstsA for (v12v2)t5p and sB521.1p. Note that
max(Rsep)50.995. The frequencies arev151.231024 and v2

51024, in units wherekB5\5c51.

FIG. 6. Comparison ofRent ~continuous line! and Rsep ~line of
circles! for sA50.98p andsB521.1p as a function of dimension-
less time. The frequencies arev151.231024 and v251024. We
use units wherekB5\5c51.
0-4
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are sensitive to the off-diagonal elements of the electrom
netic density matrix.

The work brings together concepts from generaliz
Aharonov-Bohm phenomena irradiated with nonclass
s.

e
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electromagnetic fields and concepts from nonclassical co
lations and entanglement. The results demonstrate that
tangled electromagnetic fields interacting with electrons p
duce entangled electrons.
@1# Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!; M.
Peshkin and A. Tonomura,The Aharonov-Bohm Effect, Lecture
Notes in Physics, Vol. 340~Springer, Berlin, 1989!.

@2# M. P. Silverman,More than One Mystery: Explorations in
Quantum Interference~Springer, New York, 1994!.

@3# S. Washburn and R.A. Webb, Adv. Phys.35, 375 ~1986!; A.G.
Aronov and Y.V. Sharvin, Rev. Mod. Phys.59, 755~1987!; M.
Pepper, Proc. R. Soc. London, Ser. A420, 1 ~1988!.

@4# A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phy
Rev. Lett.74, 4047 ~1995!; E. Buks et al., Nature ~London!
391, 871 ~1998!; G. Hackenbroich, Phys. Rep.343, 464
~2001!.

@5# G. Badurek, H. Rauch, and J. Summhammer, Phys. Rev. L
 tt.

51, 1015 ~1983!; J. Summhammer, Phys. Rev. A47, 556
~1993!; J. Summhammeret al., Phys. Rev. Lett.75, 3206
~1995!.

@6# A. Vourdas, Europhys. Lett.32, 289 ~1995!; Phys. Rev. B54,
13 175~1996!.

@7# A. Vourdas, Phys. Rev. A64, 053814~2001!; C.C. Chong, D.I.
Tsomokos, and A. Vourdas,ibid. 66, 033813~2002!.

@8# R.F. Werner, Phys. Rev. A40, 4277 ~1989!; A. Peres, Phys.
Rev. Lett.77, 1413 ~1996!; R. Horodecki and M. Horodecki,
Phys. Rev. A54, 1838~1996!; V. Vedralet al., Phys. Rev. Lett.
78, 2275~1997!.

@9# S. Chountasis and A. Vourdas, Phys. Rev. A58, 848 ~1998!.
0-5


