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Adiabatic loading of bosons into optical lattices
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The entropy-temperature curves are calculated for noninteracting bosons in a three-dimé8Bioogfical
lattice and a 2D lattice with transverse harmonic confinement for ranges of depths and filling factors relevant
to current experiments. We demonstrate regimes where the atomic sample can be significantly heated or cooled
by adiabatically changing the lattice depth. We indicate the critical points for condensation in the presence of
a lattice and show that the system can be reversibly condensed by changing the lattice depth. We discuss the
effects of interactions on our results and consider nonadiabatic processes.
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[. INTRODUCTION single-particle eigenstates of the lattice to determine the
entropy-temperature curves for the system for various lattice
Neutral bosonic atoms in optical lattices have been usedepths and filling factors. We use these curves for analyzing
to demonstrate quantum matter-wave engineefing], the  the effect of the loading process on the temperature of the
Mott-insulator quantum-phase transitid], and explore system, and show that sufficiently cold atomic samples can
quantum entanglemefd]. The many favorable attributes of be significantly cooled through loading into a lattice. By ana-
optical lattices, such as the low noise level and high degre®zing the nature of the energy spectrum we explain this
of experimental control, make them an ideal system forcounterintuitive notion that adiabatic compression of a sys-
implementing quantum logi5,6]. A central part of many of tem can lead to cooling.
these proposals is the use of the Mott-insulator transition to Interactions between particles are not accounted for in our
prepare the system into fiducial state with precisely one atorfialculations of the thermodynamic properties, however by
per site, and negligible quantum or thermal fluctuations. ~ considering the Bogoliubov excitation spectrum in the lattice
The usual path for preparing a sample of quantum degenve discuss the modifications interactions should introduce to
erate bosons in an optical lattice consists of first forming &our results. We also address how robust our predictions are to
cold Bose-Einstein condensate in a weak magnetic trap, tBonadiabatic effects in the loading procedure.
which a 1D, 2D or 3D lattice potential is adiabatically ap-  In the last part of this paper we investigate the thermody-
plied by slowly ramping up the light field intensity, where D namic properties of bosonic atoms in a two-dimensional lat-
represents dimensional. Ideally this process will transfer dice. An important experimental consideration in this case is
condensate at zero temperature into its many-body grounéat the intensity envelope of the lasers used to make the
state in the lattice. Of course condensates cannot be producegtical lattice gives rise to an additional slowly varying po-
at T=0 K, yet to date the role of temperature has receivedential perpendicular to the plane of the lattice sites. For the
little attention even though it may p|ay a crucial role in the case of a red detuned lattice this potential is Confining and
many-body properties of these systems. Indeed, due to tf@Pproximately harmonic in the region where the atoms are
massive energy spectrum changes the system undergoestigpped. With increasing laser intensity the latticgound
lattice loading, the initial and final temperatures are not trivi-band degrees of freedom become more degenerate, whereas
ally related. It is also of interest to understand hdw the energy spacing of harmonic degrees of freedom increases
Changes in the lattice to assess the effect the periodic poteﬁue to the Strengthened transverse confinement. Competition
tial has on condensation. Relevant to these considerationgetween these two effects considerably modifies the nature
experiments reported in Rdf7] examined evaporative cool- of the heating or cooling that occurs during lattice loading.
ing of atoms in a combined magnetic trap and 1D opticalVe model the thermodynamic properties of this system and
lattice, and showed a significant decrease in the critical temPresent numerical calculations for the entropy-tempera-
perature for a re|ative|y shallow lattice depth ture ?Urves for parameter regimes relevant to current
Using entropy comparison Olshannii and Wei8shave — €xperiments.
considered how a thermalized system of bosons in an optical
lattice would be transformed through adiabatic unloading Il. FORMALISM—3D LATTICE
into simple traps, with a view to producing a condensate
optically. Their approach takes into account spatially inho-
mogeneous potentials superimposed upon the lattice, but We consider a cubic 3D optical lattice made from three
they assume that each lattice site is occupied by no mordependenti.e., noninterfering sets of counterpropagating
than one boson and that the tunneling rate between sites liaser fields of wavelength, giving rise to a potential of the
zero—strictly valid only for infinitely deep lattices. form
In this paper we begin by considering the thermodynamic
properties of an ideal gas of bosons in a 3D cubic lattice.
Working with the grand canonical ensemble we use the exact

A. Single-particle eigenstates

Vian(r) = \E/[cos(ka) +cog2ky)+cog2kz)], (1)
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wherek=2x/\ is the single-photon wave vector, aidis x10* x 10*
the lattice depth. We take the lattice to be of finite extent with (a) V=0E (b) V=2E
a total of Ng sites, consisting of an equal number of sites R ‘0 R
along each of the spatial directions with periodic boundary __ N
conditions. The single-particle energiesare determined by S e 5 e
solving the Schrdinger equation 5 R Sl . e
p2 0 o~ 0 o .
eq‘pq(r) = >m wq(r) +Vian(r) ¢q(r) 2 0 28/E 4 0 28/E 4
x 10* R x10* R

for the Bloch stateg),(r) of the lattice. For notational sim- (c) V=4E_ (d) V=6E_
plicity we choose to work in the extended zone scheme 1¢ 10 .
whereq specifies both the quasimomentum and band indexg |y . z |- i
of the state under consideration. By using the single-photor® ST' O @ g
recoil energyEg=7%2k?/2m, as our unit of energy, the energy C e T B AN
states of the system are completely specified by the lattice - "" 3
depthV and the number of lattice sité§; (i.e., in recoil units oo 2 4 00 > 4
€q is independent ok). e/E e/Eg

It is useful to review the tight-binding description of the

ground band. Valid for moderately deep lattices, this limit depths. F denth of iatele 2E devel-
approximates the Bloch waves as a set of states localized ygrious depths. For a depth of approximalely 2 a gap deve
0ps in the density of states. (o) we illustrate the energy gagya,

each site that are only weakly coupled to their nearest neigh- q d band widtke. . Poi d ined b o
bors. In solids these localized states are usually constructea}i; ground band widtag,y . Points are determined by numerically
’ averaging the exact spectrum over a small energy range.

from the atomic orbitals of the constituent atoms, however in
optical lattices this formulation is made in terms of

FIG. 1. Density of states for Blg~3x 10* site cubic lattice at

We then determine the thermodynamic properties of the lat-

harmonic-oscillator states appropriate to the lattice minimat. : : .
. . ice with N, bosons in the grand canonical ensemble for
R - P
We refer the reader to Ref§9,10] for details of this ap which we calculate the partition functiof

proach. The tight-binding approximation furnishes a useful
analytic form for the(ground bang dispersion relation

InZ=— In(1—e Aleg= ), (4)
q

ﬁZ
GTB_

q m* a.2

3- > codga)|, (3)

j=xy.z whereu is found by ensuring particle conservation. The en-

tropy of the system can then be expressed as
where m* = (i~ 2Vieqlq—0) "' is the effective mass af
=0, which is related to the strength of intersite tunneling, (5
anda=\/2 is the lattice site spacing. We will make use of
this expression later to discuss the thermodynamic propertieghere 8= 1/kgT, andE=—dIn Z/JB is the mean energy.
of the lattice for cases where the temperature is sufficiently
low so that higher bands can be neglected.

S=Kg(In Z+ BE— uBN,),

1. Density of states

How the thermodynamic properties of a system of bosons
change as they are adiabatically loaded into a lattice inti-

Our interest lies in understanding the process of adiabatimately reflects how the lattice modifies the microscopic en-
cally loading a system dfl, bosons into a lattice(The re-  ergy spectrum. In this regard the density of states function
quirements for adiabaticity in this system are not well under-affords considerable insight into the behavior of the system.
stood, though the time scales for adiabatically changing thén Fig. 1 we illustrate how the distribution of available
lattice depth are expected to become long in deep latticesjngle-particle states changes for various lattice depths.
which we discuss further in Sec. lI)EUnder the assump- In general we note that the lattice leads to a substantial
tion of adiabaticity the entropy remains constant throughouthange in the density of statgge) for the system. In the
this process and the most useful information can be obtainegbsence of the latticgrig. 1(a)] the density of states is that
from knowing how the entropy depends on the other paramfor free particles in a box, and is proportional {&. The
eters of the system. In the thermodynamic limit, whdke  smoothness of(€) is disrupted by the presence of a lattice,
—o0 andN,— while the filling factorn=N,/Ns remains  which causes flat regions in the energy bands giving rise to
constant, the entropy per particle is completely specified byeaked features in the density of states, knowmaasHove
the intensive parametefisV,n. The calculations we present singularities[11]. The van Hove singularities in the first and
in this paper are for finite size systems, which are sufficientlysecond energy bands are clearly visible in Fig)41(d).
large to approximate the thermodynamic limit. For sufficiently deep lattices an energy gaj, will separate

To determine the entropy, the single-particle spectrunthe ground and first excited bands. For the cubic lattice we
{eq} of the lattice is calculated for given valuesf andV. consider here, a finite gap appears at a lattice deptkl of

B. Equilibrium properties
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FIG. 2. Entropy vs temperature curves foNa~3x 10" site FIG. 3. Entropy vs temperature curves foNa~3x 10 site

cubic lattice, with filling factom=0.25 at various depthg=0 o cubic lattice, with filling factorn=1 at various depth/=0 to
20Eg (with a spacing of Eg between each curyeThe entropy  20E; (with a spacing of £ between each curyeThe entropy

plateauS, is shown as a dashed line and the condensation point ig|ateauS, is shown as a dashed line and the condensation point is
marked on each curve as a circle. Dotted line markeshows a  marked on each curve as a circle.

path along which adiabatic loading into the lattice causes the tem-

perature to increase. Dotted line markBdshows a path along An important common feature to these curves is the dis-
which adiabatic loading into the lattice causes the temperature fBnct separation of regions where adiabatic loading causes the
decrease. temperature of the sample to increase or decrease, which we
1 ) ) . will refer to as the regions of heating and cooling, respec-
~2Ex" [see Fig. )], and beyond this depth the gap in- tely. These two regions are separated by a common point
creases with lattice depfisee Figs. (©)-1(d)]. In forming 4¢3l curves approximately pass through, and we denote by

the gap higher energy bands are shifted upwards in energis coordinates aT,,S,}. The reason for the existence of
and the ground band becomes compressed—a feature chlis noint will be discussed below. For cases considered in
acteristic of the reduced tunneling between lattice sites. W igs. 2—4T, is in the range (0.5-Bj, and to clearly in-

refer to the energy range over which the ground band extends

as the(ground band widthegy, . This quantity decreases in 5

magnitude exponentially with [see Figs. (b)-1(c)], caus- 35219

ing the ground band to have an extremely high density of

states for deep lattices; generally in this limit guantum many- 3t

body effects will significantly modify the energy spectra of OE,

the lowest band from the noninteracting states we use here 55|
We will discuss the effects of interactions in Sec. Il D.

&
& 2r
Ill. RESULTS 2
£ 15} 7
In Figs. 2—4 we show entropy-temperature curves forii /°
various lattice depths and filling factonsThese curves have q Chlrye 20E

been calculated for a lattice with 31 lattice sites along each T "
spatial dimension, i.eNs~3X10*. The condensation tem-

perature is defined as that at which 1% of all particles occupy
the ground state, and is indicated in Figs. 2—4. We note tha
being a finite system the transition is not discontinuous, how- 15 2 25
ever the onset of condensation is rapid and changing the TempArBZigiE,
requirement to 5% makes little observable difference in the
critical-point locations.

3 35 4

FIG. 4. Entropy vs temperature curves foNa~3x10* site
cubic lattice, with filling factorn=4 at various depth&/=0 to
20ER (with a spacing of Eg between each curyeThe entropy
plateauS, is shown as a dashed line and the condensation point is

The delay in appearance of the excitation spectrum gap i to marked on each curve as a circle. Dotted line markeshows a
~2ERg is a property of the 3D band structure. In 1D a gap is presenpath along which an initially Bose-condensed system uncondenses
for all depthsV>0. as it is loaded into the lattice &t~4Eg.
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dicate the vertical separation of the heating and cooling re- B. Scaling

gions, we have marke§, as a horizontal dashed line. Here we give limiting results for the entropy-temperature
We now explicitly demonstrate the temperature changeg; yes.

that occur during adiabatic loading using two possible adia-

batic processes labelg&land B, and marked as dotted lines 1. ke T<epy

in Fig. 2. Proces#\ begins with a gas of free particles in an ,

initial state withS>S,,, T>T,. As the gas is loaded into the Whef‘ the temperature is small compared to the ground

lattice the process line indicates that the temperature inPand width, only energy states near the ground state of the

creases rapidly with the lattice depth. This result is consister{f’weSt band are accessible to the SySte!“- These stafes eghibit
with the experimental observations in RéL2], where a & duadratic dependence on the magnitude of the quasimo-
noncondensed gas, prepared into an optical lattice, was adigiéntum and the entropy of this system is well described by
batically cooled by slowly reducing the lattice depth. Con-th€ free particle expression if the ba”i particle mass is re-
versely proces® begins with a gas of free particles in an P'a‘?ed by the effective mass, i.en—m*. In general this
initial state with S<S;, T<T, and the lattice loading regime occurs pnly at very low temperatures, and except for
causes a rapid decrease in temperature. This behavior can >étremgly low f'”",]g faqtors the system will be condensed in
qualitatively understood in terms of the modifications thellis region. In this “n_“t the expression for entropy corre-
lattice makes to the energy states of the system. As is appa§ponds to th*e expression for a condensed gas of free particles
ent in Fig. 1, the ground band flattens for increasing latticgVith massm
depth causing the density of states to be more densely com- 5 ) 2
pressed at lower energies. Thus in the lattice all these states — N3 MKl

) S= 5 Nsa’{(5/2) : ®
can be occupied at a much lower temperature than for the 2 27h?
free particle case. As we discuss bel@y,is the maximum . _ . _ .
entropy available from only accessing states of the loweswhere{(n)=Zx,_,1k" is the RiemanrZ function andN,a
band, and so fo5>S;, higher bands are important. As the is the volume of the systefi13]. We note that in this regime
lattice depth and hencey,, increases, the temperature mustthe critical temperature for condensation scales Tas
increase for these excited states to remain accessible.  ~(m*) %2 so thatT/T, is independent ofm* and hence

the lattice depth.

A. Entropy plateau 2. Tight-binding limit with kg T<€€gqp

In Figs. 2—4 a horizontal plategat the level marked by As discussed in Sec. Il A, when the temperature is small
the dashed lingsis common to the entropy-temperature compared to the energy gap only states within the ground
curves for larger lattice deptha/&8Eg). This occurs be- band are accessible to the system. In addition when the tight-
cause for these latticesyy<ey,,, and there is a large tem- binding description is applicable for the initial and final
perature range over which states in the excited bands amgates of an adiabatic process, the initial and final properties
unaccessible, yet all the ground band states are uniformlgre related by a scaling transformation.
occupied. The entropy value indicated by the dashed line in To illustrate we consider our initial system to be in equi-
Figs. 2—4 corresponds to the total numberMyf-particle  librium with entropy $;<$S,, in a lattice of depthv; which
states in the ground band. Since the number of single-particlee take to be sufficiently deep enough for tight-binding ex-
energy states in the ground band is equal to the number gfression(3) to be a good description of the ground band
lattice sites, the total number of availabig-particle states, energy states. If an adiabatic process is used to take the sys-
which we define agl,, is the number of distinct way, tem to some final state at lattice depth (also in the tight-
identical bosons can be placed irtQ states, i.e., binding regime¢ it is easily shown that the macroscopic pa-

rameters of the initial and final states are related as
(Np+Ng—1)!
Qo= Np! (Ng—1)! - © Ei=ak;, ©)

Tf = aTi ’ (10)
The associated entroSy=kgIn g, which we shall refer to

as the plateau entropy, can be evaluated using Sterling’s Kf= ek (11)
approximation where the scale factor
a=mf/mf (12
Np+Ng—1 Np+Ng— 1
So=Kkg| NpIn TN, T (Ns=D)in| =3 —7 is the ratio of the effective masses, and the subscrigtedf

(7)  refer to quantities associated with the initial and final states,
respectively. This type of scaling relation leaves the occupa-
tions of the single-particle levelgncluding the condensate

As described earlier, this entropy value separates the heatiragcupation unchanged. This means that being adiabatic does
and cooling regions for the lattice. not require redistribution through collisions and may allow
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was reversibly condensed by changing the shape of the trap-
a R T e oo J, ping potential. To quantify the feasibility of this process be-
ing experimentally observed, we note that in going from
=0 toV=10ER along lineC in Fig. 4, the condensate popu-
o lation decreases fromy~3.9x 10* (i.e., 5%) tony~5.

We note that the free particle case witl=1 shown in

Fig. 3 condenses at an entropy approximately equal to the
5 plateau entropys,, given by Eq.(7). For an ideal gas of free
particles condensation occurs when the entropy of the system

kBTm /mER
n
N

20t 1

. % % is Seond= 5KeNpZ(3)/¢(3) (e.g., see Ref13]), whereas the
16 « x X xoxoxoxoxox % ox x x Y plateau entropy for a lattice with unit filling i§,(n=1)
12t 1 =2kgN,In(2) [obtained by setting Ns—1)—Ng and N,
l | =N in Eqg. (7)]. In comparing the values we fin8gy(n

, , , , =1)/Seon~1.0798, in agreement with numerical observa-
0 4 8 12 16 20 tion. For fixed N the filling factor is proportional td\,,
V/E : .
R thus the free particle condensation entropy scaleS.gg

FIG. 5. The product of temperature with effective mass at con- N whereas the entropy plateau. goesSs-In(n). So we
stant entropy for various lattice depths. Results for filling factors ofC_OnCIUde that fom=1 condensation occgr@or free par-
(dot§ n=0.25, (crossesn=1, and(squaresn=4. The constant ticles above the plateau, whereas fos 1 it occurs below
value of entropy for each filling factor is chosen to be 0.85 of thethe plateau.
value of the plateau entropy. The data used for this graph corre-
spond to the results shown in Figs. 2—4. D. Interaction effects

We now turn to a qualitative discussion of interaction ef-
the lattice depth to be changed more rapidly. However, adiafects on the system, and show that interactions will limit the
baticity with respect to the many-body wave function will extent of cooling compared to a noninteracting system. In
become a significant constraint as the lattice depth increasegir treatment here we employ a Bogoliubov approach to
and will become the limiting time scale. calculate the excitation spectrum within the lattice. In the

The validity of the scaling relationship relies on the ne-Bogoliubov approach all the atoms are assumed to be in the
glect of the influence of higher bandise., kgT<e€y,9), and  zero quasimomentum condensate, and by diagonalizing a
the applicability of the tight-binding approximation. To con- quadratic approximation to the many-body Hamiltonian a set
firm the validity of the scaling relationship®)—(12) we  of quasiparticle levels are obtaing@ur method follows
have verified that for deep enough lattid&sT, andu scale  those of Refs[15,16 and we refer the reader to these for
like (m*)~! as functions ofV for S constant(e.g., for the  further detail3. This approach should be a good approxima-
states along curvB in Fig. 2). An example of such a com- tion to the many-body spectrum for moderate lattice depths
parison is provided in Fig. 5 we have plotted the product of(i.e., below the depth where the Mott-transition ocdurg])
effective mass and temperature for various lattice depths. land small thermal depletion.
the regime of validity of the scaling approximation these The regimes of cooling associated with lattice loading ob-
curves should be constafgee Eqs(10) and(12)]. The re-  served in Figs. 2—4 arose from the rapid compression of the
sults in Fig. 5 indicate that fov¥=(4—-8)Eg (depending on  ground band width £g\y) that occurs with increasing lattice
the filling facton the scaling approximation provides a useful depth. Indeed, in the limit of adiabatic passage to an infi-
description of the thermodynamic properties of the systenmitely deep lattice, the noninteracting band width is z&e,
under adiabatic lattice changes. m* — o), and the scaling relationshif0) would suggest the
temperature will tend to zero. Interactions remove this de-
generacy, and will thus limit the extent of cooling. We note
that a similar effect occurs in magnetic cooling, whereby

The temperature and entropy at which bosons condengesidual interactions in the system limit the lowest tempera-
generally changes with lattice depth as indicated in Figstures that can be achieved by such meéng., see Ref.
2—-4. We note that for high filling factors the condensation[17]). We also note that interactions will effect the band gap,
points for different lattice depths occur over a wide range ofhowever this magnitude of this modification is typically
entropies, suggesting that the degree of condensation will beuch smaller than the energy gap itself, and so the thermo-
greatly affected by adiabatic lattice loading. dynamic properties of the system are not sensitive to small

For instance, consider the adiabatic process indicated bghanges in this.
the dotted line and labeled in Fig. 4. The system startsasa  To assess the effects of interactions we compare the width
Bose-condensed gas of free particles. However, as the lattiad the ground band calculated with Bogoliubov theory to the
depth increases the condensate fraction decreases until theninteracting case for parameters relevant to current experi-
system passes through the transition point and becomes uments in Fig. 6. These results demonstrate that-atlOEg
condensed. This process is reversible, and is analogous to thiee interacting ground band width is approximately twice
experiments by Stamper-Kuet al. [14], where a Bose gas that of the noninteracting system, suggesting that cooling

C. Condensation
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FIG. 6. Bogoliubov description of interaction effects on the
bandwidth for various lattice depths. Crosses: interacting result for
n=1. Circles: noninteracting result. Other parameters:
=850 nm and collisional interaction strength taken $éRb.

FIG. 7. Fast lattice loading of Bl,~3x 10" site cubic lattice,
with filling factor n=1. Broken/dotted/dashed lines indicate fast
loading curvegsee text and are labeled by the temperature of the

initial V=0 state. The lattice depth on these curves can be deter-

efficiency of the interacting system would be considerablymined from their intercept with the equilibrium entropy vs tempera-
reduced. A similar conclusion is reached in the Mott- tyre curvesigray solid lines, which are described in Fig. 3.

insulator regimgwhere the Bogoliubov approach is invalid
where an energy gap proportional to the on-site interaction

strength develops between the ground state and the partidgxponentially and the adiabatic condition becomes more dif-
hole excitations above isee Ref[9]). ficult to satisfy, however this is also the regime where many-

body effects will begin to dominate and a more complete
description will be needed to fully understand the adiabatic-
ity requirements.

Finally we note that interactions between particles are es-" |t js yseful to assess the degree to which nonadiabatic
sential for establishing equilibrium in the system, and underjgading would cause heating in the system. We consider lat-
standing this in detail will be necessary to determine the timg;jce loading on a time scale fast compared to the typical
scale for adiabatic loading. In general this requirement iggjlision time between atoms, yet slow enough to be
difficult to assess, and in systems where there is an additiongl,antum mechanically adiabatic with respect to the single-
external potential it seems that the adiabaticity requirementgarticle states. This latter requirement excludes changing the
W!|| ]lkely be QOmlnated by the process of atom transport|attice so fast that band excitations are induced, and it has
within the lattice to keep the chemical potential uniform, heen shown that in practice this condition can be satisfied on
th_ough recent proposals have suggested ways of redum%ry short time scale§20]. We will refer to this type of
this problem[18]. o . loading as fast lattice loading, to distinguish it from the fully

It seems reasonable that for sufficiently deep lattices thgqispatic loading we have been considering thus far.
decreasing tunneling rate will ultimately become the rate T4 simulate the fast lattice loading we take the system to
Iimiti_ng time scale for maintaining adiabafcicit_y in adiabatic o initially in equilibrium at temperatur@; for zero lattice
loading (e.g., see Ref.19]). To estimate this time scale we genth. For the final lattice depth we fast load into, we map
consider a case relevant f8Rb experiments. For a lattice the initial single-particle distribution onto their equivalent
depth of aV=10Eg, where we have taken=850 nm, the  gtates in the final lattice, and calculate the total energy for
tunneling time is~10 ms. This time scale is short compared this final nonequilibrium configuration. This procedure as-
to the loading time used in recent experiments with this sySsymes that there has been no collisional redistribution to al-
tem[1,3], and suggests that smoothly increasing the lattice tqqy the system to adjust to the changing potential. To deter-
depths of~10Eg over >100 ms should be very adiabatic. mine the thermodynamic state the final distribution will relax
For depths larger thav=10Eg the tunneling time increases to, we use the energy of the nonequilibrium distribution as a

constraint for finding the equilibrium values of temperature
and entropy. In general the final-state properties will depend
%\We note that for the upper depth limit used in Fig. 6 the systemPn the initial temperature, filling factor, and final depth of the
will likely be in the Mott-insulating statéfor typical experimental  lattice, and to illustrate typical behavior we show a set of fast
parameters and filling factors of order unityn which case the loading process curves that indicate the final-state equilib-
Bogoliubov approach employed here will not accurately describgium properties as a function of final lattice depth in Fig. 7
the excitation spectrum. for unit filling and various initial temperatures.

E. Adiabaticity
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x 10* x 10* two different atom densities, but with constant harmonic trap
@) OE, (b) OE, frequency. These curves exhibit qualitative similarities with
the 3D lattice curves shown in Figs. 2—4, such as a crossing
20E region where the zero-depth curve changes from being a
lower bound to an upper bound of the other curves, and
1 1 separates the regions where adiabatic loading of the system
will cool or heat the system, respectively. Similar to the 3D
% 05 1 % _ case, this behavior arises because of how the lattice modifies
s KgT/Eg 10 kg T/Eg the energy spectrum, i.e., the compression of low-lying states
and upward shift of high-lying states. However, the availabil-
31 © OE 3@ OE ity of equally spaced harmonic-oscillator states ensures that
the density of states does not have a dgapsumingf is
small compared t&/) and an entropy plateau does not ap-
1 1 R pear. We note that the condensation temperature decreases
more rapidly both with temperature and entropy compared to
0 ] 0 ; > the 3D cases, making the 2D lattice a more ideal system for
Ky T/E. Ko T/E observing reversible condensation.
In Figs. 8b) and &d) we consider equivalent systems to
FIG. 8. Entropy vs temperature curves foNa~10” site 2D  those in Figs. &) and §c), except that we increase the trap
square lattice with harmonic trapping potential in the perpendiculafrequency with lattice depth to model the effects of addi-
direction for various lattice depths and strengths of harmonic contional dipole confinement on the system. For the case of
finement. Results are given for 2D site occupationga#(b) n rubidium and taking.~805 nm, these results correspond to
=10, and(c)—(d) n=100. In each subplot the various curves cor- 5 harmonic confinement df,~35 Hz at zero lattice depth,
respond to lattices depths bf=0 to 2(Eg (with a spacing of € ith the confinement increasing in linear steps on successive
between_ each curyeln (a) and (c) Fhe harmonic confinement fre- .\ \/aq up to a maximum valdfg~ 70 Hz atV=20Eg, typi-
3L‘_egc3;:;Ti:gE:EFié hi,n ggg;a;(“gg,a;éd (?grfg;%(;ﬁz; h Sém cal of current experimental parameters. These results demon-
Iatticé depth, tof ;= 0.0 at V- 20E,. Tﬁe condensationqpoint strate that.the add|t|onql dlpole. confinement reduces the size
for the syste’m is marked with a circle on each curve. of the reg'of‘ over which cooling occurs, and reduces .the
extent to which the system can be cooled. The more rapidly
f1 increases with lattice depth, the more pronounced this

4 4
3 R 3
2 2

Sik,
Sikg

—_

o2 20E, oo

S/
S/k
n
=]
m

o
n
(=]

These curves show, as is expected from standard '[herm{")(—aductIon will be.
dynamic arguments, that entropy always increases for nona-
diabatic processes, i.e., all loading curves in Fig. 7 bend
upwards with increasing lattice depth. We also observe that V. CONCLUSION
eventually all curves predict heating for large enough final |, his paper we have calculated the entropy-temperature
lattice depth. However, for initial temperatures sufficiently o, es for bosons in a 3D optical lattice, and a 2D lattice
far below the critical temperature for coolingTd  with harmonic confinement for various depths and filling
~0.7Er/kg) a useful degree of temperature reduction can bgactors. We have identified general features of the thermody-
achieved with fast lattice loading up to a certain maximumpamic properties relevant to lattice loading, indicated re-
depth. For example, the curve with initial temperatdie  gimes where adiabatically changing the lattice depth will
=0.5Eg/kg in Fig. 7 cools for final depths less tha  cayse heating or cooling of the atomic sample, and have
~SER, but for depths greater than this the temperature beprovided limiting results for the behavior of the entropy

gins to increase quite rapidly. curves. We have considered the effect of lattice depth and
filling factor on the Bose condensation point and have exam-
IV. 2D LATTICE WITH DIPOLE CONFINEMENT ined the possibility of reversible condensation through lattice

loading. We have discussed the dominant effects of interac-
tions, and have shown that many of our predictions are ro-
bust to nonadiabatic effects. Future extensions to this work
will consider in more detail the effects of both interactions
and inhomogeneous external potentials.

Here we consider the case of a 2D lattice in ®yeplane
with a harmonic trapping potential along thelirection. We
calculate the eigenstates of the Sclinger equation with
potential energy

V 1
V(1) = 5 [cog2kx) + cog 2ky) ]+ m(2fr)?2?,
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