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Fluorescence fluctuations from a multilevel atom in a nonstationary phase-diffusion field:
Deterministic frequency modulation

James Camparo
Electronics and Photonics Laboratory, The Aerospace Corporation, P. O. Box 92957, Los Angeles, California 90009, USA

~Received 2 July 2003; published 8 January 2004!

It is well known that a field’s quantum noise can have a profound effect on the fluctuations of laser-induced
fluorescence~LIF!. However, though previous studies have led to a good understanding of this process in the
case of stationary fields, many of the important applications of LIF employ some form of laser modulation,
yielding a field of nonstationary stochastic character. Here, we discuss the results from numerical experiments
that examine the influence of a nonstationary field on the LIF noise. Specifically, we consider a phase-diffusion
field and LIF from a beam of alkali-metal-like atoms with ground and excited-state Zeeman splitting when the
field undergoes deterministic frequency modulation. Our computational results show that deterministic modu-
lation at high Fourier frequencies~i.e., 10 MHz! can significantly increase the LIF noise at low Fourier
frequencies~e.g., 1 Hz!, and that the amount of LIF noise amplification depends on a complicated interplay
among the laser’s linewidth, the modulation frequency, the modulation index, and the multilevel atomic
system’s energy-level spacing. Interestingly, we find that certain values of the atom’s Zeeman splitting signifi-
cantly decrease the magnitude of LIF noise.

DOI: 10.1103/PhysRevA.69.013802 PACS number~s!: 42.62.Fi, 42.50.Gy, 32.50.1d, 32.80.2t
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I. INTRODUCTION

For quite some time, researchers have known that the
herence characteristics of a radiation field have impor
consequences for the basic field–atom interaction@1#. Ini-
tially, studies of the stochastic-field–atom problem focus
on relatively straightforward quantities; finding, for examp
that a singlemode laser’s quantum noise not only influen
the widths and amplitudes of the Mollow fluorescent trip
@2#, but also the triplet’s asymmetry@3#. However, starting
around the late 1980’s, theoretical and experimental atten
began to turn towards more complex issues. For example
a careful study comparing theory and experiment Ander
et al. @4# examined the variance of laser-induced fluor
cence~LIF! from an atomic beam, while Camparo and Lam
bropoulos found that correlated frequency and amplitu
fluctuations give rise to resonant frequency shifts@5#. Addi-
tionally, Yabuzakiet al. @6# showed that when a laser bea
passes through a resonant medium, the high-frequency
rier spectrum of transmitted laser-intensity fluctuatio
(; GHz regime! carries detailed information on the med
um’s energy level structure, and that this effect can be u
as a new type of high-resolution spectroscopy@7#. Yabuza-
ki’s ‘‘phase-noise~PM! to amplitude-noise~AM !’’ conver-
sion process is also significant at very low Fourier frequ
cies (<1 Hz) @8,9#, where it plays an important role in
limiting the performance of laser-pumped atomic cloc
@10#.

Notwithstanding the progress that has been made in
derstanding the stochastic-field–atom interaction over
past years, in a number of these studies the field has co
sponded to a stationary stochastic process@11#. In particular,
in most previous studies of LIF fluctuations the~stochasti-
cally averaged! detuning of the field from resonance wa
independent of time. However, in many areas of spect
copy the mean frequency of a resonant field is modula
1050-2947/2004/69~1!/013802~11!/$22.50 69 0138
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@12# in order to improve the signal-to-noise ratio@13,14# or
to stabilize the field’s emission wavelength@15#. Here, we
consider the problem of LIF from a beam of alkali-metal-lik
atoms with nuclear spin12 through numerical experiments
when the finite-linewidth single mode field exciting the a
oms undergoes deterministic frequency modulation. Tho
as noted above, previous studies have shown that the la
phase fluctuations induce fluorescence intensity fluctuatio
our focus here is on the manner in which nonstationarity
amplify this effect; in particular, how rapid modulation a
fects fluorescence noise at very low Fourier frequencies. T
question has particular relevance to double-resonance s
troscopy, trace detection, and laser cooling and trapping
periments, where the laser’s phase is modulated rapidly
purposes of wavelength stabilization and the atomic signa
averaged over some long time interval. We note that in st
of-the art atomic clocks, laser state preparation and state
tection are of paramount significance, and recent experim
tal results suggest that the performance of these devices
be influenced by an interplay between the laser’s determ
istic modulation and the stochastic-field–atom interact
@16#.

As will be discussed more fully below, we quantify th
fluorescence noise in terms of the fluorescence fluctuati
Allan deviation @17# sDF/F(t) at averaging timest on the
order of one second; and investigate the manner in which
signal-to-noise (S/N) ratio of LIF depends on modulation
frequency, modulation index, and Zeeman splitting. In t
following section, we develop an adiabatic approximation
the modulated, stochastic-field–atom interaction proble
which assumes that the deterministic and stochastic
quency fluctuations of a phase-diffusion field are slow co
pared to the atom’s intrinsic response time. The purpose
this approximate theory is to provide a conceptual fram
work for the interpretation of the more accurate numeri
results presented later. Then in Sec. III, we outline our mo
alkali-metal-like system and the stochastic density-ma
©2004 The American Physical Society02-1
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JAMES CAMPARO PHYSICAL REVIEW A69, 013802 ~2004!
equations that we solve in order to generate a time serie
simulated fluorescence fluctuations.~Details on the numeri-
cal approach are discussed in an appendix.! Results will be
presented in Sec. IV and interpreted using the adiabatic
proximation. We conclude with a summary of our findin
and a brief discussion of their significance for precision la
spectroscopy.

II. THE ADIABATIC APPROXIMATION

Prior to discussing the results from the detailed numer
computations, it is useful to have some conceptual fram
work in which to understand those results. Therefore, in
section we develop a semiquantitative theory of the mo
lated, stochastic-field–atom interaction problem, empha
ing that the theory is primarily of interpretive value. Briefl
if we assume that the deterministic and stochastic freque
variations of the field are in some sense slow, then the ato
basic interaction with the field will be independent of tho
fluctuations to first order. This is illustrated conceptually
Fig. 1, where the ‘‘instantaneous’’ variance of fluorescen
fluctuations~i.e., the variance over a very short time inte
val!, arising from the laser’s instantaneous frequency no
varies periodically as the laser is modulated about resona

To develop the adiabatic approximation, we consider
two-level atom density-matrix equations in the rotati
frame ~and with the rotating-wave approximation!, where
D(t) is a time-dependent field/atom detuning andV is a
constant Rabi frequency

ṡ221g1s222Im@s21V* #50, ~1a!

FIG. 1. Conceptual illustration showing the manner in whi
deterministic frequency modulation can influence LIF noise in
adiabatic limit of the atom’s response. On a time scale that is s
compared to the modulation period, the stochastic frequency~i.e.,
phase! fluctuations of the laser give rise to stochastic fluoresce
fluctuations, and these have an ‘‘instantaneous’’ variance that
pends on the field and atom detuning at some particular mom
Due to the nonlinear nature of the atom’s response to the field
instantaneous variance is modulated, and this gives rise to no
tionary fluorescence fluctuations, more specifically wide sense,
riodically stationary fluorescence fluctuations. Consequently, if
fluorescence is averaged over a time that is long compared to
modulation period, the averaged fluorescence will appear to h
the character of a stationary process whose variance depends o
modulation depth of the field and the atomic linewidth.
01380
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ṡ211@g21 iD~ t !#s211
iV

2
~s222s11!50. ~1b!

Here, thes i j ’s are the density-matrix elements,g1 and g2
are the longitudinal and transverse relaxation rates, res
tively, and we haveD(t)5D01mvm sin(vmt)1d(t)5D̃(t)
1d(t), wherem is the modulation index,vm the modulation
frequency, andd(t) the mean-zero random frequency flu
tuations.

Since our interest is in the density-matrix behavior wh
the atoms are in equilibrium with the fluctuating field, w
would like to set the first terms on the left-hand side of E
~1! to zero. In order to understand the conditions und
which this is reasonable, we write the equilibrium densi
matrix elements approximately as

s i j ~ t !>S i j 1A sin~vmt1u!1d~ t !
ds̃ i j ~ t !

dD̃
U

D̃

, ~2!

where s̃ i j (t)[S i j 1A sin(vmt1u). In essence, we arrive a
Eq. ~2! by assuming that we can write the temporal evoluti
of the density matrix as the sum of a deterministic comp
nent and a stochastic component. We obtain the determin
component from the first-order terms of a Fourier expansi
and the stochastic component by expandings̃ i j in a Taylor
series about the instantaneous detuningD̃, assuming that the
d(t) are in some sense small@18#. Notice that in writing Eq.
~2! we have already invoked an adiabatic approximati
since we assume that the frequency fluctuations have l
effect on the evolution ofs i j , and that a Taylor series ex

pansion usings̃ i j has meaning. SinceṠ i j 50 by definition,

ṡ i j ~ t !>Avm cos~vmt1u!1 ḋ~ t !
ds̃ i j ~ t !

dD̃
U

D̃

1d~ t !
ds8 i j ~ t !

dD̃
U

D̃

. ~3!

Comparing the terms in Eq.~3! to g1,2s i j , which determines
the minimum rate of density-matrix evolution on the le
hand side of Eqs.~1!, we can ignore the first term on th
right-hand side of Eq.~3! under the~deterministic! adiabatic
approximationvm!g1,2. This, of course, means thats8 i j is
small, and hence that the last term on the right-hand sid
Eq. ~3! can also be ignored, at least for fields with reasona
small ~effective! rms values ofd ~i.e., narrow-linewidth
fields! @18#. Consequently, under a deterministic adiaba
approximation ṡ i j should have a magnitude of at mo
ḋ(t) ds̃ i j (t)/dD̃ uD̃ .

In order to estimate the magnitude of this term, we fi
recognize that ds̃ i j (t)/dD̃ uD̃ should be of order (g2

2

1V2)21/2. Further, given that the time scale of the fiel
atom coupling is on the order of a Rabi period, we estim

the magnitude ofḋ as VA^d̄V
2 &, whereA^d̄V

2 & is the root-
mean-square value of the field’s frequency fluctuatio
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FLUORESCENCE FLUCTUATIONS FROM A MULTILEVEL . . . PHYSICAL REVIEW A 69, 013802 ~2004!
within a bandwidthV. In other words, since the atom wi
not respond to fluctuations that occur on a time scale m
faster than the Rabi period, the maximum rate ofd having
significant affect on atomic evolution should be on the or
of a time-averaged rms value of the frequency fluctuati

~i.e., A^d̄V
2 &) per Rabi period~i.e., perV21).

In the case that the field corresponds to a phase-diffus
singlemode laser, we have@19#

^d~ t !d~ t1t!&5gLbe2butu, ~4!

wheregL is the~essentially! Lorentzian laser linewidth~full
width at half maximum! andb is the bandwidth of the field’s
frequency fluctuations@20#. Thus,

^d̄V
2 &5

gLb2

p E
2V/2

V/2 dv

b21v2 5
2

p
gLb tan21S V

2b D . ~5!

Since in general we expectb@V ~for example, in the case
of a single mode diode laserb;103 MHz while V
;10– 100 MHz@21#!, Eq. ~5! reduces to

^d̄V
2 &>

gLV

p
. ~6!

Therefore, in order of magnitude we expect

ḋ~ t !
ds̃ i j ~ t !

dD̃
U

D̃

'VA gLV

p~g2
21V2!

, ~7!

so that for weak fields~i.e., V!g2) and/or sufficiently
narrow-linewidth lasers~i.e., gL!g2 , V! we can ignore this
term relative tog1,2s i j . Consequently, under fully adiabat
conditions, which we now define asvm , gL!g2 , we have

g1s222Im@s21V* #>0, ~8a!

@g21 iD~ t !#s211
iV

2
~s222s11!>0. ~8b!

To proceed with the solutions of Eqs.~8!, we now employ
a perturbation approach@22#, writing the density-matrix ele-
ments as

s i j 5s i j
(0)1s i j

(1)1s i j
(2)1¯ . ~9!

Basically, we consider the stochastic portion of the field a
separate perturbation on the atom, so that the various te
in Eq. ~9! correspond to increasing orders of the stocha
portion’s contribution to density-matrix evolution. Substitu
ing Eq. ~9! into Eqs.~8! and retaining only terms up to firs
order in stochasticity, we obtain

g1~s22
(0)1s22

(1)!5Im@~s21
(0)1s21

(1)!V* #, ~10a!

@g21 i ~D̃1d!#s21
(0)1~g21 i D̃ !s21

(1)

52
iV

2
@2~s22

(0)1s22
(1)!2s0#. ~10b!
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Here, we have normalized the density matrix so thats22
1s115s0 . Equating terms of similar order and carryin
through the algebra, we eventually obtain

s22
(1)~ t !52d~ t !k~ t !52d~ t !

3F s0@D01mvm sin~vmt !#~g2 /g1!V2

~g2
21@D01mvm sin~vmt !#21~g2 /g1!V2!2G .

~11!

Note that this is equivalent to the equation we would ha
obtained by solving Eqs.~1! in the steady state, replacingD
in the solution withD̃ in order to obtains22

(0) , and then

definings22
(1) asd(t) ds22

(0)/dD̃ uD̃ . This is basically the pro-
cedure outlined by Kitchinget al. in their intuitive, ‘‘passive
susceptibility’’ description of the manner in which las
phase-noise maps onto an atomic system’s evolution@23#.
From this perspective, the present work clarifies the vari
approximations that are invoked in the Kitching model. F
ther, from a statistical point of view, it is worth noting tha
the sign ofs22

(1) is really determined by the sign ofd(t).
Consequently, for the nearly white frequency fluctuations
interest here, we reexpress Eq.~11! ass22

(1)(t)5d(t)uk(t)u to
simplify our analysis later.

While Eq. ~11! expresses the moment-to-moment fluctu
tions ofs22, our interest is in the low-frequency behavior
the excited-state population~i.e., fluorescence! fluctuations.
We therefore define two new random processes@s22

(1)(t)#t

and d̄(t)t , which are averages over a relatively long timet:

@s22
(1)~ t !#t[

1

t Et2t/2

t1t/2

s22
(1)~ t8!dt8, ~12a!

d̄~ t !t[
1

t Et2t/2

t1t/2

d~ t8!dt8. ~12b!

Here,t21 might correspond to the bandwidth limit of a fluo
rescence measurement system or the bandwidth of a f
back loop in an atomic clock. Employing Eq.~11! in Eq.
~12a!, we get

@s22
(1)~ t !#t[

1

t Et2t/2

t1t/2

d~ t8!uk~ t8!udt8

5
1

t H E
t2t/2

t2t/21T

d~ t8!uk~ t8!udt8

1E
t2t/21T

t2t/212T

d~ t8!uk~ t8!udt81¯J , ~13!

whereT52p/vm . However, due to the periodicity ofk(t),
Eq. ~13! can be rewritten as
2-3
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@s22
(1)~ t !#t5

1

t Et2t/2

t2t/21T

uk~ t8!u$d~ t8!1d~ t81T!

1d~ t812T!1¯1d@ t81~t/T 21!T#%dt8.

~14!

Since in the cases of most general interest the measure
time scale will be much longer than the modulation per
~e.g.,t;1 sec,T<1023 sec, andb21<1029 sec), the term
in brackets can be approximated as (t/T) d̄t , which then
yields

@s22
(1)~ t !#t'

d̄t

T E
0

T

uk~ t8!udt8[d̄tuk̄uT . ~15!

Thus, the variance of@s22
(1)(t)#t , and hence the variance o

LIF, is given by the variance of the laser’s frequency flu
tuations averaged overt, d̄t , amplified by the factoruk̄uT

2 .
For the caseD050, we have from Eq.~11! for the rms

noise of the atom’s excited-state populationN0

N0[FA^d̄t
2&

T E
0

T

uk~ t8!udt8G
D050

5
2A^d̄t

2&
T E

0

T/2 s0~g2 /g1!V2mvm sin~vmt !

~g2
21m2vm

2 sin2~vmt !1~g2 /g1!V2!2 dt,

~16!

which yields after carrying out the integration

N05
A^d̄t

2&s0

p

mvm~g2 /g1!~ I /2I s!Aeg
2

G2 H 1

~G22m2vm
2 !

1
1

mvmG
tanh21S mvm

G D J , ~17a!

whereG2[ bg2
21m2vm

2 1(g2 /g1)(I /2I s)Aeg
2 c. In writing Eq.

~17a!, we have defined the saturation intensityI s as 2.5
310228Aeg /l3, whereAeg is the Einstein-A coefficient in
sec21, l is the transition wavelength in meters, andI s is in
W/cm2, so thatV5AegAI /2I s. In situations without modu-
lation, such thatmvm50, the excited-state rms populatio
noiseND is

ND[FA^d̄t
2&

T E
0

T

uk~ t8!udt8G
mvm50

5
A^d̄t

2&s0D0~g2 /g1!~ I /2I s!Aeg
2

@g2
21D0

21~g2 /g1!~ I /2I s!Aeg
2 #2 , ~17b!

indicating thatbs22
(1)(t) ct , and hence LIF noise, is zero o

resonance. Note, however, that Eq.~17b! only accounts for
first-order effects in the expansion of Eq.~9!; on resonance
higher-order terms in the expansion will yield a finite L
noise level on resonance.
01380
ent
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Examining the general character of the adiabatic so
tions, we first note from Eq.~17a! that for mvmÞ0, N0
always has a finite, potentially large, value, regardless
second-order effects, even whent@2p/vm . Due to our fo-
cus on periodically stationary fields, the preceding discuss
indicates that averaging over the modulation period produ
a wide-sense stationary LIF process from an underlying n
stationary LIF process@assuming, of course, that thed(t) are
wide-sense stationary#. Further, as suggested by Fig. 1 an
quantified by Eq.~11!, rapid modulation of the laser fre
quency results in rapid modulation of the LIF fluctuation
instantaneous variance. However, since most experiment
concerned with time scales much longer than the modula
period, these periodically varying changes in the LIF no
are not observed in the experimental data. Rather, the
noise of the measured LIF signal corresponds to a weigh
mean of the instantaneous LIF variances, with the weight
factor contributing through the time-independent quan
uk̄uT . The second point to note from Eq.~17a! is that the
significant modulation parameter isnot the modulation fre-
quency by itself, but rather the amplitude of the frequen
modulationmvm . Thus, fields with widely different modu
lation frequencies will have similar effects if their frequenc
modulation amplitudes are equivalent.

III. MODEL SYSTEM DENSITY-MATRIX THEORY

In order to accurately study the multilevel, stochast
field–atom interaction problem, we now consider the spec
case of laser-induced fluorescence from a thermal beam
alkali-metal-like atoms as illustrated in Fig. 2~a!, and, in par-
ticular, the important special case of LIF associated with
Cs 62S1/2(Fg54) – 62P3/2(Fe55) cycling transition that
produces a large number of resonantly scattered photons
atom. However, in the case of the real cesium atom~i.e.,
Cs133 with nuclear spinI equal to 7/2! the study of density-
matrix evolution could conceivably involve 399 simulta
neous, stochastic differential equations, which would have
be repeated for some number~e.g., 10! different atomic ve-
locity groups. Obviously, some simplification of the proble
is required in order to make it computationally manageab
and so we have chosen to replace the real cesium atom
a fictitious ~stable! I 51/2 isotope that nonetheless has t
Cs133 nuclear magnetic moment@24# such thatFg50,1 with
DnHFS59192.6 MHz, and Fe51,2 with DnHFS
5276.8 MHz.

We further confine our consideration to a situation
which the laser beam is linearly polarized with its polariz
tion direction perpendicular to the atomic beam’s quanti
tion axis. Thus, the laser inducesDmF561 transitions~i.e.,
6s polarized light!. The problem thereby requires the sol
tion of 33 simultaneous, stochastic differential equations~af-
ter including the constraint of normalization!. As illustrated
in Fig. 2~b!, the laser induces excited and ground state
herences~shown as dashed lines in the figure! in our ficti-
tious isotope corresponding to two, three, and four-pho
transitions. It is worth noting that in the case of the real Cs133

atom coherences are generated that correspond to ten-ph
transitions. Since, as a general rule, the order of the pho
process determines the highest order field-correlation fu
2-4
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tion of significance for the stochastic-field–atom interactio
there is the potential for LIF to depend on very high-ord
correlation functions of the laser field. To include the effe
of a static magnetic fieldB0 on the Zeeman energy-leve
spacing, we note that in both the 62S1/2(Fg51) state and the
62P3/2(Fe52) state of our fictitious isotope the Zeema
splitting is 1.4 MHz/G. We model our optical field as a si
glemode diode laser~i.e., a phase-diffusion field with sma
relative intensity noise!, and for the work reported here w
always setb5103gL . Unless otherwise noted, the param
eters of Table I are employed in all of the numerical expe
ments.

We write the density matrix evolution as

ṡ52
i

\
@~H01V!,s#1G~s!, ~18!

FIG. 2. ~a! Illustration of the modeled LIF experiment: cesiu
atoms travel into and out of a fluorescence detection region
experience a static magnetic field oriented perpendicular to the
polarization. ~b! Illustration of the density matrix couplings tha
occur in our fluorescence simulation. Solid lines correspond to la
one-photon transitions; dashed lines correspond to coherence
the laser-atom interaction creates.
01380
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where the perturbationV on the right-hand-side of Eq.~18!
corresponds to laser excitation with

V~ t !52mW •EW ~ t !52
1

2
~mW • x̂!E0~eivt1e2 ivt!, ~19!

and the last term on the right-hand side of Eq.~18! corre-
sponds to spontaneous emission.~As usual, we make the
rotating-wave approximation in solving these equation!
Here, H0 is the atomic Hamiltonian in the absence of t
optical field, which includes the atom’s static magnetic-fie
interaction;E0 andv are the laser electric-field strength an
frequency, respectively, such thatE05^E0&@11z(t)# and
v5^v&1d(t). For these random processes, thed(t) corre-
lation function is given by Eq.~4!, and for z(t) @with
^z(t)&50] we have

^z~ t !z~ t1t!&5gLtz expS 2
utu
tz

D . ~20!

In Eq. ~20!, tz is related to the relative intensity noise~RIN!
of the laser in a 1-Hz bandwidth~i.e., we define RIN as
dI rms./^I &) such thatdI rms/^I &54tzAgL.

Following Cohen-Tannoudji@25#, the matrix elements of
the spontaneous emission term are given by

^FemeuGuFeme8&52Aeĝ FemeusuFeme8&, ~21a!

^FemeuGuFgmg&52
Aeg

2
^FemeusuFgmg&, ~21b!

and

d
er

er
hat

TABLE I. Parameters used in the numerical computations of
alkalilike ~i.e., cesiumlike! beam interacting with a nonstationar
stochastic field

Parameter Value

Einstein-A coefficientAeg 5.16 MHz
Initial population inFg51 ground states0 0.75
Saturation intensityI s 13.1 mW/cm2

Ground- and excited-state Zeeman splitting 1.4 MHz/G
Oven temperature 100 °C
Most probable atomic speedvmp 2.23104 cm/sec
Field-atom interaction lengthL 0.4 cm
Static magnetic fieldB0 500 mG
Laser intensityI 25 mW/cm2

Laser frequency’s modulation amplitudemvm/2p 2 MHz
Laser linewidthgL 1 MHz
Laser line shape wing parameterb 103gL

LaserdI rms/^I & 1026
2-5
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^FgmguGuFgmg8&

5Aeg@Je#@Fg#@Fe#H Je Fe I

Fg Jg 1J
2

3F (
q,me ,me8

~2 !2Fg1q2mg2me8S Fg 1 Fe

2mg q me
D

3S Fg 1 Fe

2mg8 q me8
D ^FemeusuFeme8&G , ~21c!

where@K#[(2K11). Since, in general, atomic coherenc
play an important role in the laser-induced generation of L
noise~e.g., the atomic absorption cross section is defined
the imaginary part of certain off-diagonal density matrix
ements!, it is worth stating explicitly that according to Eq
~21c!, atomic coherences among the excited state Zee
sublevels do not simply disappear as a result of spontan
decay; they are to some extent transferred to the ground
@26#.

Solving the density matrix equations numerically, w
compute the temporal evolution of three physical quantit
two moments of the ground-state population distribution@27#
~i.e., the dipole moment corresponding to ground state or
tation, ^Fg,z& and the quadrupole moment corresponding
ground-state alignment̂3Fg,z

2 2Fg
2&) and the total-excited

state populationre . Since the fluorescence signal is propo
tional to re , the fluctuations inre relative to its average
value constitute our measure of the LIF signal-to-noise ra
We determine the noise at an averaging time of one sec
using the Allan variance@17#, so that our signal-to-noise ra
tios correspond to values in a one-hertz bandwidth. Fur
details of the numerical computations may be found in
appendix.

Figure 3 shows the average values of orientation, ali
ment and fluorescence, along with the standard errors
one-second average, as a function of laser detuning;
nominal conditions of Table I apply except forI
5120mW/cm2, vm50 andB050. Figure 4 shows the sam
quantities and nominal Table I conditions except forI
5100mW/cm2 ~i.e., vmÞ0 andB0Þ0). In the case of Fig.
3, where we have a weak optical field, no modulation and
Zeeman splitting, there is a complete absence of polariza
in the ground state, though an alignment does develop du
our excitation with 6s polarized light. Further, the ful
width at half maximum~FWHM! of the fluorescence is 5.9
MHz, which is within 4% of the expected result for a two
level atom~i.e., Aeg1gL @28#!. Note that the standard erro
in the alignment and fluorescence has a minimum on re
nance as one might expect from the adiabatic approximat

Examining Fig. 4, we see that as a consequence of
nonzero magnetic field, the ground state develops a pola
tion when the laser is off resonance. Moreover, in combi
tion with the nonzero laser modulation the alignment a
fluorescence signals broaden~i.e., the fluorescence FWHM i
now 8.04 MHz!. Note that the standard error of the fluore
cence no longer has a minimum on resonance, but h
much more complicated appearance. Notwithstanding th
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observations, the important point to notice from Figs. 3 an
is that the nonzero polarization and nonzero alignment im
that optical pumping occurs in this system, even though
are dealing with a cycling transition. Consequently, as
laser frequency randomly deviates from its average va
LIF fluctuations will arise from stochastic variations in th
excitation efficiencyand stochastic variations in the mo
ments of the ground state’s population distribution. This co
pling of excitation efficiency and optical pumping is not ca
tured in analyses that are limited to two-level atoms, thou
it is a complication that arises in real multilevel atoms.

IV. RESULTS OF THE NUMERICAL EXPERIMENTS

Influence of field nonstationarity on long-term LIF nois.
Figure 5 shows the Allan deviation of the fractional fluore
cence fluctuationssDF/F(t), as a function of averaging time
t. In Fig. 5~a! we consider weak-field conditions~i.e., I /I s
;0.01), while in Fig. 5~b! we consider strong-field condi
tions~i.e., I /I s;2); all other parameters are as listed in Tab
I. In each figure, the solid line corresponds to the case of
laser-frequency modulation, while the data points and das
line correspond to LIF noise in the presence of the non
tionary field. There are two points to note with regard to F

FIG. 3. ~a! Ground-state (F51) polarization,~b! ground-state
(F51) alignment, and~c! fluorescence~arbitrary units! for a nu-
merical experiment with the nominal conditions of Table I exce
for I 5120mW/cm2, vm50, m50, andB050.
2-6
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5. First, independent of laser intensity, the nonstation
character of the field has a dramatic effect on the Allan
viation, increasing the LIF noise by about 200% for the fi
ures’ specific conditions. Additionally, even though the fie
is nonstationary, the LIF noise is white~i.e., the Allan devia-
tion decreases with averaging time asAt) as predicted by the
adiabatic approximation. As previously noted within t
adiabatic approximation,sDF/F

2 (t) corresponds to a mea
square of the fluorescence fluctuations averaged ove
modulation period. Since the field is periodically stationa
the averaging gives the LIF fluctuations stationary charac
and for averaging times much greater than the modula
period the nonstationary character of the field simply am
fies the white-noise level of the LIF.

Signal-to-noise ratio and laser-frequency modulation a
plitude. Figure 6 shows the signal-to-noise ratio of the L
(D050) as a function of laser-frequency modulation amp
tudemvm , where the ‘‘signal’’ corresponds to the dc level
fluorescence @29#. Diamonds correspond tovm/2p
5100 kHz; circles correspond tovm/2p51 MHz, and tri-
angles correspond tovm/2p510 MHz. As predicted by the
adiabatic approximation, forvm,Aeg , the S/N ratio does
not depend so much on the value of the modulation
quency, but on the amplitude of the laser-frequency mod
tion mvm .

FIG. 4. ~a! Ground-state (F51) polarization,~b! ground-state
(F51) alignment, and~c! fluorescence~arbitrary units! for a com-
puter experiment with the nominal conditions of Table I except
I 5100mW/cm2.
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Though theS/N ratio for vm/2p510 MHz remains rela-
tively high for a range of modulation amplitudes~i.e.,
mvm/2p<5 MHz), one should interpret this result cau
tiously. Basically, at this very high modulation frequency t
atoms’ response is nonadiabatic, implying that the atoms
not easily follow the laser’s deterministic frequency var

r

FIG. 5. Allan deviation of the fractional fluorescence fluctu
tions sDF/F(t) for the laser tuned on resonance~i.e., D050): ~a!
I 5100mW/cm2, ~b! I 525 mW/cm2; all other parameters as in
Table I. In each graph the solid line corresponds to LIF witho
laser-frequency modulation while the data points correspond to
with laser-frequency modulation.

FIG. 6. LIF signal-to-noise ratio for the laser tuned to resona
as a function of the laser-frequency modulation amplitude; par
eters are given in Table I except as noted: diamonds correspon
vm/2p5100 kHz, circles correspond tovm/2p51 MHz, and tri-
angles correspond tovm/2p510 MHz. The long dashed line run
ning through the triangles is simply an aid to guide the eye, wh
the vertical double-dashed line indicatesmvm5Aeg . The solid line
represents the signal-to-noise ratio predicted by the adiabatic
proximation.
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tions. Hence, it is not surprising that the noise is relativ
low. Nevertheless, the laser’s frequency is modulated w
intent, presumably to generate an ac signal that can be
to stabilize the laser wavelength. If the modulated signa
derived from the atomic beam’s LIF, then nonadiabatic
implies that the ac signal will be small, possibly negating a
positive influence of the fast frequency modulation on
~dc! signal-to-noise ratio. However, if the correction sign
for laser stabilization were derived from a separate ato
system with a broader atomic bandwidth~e.g., LIF from an
on
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atomic vapor!, then it might be possible to take advantage
nonadiabaticity to improve theS/N of the atomic beam’s LIF
while maintaining a large ac signal for laser stabilizati
purposes.

In order to proceed further with the interpretation of t
numerical results, we define the adiabatic fluorescence si

Fa as AegT̄fl@s22
(0)#T , where T̄fl is the most-probable fligh

time of the atoms through the laser-atom interaction regi

Then, solving Eqs.~10! for @s22
(0)#T we obtain
Fa5

1

2
AegT̄fls0S g2

g1
D S I

2I s
DAeg

2

AFg2
21D0

21S g2

g1
D S I

2I s
DAeg

2 GFg2
21D0

21m2vm
2 1S g2

g1
D S I

2I s
DAeg

2 G
. ~22!
d to
r a

a-
n in

lit-
eld
in

nt
From the parameters of Table I, and withg251/2(Aeg
1gL), we find thatFa5135, which is within about 5% of
the numerical adiabatic result ofFa5129. ~For the nominal
500 mG field, the several ground-to-excited state transiti
are shifted by60.7 MHz.) In order to compute the signa
to-noise ratio, we now recognize that Zeeman shifts of
resonant transitions will cause the noise to be dominated
ND at small values ofmvm . For conceptual purposes, w
therefore write theS/N ratio as

~S/N!>
Fa

AegT̄fl~N01ND!
. ~23!

Substituting from Eqs.~17a!, ~17b!, and~22!, and using the
parameters of Table I@30#, we get the solid curve of Fig. 6
for the noise in a one hertz bandwidth. As expected, at
modulation amplitudes the agreement between the nume
results and the adiabatic approximation is quite good, sh
ing in both cases a rapid fall off inS/N up to approximately
mvm/2p;5 MHz. Even the leveling-off of theS/N ratio for
mvm/2p>5 MHz is captured by the adiabatic approxim
tion, though its validity conditions are clearly violated. No
that if we had not included theND term in Eq.~23!, ignoring
for the sake of argument effects of shot noise, the signal
noise ratio would have diverged at low modulation amp
tudes, which suggests that the Zeeman splitting of a mu
level atom can play an important role in determining L
noise.

Signal-to-noise ratio and Zeeman splitting. As suggested
by the results shown in Fig. 6 at low modulation amplitud
the multilevel nature of the stochastic-field–atom interact
problem can have a significant influence on theS/N ratio. To
explore this issue further, we examined theS/N ratio as a
function of Zeeman splittingDZeeman. The results are shown
in Fig. 7~a!, where diamonds correspond tomvm/2p
52 MHz and circles correspond tomvm/2p50; all other
s
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,
n

parameters except for magnetic-field strength correspon
Table I values. What is striking about the results is that fo
limited range of magnetic-field strengths theS/N ratio in-
creases dramatically~i.e., between 300 and 400%!; and as
shown in Fig. 7~b!, where we plot the signal and noise sep
rately, the effect appears to be due to a strong reductio
LIF noise over this particular range ofDZeeman.

FIG. 7. ~a! Signal-to-noise ratio as a function of Zeeman sp
ting as determined in the computations by the magnetic fi
strength (D050); parameters for the calculation are as indicated
Table I except for the modulation amplitude.~b! LIF signal and
noise plotted separately formvm50, showing that the enhanceme
in the S/N ratio is driven by a decrease in LIF noise.
2-8



th
ve
ar

si-

r

s
e
ra

e
-
is

e
he
el
m
A
e
-
c

d

ly,
ise-

as
on

an

a
e

rom
de

ry
e

–
the

t
he
na-
f its
of

ent-
ns-
e
im-
lly,
cy

pro-
5

o
of
op-

al
on-

his
ile
.

e
e-
tion
low

ent
e
ms

t
e

FLUORESCENCE FLUCTUATIONS FROM A MULTILEVEL . . . PHYSICAL REVIEW A 69, 013802 ~2004!
As a working hypothesis to explain the increase in
S/N ratio, we first recognize that because of the multile
nature of the problem and the laser’s polarization, we
dealing with multiple situations ofV-system excitation as
drawn in Fig. 8~a!. Consequently, as illustrated in Fig. 8~b!,
when the Zeeman splitting is not too large the~nominally
on-resonance! laser excites two coherently coupled tran
tions; these are offset from the laser frequency by1uDZeemanu
and 2uDZeemanu, with the average excitation efficiency fo
the two branches of theV system given by«0 . If the laser
frequency randomly decreases bydv, the excitation effi-
ciency for the~2! branch of theV system increases to«2,
while the excitation efficiency for the~1! branch decrease
to «1. Though individually the excitation efficiencies for th
~2! and ~1! branches may change dramatically, the ove
excitation efficiency~giving rise to the LIF signal! might
only change slightly from«0 to ^«&. Consequently, we argu
that theV system has built into it an intrinsic ability to miti
gate PM-to-AM conversion noise in the LIF signal. This
consistent with Eq.~17b!, whereND for a two-level system
depends on the sign ofD. In order to explain the appearanc
of Fig. 7~a!, we note that at small Zeeman splittings t
multiple V systems are degenerate; thus the noise canc
tion property of theV system is attenuated and the ato
produces LIF noise in the manner of a two-level atom.
somewhat stronger magnetic-field strengths, with the Z
man degeneracy lifted, theV system’s intrinsic noise mitiga
tion process becomes effective, giving rise to an enhan

FIG. 8. ~a! Illustration of the multipleV systems in the presen
problem.~b! Illustration of the manner in which LIF noise might b
suppressed in aV system as discussed in the text.
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S/N ratio. At relatively high values of the magnetic-fiel
strength, where the computations of Fig. 7~b! indicate an
increase in LIF noise, the situation is less clear. Qualitative
it seems reasonable to presume that an inherent no
mitigation property of theV system becomes less effective
the ~2! and ~1! branches take on independent-transiti
character, as would occur at very large values of the Zeem
splitting.

V. SUMMARY

In this work we have investigated the interaction of
nonstationary field with a multilevel atom. In particular, w
examined the fluctuations in laser-induced fluorescence f
an alkali-metal-like atom when it interacts with a singlemo
field undergoing deterministic frequency modulation~i.e., a
periodically stationary field!. Two of our key findings are
that ~1! though at low Fourier frequencies the nonstationa
~i.e., modulated! character does not appear explicitly in th
LIF fluctuations, it does amplify their~white-noise! magni-
tude and~2! in the adiabatic regime of the stochastic-field
atom interaction the important modulation parameter is
amplitude of the deterministic frequency excursions~i.e.,
mvm). Additionally, for the multilevel atom we found tha
the LIF noise is significantly reduced at a critical value of t
Zeeman splitting. Though we developed a heuristic expla
tion for the phenomenon, an accurate understanding o
origin will require a more careful analytical examination
LIF noise in aV system. As is well known,V systems andL
systems are subtle, leading to effects such as coher
population trapping and electromagnetically induced tra
parency @31#. Notwithstanding the physical origin of th
critical decrease in LIF noise, its observation may have
portant implications for precision spectroscopy. Specifica
in the area of atomic clocks, where short-term frequen
stability is typically determined by theS/N ratio, the present
results suggest that operation of a beam clock at an ap
priate magnetic-field strength could lead to factors of 3 to
improvement in frequency stability. It will be interesting t
see if this prediction holds true for the next generation
compact cesium beam clocks employing diode lasers for
tical pumping and LIF detection@32#.
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APPENDIX

In our numerical algorithm, we run a ‘‘fast’’ time scal
and a ‘‘slow’’ time scale. Basically, the fast time scale corr
sponds to a specific ensemble of atoms’ temporal evolu
as it crosses the field-atom interaction region, while the s
time scale corresponds to the bandwidth of the measurem
system. For some particular moment of the slow time scalts
we consider the propagation of an ensemble of ato
2-9
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JAMES CAMPARO PHYSICAL REVIEW A69, 013802 ~2004!
through the field-atom interaction region, with the ensem
composed of a number of different velocity groups@i.e., we
consider our ensemble as the set$s(v)%]. Each member of
the set corresponds to a subensemble of atoms in one o
different velocity groups. We begin by generating a reali
tion of our random field@33#, and for each velocity group we
solve the density matrix equations over the group’s las
atom interaction timeL/v; here,L is the length of the inter-
action region andv is the atomic speed for the particula
velocity group.~Our minimum atomic velocityvmin equals
43103 cm/sec and our maximum equals 2.7vmp , wherevmp
is the most probable velocity for a given alkali-oven te
perature.! The density matrix equations are solved using
variable step-size fourth-order Runge-Kutta-Fehlb
routine @34#, and each atomic velocity group in the s
sees the same realization of the field. For each velo
group we integrate the fluorescence signalF(ts ,v,t f)
5Aegre(ts ,v,t f), over the interaction timet int and also
record the values of ground state dipole and quadrup
population distributionsrd(t int ,v) and rq(t int ,v) respec-
tively, as the atomic velocity groups exit the field-atom i
ev
F.
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teraction region. Using Gaussian quadrature@35# to numeri-
cally integrate over the velocity distribution for the therm
beam@36#, we obtainrd(ts), rq(ts), andF(ts).

At each value of the slow time we generate a new re
ization. Since these realizations are uncorrelated, we are
sentially assuming that the bandwidth of the measurem
system corresponds to a timescale that is long compare
the field’s correlation time. We basically consider our det
minations ofrd(ts) andrq(ts) as the outputs of a zero-orde
sample-and-hold@37# of duration Tfl , sampling at the rate
0.1/Tfl , whereTfl is the maximum flight time through the
interaction region~i.e.,L/vmin). We analyze the time series o
these sample-and-hold outputs, or the fluorescenceF(ts),
which is an average overTfl , using the Allan variance.@Note
that our instantaneous values ofrd(ts) andrq(ts) are unbi-
ased estimates of the average values of these quantities
the durationTfl .] Though our simulation corresponds t
measurements with ‘‘dead time,’’ since the sampling time
ten times longer than the averaging timeTfl , the dead-time
bias function is unity because the LIF stochastic process
responds to white noise@38#.
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