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Quantum superchemistry: Role of trapping profile and quantum statistics

M. K. Olsen
Instituto de Fı´sica da Universidade Federal Fluminense, Boa Viagem 24210-340, Nitero´i, Rio de Janeiro, Brazil

~Received 11 September 2003; published 5 January 2004!

The process of Raman photoassociation of a trapped atomic condensate to form condensed molecules has
been labeled superchemistry because it can occur at 0 K and experiences coherent bosonic stimulation. We
show here that the differences from ordinary chemical processes go even deeper, with the conversion rates
depending on the quantum state of the reactants, as expressed by the Wigner function. We consider different
initial quantum states of the trapped atomic condensate and different forms of the confining potentials, dem-
onstrating the importance of the quantum statistics and the extra degrees of freedom which massive particles
and trapping potentials make available over the analogous optical process of second-harmonic generation. We
show that both mean-field analyses and quantum calculations using an inappropriate initial condition can make
inaccurate predictions for a given system. This is possible whether using a spatially dependent analysis or a
zero-dimensional approach as commonly used in quantum optics.

DOI: 10.1103/PhysRevA.69.013601 PACS number~s!: 03.75.Kk, 03.75.Mn, 05.30.Jp
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I. INTRODUCTION

The production of a molecular Bose-Einstein condens
~BEC! via Raman photoassociation of an atomic condens
has attracted a great deal of theoretical and experimenta
terest in the last few years. That an atom-optical analog
the optical processes of upconversion and down-conver
should exist with atomic and molecular condensates was
stated by Drummondet al. @1#, who developed an effective
quantum field theory to describe coupled atomic and mole
lar BECs. An early suggestion that a molecular condens
could be produced via photoassociation came from J
anainen and Mackie@2#, who proposed a two-mode, phe
nomenological Hamiltonian to model the process. A mo
complete proposal, using an atomic and two molecular fie
with spatial dependence, coupled via a two-color Ram
transition so as to minimize spontaneous emission los
was developed by Heinzenet al. @3#, who called this process
superchemistry. Their model, using a mean-field, Gro
Pitaevskii equation~GPE! approach, showed that the dynam
ics were quite different from those of normal chemical re
tions. As shown by Hope and Olsen in one dimension@4#,
and Hope in three dimensions@5#, full quantum treatments
using the positive-P representation@6,7# and initial coherent
states may not always agree with mean-field predictions
the quantum noise affects the dynamics. In a recent w
Olsen and Plimak@8# showed that the initial quantum state
the atomic condensate, as expressed by the Wigner func
can also have an effect on the dynamics. The present wo
an extension of Ref.@8# to consider longer interaction times
different trapping potentials and the efficacy of a sing
mode-type approach. A fuller derivation of the equations
motion is also included. Overall, what we will demonstrate
that the superchemistry described in Ref.@3# is even more
different from standard chemistry than the original auth
supposed. To our knowledge, no chemical process wh
would depend on the pseudoprobability function of the re
tants has been described previously.

Another question which has attracted the attention
theorists has been the issue of the quantum state of a tra
1050-2947/2004/69~1!/013601~10!/$22.50 69 0136
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condensate with repulsive interatomic interactions. As far
we are aware, experimentalists have not paid much atten
to this issue, despite suggestions for the reconstruction of
density matrix experimentally@9,10#. Perhaps the two mos
common choices are the well-known coherent state and
number, or Fock state, both much used in quantum opt
The coherent state appeals because of the coherence pr
ties exhibited in interference experiments@11–13#, but has
the problem of a largish uncertainty in number, which
conceptually difficult to understand as atoms are not crea
or destroyed at typical temperatures. The number stat
superficially an appealing choice, but as the condensate
contact with an environment, some particles can be adde
removed. This state also has the problem that it has no
fined phase. Another problem, perhaps more philosophica
whether we can actually talk about number states when
do not know exactly what the number involved may be. In
actual BEC, the nonlinearity due tos-wave collisions be-
tween condensed atoms is equivalent to a Kerr interaction
that we may expect to find that the actual state is none of
above. Calculations using various approximations have p
dicted an amplitude eigenstate@14#, a sheared Wigner func
tion which approximates a number squeezed state@15#, and a
Q function which suggests both amplitude quadrature a
number squeezing@16#. Another recent work has propose
that generalized coherent states may be a more approp
description@17#.

In this work we combine these two issues, considering
effects of different possible initial states on the dynamics
Raman photoassociation, without actually solving the pr
lem of which may be the most likely ground state of t
trapped condensate. As the mathematics of photoassoci
is essentially a more complex form of that of secon
harmonic generation, and both quantum statistics@18,19# and
Kerr nonlinearities@20# have been shown to affect the dy
namics of this process, it is of interest to investigate th
effect in the present situation. As we are interested only
the dynamics of the mean fields rather than quantum co
lations, we stochastically integrate the appropriate equat
in the truncated Wigner representation@7,21,22#, which we
©2004 The American Physical Society01-1
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expect to give reliable results. In fact, as the numbers
interacting particles involved become greater, we can exp
that the accuracy will increase. We will also investigate
appropriateness of a zero-dimensional approach to this p
lem, which necessarily neglects the trapping potential
the kinetic energy of the condensed particles. As there
some experimental freedom in engineering trapping po
tials @23#, we will also investigate the effect of profiles oth
than the harmonic one generally used in theoretical analy

II. THEORETICAL TREATMENTS OF INTERACTING
CONDENSATES

In principle there exist several ways to theoretica
model the dynamics of interacting condensates, but in p
tice we find that our options are somewhat limited. A full a
exact treatment requires a description in terms of quan
fields, but as the resulting functional Heisenberg equation
motion are highly nonlinear, this approach is impracticab
An equivalent option, the quantum master equation, is tot
impractical as the dimension of the required Hilbert spac
far beyond the capacities of any computer. Assuming non
nishing expectation values for the field operators in
Heisenberg equations leads to the mean-field approach o
GPE@24,25#, which, even though it is derived using quantu
statistical considerations, cannot describe the effect of th
on the dynamics. Worse, for systems of interacting fields,
GPE has been shown to give misleading predictions in so
parameter regimes@4,5#. An alternative approach which ca
say something about the quantum features is path-inte
Monte Carlo@26#, but this method is only really practical fo
calculating ground-state properties and not dynamical ev
tion. Other recent developments have been the use of
chastic wave functions@27# to solveN-boson time-dependen
problems and a stochastic GPE, developed from the quan
kinetic master equation@28#.

The phase-space methods so commonly used in quan
optics have also been extended in a functional form to t
dynamical problems in condensates. These methods pro
a way of mapping the appropriate Hamiltonian and mas
equation onto stochastic equations forc-number variables. In
the present case, the only one of these representations w
allows an exact mapping of our problem onto stochastic
ferential equations is the functional positive-P representa-
tion. This has previously been used to treat photoassocia
@4,5#, but numerical integration of the resulting equations
very time consuming and can present serious stability pr
lems @7#. Hence we will use a truncated functional Wign
representation, which is much more stable and lends it
more readily to the modeling of different initial quantu
states of the atomic condensate. A full Wigner representa
of this problem would have derivatives of third order in t
equation of motion for the pseudoprobability function, an
while it is possible to model these using stochastic differe
equations @29#, there are severe practical difficulties in
volved. However, as is commonly done with the Wigner re
resentation, we can discard the third-order derivatives, wh
in this case leaves us with a Fokker-Planck equation with
diffusion matrix. This can be immediately mapped onto d
01360
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ferential equations which have the appearance of coup
Gross-Pitaevskii-type equations. It must be stressed
there are, however, two important differences. First, avera
must be taken over a large number of integrations of th
equations, with initial conditions chosen so as to repres
the Wigner function for the desired quantum states. Only
the Wigner function were to be a Diracd, which is com-
pletely nonphysical, would we recover the Gross-Pitaevs
equations. It is the probabilistic distribution of the initia
state which allows the evolution of complex variables to re
resent~to a very good approximation! the evolution of non-
commuting field operators. Second, being an approxima
to the full Wigner representation, the truncated Wigner re
resentation yields symmetrically ordered operator avera
@30#. Formulas for physical quantities which are expressed
normally ordered operator averages must be corrected du
the operator reordering, as done in Eq.~13! below. With
these reservations in mind, we can now model the interac
quantum fields via equations which are completely class
in appearance and hence lend themselves to a relati
simple numerical treatment.

III. THE SYSTEM AND EQUATIONS OF MOTION

We consider that the initial atomic condensate is trapp
such that one of the frequencies (v0) is much smaller than
the other two, leading to a cigar shaped condensate w
may be approximated as one dimensional. We consider
a two laser Raman photoassociation scheme@3–5# where the
excited molecular field will be adiabatically eliminated. Th
three different atomic and molecular fields with the las
couplings and detunings are shown schematically in Fig
with the process being described by the functional Ham
tonian ~note that we use units such that\51)

Ĥ5E dxĉa
†~x!F2

1

2m

]2

]x2
1Va~x!G ĉa~x!1E dxĉm*

†
~x!

3F2
1

4m

]2

]x2
1Vm* ~x!2DG ĉm* ~x!1E dxĉm

† ~x!

3F2
1

4m

]2

]x2
1Vm~x!1dG ĉm~x!1

1

2E dx@ĉa
†2Uaaĉa

2

FIG. 1. Energy-level schematic of the coupled atomic and m
lecular fields.u1& represents the condensed atoms,u2& the excited
molecules, andu3& the condensed ground-state molecules. The
man laser coupling strengths are represented byx andV, with D
representing the detuning from the excited molecular band and
representing the Raman detuning.
1-2
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1ĉm
†2Ummĉm

2 12ĉa
†ĉm

† Uamĉaĉm#1
i

2E dxx~x!

3@ĉa
†2~x!ĉm* ~x!2ĉa

2~x!ĉm*
†

~x!#1 i E dxV~x!

3@ĉm*
†

~x!ĉm~x!2ĉm* ~x!ĉm
† ~x!#, ~1!

wherem is the atomic mass,ĉa(x) is the atomic field anni-
hilation operator,ĉm* (x) is the excited molecular-field ann
hilation operator, andĉm(x) is the ground-state molecula
field annihilation operator. The Rabi frequency of t
transition between atoms and excited molecules is re
sented byx(x) andV(x) is the Rabi frequency of the tran
sition between excited and ground-state molecules. In p
ciple, these could also be time dependent. The bare detun
D andd are as shown in Fig. 1. The trapping potentials
represented byVa ~atoms!, Vm ~molecules!, and Vm* ~ex-
cited molecules!. In the standards-waved-function approxi-
mation,Uaa is the atom-atom interaction strength,Umm rep-
resents that between molecules, andUam represents atom
c
e
c

o
t o
a
en
is

01360
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molecule scattering. Note that we are considering only o
field for the excited molecules as the lasers should be
tuned so that their population will remain as small as p
sible. For this reason, and also because the strengths ar
at all known, we have ignored spontaneous breakup of
excited molecules and any collisional interactions involvi
them.

Following the usual route@7,31#, we find a seemingly
simple form for the master equation,

i
dr

dt
5@Ĥ,r#, ~2!

as in our T50 treatment there is no interaction with th
environment. Although, given the problems with the size
the necessary Hilbert space, we can do nothing directly w
this equation, it can be mapped onto a generalized functio
Fokker-Planck equation for the Wigner distribution. Th
process gives the following equation, wherec j ( j
5a,m,m* ) are now the complex variables of the Wign
representation:
]W

]t
5E dxS 2 i H 2

]

]ca
F21

2m

]2

]x2
1Va~x!1Uaa~ ucau221!1UamS ucmu22

1

2D Gca2
]

]ca*
F 1

2m

]2

]x2
2Va~x!

2Uaa~ ucau221!2UamS ucmu22
1

2D Gca* 2
]

]cm*
S 21

4m

]2

]x2
1Vm* ~x!2D D cm* 2

]

]cm*
* S 1

4m

]2

]x2
2Vm* ~x!1D D

3cm*
* 2

]

]cm
F21

4m

]2

]x2
1Vm~x!1Umm~ ucmu221!1UamS ucau22

1

2D1dGcm2
]

]cm*
F 1

4m

]2

]x2
2Vm~x!

2Umm~ ucmu221!2UamS ucau22
1

2D2dGcm* J 2x~x!F ]

]ca
ca* cm* 1

]

]ca*
cacm*

* 2
1

2 S ]

]cm*
ca

21
]

]cm*
*

ca*
2D G

2V~x!F ]

]cm*
cm1

]

]cm*
*

cm* 2
]

]cm
cm* 2

]

]cm*
cm*

* G2
i

4 FUaaS ]3

]ca
2]ca*

ca2
]3

]ca]ca*
2
ca* D

1UmmS ]3

]cm
2 ]cm*

cm2
]3

]cm]cm*
2
cm* D 1UamS ]3

]ca]ca* ]cm

cm1
]3

]ca]cm]cm*
ca2

]3

]ca* ]cm]cm*

3ca* 2
]3

]ca]ca* ]cm*
cm* D G1

x~x!

8 S ]3

]ca
2]cm*

*
1

]3

]ca*
2]cm*

D D W~ca ,ca* ,cm* ,cm*
* ,cm ,cm* ,t !. ~3!
eat-
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, we
As stated above, although stochastic difference equations
be found which are equivalent to this generalized Fokk
Planck equation, they are difficult to use. Hence, by negle
ing the third-order derivatives, we make a mapping ont
coupled set of differential equations. Although the neglec
these derivatives may be thought of as an uncontrolled
proximation, it is an approximation that has previously giv
good results in many systems, especially when we only w
an
r-
t-
a
f
p-

h

to calculate intensities. We note here that for a previous tr
ment of photoassociation using the positive-P representation
@4#, the truncated Wigner representation gives almost ide
cal predictions for the atomic and molecular numbers.

Using the standard oscillator units, with time measured
units ofv0

21 and space in units ofA\/mv0, and considering
the laser couplings as spatially constant across the trap
find
1-3
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i
dca

dt
5F2

]2

]x2
1Va~x!1Uaa~ ucau221!

1UamS ucmu22
1

2D Gca1 ixca* cm* ,

i
dcm*

dt
5S 2

1

2

]2

]x2
1Vm* ~x!2D D cm* 2

ix

2
ca

21 iVcm ,

i
dcm

dt
5F2

1

2

]2

]x2
1Vm~x!1Umm~ ucmu221!

1UamS ucau22
1

2D1dGcm2 iVcm* . ~4!

It must be stressed here that, although these equations
the form of coupled equations of the Gross-Pitaevskii ty
they are not equations for the order parameter, the m
fields, or for what are commonly called the macrosco
wave functions. They are equations for the complex va
ables of the Wigner representation of the three coupled c
densates and these variables are in fact stochastic, with
initial conditions obeying a probability distribution. Ther
are also differences in the self- and cross-interaction ter
which come purely from the Wigner distribution and will b
seen below to cause a shift in the Raman detuning.

Although we could integrate the system of three eq
tions, this would be rather time consuming. We will therefo
take advantage of the fact that the Raman lasers shoul
detuned so as to create as few as possible of the ex
molecules, as these have extremely short lifetimes and t
spontaneous breakup would be a source of undesir
losses. We therefore adiabatically eliminate the equation
cm* to leave two coupled equations for the complex atom
(ca) and molecular (cm) fields. By neglecting the kinetic
energy in the equation forcm* and assuming that these e
cited molecules are untrapped, we find

cm* 5
2 i

D S 1

2
xca

22VcmD , ~5!

which can now be substituted into the equations forca and
cm . This process adds

x2

2D
ucau2ca2

Vx

D
ca* cm ~6!

to the equation forca , and

Vx

2D
ca

22
V2

D
cm ~7!

to the equation forcm . What we note is that, as well as th
effective Raman coupling terms between atoms and m
ecules now depending on both fields plus the detuning fr
the excited level, a nonlinear light shift has been added to
atomic field and a linear light shift has been added to
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molecular field. SettingUaa8 5Uaa1x2/2D, we see that the
laser fields cause an effective change in the atom-atom s
tering strength.

We can now write a pair of coupled equations which d
scribe the system. Defining the frequency

v̄5Uaa1
Uam

2
, ~8!

we use an atomic~molecular! frame rotating atv̄(2v̄) and
introduce a fixed phase shift so that the Raman couplings
real. Finally, setting

k5
Vx

D
,

d85d1Umm22Uaa2
Uam

2
1

V2

D
, ~9!

we find

i
dca

dt
52

]2ca

]x2
1Va~x!ca1~Uaa8 ucau21Uamucmu2!ca

1 ikca* cm

i
dcm

dt
52

1

2

]2cm

]x2
1Vm~x!cm1~Ummucmu2

1Uamucau22d8!cm2
i

2
kca

2 . ~10!

The detuning from the Raman resonance is now represe
by d8, which we will assume to be zero in our treatme
Note that we ignore interactions with any atoms of the th
mal cloud which is usually found along with the condens
portion, as we are assuming that the condensate actually
0 K. In all our investigations we will useUam521.5Uaa8 ,
Umm52Uaa8 , k51, d850, and a molecular trapping poten
tial twice that of the harmonic atomic potential.

IV. EFFECT OF THE TRAPPING POTENTIAL

One of the things we wish to consider in this work is t
effect that different trapping potentials may have on the p
cess of photoassociation. Experimentally, there is some f
dom in engineering the actual potential, as shown in a rec
article by Thomaset al., which describes the fabrication of
double-well trap for condensates@23#. During the adiabatic
evolution from the original harmonic trap, a stage is pas
where the bottom of the trap is much flatter. A trap of th
form may well be interesting for photoassociation expe
ments, as the conversion rates effectively depend on the l
densities through the productsca* cm and ca

2 . In Fig. 2 we
compare the densitiesuca(x)u2 for atomic condensates con
fined in differently shaped traps. The trap with a central p
tential of the formV(x)}sin6x gives a flatter density distri-
bution than a harmonic trap, while a trap withV(x)}sin2x
1-4
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gives a more peaked density distribution. If the different co
version rates at different spatial points were the only caus
dampening in the oscillations between the atoms and m
ecules which we will see below, we might think that a flat
trap could lead to more regular oscillations between
atomic and molecular condensates. This is because a fl
central density distribution is more like a homogeneous c
densate. On the other hand, the more peaked distribu
might then be expected to give less regularity in the osci
tions, as there is more local-density variation across the c
ter of the distribution. We will investigate these suppositio
in what follows.

A. Harmonic trap

As a harmonic trapping potential is most commonly us
in theoretical investigations of trapped condensates, we
gin by considering this case. For purposes of comparison
numerically integrate the GPE-type equations, which g
semiclassical results with the quantum statistics playing
part in the time evolution. We emphasize here that the G
solutions are not really physically relevant where they d
agree with the quantum predictions, as it is impossible
turn off the quantum noise. What we find is that the spa
dependence of the trapped condensates plays an impo
role in the process, with the coupling rates at different d
sities being different. For the parameters used, this cause
interesting structure to emerge, with spatial sidebands fo
ing in the distributions, as shown in a previous work@8#.
Over the times shown here, the kinetic energy of the cond
sates has little effect, with an averaging of the results
integration of spatially separate single-mode equations
each spatial point giving virtually identical predictions, bo
spatially and for the total particle numbers. This is not t
case for longer interaction times, where the atoms have t
to move around due to both the trapping potential and
s-wave scattering processes.

FIG. 2. Ground-state solutions of the Gross-Pitaevskii equa
for a harmonic trap ~solid line!, a trap with Va(x)
50.125xmax

2 sin6(px/xmax) ~dash-dotted line!, and Va(x)
50.125xmax

2 sin2(px/xmax) ~dotted line!, with xmax512. The units of

the spatial axis areA\/mv0.
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In Figs. 3 and 4 we show the mean particle numbe
defined as

Nj5Dx(
k

~ uc j~xk!u221/2Dx!, ~11!

wherej 5a,m, andk labels the points on the numerical grid
What we see is that when we use an initial coherent stat
the Wigner equations, we do not find the dramatic diff
ences from the GPE predictions for the first atomic revival
reported previously@4,5#. The reason is simply that we ar
working with different parameters, with the ratio betweenk
and the strength of the nonlinear interactions being impor
in this regard. This was previously demonstrated to be

n

FIG. 3. Atomic population predictions in the harmonic trap,
to t5p/8. The dash-dotted line is from the GPE approach, the s
line is for an initial coherent state, the dashed line is the sligh
sheared state, and the dotted line is the crescent state. All quan
plotted in this and subsequent graphs are dimensionless.

FIG. 4. Molecular population predictions in the harmonic tra
with lines as in Fig. 3.
1-5
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case in traveling wave second-harmonic generation, w
which, although it is not as rich a system as coupled cond
sates, a useful analogy can be made@20#. What we do see is
that the oscillations predicted by Heinzenet al. @3# do not
persist after the first atomic revival, once the quantum no
is taken into account. This feature is not due to interacti
with thermal atoms, as in Go´ral et al. @32#, as there are no
thermal atoms present in our zero temperature treatment.
is it due merely to an averaging over different convers
rates at different positions within the condensates, as
averaging effect is also present in the GPE treatment.
due to the quantum nature of the matter fields, cannot
represented by classical treatments, and is intrinsic to
process of photoassociation. Whether and to what exten
oscillations may be more persistent for different parame
regimes, for example larger condensates or different in
states, is an open question.

An initial atomic state with the same degree of amplitu
squeezing and shearing as calculated in Ref.@15# also does
not lead to vastly different dynamics from the initial cohere
state, the difference between the two being almost negligi
However, a dramatic difference in the early dynamics occ
when we consider the initialcrescentstate~see Sec. 1 of the
Appendix below!, which is greatly sheared in phase spa
with a large degree of number squeezing~the single-mode
Fano factor for this distribution is'0.2), but being well
above the minimum uncertainty product in the quadratu
@single-modeV(X)'0.6,V(Y)'15]. The initial conversion
to molecules for this state is not as complete and the
revival in the atomic population is earlier and more pr
nounced than that for the other initial states. Interestin
enough, the longer time behavior is almost independen
the initial state, with the populations reaching a quasistati
ary state. Whether a later revival of the oscillations is pres
or not is difficult to predict using our methods, as the co
putational time required becomes prohibitive. However,
consider it unlikely as the system of interacting atomic a
molecular condensates is probably too complicated to
the collapses and revivals predicted in, for example,
Jaynes-Cummings model@33#.

As the initial conversion rates for all the states conside
here were almost identical, it seems that the differences s
are not due to the spatial intensity correlation, defined us
the field operators as

g(2)~x,x!5
^ĉa

†~x!ĉa
†~x!ĉa~x!ĉa~x!&

^ĉa
†~x!ĉa~x!&2

. ~12!

This correlation factor is predicted to be important in t
initial conversion rate for both traveling wave second h
monic generation and photoassociation of homogeneous
densates@18,34#. In the variables of the Wigner represent
tion, which represent symmetrically ordered opera
averages, the definition is

g(2)~x,x!5
uca~x!u422ucau211/2Dx

~ uca~x!u221/2Dx!2
. ~13!
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The values found vary between 1 and 1.04 at the center
the initial states considered here in the harmonic trap, w
the initial conversion rate almost unchanged. The differen
come in the first minimum of the atomic population and t
subsequent revival and are more readily explained by
degree of phase uncertainty in the initial state. It can be s
by examination of Eq.~10! that whether association or dis
association is predominant will partially depend on the ph
of the productsca* cm and ca

2 . As the crescent state has
larger phase uncertainty than the others considered, the
todisassociation process begins to dominate and the m
number of atoms begins to revive at an earlier time than
the other states.

B. Other trapping potentials

When we investigate the effect of the three different tra
considered, we do find differences in the oscillations p
dicted, but we do not find that these are noticeably m
persistent for any particular trap shape. In Fig. 5 we show
results for the trap withVa(x)50.125xmax

2 sin6(px/xmax), with
xmax512. These are in fact not very different at all fro
those for the harmonic trap and we again do not see m
than one large revival of the atomic number. Figure 6,
Va(x)50.125xmax

2 sin2(px/xmax), also shows similar dynam
ics, but the initial conversion rate is a little higher, bein
dependent on the density. Note that in all cases we ass
that the ground-state molecules are trapped by a potentia
the same form and with twice the intensity of the atom
trap. This is consistent with harmonic traps for atoms, wh
V(x)5 1

2 mv0
2x2, since the mass of a molecule is twice th

of an atom. We have assumed that this relationship also h
for other trapping potentials considered here.

In Fig. 7, we compare the atomic evolution for the initi
crescent state in the three different traps, showing cle
that, while there are differences in the time evolution, the e
results after a short interaction time are virtually the sam

FIG. 5. Atomic population predictions up tot5p/8 in the flatter
trap, withV(x)} sin6x. The lines are as in Fig. 3.
1-6
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QUANTUM SUPERCHEMISTRY: ROLE OF TRAPPING . . . PHYSICAL REVIEW A69, 013601 ~2004!
The flatter traps show a slightly more complete conversion
molecules after the first revival of the atomic population, b
the difference is not striking. Unlike the GPE predictions,
always find a quasistationary state where the conversion
almost stopped. It is not just the density integrated across
condensate which is almost unchanging, but the atomic
molecular numbers are also almost not changing at e
point, as can be seen in Fig. 8. Although the result show
for an initial coherent state in the harmonic trap, the ot
cases considered above do not give qualitatively differ
results. This effect, which we may think of as a saturation
the conversion rate, is not due solely to different convers
rates at each point or it would show up in the GPE pred

FIG. 6. Atomic population predictions up tot5p/8 in the nar-
row trap, withV(x)} sin2x. The lines are as in Fig. 3.

FIG. 7. Atomic population predictions up tot5p/8 for the ini-
tial crescent state, in the three different traps. The solid line is
the harmonic trap, the dash-dotted line is forV(x)} sin2x, and the
dashed line is forV(x)} sin6x.
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tions. It is due to the quantum nature of the condensate,
while it does not require a fully quantum description~which
the truncated Wigner does not provide for this system!, quan-
tum noise must be taken into account.

What we have not investigated in this paper are the effe
of different initial atom numbers, Raman detunings, differe
s-wave scattering strengths, and perhaps even a spatially
pendent Raman laser coupling. As the process is highly n
linear, it is possible that the superchemistry-type oscillatio
predicted by Heinzenet al. @3# would be more persistent fo
different parameters, but we suspect that they may be d
cult to reproduce experimentally. In any case, we are co
dent that for more than short interaction times, simulatio
which take the quantum noise into account will be necess
to accurately reproduce or predict the results of a
superchemistry-type photoassociation experiment. With
doing this analysis, we can say little about the accuracy
the GPE approach for each situation.

V. THE ZERO-DIMENSIONAL APPROACH

This approach has been used, in a classical mean-
approximation, to represent Raman photoassociation
atomic condensates@35#. The claim has been made that
reproduce the results for a condensate with spatial dep
dence, all one needs to do is to take the average of inte
tions for different points from the spatially dependent co
densate. If the condensate did in fact obey the mean-fi
equations this approach would actually give reasonable
sults for short times. For processes which take place o
longer times, the kinetic energy has an effect and atoms
molecules can move around, changing the behavior. H
ever, after a short time, the mean-field approach can g
completely wrong predictions for the populations, even wh
we begin with coherent states. This has been previously s
in traveling wave second-harmonic generation@36,20#, but is
possibly not as important in that system due to the sm
nonlinearities and short interaction times of availablex (2)

r

FIG. 8. Mean atomic field density up tot5p/8 for an initial
coherent state in the harmonic trap. The units of the spatial axis
A\/mv0.
1-7
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M. K. OLSEN PHYSICAL REVIEW A 69, 013601 ~2004!
materials. With photoassociation, however, we do not h
the same limits on interaction time. The process will co
tinue as long as the Raman lasers are switched on and
condensate remains stable, which should be sufficient to
duce a large number of the superchemistry-type oscillati
if the mean-field picture were correct.

We can investigate the zero-dimensional system with
coupled equations

da

dt
52 i ~Uaauau21Uamubu2!a1ka* b,

db

dt
52 i ~Ummubu21Uamuau22d8!b2

k

2
a2, ~14!

wherea andb now represent atomic and molecular amp
tudes, respectively. The other parameters are all as in
~10!. Note that the lack of potential and kinetic energy in th
approach means that, apart from the detuningd8, these equa-
tions are mathematically equivalent to those used in R
@20#. One important difference from the optical case, ho
ever, is that theUi j self- and cross-interaction terms are ve
much larger than those likely to be found in any optic
system.

We show the results for the atomic dynamics in Fig.
comparing the predictions of the truncated Wigner with
initial coherent state to those of the classical approach, b
for an initial atom number equal toucau2 at the center of the
densities used for the harmonic trap. Note here that thi
not the same as the atomic number at the center of the
dimensional grid, which isDxucau2, but is the number which
enters into the one-dimensional equations. The results fo
other initial quantum states considered above are virtu
indistinguishable from the coherent state. We find that

FIG. 9. Zero-dimensional predictions for the atomic populatio
The solid line represents the classical mean-field prediction, and
dash-dotted line is the stochastic prediction for an initial coher
state, averaged over 4.353105 trajectories. In this case the othe
initial states do not show a noticeable difference from the cohe
state.
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classical approach, which predicts regular periodic beha
in this case, is reasonably accurate up to the second rev
of atomic population, but then begins to differ from th
quantum prediction. The quantum result shows a dampin
the oscillations, due solely to the quantum noise. This ser
to show that any averaging process using mean-field s
tions would eventually become an averaging over errone
values and could not be expected to lead to correct pre
tions. We note also that it is very easy to find parame
regimes where the classical and quantum predictions
markedly different, even for early times. In this regard, t
ratio betweenk and thes-wave interactions plays an impor
tant role, with the classical predictions becoming less ac
rate ask/Uaa is increased.

VI. CONCLUSION

We have used a truncated Wigner representation to ex
ine the dynamics of continuous-wave Raman BEC photo
sociation, examining the effects of different initial quantu
states and different trapping potentials. We have also ex
ined the accuracy of the zero-dimensional, quantum-opt
type approach. What we have shown is that both the qu
tum state of the initial atomic condensate and the actual fo
of the confining potentials can play important roles in t
dynamics of the mean fields. In none of the cases consid
was the GPE approach accurate over more than short tim
We found that the form of the trapping potential affects t
rates of conversion, with a tighter trap and hence higher p
densities giving greater initial conversion rates, as expec
The superchemistry-type oscillations previously predicted
a GPE approach are not persistent for any of the comb
tions of traps and initial conditions considered here. This
true even at zero temperature, in which case any interac
with thermal atoms can play absolutely no part in the tim
evolution. All the quantum states considered exhibit differe
dynamics from the GPE predictions, especially as the in
action time increases. The phase shearedcrescentstate, pos-
sibly the most likely for BEC, gives the most marked diffe
ences. Over the time scales we considered, the quan
statistics are much more important than the spatial dep
dence of the condensate. These results suggest that, i
wish to simulate or predict the results of Raman photoas
ciation experiments, an analysis which takes into account
quantum nature of the interacting condensates will be imp
tant. It also suggests that if superchemistry-type oscillati
are to be observed, a very careful choice of the experime
parameters will need to be made.
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APPENDIX

1. Integration of the equations

For the purposes of comparison, in all simulations
used as our starting point a ground-state solution of the G
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QUANTUM SUPERCHEMISTRY: ROLE OF TRAPPING . . . PHYSICAL REVIEW A69, 013601 ~2004!
for a one-dimensional trapped atomic condensate with
3104 atoms and a value of the nonlinear interaction,Uaa8
5431023. This solution for the initial condition is obtaine
via numerical propagation of the GPE in imaginary tim
@37#, beginning with the Thomas-Fermi solution for the
parameters and the appropriate trapping potential. The i
gration always begins with all particles in the atomic co
densate and no molecules. The equations are averaged
104 trajectories, using a standard split-operator method, w
momentum propagation in Fourier space and a three-
predictor-corrector method in position space. The accur
and stability of the integration is checked by keeping track
the conserved quantity,Na12Nm , and by varying the time
step. Over the times shown, results with a halved time s
were virtually indistinguishable and number was conser
to within less than 0.05%.

To model the intial quantum states of the condensa
each of the 512 points in the spatial grid is given an init
value on each trajectory, chosen from the Wigner distribut
for the appropriate state. A coherent state is modeled by
ing the ~real! ground-state GPE solution for thenth spatial
point and adding real and imaginary numbers drawn from
normal Gaussian distribution, givingca(xn)5ca

GP(xn)
10.5@h1(xn)1 ih2(xn)#/ADx, whereDx is the spacing of
the numerical grid. It is easily verified that the trajecto
average will be ucGP(xn)u211/2Dx at each point, with
1/2Dx needing to be subtracted at each point once the tra
tory averaging has taken place. A minimum uncertai
squeezed state is modeled by adding 0.5@h1(xn)e2r

1 ih2(xn)er #/ADx at each point, wherer is the squeezing
parameter. A sheared state, typical of Kerr nonlinearities
in Dunninghamet al. @15#, is simulated by transforming th
added squeezed state noise by a factor exp@iqh3(xn)#, whereq
is the shearing factor. The real noise terms have the corr
tions

h j~xn!50, h i~xm!h j~xn!5dmnd i j . ~A1!

Numerical checks of single-mode distributions produced
ing these methods show that they give the expected va
for average numbers and quadrature variances. In our s
lations for squeezed states, we use values ofr 56 log 0.5,
while for the sheared state we usedq50.005, which give
results similar to the Wigner function shown in Dunningha
et al. @15#. We also investigate a more extreme shearing
the distribution, withr 52 log0.2 andq50.05, as we are
treating a larger condensate than those considered in R
@15,16#. This will hence possess a larger effective Kerr no
ev

V.
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linearity and be expected to have a more sheared Wig
distribution. We call this choice of initial condition acrescent
state, due to the shape of the contours of the resulting Wig
distribution. The molecular field always begins as a coher
vacuum, withcm(xn)50.5@h4(xn)1 ih5(xn)#/ADx on each
trajectory, with the random variables defined as in Eq.~A1!.

2. Interpretation of the Wigner distribution for atomic fields

The addition of noise terms in the initial condition of th
Wigner equations, which calculate symmetrically order
operator products, and gives as an average the normally
dered expectation value plus half an atom~or molecule! in
each spatial mode, does not have a simple physical inter
tation as with optical fields. With the Wigner representati
in optics, a natural interpretation is that there isone-half of a
vacuum photonin each mode. This is indeed the interpret
tion given in the classical theory of stochastic electrodyna
ics @38#, which is equivalent to the truncated Wigner repr
sentation and explains nonlinear optical processes
classical evolution under the effects of vacuum noise. It
been used to explain many effects, such as quadra
squeezing, which do not require a negativity of the Wign
function. TheP representations, on the other hand, calcul
normally ordered operator products and any nonclassica
fect is explained as being due to interaction with a nonlin
medium. In the case of bosonic matter fields, the extra h
vacuum atomshould be thought of only as a mathematic
device which allows classical variables to represent sy
metrically ordered operator moments. The difficulty of co
sidering that these half vacuum atoms have any physical
istence is made clear when we try to think of an atom
analog of the Casimir effect, which, in the electromagne
case, can be explained very well by stochastic electrodyn
ics as being due to the absence of some half vacuum pho
between the two plates. In the atomic case, we would hav
consider that the analogous force existed due to every typ
bosonic atom~and molecule?! that was not present betwee
the equivalent of the two plates, which seems absurd.
always in quantum mechanics, what is real is that which
be observed in some way, which in the present case are
mally ordered products of the matter fields. Obviously, the
normally ordered products need not have integer values,
will always have half an atom less in each mode than
average number predicted by the Wigner representat
Given this caveat as to interpretation, we can use the Wig
representation equations to calculate the time evolution
the interacting atomic and molecular condensates.
.
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