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Non-Gaussian velocity distributions in optical lattices
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We present a detailed experimental study of the velocity distribution of atoms cooled in an optical lattice.
Our results are supported by full-quantum numerical simulations. Even though the Sisyphus effect, the respon-
sible cooling mechanism, has been used extensively in many cold atom experiments, no detailed study of the
velocity distribution has been reported previously. For the experimental as well as for the numerical investi-
gation, it turns out that a Gaussian function is not the one that best reproduces the data for all parameters. We
also fit the data to alternative functions, such as Lorentzians, Tsallis functions, and double Gaussians. In
particular, a double Gaussian provides a more precise fitting to our results.
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I. INTRODUCTION

Laser cooling is now a well-established technique to p
duce narrow velocity distributions for dilute samples
atomic gases~see, e.g., Ref.@1#!. The interaction between th
atoms and the radiation modes removes kinetic energy f
the atoms, and extremely cold samples can be obtained
the standard context of Doppler or sub-Doppler laser co
ing, atom-atom interactions are neglected and hence a
modynamic temperature cannot be defined. Neverthe
measured velocity distributions are generally very well fitt
by a Gaussian function, and assigning a ‘‘kinetic tempe
ture’’ to the distribution is a useful way to characterize a la
cooled atomic sample.

One of the simplest theoretical models of laser cool
assumes a moving two-level atom interacting with coun
propagating pairs of laser beams, tuned slightly below
atomic resonance~Doppler cooling@2#!. This will yield Dop-
pler shifts, asymmetric with regard to velocity, and thus
damping force~friction!. Doppler cooling is counteracted b
momentum diffusion due to absorption and emission of p
tons. If a spatial average is taken of diffusion as well
friction, one obtains a stationary Gaussian velocity distrib
tion. This is valid since, in steady state, most atoms h
velocities well above spatial modulations in the light sh
potential~caused by the interaction between the induced
pole moment and the light!, and thus the dynamics can b
described in terms of a Fokker-Planck equation with cons
friction and diffusion coefficients. High irradiance results
light shifts of the involved energy levels that can be com
rable to the kinetic energy, and one can no longer assum
constant velocity as atoms travel over a wavelength. Spa
averaging can still be performed, but one does not obtain
standard description of laser cooling in terms of competit
between a friction force and a diffusion effect, since these
not simply functions of velocity. The resulting velocity dis
tribution will in this case not be Gaussian and different d
tributions have been proposed@3#. However, for practical
Doppler cooling configurations, this effect is negligible, a
1050-2947/2004/69~1!/013410~12!/$22.50 69 0134
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there are no known observations of clearly non-Gaussian
tributions.

For a multilevel atom, population transfer and coheren
between degenerate levels open up the possibility for m
subtle cooling mechanisms. These are not limited by the
diative lifetimes of the upper levels, and can therefore lead
narrower distributions. In particular, Sisyphus cooling@4–7#
is based on a laser beam configuration that results in a p
odic modulation of the polarization of the light, and thu
spatially modulated optical-pumping and steady-state po
lation distribution between different degenerate substa
The light shift will also be periodic, and will differ for dif-
ferent substates. The combination of Hamiltonian motion a
optical-pumping cycles transfers atomic energy to
vacuum modes@4,5,8#. A rule of the thumb for Sisyphus
cooling tells us that the ‘‘temperatures’’ obtained correspo
to kinetic energies that are of the order of the light shift. Th
behavior has been experimentally verified@9–12# down to
kinetic temperatures of a few recoil energies. A semi
analysis of Sisyphus cooling, by Dalibard and Cohe
Tannoudji @4#, is again based on spatially averaged fricti
and diffusion coefficients. Even though the final regime c
responds to a situation where one can no longer assum
oms moving at constant velocity over many wavelengths,
scaling law obtained by this approach appears to be ex
lent.

In more rigorous full-quantum-mechanical analyses, C
tin et al. @13,14# find that Sisyphus cooling ought to lead
non-Gaussian distributions. In particular, for irradianc
close to the lower limit for efficient laser cooling, the effec
of recoils due to absorbed and emitted photons beco
prominent. Then, atomic trajectories become very irregu
and the velocity cannot be assumed to be constant. There
one cannot compute a spatially averaged velocity-depen
force. Also, the atoms will be trapped in microscopic pote
tial minima ~forming optical lattices@15,16#!, and the en-
semble should be characterized by a distribution of vib
tional modes and unbound modes, rather than by a velo
distribution.
©2004 The American Physical Society10-1
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Essentially all experimental investigations of Sisyph
cooling result in distributions that are well fitted by Gaus
ians. The reason for this is probably a combination of sev
facts. Many experiments are done in a regime where an
erage friction coefficient seems adequate~sufficiently large
light shift!. The deviations from Gaussian distributions a
subtle and are mainly hidden in the noisy wings of the
corded distribution. Furthermore, it is difficult to set up
experimental velocity probe with the required resolutio
Nevertheless, deviations from Gaussian velocity distri
tions for laser cooled atoms have been reported in one re
paper@17#. However, to our knowledge, there has been
systematic experimental study of the non-Gaussian distr
tions, nor any attempts to approach the observed distr
tions with more precise functions.

In this work, we report a detailed study of velocity distr
butions, as a function of the irradiance~and thus the light
shift! for a three-dimensional Sisyphus cooling configu
tion. We also perform a one-dimensional numerical simu
tion of velocity distributions, based on a full-quantum Mon
Carlo wave-function technique. This is applied for t
atomic angular momentum which is relevant in our expe
ment. We fit the recorded data, the experimental as wel
the numerical, to different functions and compare the o
comes.

II. FITTING FUNCTIONS AND MOTIVATIONS

The main purpose of this paper is to present more de
about the velocity distributions of atomic samples cooled a
trapped in optical lattices, where the Sisyphus cooling the
is expected to apply. A further step is to provide a functi
that gives a good approximation of the velocity distributio
The choice of a fitting function is made difficult by the com
plex dynamics of the atoms in the lattice. Indeed, even if
seminal process described in Ref.@4# gives very good in-
sights in the dynamical behavior of the atoms, it is not s
ficient in regimes relevant for typical experimental situ
tions, where the intercombination of Hamiltonian motion
the modulated potentials and optical-pumping cycles, w
time scales of the same order, makes it difficult to perfo
analytical calculations@13#. Along the following lines we
justify a priori the choice of three types of functions~Gauss-
ian, Tsallis, and double Gaussian! that we used to fit the
experimental and the numerical recorded data. As we
see, these choices are based on simple considerations
well-known generalizations of the model presented in R
@4#.

a. Gaussian function. In the standard description of one
dimensional~1D! Sisyphus cooling, the internal atomic sta
is adiabatically eliminated in such a way that the atom
dynamics is described in simple terms of a forceF(v) and
fluctuating forces of momentum diffusion coefficientDv(v).
F(v) accounts for the optical-pumping-assisted Sisyp
cycles andDv(v) corresponds, on the one hand, to the ra
dom recoils due to absorption and emission of photons,
on the other hand, to changes of potential curves. The ve
ity distribution W(v) is thus governed by a Fokker-Planc
equation@18,19#:
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] tW52]vS 1

M
F~v !WD1]v„Dv~v !]vW… ~1!

with M being the atomic mass. In the linear regime for t
atomic velocity, one finds@8#

F~v !52av ~2!

Dv5Dv
(1)1Dv

(2) .

In this context,a and Dv depend on the lattice paramete
and are independent of the velocity.Dv

(1) corresponds to the
random absorption and emission of photons whileDv

(2) rep-
resents the fluctuations of the light-shift induced force@8#.
The steady-state solution of Eq.~1! with vanishing probabil-
ity current@2F(v)W1MDv(v)]vW50# is thus a Gaussian
function with rms widthsv5AMDv /a:

W~v !5W0expS 2
av2

2MDv
D . ~3!

b. Tsallis function. Beyond the linear regime for atomi
velocity, the friction force and the velocity diffusion coeffi
cients have to be refined into@13,20#

F~v !5
2av

11~v/vc!
2

, ~4!

Dv~v !5Dv
(1)1

Dv
(2)

11~v/vc!
2

,

where vc is the capture velocity which corresponds to t
typical atomic velocity above which the Sisyphus proce
breaks down. Now, it is straightforward to show that t
steady-state solution with vanishing probability current
Eq. ~1! reads@21#

W~v !5W0@12b~12q!v2#1/(12q) ~5!

q511
2MDv

(1)

avc
2

and b5
a/2M

Dv
(1)1Dv

(2)
. ~6!

The function in Eq.~5! is the so-called Tsallis function and i
in fact very general. It particularly provides a broad class
fitting functions including Gaussian functions (q approach-
ing 1!, Lorentzian functions (q52), and inverted parabola
(q50). At this stage, it is interesting to note that the Tsa
function has been introduced in the context of non-extens
thermodynamics@22,23#. The large amount of literature in
this context allows one to find many papers dealing w
problems already addressed in laser cooling; in particu
anomalous diffusion in the presence of external forces@24–
26#, multiplicative noise problems, and the relation to t
edge of chaos in mixed phase-space dynamics@27,28#. It is
known that Sisyphus cooling can give rise to anomalous
fusion @29,30#, in particular for shallow optical potentials
where an atom can travel over many wavelengths before
ing trapped again. Even though we do not have a deta
0-2
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NON-GAUSSIAN VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW A69, 013410 ~2004!
analysis of the dynamics of the atoms in an optical latti
for parameters corresponding to our situation, one can
rule out anomalous diffusion and/or chaotic behavior.

c. Double Gaussian function. As Sisyphus cooling result
in a situation where the kinetic energies of the atoms are
the order of the light-shift potential, one can neither negl
atoms with lower energy~‘‘trapped’’ in the potential wells!
nor those moving more or less freely above the poten
modulation ~as in a ‘‘conduction band’’!. This leads to a
description of the atomic sample in terms of a bimodal d
namics. Note that such a bimodal description has b
shown to be relevant for the prediction of the diffusive pro
erties of atoms in an optical lattice@31#. The kinetic equation
of the ‘‘high-energy’’ atoms might very well be described b
spatially averaged friction and diffusion coefficients resulti
in a Gaussian distribution as shown previously. The ‘‘lo
energy’’ atoms will be trapped, and subject to a differe
kinetic equation, and we assume that their velocity distri
tion is again a Gaussian. Our trial function is thus the sum
two Gaussian distributions with different widths~double
Gaussian!. One corresponding to trapped atoms and the o
one to high-energy atoms.

III. EXPERIMENTS

A. Experimental setup

The experimental setup has been described in detail
viously ~see, e.g., Refs.@11,12#!. Briefly, we first accumulate
133Cs atoms in a magneto-optic trap. We adjust the irradia
and the detuning, then we turn off the magnetic field a
leave the atoms in an optical molasses with even furt
reduced irradiance. Thus we cool the atoms to a tempera
of 3 –4 mK. The atoms are transferred to a thre
dimensional optical lattice, which is based on four las
beams of equal irradiance and detuning~for a review of op-
tical lattice setups, see, e.g., Ref.@15# or @16#!. The detuning
is a few tens ofG below the~Fg54→Fe55) resonance for
the 133Cs D2 line at 852 nm (G52p35.21 MHz is the line-
width of the excited state!. The detuning (D) and irradiance
~I! of the beams can be easily changed in order to control
depth of the light-shift potentialU0}I /uDu. The beams are
aligned as in Fig. 1: two laser beams are linearly polariz
along thex axis and propagate in theyz plane symmetrically
with respect to thez-axis, whereas the other two beams a
polarized along they axis and propagate in thexz plane
symmetrically with respect toz. This yields a tetragonal pat
tern of points with pure circular polarization, alternatelys1

and s2. These points correspond to potential wells whe
the atoms are trapped and optically pumped into the extr
mF levels (14 and24, respectively, ins1- ands2 wells!.

For high atomic velocities, this configuration will corre
spond to a three-dimensional version of the Sisyphus coo
model. As the atoms approach equilibrium, their kinetic e
ergies will get lower than the modulation depth of the opti
potential, and thus atoms become trapped in lattice s
They will get distributed in bound states, where the low
states closely resemble harmonic-oscillator states.

In two different sets of runs, we let the atoms equilibra
in the optical lattice for 25 ms and 50 ms, respectively. T
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velocity distribution is then recorded with a standard tim
of-flight ~TOF! method@7#. After the lattice period the trap
ping field is turned off, and the atoms are released in
gravitational field;'5 cm below the trap region a thin she
of resonant laser light crosses the vertical axis along wh
the atoms fall, and the induced fluorescence is recorded
a photodiode. Each vertical velocity component at the ti
of release will correspond to a specific arrival time at t
probe beam. The probe beam is carefully spatially filte
and focused by a cylindrical lens. The interaction region
less than 50mm thick, and the trapped cloud of atoms
'400 mm in diameter. This gives a velocity resolution o
0.05 mm/s, or 0.015vR ~wherevR53.5 mm/s is the velocity
corresponding to the recoil from one absorbed photon re
nant with the D2-line!. Our statistics is good enough not t
contribute to this resolution. The optical lattice beams
turned off, by switching an acousto-optic modulator, fas
than a microsecond. This is fast enough to avoid adiab
release of the atoms in the lattice, which could greatly infl
ence the velocity distribution, in particular in the high velo
ity tails.1

B. Experimental results

We recorded the velocity distributions for several mod
lation depths and we fitted them with the functions intr

1If the optical lattice beams are turned off too slowly, the ato
may partially equilibrate in the gradually decreasing potent
There may also be adiabatic cooling@33#. In both these cases, th
cooling during a slow turnoff can greatly influence the veloc
distribution, in particular in the high velocity tails. Such adiaba
switching is often used in order to achieve lower ‘‘temperatures

FIG. 1. Beam configuration of the 3D lin' lin optical lattice.
Two beam pairs propagate in thexz andyz planes, and are orthogo
nally polarized along they and x axes respectively. They form a
angle ofu545° with thez axis.
0-3
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JERSBLADet al. PHYSICAL REVIEW A 69, 013410 ~2004!
duced in Sec. II with a slight modification that accounts
atomic losses. During the long optical lattice phase, we h
a constant loss of atoms, probably due to spatial diffus
Therefore, the baseline is higher for atoms with a downw
velocity ~short times,v,0) than it is for atoms with an
upward one (v.0). We compensate for this by adding
sharp step function to the fit, with the amplitude of the s
as a free parameter. The amplitude of this step functio
found to increase sharply for decreasing potential depths
tweenU05200ER and 100ER. A probable reason is that spa
tial diffusion increases rapidly when the potential depth fa
below some threshold, which takes place for higher poten
depths than the threshold for cooling~usually called ‘‘décro-
chage’’! @20#. This is consistent with previous studies@32#. In
principle, we could have used a linearly decreasing funct
instead of the step function, but then this would have to
terminated by a sharp step. We avoided this in order to m
mize the number of free parameters and also because
wanted to simplify as much as possible in the absence
detailed knowledge of the loss of atoms.

In Fig. 2, we show the rms width of the distributions,sv ,
as a function of the depth of the optical potentialU0, as
derived from the fits to single Gaussian functions. The wid
which is normally associated with a kinetic temperature,
creases for deeper potential depths as usual.

In Figs. 3 and 4, typical recorded velocity distribution
together with Gaussian fits, are shown for low and h
modulation depths. Figure 3 shows data taken with an eq
bration time of 25 ms, and for Fig. 4 the equilibration tim
was 50 ms. This corresponds to typically 106 radiative life-
times. The plots with low irradiance are averages of 20 m
surements and those of high irradiance of five measureme
For high values of the irradiance, a Gaussian function fits
velocity distribution extremely well. However, for low irra
diance, it is clear that the wings of the distribution are not
well fitted. For the short equilibration time, this is more pr
nounced.

For all data, even below de´crochage, the attempt with
Lorentzian fits worked very poorly. Fits to double Gaussia

FIG. 2. ~Color online! The rms width (sv) of the measured
velocity distributions~filled circles! as a function of the modulation
depth of the potential. Also shown is numerically simulated d
~open squares! in the same range~cf. Sec. IV!.
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and Tsallis functions, however, reproduced recorded distr
tions better than single Gaussians. In insets in Figs. 3~a! and
4~b! we show fits to double Gaussians for shallow potentia
In Fig. 5, we compare the errors from the fits for these th
types of functions. When the irradiance is varied, the sig
to noise changes substantially, and so does the magnitud

a

FIG. 3. ~Color online! Experimentally recorded velocity distri
butions with fits to simple Gaussians. These data are recorded
an equilibration time of 25 ms. For~a! the modulation depth of the
optical potential wasU0578ER and the shown data are an avera
of 20 TOF measurements. For~b! the corresponding facts wer
U05285ER and an average of five TOF measurements. The in
in the top right corners show magnifications of portions of t
wings of the distributions. The inset in the top left corner of~a!
show the same data with a fit to a double Gaussian.
0-4
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NON-GAUSSIAN VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW A69, 013410 ~2004!
the loss pedestal at short times, and the width and shap
the distribution. This makes it very hard to achieve a con
tent normalization of the quality of the fits. The value ofx2

@x25S(yi2xi)
2, whereyi is the measured andxi the fitted

value# for an individual fit includes information about bot
noise and systematic deviation from the fit function, whi
are difficult to separate. The data displayed in Fig. 5
ratios between unnormalized values ofx2 for the different fit
functions. The displayed data are for the equilibration time

FIG. 4. ~Color online! Experimentally recorded velocity distri
butions with fits to simple Gaussians. These data are recorded
an equilibration time of 50 ms. For~a! the modulation depth of the
optical potential wasU0578ER and the shown data is an average
20 TOF measurements. For~b! the corresponding facts wereU0

5285ER and an average of five TOF measurements. The inse
the top right corners show magnifications of portions of the win
of the distributions. The inset in the top left corner of~a! show the
same data with a fit to a double Gaussian.
01341
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25 ms. The other data set has the same features. For
potentials, all fits are essentially equally good. At more sh
low potentials, a Tsallis function reproduces the data be
than a Gaussian. For the whole range, a double Gaus
gives the best fit. For the most shallow potentials, the fit
step becomes too important forx2 in order to draw any ma-
jor conclusion from this analysis.

The parameterq in Eq. ~5! can be regarded as a measu
of the shape of the distribution. Aq approaching 1 will be
identical to a Gaussian distribution, whereasq52 corre-
sponds to a Lorentzian distribution. In Fig. 6, we show a p
of the fitted valueq, for 25 ms equilibration time. For de
creasing irradiances,q increases smoothly from 1, and eve
tually reaches a value higher thanq51.6. For the longer
equilibration time, the same trend is evident, but it is mu
less pronounced, andq does not reach higher thanq51.3.

The good fit to a double Gaussian can be interpreted
sign of a bimodal velocity distribution. In Fig. 7~a!, we show
the fitted widths of the two Gaussians for both data sets. T
should correspond to the ‘‘temperatures’’ of the two mod
Both these temperatures increase linearly with poten
depths. The areas of the two Gaussians should be a mea
of the fraction of atoms being in one or the other of t
modes. In Fig. 7~b! is the calculated relative populations. Th

ith

in
s

FIG. 5. ~Color online! Comparisons between different fits of th
measured distribution for 25 ms equilibration time shown as ra
between unnormalized values ofx2 as a function of modulation
depth of the potential. The circles arex1Gauss

2 /xTsallis
2 and the squares

arex1Gauss
2 /x2Gauss

2 .

FIG. 6. ~Color online! The fitted Tsallisq parameter as a func
tion of modulation depth of the potential for 25 ms equilibratio
time.
0-5
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JERSBLADet al. PHYSICAL REVIEW A 69, 013410 ~2004!
‘‘cold mode’’ with narrow velocity distribution always con
tains most of the atoms, but the relative number of atom
the ‘‘hot mode’’ gets larger for decreasing potential dept
For potentials deeper thanU05250ER there is no measur
able portion of atoms in the hot modes. The thermal ene
of the hot mode is of the same order~within the large uncer-
tainties! as the energy barrier of the optical potential, i.e.,
modulation depth@shown in the dashed line in Fig. 7~a!#.

IV. NUMERICAL SIMULATIONS

In order to further analyze the results of our experimen
data, we performed numerical simulations for the quant
dynamics of atoms undergoing Sisyphus cooling. We c
sider the case of aJ54→J55 transition, as for the133Cs
atoms used in the experiments, and for the sake of simpli
we restrict the motion of the atoms into 1D. The laser co
figuration is the well-known 1D lin' lin configuration @4#
which in fact corresponds to thez direction in our 3D experi-
mental setup~Fig. 1! with a different lattice spacing. This

FIG. 7. ~Color online! ~a! The widths of the two Gaussians a
obtained from a fit of the data to double Gaussians, as a functio
modulation depth of the potential. The dashed line shows the mo
lation depth in units of velocity.~b! The relative population of the
two modes of the population, obtained from the areas under the
Gaussians. For both~a! and ~b!, filled symbols correspond to dat
taken with 50 ms equilibration time and open symbols to 25 m
Circles are ‘‘temperatures’’ and relative population of the ‘‘h
mode,’’ and square to the ‘‘cold mode.’’
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restriction is legitimate because, first, the temperature
been shown to be independent of the lattice spacing@31,32#
and, second, the temperature is very similar for both 1D
3D configurations.~See the comparison between 3D expe
mental and 1D numerical results in Fig. 2. The slight dev
tion can partly be attributed to the difference in dimensio
ality.! We first describe the numerical method for th
integration of the dynamics equations~Sec. IV A! and then
we present the results of the simulations~Sec. IV B!.

A. Integration of the dynamics equations

Consider a two-level atom, with Zeeman degeneracy,
teracting with a laser field

EW L~z,t !5 1
2 $EW L

1~z!e2 ivt1EW L
2~z!e1 ivt%. ~7!

The laser light is strong enough to be treated as a class
field so that we can separate the coupling between the a
and the electromagnetic field into a coupling to the laser fi
and a coupling to vacuum. The coupling to the laserV̂AL
induces a Hamiltonian evolution for the atom. On the co
trary, because of the coupling to the vacuum modes,V̂AV , the
atom is an open quantum system for which the evolution
to be treated in the density-matrix formalism. The evoluti
of the atom is thus governed by the generalized optical Bl
equations~OBE! @34,35#. In the regime of low saturation
where the experiments are performed, the excited state
laxes much faster than the typical evolution time of t
ground state and thus it can be adiabatically eliminated fr
the OBE. The evolution of the system then reduces to
master equation for%, the atomic density matrix restricted t
the ground state@8#:

i\
d%̂

dt
5Ĥeff%̂2%̂Ĥeff

† 1Lrelax~ %̂ !, ~8!

where

Ĥeff5
p̂2

2M
1

V̂AL
2 V̂AL

1

\~D1 iG/2!
. ~9!

Here, p̂ is the momentum operator,D is the detuning be-
tween the laser and the atomic transition,M is the mass of

one atom, andV̂AL
6 52DŴ 6

•EW L
6 are the raising and lowering

parts of the dipole interaction operator, respectively. In E
~8!, Ĥeff is a non-Hermitian operator describing the ato
laser interaction2 andLrelax is an operator describing the cou
pling to the vacuum field, i.e., spontaneous emission of p
tons. The integration of the master equation is performed
a full-quantum Monte Carlo wave-function method@36,37#
in which % is substituted with a set of stochastic wave fun
tions. The pseudo-Hamiltonian evolution@first term in Eq.

2The non-Hermitian part ofĤeff comes from the relaxation of the
excited state.
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NON-GAUSSIAN VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW A69, 013410 ~2004!
~8!# of each wave functionuc& is governed by a Schro¨dinger-
like equation involving the non-Hermitian HamiltonianĤeff :

i\
duc&
dt

5Ĥeffuc&. ~10!

Since Eq. ~10! does not include the filling terms of th
ground state from the excited state due to spontaneous e
sion, uc& is not normalized and the instantaneous sponta
ous emission rate is given by2d^cuc&/dt/^cuc&. To take
into account the emission of photons, the pseu
hamiltonian evolution@Eq. ~10!# is interrupted by quantum
jumps, whose repetition rate is determined with accorda
to the spontaneous emission rate. It follows from the em
sion of a photon of wave vectorkW and polarizationeW that the
wave function is instantaneously changed into

uc&→uckW ,eW&5^1kW ,eWuV̂AV~ uce& ^ u0&) ~11!

with relative probabilitiesuuckW ,eW&u2. Here the excited-state
wave functionuce&5V̂AL

1 uc&/\(D1 iG/2) is determined by
the adiabatic elimination procedure of the excited state,
u0& and u1kW ,eW& represent the electromagnetic field states
spectively without any photon, and with one photon of wa
vector kW and polarizationeW . The Monte Carlo integration
then provides a set of time-dependent stochastic wave f
tions uc&, which represent the atomic state through the av
ages̄ of the density matrices associated with the wave fu
tions,s5uc&^cu. It is then straightforward to show that th
quantum master equation fors̄ is the same as the mast
equation for the actual density matrix% @Eq. ~8!#. Hence, the
value of any observableÔ for the quantum system repre
sented by% is equal to the ensemble average of the value
the same observable for each stochastic wave function
resented byuc& @38#: at any time,

^cuÔuc&5Tr~ %̂Ô!. ~12!

B. Results of the simulations

In this work, we are interested in the particular observa
that represents the momentum distribution of the atoms.
have performed the full-quantum Monte Carlo integration
the dynamics equations for a set of 200 wave functions
various lattice parameters~detuning and modulation depth!.
Because the widths of the momentum distributions are ty
cally broader than several\k, the spontaneous emission pa
tern can be approximated by photons emitted along the
coordinate axesx, y, or z. With such an approximation, a
operators in Eqs.~9! and~11! couple states of the formum,p&
to states of the formum8,p6\k& ~wherem andm8 represent
the internal sub level of the atomic ground state!. It is then
convenient to perform the integration in theup& representa-
tion. The stateuc& is decomposed onto the basis of theup&
states~with p5n\k, with n an integer positive or negative!.
Finally, for usual situations considered in this work, the ty
cal momenta are smaller than 20\k, so that we takeunu
<100. From the simulations, we determined the mean
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netic energy as a function of time. After a thermalizati
period, the energy reaches a steady state during which
momentum distribution was recorded and averaged.
thermalization period was chosen to be 1/G, corresponding
to a time in the order of a millisecond. Since the calculati
is performed in 1D, this time cannot be directly compared
the thermalization times in the 3D experiment.

In order to identify whether the momentum distribution
compatible with a Gaussian curve or not, we first comp
the rms momentumprms defined byEK5prms

2 /2M ~whereEK

is the mean kinetic energy of the atomic sample! and pe

which represents half the width at 1/Ae of the stationary
momentum distribution. For a Gaussian distribution, tho
two values are equal.

We plot in Fig. 8 the numerical results forprms andpe as
a function of the potential depthU0 for three different de-
tuningsD. We find that these values are independent of
detuning within the numerical errors. Several points
lower values ofU0 have also been calculated but the atom
cloud was found not to thermalize. For those cases, the t
perature increases more or less linearly and the velocity
tribution becomes almost flat. It is also clear in Fig. 8 th
prms and pe have different behaviors.prms reproduces the
well-known dependence of the kinetic energy versus
modulation depth:prms scales asAU0 for high values ofU0
and abruptly increases asU0 reaches very low values, typi
cally lower than 150ER ~the point of de´crochage!. The mini-
mum value ofprms is found to be of the order of (prms)min
.4.1\k. On the contrary, we find thatpe increases mono-
tonically versusU0 for low values as well as for high value
of U0. The minimum value ofpe is obtained for the mini-
mum value ofU0 for which a steady-state velocity distribu
tion can be obtained (U0*78ER) and is found to be of the
order of (pe)min.3.4\k. We identify two different regimes
that can be distinguished: ForU0 above de´crochage (U0
*150ER), bothpe andprms increase andpe is slightly larger
than prms, that is to say that the momentum distribution
wider than a Gaussian distribution with the sameprms. For
U0 below décrochage (U0&150ER), pe decreases whileprms
increases rapidly asU0 decreases; the momentum distrib
tion has large wings and becomes narrower than a Gaus
distribution. These different characteristics are illustrated
Fig. 9 where we plot the simulated velocity distributions t

FIG. 8. Comparison between the rms momentum and the w
at 1/Ae of the momentum distribution as a function of the potent
depthU0 for three different detuningsD5210G,220G,230G.
0-7
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gether with Gaussian fits in the two regimesU0&150ER and
U0*150ER.

One should note that this result is in disagreement w
earlier calculations performed for atoms with a theoreti
J51/2→J53/2 transition for which Castinet al. find that
prms.pe for any value of the potential depthU0 @13#. In fact,
when running our simulation for theJ51/2→J53/2 transi-
tion, we were able to reproduce the results of@13# and we
thus conclude that the discrepancy is due to the differ
atomic transitions considered in Ref.@13# and in the presen
work. We finally conclude that in general, the momentu
distribution significantly differs from a Gaussian distributio
Moreover, we find that the threshold forprms at low values of
U0 does not affectpe .

We now turn to a more detailed analysis of the mom
tum distributions. We first fit the velocity distributions t
Tsallis functions. The dependence of the Tsallis parametq
on the modulation depth is also shown in Fig. 10 and sho
a linear dependence ofq versusU0.

For all numerical dataq differs from 1 only by less than
5% and is less than 1. Moreover,q is found to tend to 1 for
shallow potentials indicating that the best Tsallis fit is clo
to a Gaussian curve in disagreement with the previous
cussion. The discrepancy between numerical simulations

FIG. 9. ~Color online! Numerically recorded velocity distribu
tions with fits to simple Gaussians. For~a!, the modulation depth of
the optical potential wasU0578ER . For ~b!, it was U05235ER .
The insets show magnifications of portions of the wings of
distributions.
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experimental measurements may be caused by the diffe
dimensionality considered in the experiments and in
simulations.

Consider now fits to double Gaussians. We plot in Fig.
numerically recorded velocity distributions in logarithm
scale for potential depths in the two regimes correspond
to shallow and deep potentials, together with fits to dou
Gaussians. For the deep potential (U05293ER), the profile
is essentially parabolic and thus corresponds to a Gaus

e

FIG. 10. Theq parameter as a function of modulation depth
the potential, obtained from fitting the numerically computed d
to Tsallis functions.

FIG. 11. ~Color online! Numerically computed velocity distri-
bution for ~a! U0578ER and ~b! U05293ER together with fits to
double Gaussians.
0-8



w

m
e
h
c
s
e

a

u
er

h
w
in

ly

re
inc

he
–12
nes
ce

-
ny
ain,
s is
to
t and
rts

r

n

rgy

ng

me

the

ro

of
in

-

ibu-
l as

a

tri-
.

;
to
te
ity
T

the

NON-GAUSSIAN VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW A69, 013410 ~2004!
distribution. For the shallow potential (U0578ER), we
clearly identify two contributions: in addition to a narro
parabolic profile~corresponding to low energetic atoms!, a
broad one~corresponding to high energetic atoms! appears.

This supports the interpretation of the dynamics in ter
of a bimodal atomic distribution, with each mode corr
sponding to trapped atoms and to nearly ‘‘free’’ atoms. T
whole distribution is well fitted by a double Gaussian fun
tion. We plot in Fig. 12~a! the widths of both the modes a
functions of U0. The numerical results are in good agre
ment with experimental ones~see Fig. 7!. For shallow poten-
tials, we find two Gaussian components with widths th
both increase with the potential depthU0, whereas for deep
potentials, the ‘‘hot component’’ is almost undetectable. Th
the route to de´crochage for shallower potentials can be int
preted as a transfer from the cold mode to the hot mode. T
is supported by the results for the populations of the t
Gaussian contributions to the velocity distribution plotted
Fig. 12~b!. We actually find that the cold mode is large
dominant even for very shallow potentials close to de´cro-
chage.

Finally, we compare the numerical and experimental
sults. A direct quantitative comparison is not adequate, s

FIG. 12. ~a! Widths of the two Gaussians~cold mode, squares
hot mode, circles! as obtained from a fit of the numerical data
Double Gaussians, as a function of modulation depth of the po
tial. ~b! The relative population of the two modes of the veloc
distributions, obtained from the areas under the two Gaussians.
cold mode~squares! corresponds to the large fraction whereas
hot mode~circles! corresponds to the small fraction.
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the simulations are done in 1D. However, qualitatively, t
experimental data are reproduced excellently. Figures 9
show numerical data corresponding to the experimental o
in Figs. 3–7. The single Gaussian works for high irradian
but fails to fit the wings of the distribution for low irradi
ances. A Tsallis function does not fit the distribution a
better than a single Gaussian for the numerical data. Ag
the distribution is best fitted by a double Gaussian and thi
particularly pronounced for shallow potentials. The fits
double Gaussians also reproduce the signature of one ho
one cold mode for shallow potentials. This strongly suppo
assumptions of a bimodal distribution.

We find that the ‘‘cold’’ mode is largely dominant even fo
very shallow potentials close to ‘‘de´crochage’’ in both the
experimental~70%! and the numerical~90%! results @see
Figs. 7~b! and 12~b!#. The quantitative discrepancy betwee
the limit population of the ‘‘hot’’ and ‘‘cold’’ modes results
from the different dimensionalities~3D experiment versus
1D calcuations!. Indeed, the fraction of bound atoms in adD
dimension situation can be estimated by

nbound
~dD! 5a(

j
pdD~Ej ! )

1,m,d
1Ej m,Emaxm

, ~13!

wherepdD (Ej ) represents the population of a state of ene
Ej , a is a normalization factor, andEmaxm stands for the
maximum energy of bound states in the potential wells alo
the directionm (Emaxm is of the order of the modulation
depth!. Now, if the space directions are separable~this is the
case in the harmonic approximation, which one can assu
to be valid for bound states!, then

nbound
~dD! 5 )

1,m,d
am(

j
p1D~Ej m!1Ej m,Emaxm

. ~14!

Hence, assuming that all directions are equivalent,
fraction of atoms in non-bound-states is

nnon-bound
~dD! 512 )

1,m,d
~12nnon-bound

1Dm !;dnnon-bound
~1D! . ~15!

Therefore, the limit popuations of the hot mode at dec
are consistent in the experiments~30% withd53! and in the
simulations~10% with d51!.

V. CONCLUSIONS

In this work, we have studied the velocity distributions
cold atomic samples obtained by Sisyphus cooling both
experiments with133Cs and in full-quantum numerical simu
lations performed for the actual 4→5 transition of133Cs. We
stressed in particular the deviation from a Gaussian distr
tion. This has already been forecasted via semiclassica
well as quantum simulations for a simplified 1/2→3/2 tran-
sition showing the difference of the rms velocityv rms and the
velocity ve corresponding to half the width at 1/Ae of the
distribution @13#. We recovered such a property but with
significantly different behavior of the ratiov rms/ve . This
shows that the non-Gaussian behavior of the velocity dis
butions is certainly not a trivial effect in Sisyphus cooling
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JERSBLADet al. PHYSICAL REVIEW A 69, 013410 ~2004!
A. Summary of our results

Our results~experiments as well as numerical simul
tions! show that the velocity distributions are compatib
with Gaussian functions for deep enough potentials~typi-
cally for U0 larger than a hundred recoil energies!. Note that
in this case, the atoms are trapped in the potential wells~i.e.,
the kinetic energy of the atomic cloud is significantly smal
than the potential depth!. The deviation of the velocity dis
tribution from Gaussian functions becomes more promin
for shallow light-shift potentials. We tested several types
functions to better fit the shape of the velocity distributio
in the range of parameters corresponding to deeper po
tials. We found that a better fit~corresponding to smallerx2)
can be obtained by using a Tsallis function or a dou
Gaussian.

Tsallis functions. The use of a Tsallis function is related
the details of the dynamics of atoms cooled by the Sisyp
mechanism which is known to be slightly more complica
than a Brownian motion. The Tsallis function introduces
new parameterq whose deviation from 1 measures the d
viation of the velocity distribution from a Gaussian functio
The parameterq can be calculated in the ‘‘jumping regime
@39# and it is straightforward to show thatq tends to 1 for
high values of the potential depth~thus corresponding to a
weak deviation from a Gaussian! and increases for shallow
potentials. Anab initio calculation ofq is more tricky in the
‘‘oscillating regime’’ which corresponds to the domain
parameters for shallow potentials, near the point of de´cro-
chage@39#. Nevertheless we can plot the value ofq corre-
sponding to the best fit of the measured velocity distributio
as a function of modulation depth. For large modulati
depths, we find thatq approaches 1, which corresponds to
Gaussian distribution, in agreement with the analytical c
culation ~see Sec. II and Ref.@21#!. When reducing the po
tential depth, we clearly observed an increase inq and this
corresponds to a velocity distribution with wings larger th
in a Gaussian function. In our case the maximumq is close
to 1.6 and this corresponds in our experiments to a poten
depthU0.60ER. ForU0,60ER, the atomic cloud does no
reach a steady state and the optical lattice disintegrates.
interesting to note that the rms velocity of Tsallis distrib
tions with q aboveqcr55/3 diverges@40#. If one would plot
rms temperatures of the atoms using the rms velocity,
would correspond to a diverging temperature. As one is o
limited by noise in the wings of the velocity distribution, on
has a tendency to restrict the analysis to atoms with vel
ties several times below the 1/e value of the distribution. Any
divergence is hence avoided. Note also that such diverge
are very familiar: the wings of a Lorentz distribution are al
known to cause a divergence of the rms value of the dis
bution. One can also recall that in the case of narrow-l
cooling, the rms velocity diverges@41,42# when one ap-
proaches the atomic resonance, and that for very small
tunings one can no longer even have a normalized distr
tion function @41#.

Double Gaussian functions. Fitting the recorded~experi-
mental or numerical! distribution functions to double Gaus
sians works even better than the Tsallis function. On the
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hand, it is not surprising that a fitting procedure with mo
free parameters gives better fits. On the other hand, the
locity distribution in logarithmic scale in Fig. 11~a! clearly
exhibits two components with very different widths. F
deep potentials, one recovers a Gaussian distribution of ‘c
atoms’ bound in the potential wells as expected from
above discussion. When decreasing the potential dept
fraction of ‘‘hot atoms’’ grows up~for U0,120ER). These
atoms have an energy larger than the potential depth and
not trapped in the potential wells. We found that the fracti
of hot atoms can be significant for very shallow potentials
reaches 30% in 3D experiments and 10% in 1D numer
simulations just above de´crochage atU0.60ER ~the discrep-
ancy between the experiments and the simulations is du
the different dimensions as shown at the end of Sec. IV!.
This result strongly supports assumptions that an optical
tice has abimodal velocity distribution. A straightforward
interpretation would be that some atoms are bound at lat
sites, whereas others have enough energy to move aroun
top of the modulated potential. An interesting result of o
work is that the phenomenon of de´crochage does not corre
spond to a sharp increase of the width of the velocity dis
butions corresponding to each mode but to a continu
transfer from the cold mode to the hot mode. We found t
when décrochage occurs, the fraction of atoms in the h
mode does not exceed a few tens percent.

B. Perspectives

The results shown in this paper strongly suggest that
simple picture for Sisyphus cooling, based on a competit
between a diffusion and a friction@see Eq.~4!#, is not ad-
equate to describe the ‘‘coldest’’ velocity distributions. Ev
though one has to be careful before generalizing the con
sions of this paper to other situations of laser cooling and
trapping, the existence of two velocity modes might provi
a useful guide to understand the dynamics and limits of la
cooling. One can note, e.g., that for shallow potentials, o
has fewer bound states, and the fraction of atoms in the c
duction band gets more prominent, as shown in Figs. 7
12.

These atoms will experience a friction force correspon
ing to the classical Sisyphus cooling model. The route
equilibrium for the bound atoms is less clear. One hypothe
@43# is that bound levels are uniformly ‘‘watered’’ from th
conduction band, whereas high lying levels are more lik
to escape. Thus, the route to equilibrium is not quite a co
petition between cooling and heating. A drawback with th
theory is that it would not yield Gaussian velocity distrib
tions. However, this theory has the advantage that the rat
equilibration should depend linearly on irradiance, which
consistent with previous experiments@44,45#. In contrast, the
standard Sisyphus cooling theory predicts a cooling rate
dependent of irradiance@4#. An interesting experiment would
be to measure the velocity distribution as a function of tim
after a sudden change of the light-shift potential, and se
the two populations would evolve differently.

Figures 3 and 4 seem to indicate a time dependence o
experimentally recorded velocity distribution. However, wi
the current data set~using only the two cooling times 25 m
0-10
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NON-GAUSSIAN VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW A69, 013410 ~2004!
and 50 ms!, and with the current experimental uncertaintie
we cannot draw any quantitative conclusion for the time
pendence of the velocity distribution. In future work, we w
study the velocity distribution as a function of time.

It would also be interesting to extend the test functio
used in this paper to a narrow-line cooling scheme, wh
become more and more used with the laser cooling of ea
alkaline atoms. At this stage, one can however note th
non-normalized distribution function will have as an effe
that there is no steady-state distribution and that in this c
atoms will diffuse to large velocities. This will appear in a
experiment as a leakage rate of the atoms from the op
lattice. The background observed in our experiment beco
more and more dominant for shallow potential wells. O
might expect this to have a contribution from a diffusion
the atoms beyond the capture range of the optical lat
corresponding in practice to a non-normalized distribut
function. A detailed analysis of the velocity distribution
atoms in optical lattices thus appears as a promising too
study new statistical effects.
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Experiments as well as full-quantum simulations~in 1D
and 3D! should allow one to get new insights in the dynam
ics of such systems. Apart from the suggestions above, fu
work could, e.g., focus on the phase space dynamics o
oms in optical lattices and of quantum transport properties
ultracold atoms or even Bose-Einstein condensates.
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