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Control of an atom laser using feedback

S. A. Haine,* A. J. Ferris, J. D. Close, and J. J. Hope
Australian Centre for Quantum Atom Optics, Department of Physics, Australian National University, ACT 0200, Australia

~Received 3 October 2003; published 26 January 2004!

A generalized method of using feedback to control multimode behavior in Bose-Einstein condensates is
introduced. We show that for any available control, there is an associated moment of the atomic density and a
feedback scheme that will remove energy from the system while there are oscillations in that moment. We
demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated
in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of
nonlinear controls. If the nonlinear interaction between the atoms can be controlled via a Feshbach resonance,
we show that the feedback process can operate with a much higher efficiency.
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I. INTRODUCTION

In recent years, we have seen the first examples of
atom laser, a device similar to the optical laser, providin
coherent, Bose-condensed output beam@1–5#. The develop-
ment of the atom laser past the demonstration stage, par
larly the development of the pumped atom laser, is an imp
tant goal in atom optics. In many applications, it is the hi
spectral flux and coherence provided by a pumped laser
is critical. Pumping, however, is difficult to implement wit
atoms and can lead to classical noise that far exceeds
suppression of quantum noise, or line narrowing, that wo
be expected from a pumped system. This paper presen
method of suppressing the classical noise on a pumped a
laser beam by feedback to the condensate, with the aim
achieving quantum noise limited operation.

As with light, the matter waves from an atom laser can
coherently reflected, focused, beam split, and polarized@6#.
These are the basic operations performed in all optics exp
ments and through these operations every linear, nonlin
and quantum optics experiment has its analogue when
formed with atoms. Although bosonic atoms and photo
both exhibit Bose-stimulated scattering that is fundame
to laser operation@7,8#, there are significant and interestin
differences. The free space dispersion relation for ato
leads to spatial broadening of pulses in vacuum. Atoms
teract with each other and display nonlinear effects in
absence of another medium. Atoms display far more co
plex polarization states, move slowly, and can be readily p
duced with wavelengths much shorter than are availa
from an optical laser. These are ideal properties in m
precision measurement and quantum information appl
tions.

The present state of the art in atom lasers is an unpum
Bose-Einstein condensate~BEC! that serves as a source for
propagating matter wave beam. Atoms are outcoupled f
the condensate via an rf, or a Raman transition that co
ently flips a trapped spin state to an untrapped state. T
have been several experimental investigations of the pro
ties of atom laser beams. Both temporal and spatial co
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ence have been measured, and it has been demonstrate
rf outcoupling preserves the coherence of the conden
@9,10#. The beam divergence has been measured@11#, and
there has been one real time measurement of the flux o
atom laser beam@12#. The four wave mixing experiment
performed by the NIST group were the first experiments
exploit the inherent nonlinearity of atoms in a controlle
fashion and, furthermore, demonstrated that the Raman
coupling process also preserved the coherence displaye
the condensate@13#. There have been two early experimen
reporting squeezing in atom laser beams@14,15#. Despite
these pioneering experiments, there is a significant amoun
development needed if the atom laser is to become a ge
ally applicable and useful tool in quantum atom optics.

High spectral flux in optical lasers is generated throug
competition between a depletable pumping mechanism
operates at the same time as the damping. The linewidth
pumped laser is much narrower than the linewidth of
cavity determined by the cavity lifetime. In a pumped las
there is Bose enhancement of the scattering rate into
lasing mode resulting in line narrowing@16–19#. The line
narrowing, or suppression of quantum noise associated
pumping an atom laser, is a very desirable but as yet unr
ized property. Quantum field theory is required to calcul
the quantum noise limited linewidth of an atom laser w
interactions. Wiseman and Thomsen have studied the q
tum noise on an atom laser beam outcoupled from a sin
mode condensate and have included feedback in their mo
Atomic collisions turn number fluctuations into phase flu
tuations significantly increasing the linewidth. A continuo
QND feedback scheme can be used to cancel this linew
broadening@20#. It would be difficult to treat both quantum
and classical noise in the same model, as the full quan
field theory is only tractable in the limit of a few mode
whereas the classical noise is intrinsically a multimode
fect. There is no guarantee that a real atom laser would
erate at the quantum noise limit, and it is likely that we mu
design pumping schemes very carefully and use feedbac
approach the quantum noise limit. It is this goal that mo
vates the present work.

The classical noise on a pumped atom laser can be stu
with multimode semiclassical Gross-Pitaevskii~GP! models
@21#. In a recent paper, it was shown that an atom la
©2004 The American Physical Society05-1
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pumped by a nonmode-selective pumping scheme was
stable below a critical value of the scattering length lead
to significant classical noise on the outcoupled beam@22#. It
would seem sensible to adjust the scattering length vi
Feshbach resonance to a suitably large value to stabilize
atom laser and reduce classical noise. Quantum and clas
noise scale oppositely with scattering length, quantum no
increasing with scattering length and classical noise decr
ing. The solution is to operate at low scattering length@23#
and either use mode-selective pumping to stabilize the la
or to suppress classical noise by feeding back to the con
sate. Mode-selective pumping would appear to be difficul
implement, and it is the second option, suppression of c
sical noise by feedback, that we investigate here.

Any realistic feedback scheme will require a detector
measure classical noise, and a control to feedback to in o
to suppress the motion of the condensate. The entire f
back loop must have sufficient bandwidth and must be m
mally destructive. The design of minimally destructive dete
tors for real time measurement and feedback to stabilize
atom laser was discussed in two recent papers@24,25#. In the
present work, we have chosen to feedback to realistic c
trols provided by the magnetic trap to ensure straightforw
implementation in an experiment.

II. CONTROL OF A CONDENSATE

The choice of an effective feedback scheme is larg
determined by the available methods of controlling that s
tem. For a BEC, these controls can correspond either to
turbations in the trap potential, or changes in the interacti
between the atoms. We examine the feedback scheme
quired to control a BEC in three dimensions in an arbitra
potential. We model the system by the Gross-Pitaevskii eq
tion. We assume that it is possible to control a set of exte
potentials( iai(t) f i(r ) and spatially dependent nonlinear i
teraction strengths( jbj (t)gj (r ) with time dependent ampli
tudes. With the feedback switched on, the equation of mo
is

i\
dc~r ,t !

dt
5Ĥc~r ,t ! ~1!

with

Ĥ5Ĥ01(
i

ai~ t ! f i~r !1(
j

bj~ t !gj~r !ucu2, ~2!

Ĥ05T̂1V0~r !1U0ucu2, T̂5
2\2

2m
¹2. ~3!

The ai(t)’s and bi(t)’s are the set of controls used to m
nipulate the potentials. We consider a condensate initi
evolving under the HamiltonianĤ0. Unless the system is
initially in the ground state, we want to reduce the ener
given by
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E0~c!5^T̂1V0&1 1
2 ^U0ucu2&, ~4!

where the angle brackets denote^q̂&5*c* q̂cd3r , and the
integral is over all space. By switching the feedback on, a
then switching it back off again at some later time, we w
typically have altered the value ofE0. It is important to note
that in the presence of feedback,E0 does not represent th
instantaneous energy, but the energy that the system w
have if the feedback were to be suddenly switched off at t
time. The rate of change ofE0 while the feedback is
switched on is

dE0

dt
5E dc*

dt
~ T̂1V0!c1c* ~ T̂1V0!

dc

dt
1

U0

2

d

dt
ucu4d3r ,

~5!

Using Eq. ~1! in Eq. ~5! and the fact thatĤ is Hermitian
gives

dE0

dt
5

i

\
^@Ĥ, T̂1V0#&1

U0

2

d

dtE ucu4d3r .

Using the divergence theorem gives

5
2 i\

2m E (
i

ai f i~r !~c* ¹2c2c¹2c* !d3r

2
i\

2mE (
j

bjgj~r !ucu2~c* ¹2c2c¹2c* !d3r

52(
i

ai~ t !
d^ f i~r !&

dt
2

1

2 (
j

bj~ t !
d^gj~r !ucu2&

dt
. ~6!

It can be seen that settingai(t)5ci„@d^ f i(r )&#/dt…2 and
bi(t)5ui„@d^gj (r )ucu2&#/dt…2, whereci anduj are positive
constants, so that

dE0

dt
52(

i
ci S d^ f i~r !&

dt D 2

2
1

2 (
j

uj S d^gj~r !ucu2&
dt D 2

,

~7!

will always reduceE0 while there are oscillations present
the appropriate moments of the condensate. This is an
portant result as it illustrates a general scheme to reduce
energy from the condensate depending on the available
trols. In practice the feedback may be limited to a fin
bandwidth due to detection speed and the ability to dyna
cally manipulate the potentials. As with all oscillatory sy
tems controlled with feedback, when the response time of
feedback becomes a significant fraction of the smal
timescale in the dynamics of the system, the control m
operate as positive feedback. For this reason, it would o
be safe to use controls where the dynamics of the relev
fluctuating moments are within the bandwidth of the fee
back. For most systems involving BEC this will not be
5-2
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major restriction, as a control bandwidth of the order of
lohertz should be sufficient to respond in phase with
system. In the following sections, we demonstrate apply
this feedback scheme to particular examples. In Sec. III,
investigate how we can use feedback to control a lin
(U050) system in a harmonic potential. In Sec. IV, we de
onstrate control of a Bose-Einstein condensate in a harm
potential.

III. USING THE FEEDBACK SCHEME TO CONTROL
A LINEAR HARMONIC OSCILLATOR

A. Harmonic oscillator with linear controls

We now consider the specific example of the linear (U0
50) Schrödinger equation in one dimension with a ha
monic potential, i.e.,V05 1

2 x2 ~in harmonic oscillator units
wherex is measured in units of the lengthA\/mv, time t is
measured in units of the timev21 and energy is measured i
units of \v, wherev is the harmonic trapping frequency!.
We use as our controls the position of the minimum of
potential, and the strength of the potential. This system
good model of a BEC in either a magnetic or an optical tr
which are both approximately harmonic near the poten
minimum, and can be modulated in intensity. The equat
of motion is then

i
dc

dt
5@ T̂1V01a1~ t !x1a2~ t !x2#c. ~8!

Settinga1(t)5c1@d^x&#/dt anda2(t)5c2@d^x2&#/dt in ac-
cordance with our feedback scheme gives

dE0

dt
52c1S d^x&

dt D 2

2c2S d^x2&
dt D 2

. ~9!

This will guarantee thatE0 is always reduced while there ar
fluctuations in̂ x& and^x2&, but the rate can be optimized b
carefully selecting the valuec1 and c2. We can calculate a
dynamical equation for̂x& using Ehrenfest’s theorem@26#

d2^x&
dt2

52 K ]V~x,t !

]x L 52@112a2~ t !#^x&2c1

d^x&
dt

.

~10!

This is mathematically identical to a classical damped h
monic oscillator. Critical damping will occur whenc1

52A112a2. The dynamic equation for̂x2& is not a simple
linear harmonic oscillator, so we found an appropriate m
nitude ofc2 numerically.

Equation ~8! was integrated numerically using a pse
dospectral method with a fourth-order Runge-Kutta time s
@27# using MATLAB . The feedback initially turned off, and
then switched on at timet520. Figure 1 shows how the
oscillations in^x2& are damped for different values ofc2. It
appears that critical damping occurs whenc2'1, and this
value will be used for all subsequent calculations.
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We next demonstrate that the two moments of feedb
can be used together to reduce energy from the system.
ure 2 shows the system initially in a nonstationary state. T
feedback is turned on at timet520, and oscillations in̂x&
and ^x2& are quickly reduced.E0 is reduced until it is1

2 ,
which is the energy of the ground-state wave function in
harmonic potential.

In this particular example, the energy is reduced until
system is in the ground state. Equation~5! shows that the
energy will only be reduced when there are oscillations
^x& and ^x2&, so once the system is in a state whe

FIG. 1. Oscillations in condensate width vs time for~a! c2

50.05; ~b! c251; ~c! c255. It can be seen that~a! is under-
damped,~b! is close to critical damping, and~c! is overdamped.
^x2& and t are measured in harmonic-oscillator units.

FIG. 2. All quantities measured in harmonic-oscillator uni
Both modes of feedback working simultaneously on a system.
density profile of the initial condition is shown on the right with th
solid black line, in comparison to the ground-state density profi
indicated by the dashed line. The central density is the density a
point x50. The energy is reduced toE050.5, which is the ground-
state energy of the harmonic oscillator.
5-3
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@d^x&#/dt50 and @d^x2&#/dt50, the feedback will no
longer reduce the energy. Obviously, energy eigenstates
display no error signal, but these are not a probl
as they are single mode and all expectation values of obs
ables display no time dependence. Using the harmo
oscillator ladder operators@ â5(2 i /2)(@]/]x1x#), â†

5(2 i /2)(@]/]x#2x)] we can writex5( i /A2)(â2â†). In
the absence of error signals@a1(t)5a2(t)50#, we can use
the Heisenberg equation of motion to calculate@d^x&#/dt
and @d^x2&#/dt. By setting these equal to zero, we get
condition for our zero error signal states

(
n50

`

An11~an11* ane2 i t1an* an11eit !50, ~11!

(
n50

`

An11An12~an12* ane22i t2an* an12e2i t !50,

~12!

where un& are the energy eigenstates (Ĥ0un&5Enun&), and
an are their coefficientsuc&5(n50

` ane2 i (n1[1/2])tun&. This
shows us that there are an infinite number of nonstation
states that display no error signal.

This result demonstrates that feedback using these
trols will not always be effective, as the system may be
tracted to one of these states rather than an eigenstat
these nonstationary states with no error signal, the en
will not be further reduced, and semiclassical fluctuatio
will continue. Figure 3 shows an example of such a state
displays no oscillations in̂x& and ^x2&, and the feedback
does nothing to reduce the energy. The oscillations in
density at the center of the trap are included to demonst
that the condensate is dynamic. Obviously, our two er
signals are insufficient to reduce dynamics fluctuations
the system in general. Our choice of error signal is gover
by the controls we have available to us. We chose the cu
ture and position of the minimum of the harmonic potent
as our controls as they are easy to manipulate in cur

FIG. 3. A state with no oscillations in̂x& and ^x2&. The feed-
back does nothing to reduce the energy as there is no error sig
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experimental traps. In the following section we introduce
time dependent nonlinear interaction in an attempt to p
duce a feedback scheme that will remove all the semicla
cal fluctuations.

B. Harmonic oscillator with a nonlinear control

It is possible to tune the nonlinear interaction betwe
atoms in a Bose-Einstein condensate by controlling the m
netic field close to a Feshbach resonance@28#. In experimen-

al.
FIG. 4. A condensate in the same initial state as Fig. 3,

feeding back using a time dependent nonlinear interaction withu1

55 as well as the two trap parameters. In this case the additi
error signal allows the feedback to reduce the energy until it is
ground-state energy. The condensate number was normalize
unity for this example.

FIG. 5. Feedback on a condensate with a large nonlinear in
action (U05100, condensate number normalized to unity! usingx
andx2 as our controls for the time dependent potential. The den
profile of the initial state is shown on the left with a solid lin
compared to the ground state with a dashed line. Oscillations in^x&
and ^x2& are reduced and the energy is reduced toE'8.51, which
is the ground-state energy.c2 was chosen to be 0.05 for this ex
ample.
5-4
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CONTROL OF AN ATOM LASER USING FEEDBACK PHYSICAL REVIEW A69, 013605 ~2004!
tal systems, this is equivalent to controlling the bias m
netic field in a magnetic trap, or applying a consta
magnetic field in an optical trap, and it has been achie
with considerable finesse in many recent experiments@29#.
Adding a time dependent interaction between the ato
gives the equation of motion

i
dc

dt
5@ T̂1V01a1~ t !x1a2~ t !x21b1~ t !ucu2#c. ~13!

Setting b1(t)5u1„@d^ucu2&#/dt… in accordance with our
feedback scheme will always reduceE0. Figure 4 shows a
system in the same initial state as Fig. 3 but with the ad
tional control. The additional error signal allows us to p
turb the system from the stable state, and the energy is
duced to the ground-state energy. We have demonstrated
we can use feedback effectively to remove energy from n
stationary states in the linear regime (U050). In the follow-
ing section we look at the more physically realistic exam
of a Bose-Einstein condensate with a strong nonlinear in
action.

IV. CONTROLLING A BOSE-EINSTEIN CONDENSATE
WITH FEEDBACK

We use as our next example the more realistic system
Bose-Einstein condensate with strong interatomic inter
tions in a harmonic trap. We begin by just using the two tr
controls as described in Sec. III to reduce the energy. Fig
5 shows a condensate that is initially in an excited state,
the two modes of feedback reduce the energy until it is in
ground state. This is a special case, however, and Fi
shows the feedback acting on a more general initial st
The energy is quickly removed from the two controlled m
ments, but there is still energy left in higher-energy exci

FIG. 6. Feedback on a condensate with a large nonlinear in
action (U05100, condensate number normalized to unity! in a dif-
ferent initial state. The feedback quickly removes energy from
two controlled modes, but energy in higher order excitations
more slowly reduced as it is coupled into the controlled modes
the nonlinear interaction.
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tions. In contrast to the linear system, the motion in the
higher moments is coupled into the controlled modes via
nonlinear interaction, and hence slowly reduced. This is
inefficient process that may be alleviated by including t
time dependent interaction strength as a third control. Fig
7 compares the results of using all three feedback control
a BEC with nonzero interaction with the effects of using on
the linear controls. The use of the nonlinear feedback d
matically accelerates the energy removal process after
rapid initial control due to the linear controls.

V. CONCLUSION

We have described a feedback scheme for reducing
ergy from a BEC in an arbitrary potential with an arbitra
set of controls. This reduces the semiclassical fluctuation
the condensate, a process that will be essential for produ
high quality atom lasers. In the case of a linear harmo
oscillator with a modulated trapping potential, we demo
strated that energy can only be extracted from the mom
in the motion corresponding to the moments present in
available controls. The ability to modulate the nonlinear
teraction between the atoms provides a feedback scheme
can control a far greater range of initial states. Formally, a
eigenstate will be unaffected by the feedback scheme, bu
our scheme can only remove energy from the system, a s
perturbation will usually result in the system coming
steady state in a lower-energy eigenstate.

In the case of a Bose-Einstein condensate with a la
nonlinear interaction, there is already coupling between
ferent modes of oscillations. This means that each mod
feedback can remove energy from more than one mode
oscillation. This indirect method of extracting energy fro
the higher modes is quite inefficient. Adding a nonlinear co
trol improves the efficiency of the feedback because it
rectly removes energy from a larger range of modes.

It was shown in Ref.@22# that pumping and damping
caused multimode excitations in the condensate. The po
bility of controlling these excitations with feedback will b
the topic of a subsequent paper.

r-

e
s
ia

FIG. 7. Comparison of energy reduction by feedback with a
without the time dependent nonlinear interaction strength. The s
line is E0 for Fig. 6, and the dashed line isE0 with the time depen-
dent nonlinear interaction included foru151000.
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