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Adiabatic loading of bosons into optical lattices
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Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

~Received 10 July 2003; published 16 January 2004!

The entropy-temperature curves are calculated for noninteracting bosons in a three-dimensional~3D! optical
lattice and a 2D lattice with transverse harmonic confinement for ranges of depths and filling factors relevant
to current experiments. We demonstrate regimes where the atomic sample can be significantly heated or cooled
by adiabatically changing the lattice depth. We indicate the critical points for condensation in the presence of
a lattice and show that the system can be reversibly condensed by changing the lattice depth. We discuss the
effects of interactions on our results and consider nonadiabatic processes.
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I. INTRODUCTION

Neutral bosonic atoms in optical lattices have been u
to demonstrate quantum matter-wave engineering@1,2#, the
Mott-insulator quantum-phase transition@3#, and explore
quantum entanglement@4#. The many favorable attributes o
optical lattices, such as the low noise level and high deg
of experimental control, make them an ideal system
implementing quantum logic@5,6#. A central part of many of
these proposals is the use of the Mott-insulator transition
prepare the system into fiducial state with precisely one a
per site, and negligible quantum or thermal fluctuations.

The usual path for preparing a sample of quantum deg
erate bosons in an optical lattice consists of first formin
cold Bose-Einstein condensate in a weak magnetic trap
which a 1D, 2D or 3D lattice potential is adiabatically a
plied by slowly ramping up the light field intensity, where
represents dimensional. Ideally this process will transfe
condensate at zero temperature into its many-body gro
state in the lattice. Of course condensates cannot be prod
at T50 K, yet to date the role of temperature has receiv
little attention even though it may play a crucial role in t
many-body properties of these systems. Indeed, due to
massive energy spectrum changes the system undergo
lattice loading, the initial and final temperatures are not tri
ally related. It is also of interest to understand howTc
changes in the lattice to assess the effect the periodic po
tial has on condensation. Relevant to these considerat
experiments reported in Ref.@7# examined evaporative coo
ing of atoms in a combined magnetic trap and 1D opti
lattice, and showed a significant decrease in the critical t
perature for a relatively shallow lattice depth.

Using entropy comparison Olshannii and Weiss@8# have
considered how a thermalized system of bosons in an op
lattice would be transformed through adiabatic unload
into simple traps, with a view to producing a condens
optically. Their approach takes into account spatially inh
mogeneous potentials superimposed upon the lattice,
they assume that each lattice site is occupied by no m
than one boson and that the tunneling rate between site
zero—strictly valid only for infinitely deep lattices.

In this paper we begin by considering the thermodynam
properties of an ideal gas of bosons in a 3D cubic latti
Working with the grand canonical ensemble we use the e
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single-particle eigenstates of the lattice to determine
entropy-temperature curves for the system for various lat
depths and filling factors. We use these curves for analyz
the effect of the loading process on the temperature of
system, and show that sufficiently cold atomic samples
be significantly cooled through loading into a lattice. By an
lyzing the nature of the energy spectrum we explain t
counterintuitive notion that adiabatic compression of a s
tem can lead to cooling.

Interactions between particles are not accounted for in
calculations of the thermodynamic properties, however
considering the Bogoliubov excitation spectrum in the latt
we discuss the modifications interactions should introduc
our results. We also address how robust our predictions a
nonadiabatic effects in the loading procedure.

In the last part of this paper we investigate the thermo
namic properties of bosonic atoms in a two-dimensional
tice. An important experimental consideration in this case
that the intensity envelope of the lasers used to make
optical lattice gives rise to an additional slowly varying p
tential perpendicular to the plane of the lattice sites. For
case of a red detuned lattice this potential is confining a
approximately harmonic in the region where the atoms
trapped. With increasing laser intensity the lattice~ground
band! degrees of freedom become more degenerate, whe
the energy spacing of harmonic degrees of freedom incre
due to the strengthened transverse confinement. Compet
between these two effects considerably modifies the na
of the heating or cooling that occurs during lattice loadin
We model the thermodynamic properties of this system
present numerical calculations for the entropy-tempe
ture curves for parameter regimes relevant to curr
experiments.

II. FORMALISM—3D LATTICE

A. Single-particle eigenstates

We consider a cubic 3D optical lattice made from thr
independent~i.e., noninterfering! sets of counterpropagatin
laser fields of wavelengthl, giving rise to a potential of the
form

VLatt~r !5
V

2
@cos~2kx!1cos~2ky!1cos~2kz!#, ~1!
©2004 The American Physical Society03-1
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P. B. BLAKIE AND J. V. PORTO PHYSICAL REVIEW A69, 013603 ~2004!
wherek52p/l is the single-photon wave vector, andV is
the lattice depth. We take the lattice to be of finite extent w
a total of Ns sites, consisting of an equal number of sit
along each of the spatial directions with periodic bound
conditions. The single-particle energieseq are determined by
solving the Schro¨dinger equation

eqcq~r !5
p2

2m
cq~r !1VLatt~r !cq~r ! ~2!

for the Bloch statescq(r ) of the lattice. For notational sim
plicity we choose to work in the extended zone sche
whereq specifies both the quasimomentum and band in
of the state under consideration. By using the single-pho
recoil energyER5\2k2/2m, as our unit of energy, the energ
states of the system are completely specified by the la
depthV and the number of lattice sitesNs ~i.e., in recoil units
eq is independent ofk).

It is useful to review the tight-binding description of th
ground band. Valid for moderately deep lattices, this lim
approximates the Bloch waves as a set of states localize
each site that are only weakly coupled to their nearest ne
bors. In solids these localized states are usually constru
from the atomic orbitals of the constituent atoms, howeve
optical lattices this formulation is made in terms
harmonic-oscillator states appropriate to the lattice minim
We refer the reader to Refs.@9,10# for details of this ap-
proach. The tight-binding approximation furnishes a use
analytic form for the~ground band! dispersion relation

eq
TB5

\2

m* a2 S 32 (
j 5x,y,z

cos~qja! D , ~3!

where m* 5(\22¹q
2equqÄ0)21 is the effective mass atq

50, which is related to the strength of intersite tunnelin
and a5l/2 is the lattice site spacing. We will make use
this expression later to discuss the thermodynamic prope
of the lattice for cases where the temperature is sufficie
low so that higher bands can be neglected.

B. Equilibrium properties

Our interest lies in understanding the process of adiab
cally loading a system ofNp bosons into a lattice.~The re-
quirements for adiabaticity in this system are not well und
stood, though the time scales for adiabatically changing
lattice depth are expected to become long in deep latti
which we discuss further in Sec. III E!. Under the assump
tion of adiabaticity the entropy remains constant through
this process and the most useful information can be obta
from knowing how the entropy depends on the other para
eters of the system. In the thermodynamic limit, whereNs
→` andNp→` while the filling factorn[Np /Ns remains
constant, the entropy per particle is completely specified
the intensive parametersT,V,n. The calculations we presen
in this paper are for finite size systems, which are sufficien
large to approximate the thermodynamic limit.

To determine the entropy, the single-particle spectr
$eq% of the lattice is calculated for given values ofNs andV.
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We then determine the thermodynamic properties of the
tice with Np bosons in the grand canonical ensemble
which we calculate the partition functionZ

ln Z52(
q

ln~12e2b(eq2m)!, ~4!

wherem is found by ensuring particle conservation. The e
tropy of the system can then be expressed as

S5kB~ ln Z1bE2mbNp!, ~5!

whereb51/kBT, andE52] ln Z/]b is the mean energy.

1. Density of states

How the thermodynamic properties of a system of bos
change as they are adiabatically loaded into a lattice i
mately reflects how the lattice modifies the microscopic
ergy spectrum. In this regard the density of states funct
affords considerable insight into the behavior of the syste
In Fig. 1 we illustrate how the distribution of availabl
single-particle states changes for various lattice depths.

In general we note that the lattice leads to a substan
change in the density of statesg(e) for the system. In the
absence of the lattice@Fig. 1~a!# the density of states is tha
for free particles in a box, and is proportional toAe. The
smoothness ofg(e) is disrupted by the presence of a lattic
which causes flat regions in the energy bands giving rise
peaked features in the density of states, known asvan Hove
singularities@11#. The van Hove singularities in the first an
second energy bands are clearly visible in Figs. 1~b!–1~d!.
For sufficiently deep lattices an energy gapegap will separate
the ground and first excited bands. For the cubic lattice
consider here, a finite gap appears at a lattice depth oV

FIG. 1. Density of states for aNs'33104 site cubic lattice at
various depths. For a depth of approximatelyV52ER a gap devel-
ops in the density of states. In~c! we illustrate the energy gapegap

and ground band widtheBW . Points are determined by numerical
averaging the exact spectrum over a small energy range.
3-2
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ADIABATIC LOADING OF BOSONS INTO OPTICAL LATTICES PHYSICAL REVIEW A69, 013603 ~2004!
'2ER
1 @see Fig. 1~b!#, and beyond this depth the gap in

creases with lattice depth@see Figs. 1~c!–1~d!#. In forming
the gap higher energy bands are shifted upwards in ene
and the ground band becomes compressed—a feature
acteristic of the reduced tunneling between lattice sites.
refer to the energy range over which the ground band exte
as the~ground! band widtheBW . This quantity decreases i
magnitude exponentially withV @see Figs. 1~b!–1~c!#, caus-
ing the ground band to have an extremely high density
states for deep lattices; generally in this limit quantum ma
body effects will significantly modify the energy spectra
the lowest band from the noninteracting states we use h
We will discuss the effects of interactions in Sec. III D.

III. RESULTS

In Figs. 2–4 we show entropy-temperature curves
various lattice depths and filling factorsn. These curves have
been calculated for a lattice with 31 lattice sites along e
spatial dimension, i.e.,Ns'33104. The condensation tem
perature is defined as that at which 1% of all particles occ
the ground state, and is indicated in Figs. 2–4. We note
being a finite system the transition is not discontinuous, ho
ever the onset of condensation is rapid and changing
requirement to 5% makes little observable difference in
critical-point locations.

1The delay in appearance of the excitation spectrum gap upV
'2ER is a property of the 3D band structure. In 1D a gap is pres
for all depthsV.0.

FIG. 2. Entropy vs temperature curves for aNs'33104 site
cubic lattice, with filling factorn50.25 at various depthsV50 to
20ER ~with a spacing of 2ER between each curve!. The entropy
plateauS0 is shown as a dashed line and the condensation poi
marked on each curve as a circle. Dotted line markedA shows a
path along which adiabatic loading into the lattice causes the t
perature to increase. Dotted line markedB shows a path along
which adiabatic loading into the lattice causes the temperatur
decrease.
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An important common feature to these curves is the d
tinct separation of regions where adiabatic loading causes
temperature of the sample to increase or decrease, whic
will refer to as the regions of heating and cooling, resp
tively. These two regions are separated by a common p
that all curves approximately pass through, and we denot
its coordinates as$T0 ,S0%. The reason for the existence o
this point will be discussed below. For cases considered
Figs. 2–4T0 is in the range (0.5–1)ER , and to clearly in-

t
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FIG. 3. Entropy vs temperature curves for aNs'33104 site
cubic lattice, with filling factorn51 at various depthsV50 to
20ER ~with a spacing of 2ER between each curve!. The entropy
plateauS0 is shown as a dashed line and the condensation poin
marked on each curve as a circle.

FIG. 4. Entropy vs temperature curves for aNs'33104 site
cubic lattice, with filling factorn54 at various depthsV50 to
20ER ~with a spacing of 2ER between each curve!. The entropy
plateauS0 is shown as a dashed line and the condensation poin
marked on each curve as a circle. Dotted line markedC shows a
path along which an initially Bose-condensed system unconde
as it is loaded into the lattice atV'4ER .
3-3
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dicate the vertical separation of the heating and cooling
gions, we have markedS0 as a horizontal dashed line.

We now explicitly demonstrate the temperature chan
that occur during adiabatic loading using two possible ad
batic processes labeledA andB, and marked as dotted line
in Fig. 2. ProcessA begins with a gas of free particles in a
initial state withS.S0 , T.T0. As the gas is loaded into th
lattice the process line indicates that the temperature
creases rapidly with the lattice depth. This result is consis
with the experimental observations in Ref.@12#, where a
noncondensed gas, prepared into an optical lattice, was a
batically cooled by slowly reducing the lattice depth. Co
versely processB begins with a gas of free particles in a
initial state with S,S0 , T,T0, and the lattice loading
causes a rapid decrease in temperature. This behavior ca
qualitatively understood in terms of the modifications t
lattice makes to the energy states of the system. As is ap
ent in Fig. 1, the ground band flattens for increasing latt
depth causing the density of states to be more densely c
pressed at lower energies. Thus in the lattice all these s
can be occupied at a much lower temperature than for
free particle case. As we discuss below,S0 is the maximum
entropy available from only accessing states of the low
band, and so forS.S0 higher bands are important. As th
lattice depth and henceegap increases, the temperature mu
increase for these excited states to remain accessible.

A. Entropy plateau

In Figs. 2–4 a horizontal plateau~at the level marked by
the dashed lines! is common to the entropy-temperatu
curves for larger lattice depths (V*8ER). This occurs be-
cause for these latticeseBW!egap, and there is a large tem
perature range over which states in the excited bands
unaccessible, yet all the ground band states are unifor
occupied. The entropy value indicated by the dashed lin
Figs. 2–4 corresponds to the total number ofNp-particle
states in the ground band. Since the number of single-par
energy states in the ground band is equal to the numbe
lattice sites, the total number of availableNp-particle states,
which we define asV0, is the number of distinct waysNp
identical bosons can be placed intoNs states, i.e.,

V05
~Np1Ns21!!

Np! ~Ns21!!
. ~6!

The associated entropyS05kBln V0, which we shall refer to
as the plateau entropy, can be evaluated using Sterli
approximation

S0.kBFNplnS Np1Ns21

Np
D1~Ns21!lnS Np1Ns21

Ns21 D G .
~7!

As described earlier, this entropy value separates the hea
and cooling regions for the lattice.
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B. Scaling

Here we give limiting results for the entropy-temperatu
curves.

1. kBT™eBW

When the temperature is small compared to the gro
band width, only energy states near the ground state of
lowest band are accessible to the system. These states e
a quadratic dependence on the magnitude of the quas
mentum and the entropy of this system is well described
the free particle expression if the bare particle mass is
placed by the effective mass, i.e.,m→m* . In general this
regime occurs only at very low temperatures, and except
extremely low filling factors the system will be condensed
this region. In this limit the expression for entropy corr
sponds to the expression for a condensed gas of free part
with massm*

S5
5

2
Nsa

3z~5/2!S m* kBT

2p\2 D 3/2

, ~8!

wherez(n)5(k51
` 1/kn is the RiemannZ function andNsa

3

is the volume of the system@13#. We note that in this regime
the critical temperature for condensation scales asTc
;(m* )23/2, so thatT/Tc is independent ofm* and hence
the lattice depth.

2. Tight-binding limit with kBT™egap

As discussed in Sec. III A, when the temperature is sm
compared to the energy gap only states within the gro
band are accessible to the system. In addition when the ti
binding description is applicable for the initial and fin
states of an adiabatic process, the initial and final proper
are related by a scaling transformation.

To illustrate we consider our initial system to be in equ
librium with entropySi,S0, in a lattice of depthVi which
we take to be sufficiently deep enough for tight-binding e
pression~3! to be a good description of the ground ba
energy states. If an adiabatic process is used to take the
tem to some final state at lattice depthVf ~also in the tight-
binding regime! it is easily shown that the macroscopic p
rameters of the initial and final states are related as

Ef5aEi , ~9!

Tf5aTi , ~10!

m f5am i , ~11!

where the scale factor

a5mi* /mf* ~12!

is the ratio of the effective masses, and the subscriptsi andf
refer to quantities associated with the initial and final stat
respectively. This type of scaling relation leaves the occu
tions of the single-particle levels~including the condensate
occupation! unchanged. This means that being adiabatic d
not require redistribution through collisions and may allo
3-4
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ADIABATIC LOADING OF BOSONS INTO OPTICAL LATTICES PHYSICAL REVIEW A69, 013603 ~2004!
the lattice depth to be changed more rapidly. However, a
baticity with respect to the many-body wave function w
become a significant constraint as the lattice depth incre
and will become the limiting time scale.

The validity of the scaling relationship relies on the n
glect of the influence of higher bands~i.e., kBT!egap), and
the applicability of the tight-binding approximation. To co
firm the validity of the scaling relationships~9!–~12! we
have verified that for deep enough latticesE, T, andm scale
like (m* )21 as functions ofV for S constant~e.g., for the
states along curveB in Fig. 2!. An example of such a com
parison is provided in Fig. 5 we have plotted the product
effective mass and temperature for various lattice depths
the regime of validity of the scaling approximation the
curves should be constant@see Eqs.~10! and ~12!#. The re-
sults in Fig. 5 indicate that forV*(4 –8)ER ~depending on
the filling factor! the scaling approximation provides a use
description of the thermodynamic properties of the syst
under adiabatic lattice changes.

C. Condensation

The temperature and entropy at which bosons conde
generally changes with lattice depth as indicated in F
2–4. We note that for high filling factors the condensati
points for different lattice depths occur over a wide range
entropies, suggesting that the degree of condensation wi
greatly affected by adiabatic lattice loading.

For instance, consider the adiabatic process indicated
the dotted line and labeledC in Fig. 4. The system starts as
Bose-condensed gas of free particles. However, as the la
depth increases the condensate fraction decreases unt
system passes through the transition point and becomes
condensed. This process is reversible, and is analogous t
experiments by Stamper-Kurnet al. @14#, where a Bose gas

FIG. 5. The product of temperature with effective mass at c
stant entropy for various lattice depths. Results for filling factors
~dots! n50.25, ~crosses! n51, and~squares! n54. The constant
value of entropy for each filling factor is chosen to be 0.85 of
value of the plateau entropy. The data used for this graph co
spond to the results shown in Figs. 2–4.
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was reversibly condensed by changing the shape of the t
ping potential. To quantify the feasibility of this process b
ing experimentally observed, we note that in going fromV
50 to V510ER along lineC in Fig. 4, the condensate popu
lation decreases fromn0'3.93104 ~i.e., 5%) ton0'5.

We note that the free particle case withn51 shown in
Fig. 3 condenses at an entropy approximately equal to
plateau entropyS0, given by Eq.~7!. For an ideal gas of free
particles condensation occurs when the entropy of the sys

is Scond5
5
2 kBNpz( 5

2 )/z( 3
2 ) ~e.g., see Ref.@13#!, whereas the

plateau entropy for a lattice with unit filling isS0(n51)
52kBNpln(2) @obtained by setting (Ns21)→Ns and Np
5Ns in Eq. ~7!#. In comparing the values we findS0(n
51)/Scond'1.0798, in agreement with numerical observ
tion. For fixedNs the filling factor is proportional toNp ,
thus the free particle condensation entropy scales asScond
;n whereas the entropy plateau goes asS0; ln(n). So we
conclude that forn*1 condensation occurs~for free par-
ticles! above the plateau, whereas forn&1 it occurs below
the plateau.

D. Interaction effects

We now turn to a qualitative discussion of interaction e
fects on the system, and show that interactions will limit t
extent of cooling compared to a noninteracting system.
our treatment here we employ a Bogoliubov approach
calculate the excitation spectrum within the lattice. In t
Bogoliubov approach all the atoms are assumed to be in
zero quasimomentum condensate, and by diagonalizin
quadratic approximation to the many-body Hamiltonian a
of quasiparticle levels are obtained~our method follows
those of Refs.@15,16# and we refer the reader to these f
further details!. This approach should be a good approxim
tion to the many-body spectrum for moderate lattice dep
~i.e., below the depth where the Mott-transition occurs@10#!
and small thermal depletion.

The regimes of cooling associated with lattice loading o
served in Figs. 2–4 arose from the rapid compression of
ground band width (eBW) that occurs with increasing lattic
depth. Indeed, in the limit of adiabatic passage to an i
nitely deep lattice, the noninteracting band width is zero~i.e.,
m* →`), and the scaling relationship~10! would suggest the
temperature will tend to zero. Interactions remove this
generacy, and will thus limit the extent of cooling. We no
that a similar effect occurs in magnetic cooling, where
residual interactions in the system limit the lowest tempe
tures that can be achieved by such means~e.g., see Ref.
@17#!. We also note that interactions will effect the band ga
however this magnitude of this modification is typical
much smaller than the energy gap itself, and so the ther
dynamic properties of the system are not sensitive to sm
changes in this.

To assess the effects of interactions we compare the w
of the ground band calculated with Bogoliubov theory to t
noninteracting case for parameters relevant to current exp
ments in Fig. 6. These results demonstrate that atV510ER
the interacting ground band width is approximately twi
that of the noninteracting system, suggesting that coo

-
f

e-
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P. B. BLAKIE AND J. V. PORTO PHYSICAL REVIEW A69, 013603 ~2004!
efficiency of the interacting system would be considera
reduced.2 A similar conclusion is reached in the Mot
insulator regime~where the Bogoliubov approach is invalid!
where an energy gap proportional to the on-site interac
strength develops between the ground state and the par
hole excitations above it~see Ref.@9#!.

E. Adiabaticity

Finally we note that interactions between particles are
sential for establishing equilibrium in the system, and und
standing this in detail will be necessary to determine the t
scale for adiabatic loading. In general this requiremen
difficult to assess, and in systems where there is an additi
external potential it seems that the adiabaticity requireme
will likely be dominated by the process of atom transp
within the lattice to keep the chemical potential uniform
though recent proposals have suggested ways of redu
this problem@18#.

It seems reasonable that for sufficiently deep lattices
decreasing tunneling rate will ultimately become the r
limiting time scale for maintaining adiabaticity in adiabat
loading ~e.g., see Ref.@19#!. To estimate this time scale w
consider a case relevant to87Rb experiments. For a lattic
depth of aV510ER , where we have takenl5850 nm, the
tunneling time is;10 ms. This time scale is short compar
to the loading time used in recent experiments with this s
tem@1,3#, and suggests that smoothly increasing the lattic
depths of;10ER over .100 ms should be very adiabati
For depths larger thanV510ER the tunneling time increase

2We note that for the upper depth limit used in Fig. 6 the syst
will likely be in the Mott-insulating state~for typical experimental
parameters and filling factors of order unity!, in which case the
Bogoliubov approach employed here will not accurately desc
the excitation spectrum.

FIG. 6. Bogoliubov description of interaction effects on t
bandwidth for various lattice depths. Crosses: interacting result
n51. Circles: noninteracting result. Other parameters:l
5850 nm and collisional interaction strength taken for87Rb.
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exponentially and the adiabatic condition becomes more
ficult to satisfy, however this is also the regime where ma
body effects will begin to dominate and a more comple
description will be needed to fully understand the adiaba
ity requirements.

It is useful to assess the degree to which nonadiab
loading would cause heating in the system. We consider
tice loading on a time scale fast compared to the typi
collision time between atoms, yet slow enough to
quantum mechanically adiabatic with respect to the sing
particle states. This latter requirement excludes changing
lattice so fast that band excitations are induced, and it
been shown that in practice this condition can be satisfied
very short time scales@20#. We will refer to this type of
loading as fast lattice loading, to distinguish it from the ful
adiabatic loading we have been considering thus far.

To simulate the fast lattice loading we take the system
be initially in equilibrium at temperatureTi for zero lattice
depth. For the final lattice depth we fast load into, we m
the initial single-particle distribution onto their equivale
states in the final lattice, and calculate the total energy
this final nonequilibrium configuration. This procedure a
sumes that there has been no collisional redistribution to
low the system to adjust to the changing potential. To de
mine the thermodynamic state the final distribution will rel
to, we use the energy of the nonequilibrium distribution a
constraint for finding the equilibrium values of temperatu
and entropy. In general the final-state properties will depe
on the initial temperature, filling factor, and final depth of t
lattice, and to illustrate typical behavior we show a set of f
loading process curves that indicate the final-state equ
rium properties as a function of final lattice depth in Fig.
for unit filling and various initial temperatures.

e

r
FIG. 7. Fast lattice loading of aNs'33104 site cubic lattice,

with filling factor n51. Broken/dotted/dashed lines indicate fa
loading curves~see text! and are labeled by the temperature of t
initial V50 state. The lattice depth on these curves can be de
mined from their intercept with the equilibrium entropy vs tempe
ture curves~gray solid lines!, which are described in Fig. 3.
3-6
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These curves show, as is expected from standard the
dynamic arguments, that entropy always increases for no
diabatic processes, i.e., all loading curves in Fig. 7 be
upwards with increasing lattice depth. We also observe
eventually all curves predict heating for large enough fi
lattice depth. However, for initial temperatures sufficien
far below the critical temperature for cooling (T0
;0.7ER /kB) a useful degree of temperature reduction can
achieved with fast lattice loading up to a certain maximu
depth. For example, the curve with initial temperatureTi
50.5ER /kB in Fig. 7 cools for final depths less thanV
;5ER , but for depths greater than this the temperature
gins to increase quite rapidly.

IV. 2D LATTICE WITH DIPOLE CONFINEMENT

Here we consider the case of a 2D lattice in thexy plane
with a harmonic trapping potential along thez direction. We
calculate the eigenstates of the Schro¨dinger equation with
potential energy

VT~r !5
V

2
@cos~2kx!1cos~2ky!#1

1

2
m~2p f T!2z2,

where f T is the harmonic trap frequency. In Fig. 8 we giv
the entropy vs temperature curves for a range of experim
tally relevant parameters. The results in Figs. 8~a! and 8~c!
demonstrate the behavior for a range of lattice depths

FIG. 8. Entropy vs temperature curves for aNs'102 site 2D
square lattice with harmonic trapping potential in the perpendic
direction for various lattice depths and strengths of harmonic c
finement. Results are given for 2D site occupations of~a!–~b! n
510, and~c!–~d! n5100. In each subplot the various curves co
respond to lattices depths ofV50 to 20ER ~with a spacing of 4E
between each curve!. In ~a! and ~c! the harmonic confinement fre
quency isf T50.01ER /h, whereas in~b! and ~d! f T50.01ER /h at
V50, and is taken to increase by 231023ER for each subsequen
lattice depth, tof T50.02ER at V520ER . The condensation poin
for the system is marked with a circle on each curve.
01360
o-
a-
d
at
l

e

e-

n-

d

two different atom densities, but with constant harmonic tr
frequency. These curves exhibit qualitative similarities w
the 3D lattice curves shown in Figs. 2–4, such as a cros
region where the zero-depth curve changes from bein
lower bound to an upper bound of the other curves, a
separates the regions where adiabatic loading of the sys
will cool or heat the system, respectively. Similar to the 3
case, this behavior arises because of how the lattice mod
the energy spectrum, i.e., the compression of low-lying sta
and upward shift of high-lying states. However, the availab
ity of equally spaced harmonic-oscillator states ensures
the density of states does not have a gap~assumingf T is
small compared toV) and an entropy plateau does not a
pear. We note that the condensation temperature decre
more rapidly both with temperature and entropy compared
the 3D cases, making the 2D lattice a more ideal system
observing reversible condensation.

In Figs. 8~b! and 8~d! we consider equivalent systems
those in Figs. 8~a! and 8~c!, except that we increase the tra
frequency with lattice depth to model the effects of ad
tional dipole confinement on the system. For the case
rubidium and takingl;805 nm, these results correspond
a harmonic confinement off T;35 Hz at zero lattice depth
with the confinement increasing in linear steps on succes
curves up to a maximum valuef T;70 Hz atV520ER , typi-
cal of current experimental parameters. These results dem
strate that the additional dipole confinement reduces the
of the region over which cooling occurs, and reduces
extent to which the system can be cooled. The more rap
f T increases with lattice depth, the more pronounced
reduction will be.

V. CONCLUSION

In this paper we have calculated the entropy-tempera
curves for bosons in a 3D optical lattice, and a 2D latt
with harmonic confinement for various depths and fillin
factors. We have identified general features of the thermo
namic properties relevant to lattice loading, indicated
gimes where adiabatically changing the lattice depth w
cause heating or cooling of the atomic sample, and h
provided limiting results for the behavior of the entrop
curves. We have considered the effect of lattice depth
filling factor on the Bose condensation point and have exa
ined the possibility of reversible condensation through latt
loading. We have discussed the dominant effects of inte
tions, and have shown that many of our predictions are
bust to nonadiabatic effects. Future extensions to this w
will consider in more detail the effects of both interactio
and inhomogeneous external potentials.
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