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Momentum distribution of a trapped Fermi gas with large scattering length
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Using a scattering length parametrization of the crossover from a BCS state to a Bose-Einstein condensate
as well as the local density approximation for the density profile, we calculate the momentum distribution of
a harmonically trapped atomic Fermi gas at zero temperature. Various interaction regimes are considered,
including the BCS phase, the unitarity limit, and the molecular regime. We show that the relevant parameter
which characterizes the crossover is given by the dimensionless combinationN1/6a/aho , where N is the
number of atoms,a is the scattering length, andaho is the oscillator length. The width of the momentum
distribution is shown to depend in a crucial way on the value and sign of this parameter. Our predictions can
be relevant for experiments on ultracold atomic Fermi gases near a Feshbach resonance.
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Recent experiments on ultracold atomic Fermi gases n
a Feshbach resonance have pointed out the crucial
played by two-body interactions. Spectacular effects conc
the hydrodynamic behavior exhibited by the expansion a
release of the trap@1–3# and the evidence of molecular fo
mation for positive values of the scattering length@4,5#.
These experiments open important perspectives towards
realization of the superfluid phase in Fermi gases, wh
critical temperature has been predicted to be significa
enhanced by resonance effects@6–8#, and towards the study
of the crossover from a BCS state to a Bose-Einstein c
densate~BEC! @9–12# and of many-body effects in the pre
ence of a Feshbach resonance@13–15#.

The purpose of this paper is to point out that an import
diagnostics of the state of the system across the resonan
the atomic momentum distribution whose shape, at low te
perature, is very sensitive to the size and sign of the sca
ing length. The momentum distribution can be directly me
sured in these systems either by suddenly switching off
scattering length and imaging the expanding atomic clo
@3#, or by Bragg spectroscopy@16#.

In this paper we will consider a Fermi gas of two sp
species. The interspecies interaction is characterized by
s-wave scattering lengtha which will be assumed to be
larger than the effective ranger 0 of the interaction. Further-
more we will also assume that the relative momentum\k
between the colliding atoms is smaller than\/r 0. If the scat-
tering lengtha is large and positive a weakly bound molecu
forms in the vacuum with binding energyEb52\2/ma2 and
sizea @17#. A peculiar feature of the resonance is that wh
kuau@1 the scattering amplitudef is unitarity limited andf
→ i /k, independent of the value ofa @18#.

In the many-body problem the above lengths should
compared with the average distance between particles
portional, atT50, to the inverse of the Fermi wave numb

kF5~6p2!1/3ns
1/3, ~1!

where the densitiesns of the two species will be taken to b
equal. By assuming that both the average distance betw
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particles and the modulus of the scattering length are la
than the effective ranger 0, the effects of interactions will no
depend on the actual value ofr 0, but only on the combina-
tion kFa, directly related to the gas parameterna3.

For small and negative values ofkFa, a homogeneous ga
at zero temperature exhibits a BCS superfluid phase, wh
momentum distribution differs very little from the step fun
tion u(kF2k) of the noninteracting Fermi gas.

When either the value of the scattering length or of t
density increases, correlations become more and more
portant. Eventually, in the unitarity limitkFuau@1, the con-
figuration of the system is expected to exhibit a univer
behavior, independent of the actual value ofa @19#. When we
move to the side of the Feshbach resonance where the
tering length is large and positive, bound molecules of siza
would form in the vacuum. However ifa is still larger than
the interparticle spacing the actual state of the many-b
system will be very different. Only whenkFa becomes
smaller than unity will these molecules not be perturbed
the medium and behave just as independent bosons. In
limit the atomic momentum distribution is expected to b
come;1/(k2a211)2, corresponding to the momentum di
tribution of atoms inside molecules.

In the following we shall work atT50 and take into
account the effect of the harmonic trapping. This is import
because the actual values of the densities, and hence okF ,
realized in experiments depend in a crucial way on the tr
ping parameters. We use the model developed in Ref.@12# to
investigate the BCS-BEC crossover atT50, which accounts
for all the regimes introduced above~BCS limit, unitarity
limit, BEC molecular limit! with a unique tuning paramete
fixed, in uniform gases, by the combinationkFa. This ap-
proach consists of a generalization of the gap equation
the number equation of the usual BCS theory to the wh
resonance region, and corresponds to using the saddle
approximation for the zero temperature partition functi
@20#.

Eliminating as usual the bare interatomic potential in
vor of the scatteringt matrix in the vacuum, one obtains th
result
©2004 The American Physical Society07-1
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4p\2a
5

1

V (
k

S 1

2ek
2

1

2Ek
D ~2!

for the gap equation, where ek5\2k2/2m, Ek

5A(ek2m)21D2, m is the chemical potential,D is the gap
parameter andV is the volume of the system. The numb
equation, on the other hand, takes the form

ns5
1

2V (
k

S 12
ek2m

Ek
D . ~3!

The two equations form a closed set of equations in the
knownsD andm and can be solved for a given value ofkFa.
Provided the conditionuau@r 0 is always satisfied, the abov
approach is reliable whenkFa→02, where it coincides with
the standard BCS theory, while it is approximate in the
gion kFuau*1, and in the BEC limitkFa→01, where it
correctly gives the binding energy of molecules but only p
tially accounts for the molecule-molecule interaction effec

It is immediate to see that the particle distribution of
oms of either species is given by the expression

nk5
1

2 S 12
ek2m

Ek
D , ~4!

and corresponds, in the usual Bogoliubov theory of sup
conductivity, tonk5uvku2 wherevk are the Bogoliubov am-
plitudes. The above expression fornk is only valid for values
of k smaller than the inverse of the effective ranger 0. The
values ofk can however be much larger than 1/a since we
assumea@r 0.

Solutions of Eqs.~2! and ~3! are available for the whole
range of values ofkFa @21,22#. Particularly simple solutions
exist in the limitskFa→06. In the BCS limit (kFa→02)
the solutions are well known: m.eF and D
.8e22eFexp(p/2kFa), with eF5\2kF

2/2m being the Fermi
energy. Notice that, since the present theory neglects
fluctuations in the number-density and spin-density,
Gorkov correction to the gapD is not included@23,24#.
However, this has no major relevance for the calculation
the particle distribution which in this limit is close to th
free-gas value.

In the BEC limit instead one findsm.2\2/2ma2

12p\2ans /m and D.(16/3p)1/2eF /AkFa. The first term
in the chemical potential is simplyEb/2, i.e. the molecular
binding energy per atom. By rewriting the second term
2p\2aBns /mB , whereaB52a and mB52m, one can see
that it corresponds to the mean field molecule-molecule
teraction energy@25#. The quantityD instead plays the role
of an order parameter for the molecular Bose-Einstein c
densate~see, for example, Ref.@26#!.

In both the BCS and BEC limitsD is much smaller than
the absolute value of the chemical potential, so that the
ticle distribution can be expanded in terms ofD/umu. In the
BCS limit the lowest order in the expansion is simply t
free Fermi step function, and it is enough to stop at this le
for the considerations which follow. In the BEC limit on
instead finds the result
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nk5
4

3p
~kFa!3

1

~k2a211!2
. ~5!

This is proportional to the square of the Fourier transform
the molecular wave functionc(r )5(1/r )exp(2r/a), indicat-
ing that in this limit the particle distribution arises from th
motion of atoms inside the molecules, and the prefactor
counts for the fact that there arens molecules per unit
volume.

Let us now consider the most interesting unitarity lim
wherekFa→6`. The left hand side of Eq.~2! vanishes, and
this reduces to an implicit equation for the ratioD/m. A
straightforward calculation@21,22# gives D/m.1.16 and
from Eq. ~3! one finally finds the resultsD.0.69eF and m
.0.59eF . In the unitarity limit the proportionality of the
chemical potential and ofD with eF can be deduced from
general dimensional arguments and follows from the fact t
a is no longer a relevant scale in the problem. In this lim
the chemical potential is often written in the formm5(1
1b)eF where, in our case,b.20.41. It is interesting to
compare this prediction with the results of more elabora
approaches. A recent microscopic calculation based on q
tum Monte-Carlo techniques gives the valueb520.56@27#,
while the theory of resonance superfluidity based on sad
point approximation yields the valueb.20.35 @28#. The
value of b has also been the object of recent experimen
investigations in trapped Fermi gases at finite temperat
through the study of the release energy@1,3#.

The predictions of the theory for the particle distributio
of a uniform gas are reported in Fig. 1, which shows th
during the transition from the ideal gas~dashed line! to the
molecular limit ~full line! across the unitarity limit~long-
dashed line! the atomic momentum distribution varies in
dramatic way, reflecting the critical role played by two-bo
interactions. This behavior of the momentum distributi
was first pointed out in Refs.@10,11#. More recently, it has
been investigated in Ref.@29#, and, in the unitarity limit, by
the authors of Ref.@27#. In particular the results of Ref.@27#

FIG. 1. Particle distribution of a uniform gas in the BEC~solid
line!, unitarity ~long dashed line!, and BCS~short dashed line! re-
gimes. For the BCS regime we have chosenkFa520.5, and for the
BEC onekFa50.5. In the inset the momentum distribution in th
BEC regime is compared with the molecular distribution@Eq. ~5!#
~dotted line!.
7-2
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rather well agree with the curve of Fig. 1 for the unitari
limit. The width of the momentum distribution ranges fro
;kF in the BCS limit to;1/a in the BEC regime. Notice
that for the valuekFa50.5 reported in the figure, the mo
mentum distribution calculated by solving Eqs.~2! and~3!, is
practically indistinguishible from the ‘‘molecular’’ formula
~5!.

In trapped configurations we shall calculate the mom
tum distribution by introducing the local semiclassical p
ticle distribution

nk~r !5
1

2 S 12
ek2m~r !

Ek~r ! D , ~6!

whereD(r ) and m(r ) are obtained by solving Eqs.~2! and
~3! with the local value of the density. The momentum d
tribution is then evaluated by integrating the particle dis
bution in coordinate space:

n~k!5E d3r

~2p!3
nk~r !. ~7!

The momentum distribution coincides with the particle d
tribution function only in a uniform system, where one h
the simple relationn(k)5Vnk . A fundamental ingredient for
the calculation is the density distribution, whose shape
vary very much depending on the regime considered and
the trapping parameters@30#. In the following the density
profile will be determined using a local density approxim
tion, based on the solution of the equation

m5m@ns~r !#1Vext~r !. ~8!

In the deep BCS limit the particle distribution is given b
the free distribution. For harmonic trapping one finds t
well known resultsns(r )5ns(0)@12(r /RTF

0 )2#3/2 for the
density profile, whereRTF

0 5(48Ns)1/6aho is the Thomas-
e
f

be

io
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e

Fermi radius, andns(0)5(4Ns/3p4)1/2aho
23 is the central

density.Ns is the number of fermions in each internal sta
and aho5A\/mv the harmonic oscillator length, withv
5(vxvyvz)

1/3. The momentum distribution takes the fo
lowing form:

n~k!5
~RTF

0 !3

6p2 F12S k

kF
0 D 2G 3/2

, ~9!

where the Fermi wave number satisfies the relation

kF
0a5~48!1/6Ns

1/6 a

aho
, ~10!

and coincides with the value obtained using Eq.~1! with the
central densityns(0).

In the unitarity limit the density profile has the same for
as in the ideal case, since the chemical potential in the
form system has the same power law dependence on
density (m}n2/3). The only difference with respect to th
ideal case is an overall rescaling factor:m5(11b)eF , re-
sulting in a contraction of the Thomas-Fermi radius acco
ing to the law RTF

0 →RTF
0 (11b)1/4. Similarly, the central

density is rescaled according ton(0)→n(0)(11b)23/4 and
consequently the Fermi wave number, calculated in the c
ter of the trap, is fixed by

kFa5
~48!1/6

~11b!1/4
Ns

1/6 a

aho
. ~11!

The momentum distribution~7! can then be calculated b
integrating Eq.~6!, employing the corresponding values fo
D and m and the rescaled density profile. After introducin
the dimensionless variabler̃ 5r /(11b)1/4RTF

0 one finds the
result
n~k!5
~RTF

0 !3~11b!3/4

4p2
E

0

1

dr̃ r̃ 2S 12
~k/kF

0 !22~11b!1/2f ~ r̃ !

A@~k/kF
0 !22~11b!1/2f ~ r̃ !#21~11b!21@ f ~ r̃ !~D/eF!#2

D , ~12!
sity
om
en
on
2

on
the

e

where f ( r̃ )512 r̃ 2, b520.41 andD/eF50.69.
Let us finally discuss the molecular BEC limit. To th

extent that the conditionkFa!1 is satisfied in the center o
the trap, one can use the molecular distribution function~5!
everywhere and the resulting momentum distribution will
consequently given by

n~k!5
a3Ns

p2

1

~k2a211!2
, ~13!

independent of the density profile. The density distribut
is, however, necessary to determine the quantitykFa in terms
n

of the relevant parameters of the trap. The leading den
dependent term in the atomic chemical potential arises fr
the molecule-molecule mean-field interaction. This is giv
by p\2aBns /m, and corresponds to the usual interacti
term in the Gross-Pitaevskii theory for bosons of massm
interacting with scattering lengthaB . Within the model of
Refs.@10,12# one predictsaB52a. Since this prediction ne-
glects higher order terms in the dimer-dimer interaction@25#,
in the following we shall maintain the more general notati
aB . Notice that our results are not crucially dependent on
actual value ofaB provided the ratioaB /a is of the order of
unity. In this limit the local density approximation yields th
T50 Thomas-Fermi profile
7-3
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ns~r !5ns~0!S 12
r 2

RTF
2 D , ~14!

where

ns~0!5
1

2paBaho
2 S 15NsaB

4aho
D 2/5

~15!

is the central density andRTF5aho(15NsaB/4aho)
1/5 is the

Thomas-Fermi radius. The use of the local density appro
mation is justified since the Thomas-Fermi parame
NsaB /aho is much larger than unity. In deriving the abov
expressions we have assumed that atoms and molecule
trapped with the same oscillator frequencyv. Consequently
the boson harmonic oscillator length is given byaho /A2. By
evaluating the Fermi momentum at the center of the trap
finally finds

kFa52.5S Ns
1/6 a5/4

ahoaB
1/4D 4/5

. ~16!

The quantitykFa should be sufficiently small in order t
apply result~13! for the momentum distribution. SinceaB is
proportional toa, we find that in all the regimes the produ
kFa is fixed by the combinationNs

1/6a/aho . This combina-
tion, then, permits one to characterize the various regim
exhibited by a trapped interacting Fermi gas. Its universa
is a consequence of harmonic trapping and of the fact
the equation of statem/eF , evaluated in the uniform phase
has been assumed to be a function ofkFa. The above dis-
cussion also shows that the value ofkFa is rather insensitive
to the value ofNs .

In Fig. 2 we plot the momentum distribution of a trapp
gas in three regimes: BCS, unitarity, and molecular BE
The distributions are normalized to unity and momenta
expressed in terms ofk/kF

0 wherekF
0 is the Fermi wave vec-

tor of a noninteracting gas. In the BEC regime the atom

FIG. 2. Momentum distribution of a trapped gas in the BE
~solid line!, unitarity ~long dashed line! and BCS~short dashed line!
regimes. For the molecular BEC regime we plot Eq.~13! with
kF

0a50.5, while for the BCS regime the plot shows the free ferm
distribution @Eq. ~9!#. The momentum distributions are multiplie
by k2 to emphasize the largek behavior, and are normalized so th
*d3kn(k)51.
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i-
r

are

e

s
y
at

.
e

c

momentum distribution is given by Eq.~13! and depends
only on the atomic scattering lengtha. Although these results
are based on the approximate theory of Refs.@9–12#, they
provide a first useful estimate of the momentum distribut
which might stimulate new experimental investigations
well as more sophisticated and self-consistent theoretical
culations.

Let us finally discuss the experimental possibilities
measure the momentum distribution and to probe the beh
ior of the system across the resonance. The technique de
oped in Ref.@5# to quickly turn off the scattering length an
to immediately release the trap is well suited for this p
pose. If the magnetic field is switched off in times shor
than the inverse of the binding energy\2/ma2, the mol-
ecules are suddenly dissociated and the atoms will exp
ballistically. If instead the scattering length is switched o
adiabatically the system will form deeper molecular sta
characterized by microscopic sizes. The imaging of the
panding atomic cloud provides a direct measurement of
momentum distribution of the initial correlated configur
tion. An important feature emerging from our results~see
Figs. 1 and 2! is the presence of largek components in the
momentum distribution, with the consequent suppression
n(k) at smallk. These largek components, whose presenc
is more and more pronounced as one leaves the ideal F
gas conditionkFa→02, affect sizably the release energy
the atomic cloud fixed by the kinetic energy@31#.

If one instead releases the trap by keeping the scatte
length on, the scenario of the expansion will be complet
different. In this case one expects that the expansion wil
governed by the laws of hydrodynamics. This will be t
case both at zero temperature, where the system is super
and aboveTc if kFuau@1 due to the resonant effect in th
collisional cross section. Under these conditions the exp
sion will be anisotropic@32# if the confining trap is not sym-
metric and the release energy, as well as the shape o
expanding cloud, will be determined by the equation
state of the gas. In the unitarity limit the release ene
is given by ER /Ns5(3/8)(11b)1/2(6Ns)1/3\v, while in
the molecular regime the expansion will be similar to t
one of a dilute Bose gas and one predictsER /Ns

5(2/7)(15NsaB/4aho)
2/5\v.

So far the discussion has been restricted to zero temp
ture. An interesting question concerns the behavior of
momentum distribution at finite temperatures. For tempe
tures just aboveTc , the momentum distribution can be de
termined through the calculation of the single partic
Green’s function by summing the particle-particle ladder d
grams along the lines of Ref.@10#. In particular, for negative
scattering length andkFuau!1, wherekBTc!eF , one finds
that the momentum distribution of the free Fermi gas
slightly broadened due to thermal effects. In the oppos
molecular regime (a.0 andkFa!1) one recovers the mo
mentum distribution~5! of atoms inside molecules, provide
the binding energy of the molecule is much larger than
temperature\2/ma2@kBT. In fact at the critical temperature
for the Bose-Einstein condensation of molecules one fi
7-4
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kBT/uEBu50.22(kFa)2, and the thermal dissociation of mo
ecules is negligible ifkFa is sufficiently small.

In conclusion, in this paper we have reported a calculat
of the momentum distribution of a harmonically trapp
two-component Fermi gas as a function of the scatter
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length in the BCS-BEC crossover. We expect that the la
deviations from the ideal Fermi gas distribution can be
dressed experimentally in systems close to a Feshbach
nance.
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