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Non-Gaussian velocity distributions in optical lattices
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We present a detailed experimental study of the velocity distribution of atoms cooled in an optical lattice.
Our results are supported by full-quantum numerical simulations. Even though the Sisyphus effect, the respon-
sible cooling mechanism, has been used extensively in many cold atom experiments, no detailed study of the
velocity distribution has been reported previously. For the experimental as well as for the numerical investi-
gation, it turns out that a Gaussian function is not the one that best reproduces the data for all parameters. We
also fit the data to alternative functions, such as Lorentzians, Tsallis functions, and double Gaussians. In
particular, a double Gaussian provides a more precise fitting to our results.
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[. INTRODUCTION there are no known observations of clearly non-Gaussian dis-
tributions.

Laser cooling is now a well-established technique to pro- For a multilevel atom, population transfer and coherences
duce narrow velocity distributions for dilute samples of between degenerate levels open up the possibility for more
atomic gasessee, e.g., Refl]). The interaction between the subtle cooling mechanisms. These are not limited by the ra-
atoms and the radiation modes removes kinetic energy frordiative lifetimes of the upper levels, and can therefore lead to
the atoms, and extremely cold samples can be obtained. marrower distributions. In particular, Sisyphus cool[dg-7]
the standard context of Doppler or sub-Doppler laser coolis based on a laser beam configuration that results in a peri-
ing, atom-atom interactions are neglected and hence a thepdic modulation of the polarization of the light, and thus
modynamic temperature cannot be defined. Neverthelesspatially modulated optical-pumping and steady-state popu-
measured velocity distributions are generally very well fittedlation distribution between different degenerate substates.
by a Gaussian function, and assigning a “kinetic temperaThe light shift will also be periodic, and will differ for dif-
ture” to the distribution is a useful way to characterize a laserferent substates. The combination of Hamiltonian motion and
cooled atomic sample. optical-pumping cycles transfers atomic energy to the

One of the simplest theoretical models of laser coolingvacuum modeg4,5,8. A rule of the thumb for Sisyphus
assumes a moving two-level atom interacting with counter<ooling tells us that the “temperatures” obtained correspond
propagating pairs of laser beams, tuned slightly below theo kinetic energies that are of the order of the light shift. This
atomic resonancgéDoppler cooling 2]). This will yield Dop-  behavior has been experimentally verifigd-12] down to
pler shifts, asymmetric with regard to velocity, and thus akinetic temperatures of a few recoil energies. A seminal
damping forcefriction). Doppler cooling is counteracted by analysis of Sisyphus cooling, by Dalibard and Cohen-
momentum diffusion due to absorption and emission of phoTannoudji[4], is again based on spatially averaged friction
tons. If a spatial average is taken of diffusion as well asand diffusion coefficients. Even though the final regime cor-
friction, one obtains a stationary Gaussian velocity distriburesponds to a situation where one can no longer assume at-
tion. This is valid since, in steady state, most atoms havems moving at constant velocity over many wavelengths, the
velocities well above spatial modulations in the light shift scaling law obtained by this approach appears to be excel-
potential(caused by the interaction between the induced dilent.
pole moment and the lightand thus the dynamics can be  In more rigorous full-quantum-mechanical analyses, Cas-
described in terms of a Fokker-Planck equation with constantin et al.[13,14] find that Sisyphus cooling ought to lead to
friction and diffusion coefficients. High irradiance results in non-Gaussian distributions. In particular, for irradiances
light shifts of the involved energy levels that can be compa<lose to the lower limit for efficient laser cooling, the effects
rable to the kinetic energy, and one can no longer assumeaf recoils due to absorbed and emitted photons become
constant velocity as atoms travel over a wavelength. Spatigirominent. Then, atomic trajectories become very irregular
averaging can still be performed, but one does not obtain thand the velocity cannot be assumed to be constant. Therefore
standard description of laser cooling in terms of competitionrone cannot compute a spatially averaged velocity-dependent
between a friction force and a diffusion effect, since these aréorce. Also, the atoms will be trapped in microscopic poten-
not simply functions of velocity. The resulting velocity dis- tial minima (forming optical lattices[15,16]), and the en-
tribution will in this case not be Gaussian and different dis-semble should be characterized by a distribution of vibra-
tributions have been propos¢8]. However, for practical tional modes and unbound modes, rather than by a velocity

Doppler cooling configurations, this effect is negligible, anddistribution.
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Essentially all experimental investigations of Sisyphus
cooling result in distributions that are well fitted by Gauss- KW= -4,
ians. The reason for this is probably a combination of several
facts. Many experiments are done in a regime where an a\gjth M being the atomic mass. In the linear regime for the
erage friction coefficient seems adequégafficiently large  atomic velocity, one find§s]
light shift). The deviations from Gaussian distributions are

%F(U)W +3,(D,(v)d,W) 1)

subtle and are mainly hidden in the noisy wings of the re- F(v)=—av (2
corded distribution. Furthermore, it is difficult to set up an
experimental velocity probe with the required resolution. D,=DM+D?,

Nevertheless, deviations from Gaussian velocity distribu-
tions for laser cooled atoms have been reported in one receht this context,a andD, depend on the lattice parameters
paper[17]. However, to our knowledge, there has been noand are independent of the veIociD&l) corresponds to the
systematic experimental study of the non-Gaussian distriburandom absorption and emission of photons wfé) rep-
tions, nor any attempts to approach the observed distriburesents the fluctuations of the light-shift induced fof8
tions with more precise functions. The steady-state solution of E(.) with vanishing probabil-
In this work, we report a detailed study of velocity distri- ity current] — F(v)W+ MD,(v)d,W=0] is thus a Gaussian
butions, as a function of the irradian¢end thus the light function with rms widtho, =MD,/ a:
shift) for a three-dimensional Sisyphus cooling configura-
tion. We also perform a one-dimensional numerical simula- av?
tion of velocity distributions, based on a full-quantum Monte W(U):Woex% " 2MD )
Carlo wave-function technique. This is applied for the ’
atomic angular momentum which is relevant in our experi- b. Tsallis function Beyond the linear regime for atomic
ment. We fit the recorded data, the experimental as well agelocity, the friction force and the velocity diffusion coeffi-
the numerical, to different functions and compare the outcients have to be refined infd3,20
comes.

©)

— v
Fv)=———, @
1. FITTING FUNCTIONS AND MOTIVATIONS 1+ (vlve)
The main purpose of this paper is to present more details (2)
about the velocity distributions of atomic samples cooled and D,(v)= D£1)+—"2,
trapped in optical lattices, where the Sisyphus cooling theory 1+(vlvy)

is expected to apply. A further step is to provide a function ) ) )
that gives a good approximation of the velocity distribution. Wherevc is the capture velocity which corresponds to the
The choice of a fitting function is made difficult by the com- typical atomic velocity above which the Sisyphus process
plex dynamics of the atoms in the lattice. Indeed, even if th'€@ks down. Now, it is straightforward to show that the
seminal process described in R§4] gives very good in- steady-state solution with vanishing probability current of
sights in the dynamical behavior of the atoms, it is not suf-E- (1) reads[21]

ficient in regimes relevant for typical experimental situa-

- _ ), 271(1-q)
tions, where the intercombination of Hamiltonian motion in W(v)=Wol[ 1= B(1~q)v7] ©)
the modulated potentials and optical-pumping cycles, with 1)

time scales of the same order, makes it difficult to perform 2MDy al2M

. . L =1+ and B=—1—70-.
analytical calculationg13]. Along the following lines we g av? A DM+D?@

justify a priori the choice of three types of functiofGauss-
ian, Tsallis, and double Gauss)athat we used to fit the The function in Eq(5) is the so-called Tsallis function and is
experimental and the numerical recorded data. As we wilin fact very general. It particularly provides a broad class of
see, these choices are based on simple considerations abfitting functions including Gaussian functiong @pproach-
well-known generalizations of the model presented in Refing 1), Lorentzian functionsd=2), and inverted parabolas
[4]. (g=0). At this stage, it is interesting to note that the Tsallis
a. Gaussian functianin the standard description of one- function has been introduced in the context of non-extensive
dimensional1D) Sisyphus cooling, the internal atomic state thermodynamic§22,23. The large amount of literature in
is adiabatically eliminated in such a way that the atomicthis context allows one to find many papers dealing with
dynamics is described in simple terms of a fofe@) and  problems already addressed in laser cooling; in particular
fluctuating forces of momentum diffusion coefficiédf(v). anomalous diffusion in the presence of external fof@zs-
F(v) accounts for the optical-pumping-assisted Sisyphu®6], multiplicative noise problems, and the relation to the
cycles andD ,(v) corresponds, on the one hand, to the ran-edge of chaos in mixed phase-space dynaifi@s2g. It is
dom recoils due to absorption and emission of photons, anknown that Sisyphus cooling can give rise to anomalous dif-
on the other hand, to changes of potential curves. The velodusion [29,30, in particular for shallow optical potentials,
ity distribution W(v) is thus governed by a Fokker-Planck where an atom can travel over many wavelengths before be-
equation[18,19: ing trapped again. Even though we do not have a detailed

(6
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analysis of the dynamics of the atoms in an optical lattice, Z
for parameters corresponding to our situation, one cannot
rule out anomalous diffusion and/or chaotic behavior.

c. Double Gaussian functiols Sisyphus cooling results
in a situation where the kinetic energies of the atoms are of
the order of the light-shift potential, one can neither neglect
atoms with lower energy‘trapped” in the potential wells N X
nor those moving more or less freely above the potential
modulation (as in a “conduction band’ This leads to a
description of the atomic sample in terms of a bimodal dy-
namics. Note that such a bimodal description has been
shown to be relevant for the prediction of the diffusive prop- €
erties of atoms in an optical latti¢81]. The kinetic equation
of the “high-energy” atoms might very well be described by 260
spatially averaged friction and diffusion coefficients resulting
in a Gaussian distribution as shown previously. The “low-
energy” atoms will be trapped, and subject to a different
kinetic equation, and we assume that their velocity distribu-
tion is again a Gaussian. Our trial function is thus the sum of
two Gaussian distributions with different widthglouble
Gaussian One corresponding to trapped atoms and the other F|G. 1. Beam configuration of the 3D lifin optical lattice.
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one to high-energy atoms. Two beam pairs propagate in tke andyz planes, and are orthogo-
nally polarized along thg and x axes respectively. They form an
Ill. EXPERIMENTS angle of §=45° with thez axis.

A. Experimental setup
velocity distribution is then recorded with a standard time-

viously (see, e.q., Ref§11,12). Briefly, we first accumulate %f—fhght (TOF) method[7]. After the lattice period the trap-

13%Cs atoms in a magneto-optic trap. We adjust the irradianc 9 field is turned off, and the atoms are released in the

and the detuning. then we turn off the maanetic field anogravitational field;=5 cm below the trap region a thin sheet
9 . g of resonant laser light crosses the vertical axis along which
leave the atoms in an optical molasses with even furthe

; : fhe atoms fall, and the induced fluorescence is recorded with
reduced irradiance. Thus we cool the atoms to a temperature

of 3-4 uK. The atoms are transferred to a three-2 photodiode. Each vertical velocity component at the time
dimensiolrflal. optical lattice, which is based on four Iaserof release will correspond to a specific arrival time at the
beams of equal irradiance ’and detunify a review of op- probe beam. The probe beam is carefully spatially filtered

. ) X and focused by a cylindrical lens. The interaction region is
tical lattice setups, see, e.g., REf5] or [16]). The detuning ) .
is a few tens of below the(F,= 4 F,—5) resonance for less than 5Qum thick, and the trapped cloud of atoms is

13 ) 9 ) ) ~400 um in diameter. This gives a velocity resolution of
the Cs D2 line at 852 nmiI(=2mx5.21 MHz is the line- g o5 mmys, or 0.015 (Wherevr=23.5 mm/s is the velocity
width of the excited staje The detuning 4) and irradiance  ¢qrresponding to the recoil from one absorbed photon reso-
(1) of the beams can _be easﬂy_changed in order to control thgant with the D2-ling Our statistics is good enough not to
depth of the light-shift potentiallox1/|A|. The beams are contribute to this resolution. The optical lattice beams are
aligned as in Fig. 1: two Iaser' beams are linearly polanzequmed off, by switching an acousto-optic modulator, faster
along thex axis and propagate in thez plane symmetrically  than a microsecond. This is fast enough to avoid adiabatic
with respect to the-axis, whereas the other two beams arerg|ease of the atoms in the lattice, which could greatly influ-

polarized along they axis and propagate in thez plane  ence the velocity distribution, in particular in the high veloc-
symmetrically with respect ta. This yields a tetragonal pat- jty tajls !

tern of points with pure circular polarization, alternatety
and o~ . These points correspond to potential wells where

the atoms are trapped and optically pumped into the extreme S
me levels (+4 and— 4, respectively, inr*- ando~ wells). We recorded the velocity distributions for several modu-

For high atomic velocities, this configuration will corre- lation depths and we fitted them with the functions intro-

spond to a three-dimensional version of the Sisyphus cooling

model. As the atoms approach equilibrium, their kinetic en-

ergies will get lower than the modulation depth of the optical %t the optical lattice beams are turned off too slowly, the atoms

potential, and thus atoms become trapped in lattice sitegnay partially equilibrate in the gradually decreasing potential.

They will get distributed in bound states, where the lowestrhere may also be adiabatic coolif83]. In both these cases, the

states closely resemble harmonic-oscillator states. cooling during a slow turnoff can greatly influence the velocity
In two different sets of runs, we let the atoms equilibratedistribution, in particular in the high velocity tails. Such adiabatic

in the optical lattice for 25 ms and 50 ms, respectively. Theswitching is often used in order to achieve lower “temperatures.”

The experimental setup has been described in detail pr

B. Experimental results
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FIG. 2. (Color online The rms width ¢,) of the measured
velocity distributiong(filled circles as a function of the modulation 0 T T T
depth of the potential. Also shown is numerically simulated data 60 -40 -20 0 20 40 60
(open squargsn the same rangéf. Sec. I\).

duced in Sec. Il with a slight modification that accounts for
atomic losses. During the long optical lattice phase, we have
a constant loss of atoms, probably due to spatial diffusion. o5
Therefore, the baseline is higher for atoms with a downward
velocity (short times,v<0) than it is for atoms with an
upward one ¢>0). We compensate for this by adding a
sharp step function to the fit, with the amplitude of the step
as a free parameter. The amplitude of this step function is .
found to increase sharply for decreasing potential depths be
tweenU,=200Eg and 10&R. A probable reason is that spa-
tial diffusion increases rapidly when the potential depth falls & 9
below some threshold, which takes place for higher potential.
depths than the threshold for coolifigsually called “dero-
chage” [20]. This is consistent with previous studig2]. In
principle, we could have used a linearly decreasing function
instead of the step function, but then this would have to be
terminated by a sharp step. We avoided this in order to mini-
mize the number of free parameters and also because w 0 T — T
wanted to simplify as much as possible in the absence ol 60 40 -20 0 20 40 60
detailed knowledge of the loss of atoms.
In Fig. 2, we show the rms width of the distributions, R
as a function of the depth of the optical potentidy, as
derived from the fits to single Gaussian functions. The width,
which is normally associated with a kinetic temperature, in- FIG. 3. (Color onling Experimentally recorded velocity distri-
creases for deeper potential depths as usual. butions with fits to simple Gaussians. These data are recorded with
In F|gs 3 and 4, typ|Ca| recorded VeIOCiW distributionS, an equilibration time of 25 ms. FQB.) the modulation depth of the
together with Gaussian fits, are shown for low and highoptical potential wa$J,=78Eg and the shown data_ are an average
modulation depths. Figure 3 shows data taken with an equiliof 20 TOF measurements. Féb) the corresponding facts were
bration time of 25 ms, and for Fig. 4 the equilibration time Yo~ 28%r and an average of five TOF measurements. The insets
was 50 ms. This corresponds to typically’ I@diative life- n the top ”gh_t cormners show _magnl_ﬁcatlons of portions of the
times. The plots with low irradiance are averages of 20 mea?'"9s of the dlstnbutlo_ns. T.he inset in the top '.e“ corner (af
surements and those of high irradiance of five measurementsshOW the same data with a fit to a double Gaussian.
For high values of the irradiance, a Gaussian function fits the
velocity distribution extremely well. However, for low irra- and Tsallis functions, however, reproduced recorded distribu-
diance, it is clear that the wings of the distribution are not sdions better than single Gaussians. In insets in Fi¢®.&nd
well fitted. For the short equilibration time, this is more pro- 4(b) we show fits to double Gaussians for shallow potentials.
nounced. In Fig. 5, we compare the errors from the fits for these three
For all data, even below deochage, the attempt with types of functions. When the irradiance is varied, the signal
Lorentzian fits worked very poorly. Fits to double Gaussiango noise changes substantially, and so does the magnitude of
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FIG. 5. (Color online Comparisons between different fits of the
; measured distribution for 25 ms equilibration time shown as ratios
between unnormalized values gf as a function of modulation
-60 -40 -20 0 20 40 60 depth of the potential. The circles ay8s,,Lx2aiis @nd the squares

2 2
viy are 1 causkX2causs

b) 25 ms. The other data set has the same features. For deep
potentials, all fits are essentially equally good. At more shal-
low potentials, a Tsallis function reproduces the data better
than a Gaussian. For the whole range, a double Gaussian
gives the best fit. For the most shallow potentials, the fitted
step becomes too important fgf in order to draw any ma-

jor conclusion from this analysis.

The parameteq in Eqg. (5) can be regarded as a measure
of the shape of the distribution. 4 approaching 1 will be
identical to a Gaussian distribution, wheregqs 2 corre-
sponds to a Lorentzian distribution. In Fig. 6, we show a plot
of the fitted valueg, for 25 ms equilibration time. For de-
creasing irradiancesj increases smoothly from 1, and even-
tually reaches a value higher thap=1.6. For the longer
equilibration time, the same trend is evident, but it is much
less pronounced, amgidoes not reach higher thay=1.3.

The good fit to a double Gaussian can be interpreted as a
sign of a bimodal velocity distribution. In Fig(&), we show
the fitted widths of the two Gaussians for both data sets. This
should correspond to the “temperatures” of the two modes.

FIG. 4. (Color onling Experimentally recorded velocity distri- BOth these temperatures increase linearly with potential
butions with fits to simple Gaussians. These data are recorded witHePths. The areas of the two Gaussians should be a measure
an equilibration time of 50 ms. F@a) the modulation depth of the Of the fraction of atoms being in one or the other of the
optical potential was) ;= 78E and the shown data is an average of modes. In Fig. {) is the calculated relative populations. The
20 TOF measurements. Fébp) the corresponding facts wetd,

TOF-signal (arb. units)

=285ER and an average of five TOF measurements. The insets in 1.7
the top right corners show magnifications of portions of the wings 1.61°
of the distributions. The inset in the top left corner(af show the 154 -
same data with a fit to a double Gaussian. 141 ©
> 1.3 °;§,
the loss pedestal at short times, and the width and shape of 1.2 %cmm
the distribution. This makes it very hard to achieve a consis- LI q"°°°°
tent normalization of the quality of the fits. The value)of 1.0 e 000000 00
[x*=X(y;—x;)? wherey; is the measured and the fitted S 10 150 980 2% 300 3D A
valug] for an individual fit includes information about both UO/ER

noise and systematic deviation from the fit function, which

are difficult to separate. The data displayed in Fig. 5 are FiG. 6. (Color onling The fitted Tsallisq parameter as a func-
ratios between unnormalized valuesygffor the different fit  tion of modulation depth of the potential for 25 ms equilibration
functions. The displayed data are for the equilibration time ofime.

013410-5



JERSBLADet al. PHYSICAL REVIEW A 69, 013410 (2004

a) o restriction is legitimate because, first, the temperature has
29 been shown to be independent of the lattice spaf®ig32]
. and, second, the temperature is very similar for both 1D and
201 3D configurations(See the comparison between 3D experi-
. mental and 1D numerical results in Fig. 2. The slight devia-
157 S BT i tion can partly be attributed to the difference in dimension-
S ', . . . .
~, et ality.) We first describe the numerical method for the
° 10 - integration of the dynamics equatiofSec. IV A) and then
ol we present the results of the simulatidi@ec. IV B).
517 N L
™ 51 A. Integration of the dynamics equations
050 100 150 200 250 300 350 400 Consider a two-level atom, with Zeeman degeneracy, in-
U/E teracting with a laser field
0 R
R — — ELzt)=HE (e “+E (@™} ()
- ol ja%“ - : | The laser light is strong enough to be treated as a classical
g .ﬁm field so that we can separate the coupling between the atom
'c_‘E 0.6 ik | and the electromagnetic field into a coupling to the laser field
15 and a coupling to vacuum. The coupling to the la¥gf
§‘ 0.4 induces a Hamiltonian evolution for the atom. On the con-
E trary, because of the coupling to the vacuum motlgs, the
& 02 atom is an open quantum system for which the evolution has
: to be treated in the density-matrix formalism. The evolution
0.0 BRI - of the atom is thus governed by the generalized optical Bloch
50 100 150 200 250 300 350 400 equations(OBE) [34,35. In the regime of low saturation,
UO/ER where the experiments are performed, the excited state re-

laxes much faster than the typical evolution time of the
ground state and thus it can be adiabatically eliminated from

FIG. 7. (Color online (a) The widths of the two Gaussians as otPe OBE. The evolution of the system then reduces to a

obtained from a fit of the data to double Gaussians, as a function t tion f the atomic d it tri tricted t
modulation depth of the potential. The dashed line shows the modtmhaS er eqéja lon O@ € atomic density matrix restricted to
lation depth in units of velocitytb) The relative population of the the ground stat¢s]:

two modes of the population, obtained from the areas under the two R

Gaussians. For botta) and (b), filled symbols correspond to data . do n A A ~

taken with 50 ms equilibration time and open symbols to 25 ms. 'ﬁH_HEﬁQ_ @Herrt Lrelad 0), ®
Circles are “temperatures” and relative population of the “hot

mode,” and square to the “cold mode.” where

“cold mode” with narrow velocity distribution always con- - p? Va Vi

tains most of the atoms, but the relative number of atoms in Het=5m1 +—h(A+iF/2) : 9

the “hot mode” gets larger for decreasing potential depths.
For potentials deeper thdd,=250E there is no measur-

able portion of atoms in the hot modes. The thermal energ
of the hot mode is of the same ordevithin the large uncer- A
taintie as the energy barrier of the optical potential, i.e., theone atom, and/5, = —D*-E;" are the raising and lowering

Here, p is the momentum operatos is the detuning be-
Y¥ween the laser and the atomic transitidvh,is the mass of

modulation deptishown in the dashed line in Fig(af]. parts of the dipole interaction operator, respectively. In Eq.
(8), I:leff is a non-Hermitian operator describing the atom-
IV. NUMERICAL SIMULATIONS laser interactiohand £ e, iS an operator describing the cou-

In order to further analyze the results of our experimentillfol'r?sg ?hifn;/:cr:%rgnfffk:hgerﬁass"igpganue;%snei;n'S;r'f% r:n?;gt:/?é
data, we performed numerical simulations for the quantu y 9 q P

dynamics of atoms undergoing Sisyphus cooling. We con? fuII-.quamum 'V'O!'“e Carllo wave-function mgth{iﬁﬁ,fﬂﬂ
sider the case of d=4—J=5 transition, as for thé®cs which g is substituted with a set of stochastic wave func-
atoms used in the experiments, and for the sake of simplicitgt)ons' The pseudo-Hamiltonian evolutigfirst term in Eq.
we restrict the motion of the atoms into 1D. The laser con-

figuration is the well-known 1D linlin configuration[4]

which in fact corresponds to thedirection in our 3D experi-  2The non-Hermitian part ofi . comes from the relaxation of the
mental setup(Fig. 1) with a different lattice spacing. This excited state.
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(8)] of each wave functiofw/) is governed by a Schdinger- 10
like equation involving the non-Hermitian Hamiltonidh.g : ol .
s 40
iﬁMZHeﬁW/). (10 § or Df%o Lt o ! g B
dt & Bfa00 s 8 coaB 8 8
gt ‘li‘! 8% % 8% A0 20 30
Since EQ.(10) does not include the filling terms of the he o+ o
ground state from the excited state due to spontaneous emis- 2r b e a m
sion, | ) is not normalized and the instantaneous spontane- . . . . T . .
ous emission rate is given by d{|¢)/dt/{4|¢). To take 0050 100 150 200 250 300 350 400
into account the emission of photons, the pseudo- Uo [E:

hamiltonian evolutior[Eq. (10)] is interrupted by quantum . .
jumps, whose repetition rate is determined with accordance FIG. 8. Comparison between the rms momentum and the width

L ._at 1/\/e of the momentum distribution as a function of the potential
to the spontaneous emission rate. It follows from the emis- Ve P

- - D depthU, for three different detuningd = —10I', — 200", — 30I".
sion of a photon of wave vectaer and polarizatiore that the

wave function is instantaneously changed into netic energy as a function of time. After a thermalization

PR period, the energy reaches a steady state during which the
|y =i =(1e dVa(|¥e)®]0)) (1D momentum distribution was recorded and averaged. The

with relative probabilities||; ;)|2. Here the excited-state hermalization period was chosen to bé' 1Eorresponding

. ot . . . to a time in the order of a millisecond. Since the calculation
;/\r/]avedf_urt;cttl.onli,.he)— \:AL|'/’>/ﬁ(Ad+'F/2f)tr']s detgtrrrgnidtby is performed in 1D, this time cannot be directly compared to
€ adiabalic eimination procedure of the excited State, anf,q yharmalization times in the 3D experiment.
|0) and |1, ;) represent the electromagnetic field states re-

tivelv Without hot d with hot f In order to identify whether the momentum distribution is
spectively without any photon, and with oné photon o Wavecompatible with a Gaussian curve or not, we first compare

vector x and polarizatione. The Monte Carlo integration the rms momenturp, s defined byE,=p?,J2M (whereEy

then provides a set of time-dependent stochastic wave fungs ihe mean kinetic energy of the atomic samped p,

tions| ), which represent the atomic state through the avelyhich represents half the width at\¥ of the stationary

ageo of the density matrices associated with the wave funcmomentum distribution. For a Gaussian distribution, those
tions, o=|¢)(¢|. It is then straightforward to show that the two values are equal.

guantum master equation fer is the same as the master We plot in Fig. 8 the numerical results fpf,,s andp, as
equation for the actual density mat@x[Eqg. (8)]. Hence, the a function of the potential depttl, for three different de-
value of any observabl® for the quantum system repre- tuningsA. We find that these values are independent of the
sented by is equal to the ensemble average of the value ofletuning within the numerical errors. Several points for
the same observable for each stochastic wave function refRwer values ofU, have also been calculated but the atomic

resented by ) [38]: at any time, cloud was found not to thermalize. For those cases, the tem-
perature increases more or less linearly and the velocity dis-
<¢|@| ¢)=Tr(é@). (12) tribution becomes almost flat. It is also clear in Fig. 8 that

Prms @nd p. have different behaviorg,,s reproduces the
well-known dependence of the kinetic energy versus the
modulation depthp, scales as/U, for high values ofU,,

In this work, we are interested in the particular observableand abruptly increases &k, reaches very low values, typi-
that represents the momentum distribution of the atoms. Weally lower than 158 (the point of derochagge The mini-
have performed the full-quantum Monte Carlo integration ofmum value ofp,s is found to be of the order ofp(mg) min
the dynamics equations for a set of 200 wave functions for=4.12k. On the contrary, we find thai, increases mono-
various lattice parametefgletuning and modulation depth  tonically versudJ, for low values as well as for high values
Because the widths of the momentum distributions are typiof U,. The minimum value ofp. is obtained for the mini-
cally broader than severak, the spontaneous emission pat- mum value ofU, for which a steady-state velocity distribu-
tern can be approximated by photons emitted along the 3Eon can be obtainedUW,=78Eg) and is found to be of the
coordinate axes, y, or z. With such an approximation, all order of (g)nin=3.4%k. We identify two different regimes
operators in Eqg9) and(11) couple states of the forhm,p)  that can be distinguished: FaJ, above derochage (,
to states of the fornm’,p=7k) (wheremandm’ represent =15CER), bothp, andp,,sincrease ang, is slightly larger
the internal sub level of the atomic ground sjateis then  thanp,,s, that is to say that the momentum distribution is
convenient to perform the integration in the) representa- wider than a Gaussian distribution with the samgs. For
tion. The statd ) is decomposed onto the basis of {ipe U, below derochage (o< 15CER), p. decreases whilp,ms
states(with p=n#k, with n an integer positive or negatie increases rapidly asl, decreases; the momentum distribu-
Finally, for usual situations considered in this work, the typi-tion has large wings and becomes narrower than a Gaussian
cal momenta are smaller than72Q so that we taken| distribution. These different characteristics are illustrated in
=<100. From the simulations, we determined the mean kiFig. 9 where we plot the simulated velocity distributions to-

B. Results of the simulations
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b) FIG. 10. Theq parameter as a function of modulation depth of
0.08 the potential, obtained from fitting the numerically computed data
to Tsallis functions.
Z 0.6 - . .
g experimental measurements may be caused by the different
—g 0.04 d_imens_ionality considered in the experiments and in the
= simulations.
) Consider now fits to double Gaussians. We plot in Fig. 11
” 0.024 i numerically recorded velocity distributions in logarithmic
scale for potential depths in the two regimes corresponding
01 - to shallow and deep potentials, together with fits to double
-100 50 0 50 100 Gaussians. For the deep potentiblly& 293Eg), the profile
viv is essentially parabolic and thus corresponds to a Gaussian
FIG. 9. (Color online Numerically recorded velocity distribu- a)
tions with fits to simple Gaussians. F@, the modulation depth of 10°
the optical potential wat),=78Eg. For (b), it was U,=235ER. o1+
The insets show magnifications of portions of the wings of the
distributions. g 102+
=
gether with Gaussian fits in the two regimég=<150E and § 103+
Uo=150Eg. g 1041
One should note that this result is in disagreement with 2
earlier calculations performed for atoms with a theoretical 1054
J=1/2—J=3/2 transition for which Castiret al. find that ’
pP:ms> Pe for any value of the potential deptby, [13]. In fact, 10 0 @0 S0 6 20 40 g0°
when running our simulation for thé=1/2— J=3/2 transi- VIvg
tion, we were able to reproduce the resultg B8] and we b)
thus conclude that the discrepancy is due to the different 100
atomic transitions considered in R¢L3] and in the present
work. We finally conclude that in general, the momentum G
distribution significantly differs from a Gaussian distribution. Z 1024
Moreover, we find that the threshold fpy,,,s at low values of 5 X
U, does not affecp,. F 1071 o
We now turn to a more detailed analysis of the momen- R §
tum distributions. We first fit the velocity distributions to 2 S
Tsallis functions. The dependence of the Tsallis paranteter 1054
on the modulation depth is also shown in Fig. 10 and shows 106 %‘,’
a linear dependence gfversusU,,. o 4 20 b 20 o o

For all numerical data differs from 1 only by less than
5% and is less than 1. Moreover,s found to tend to 1 for
shallow potentials indicating that the best Tsallis fit is close FIG. 11. (Color onliné Numerically computed velocity distri-
to a Gaussian curve in disagreement with the previous dissution for (a) U,=78Eg and (b) U,=293ER together with fits to
cussion. The discrepancy between numerical simulations antbuble Gaussians.

VIVR
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a) the simulations are done in 1D. However, qualitatively, the
25 . = : . . experimental data are reproduced excellently. Figures 9—-12
% show numerical data corresponding to the experimental ones
20 1 in Figs. 3—7. The single Gaussian works for high irradiance
% but fails to fit the wings of the distribution for low irradi-
%151 5 ances. A Tsallis function does not fit the distribution any
i> better than a single Gaussian for the numerical data. Again,
° 10 i the distribution is best fitted by a double Gaussian and this is
particularly pronounced for shallow potentials. The fits to
54 e L double Gaussians also reproduce the signature of one hot and
-t one cold mode for shallow potentials. This strongly supports
0 : , : : : assumptions of a bimodal distribution.
0 50 100 150 200 250 300 We find that the “cold” mode is largely dominant even for
U/E, very shallow potentials close to “deochage” in both the
b) experimental(70% and the numerical90%) results[see
L — — Figs. 1b) and 12b)]. The quantitative discrepancy between
- .- . the limit population of the “hot” and “cold” modes results
v 0.8 - from the different dimensionalitie(3D experiment versus
§ 1D calcuations Indeed, the fraction of bound atoms i@
=06 dimension situation can be estimated by
&
50.4— n&’)ﬁ?\f azj: pdD(Ej)l<].;.[<dlEj#<Emama (13
€02 . . wherepdD (E)) represents the population of a state of energy
@ Ej, @ is a normalization factor, an&,,,, stands for the
04 000 000000 o . . .
. . . . : maximum energy of bound states in the potential wells along
0 50 100 150 200 250 300 the direction u (Emay, is of the order of the modulation

U,/ E, depth. Now, if the space directions are separalbhes is the

_ _ case in the harmonic approximation, which one can assume
FIG. 12. (a) Widths of the two Gaussiangold mode, squares; to be valid for bound statgsthen

hot mode, circlesas obtained from a fit of the numerical data to
Double Gaussians, as a function of modulation depth of the poten-
tial. (b) The relative population of the two modes of the velocity nﬁ)%'f,’%f aME plD(Ej’“’)lEj,u<Emaxy.' (14
distributions, obtained from the areas under the two Gaussians. The 1<p<d J

cold mode(squarey corresponds to the large fraction whereas the

hot mode(circles corresponds to the small fraction. Hence, assuming that all directions are equivalent, the

fraction of atoms in non-bound-states is
distribution. For the shallow potentialUo=78Eg), we
clearly identify two contributions: in addition to a narrow pdd) g H (1—nide gwdnup) (15)
parabolic profile(corresponding to low energetic atoms non-bound =, 2L g non-boun non-bound
broad onegcorresponding to high energetic atonappears.

This supports the interpretation of the dynamics in terms Therefore, the limit popuations of the hot mode at decro
of a bimodal atomic distribution, with each mode corre-are consistent in the experimeri89% withd=3) and in the
sponding to trapped atoms and to nearly “free” atoms. Thesimulations(10% withd=1).
whole distribution is well fitted by a double Gaussian func-

tion. We plot in Fig. 12a) the widths of both the modes as V. CONCLUSIONS
functions ofUy. The numerical results are in good agree- _ _ o
ment with experimental ondsee Fig. J. For shallow poten- In this work, we have studied the velocity distributions of

tials, we find two Gaussian components with widths thatcold atomic samples obtained by Sisyphus cooling both in
both increase with the potential depithy, whereas for deep €Xxperiments with®*3Cs and in full-quantum numerical simu-
potentials, the “hot component” is almost undetectable. Thudations performed for the actual45 transition of **Cs. We
the route to derochage for shallower potentials can be inter-stressed in particular the deviation from a Gaussian distribu-
preted as a transfer from the cold mode to the hot mode. Thiion. This has already been forecasted via semiclassical as
is supported by the results for the populations of the twowvell as quantum simulations for a simplified 343/2 tran-
Gaussian contributions to the velocity distribution plotted insition showing the difference of the rms velocity,s and the
Fig. 12b). We actually find that the cold mode is largely velocity v, corresponding to half the width at Ié of the
dominant even for very shallow potentials close ta@rde  distribution[13]. We recovered such a property but with a
chage. significantly different behavior of the ratio,ms/ve. This
Finally, we compare the numerical and experimental reshows that the non-Gaussian behavior of the velocity distri-
sults. A direct quantitative comparison is not adequate, sincbutions is certainly not a trivial effect in Sisyphus cooling.
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A. Summary of our results hand, it is not surprising that a fitting procedure with more
free parameters gives better fits. On the other hand, the ve-
locity distribution in logarithmic scale in Fig. 14 clearly
exhibits two components with very different widths. For
deep potentials, one recovers a Gaussian distribution of ‘cold

in this case, the atoms are trapped in the potential Wi atoms’ b_ound _in the potential weI_Is as expecteq from the
PP P Wt above discussion. When decreasing the potential depth, a

the kinetic energy of the atomic cloud is significantly smallerfraction of “hot atoms” grows up(for U< 12(E.). These

than the potential depthThe deviation of the velocity dis- [ﬁtoms have an energy larger than the potential depth and are

rnbutrl]orlr f“”l‘.“ r?tauhgfstlan tfunt'ctlloanbetc ortn%s more lprommen ot trapped in the potential wells. We found that the fraction
or shaflow fight-shitt potentials. We tested several ypes Olyt ot atoms can be significant for very shallow potentials. It

functions to better fit the shape of the velocity distributions, .. -has 30% in 3D experiments and 10% in 1D numerical

i_n the range of parameters Correspondllng to deeper pOte'%Tmulationsjust above deochage atl ,=60ER, (the discrep-
tials. We found that a better ficorresponding to smaller®) ancy between the experiments and the simulations is due to
can be obtained by using a Tsallis function or a doublene gifferent dimensions as shown at the end of Sec. )V B
Gaussian. This result strongly supports assumptions that an optical lat-

Tsallis functionsThe use of a Tsallis function is related to tice has abimodal VE|0CiW distributionA Straightforward
the details of the dynamics of atoms cooled by the Sisyphugterpretation would be that some atoms are bound at lattice
mechanism which is known to be slightly more complicatesites, whereas others have enough energy to move around on
than a Brownian motion. The Tsallis function introduces atop of the modulated potential. An interesting result of our
new parameteq whose deviation from 1 measures the de-work is that the phenomenon of dechage does not corre-
viation of the velocity distribution from a Gaussian function. spond to a sharp increase of the width of the velocity distri-
The parameteq can be calculated in the “jumping regime” butions corresponding to each mode but to a continuous
[39] and it is straightforward to show thattends to 1 for transfer from the cold mode to the hot mode. We found that
high values of the potential depfthus corresponding to a when derochage occurs, the fraction of atoms in the hot
weak deviation from a Gaussipand increases for shallow mode does not exceed a few tens percent.
potentials. Anab initio calculation ofg is more tricky in the
“oscillating regime” which corresponds to the domain of
parameters for shallow potentials, near the point afrde The results shown in this paper strongly suggest that the
chage[39]. Nevertheless we can plot the value @torre-  simple picture for Sisyphus cooling, based on a competition
sponding to the best fit of the measured velocity distributionsetween a diffusion and a frictiofsee Eq.(4)], is not ad-
as a function of modulation depth. For large modulationequate to describe the “coldest” velocity distributions. Even
depths, we find thaq) approaches 1, which corresponds to athough one has to be careful before generalizing the conclu-
Gaussian distribution, in agreement with the analytical calsions of this paper to other situations of laser cooling and/or
culation (see Sec. Il and Ref21]). When reducing the po- trapping, the existence of two velocity modes might provide
tential depth, we clearly observed an increase iand this  a useful guide to understand the dynamics and limits of laser
corresponds to a velocity distribution with wings larger thancooling. One can note, e.g., that for shallow potentials, one
in a Gaussian function. In our case the maximgns close has fewer bound states, and the fraction of atoms in the con-
to 1.6 and this corresponds in our experiments to a potentialuction band gets more prominent, as shown in Figs. 7 and
depthU ,=60Eg. ForU,<60Eg, the atomic cloud does not 12.
reach a steady state and the optical lattice disintegrates. It is These atoms will experience a friction force correspond-
interesting to note that the rms velocity of Tsallis distribu-ing to the classical Sisyphus cooling model. The route to
tions with g aboveq.,=5/3 diverged40]. If one would plot  equilibrium for the bound atoms is less clear. One hypothesis
rms temperatures of the atoms using the rms velocity, thi§43] is that bound levels are uniformly “watered” from the
would correspond to a diverging temperature. As one is oftewonduction band, whereas high lying levels are more likely
limited by noise in the wings of the velocity distribution, one to escape. Thus, the route to equilibrium is not quite a com-
has a tendency to restrict the analysis to atoms with velocipetition between cooling and heating. A drawback with this
ties several times below theelyalue of the distribution. Any  theory is that it would not yield Gaussian velocity distribu-
divergence is hence avoided. Note also that such divergencésns. However, this theory has the advantage that the rate of
are very familiar: the wings of a Lorentz distribution are alsoequilibration should depend linearly on irradiance, which is
known to cause a divergence of the rms value of the districonsistent with previous experimeftst,45. In contrast, the
bution. One can also recall that in the case of narrow-linestandard Sisyphus cooling theory predicts a cooling rate in-
cooling, the rms velocity divergept1,420 when one ap- dependent of irradiandd]. An interesting experiment would
proaches the atomic resonance, and that for very small ddse to measure the velocity distribution as a function of time
tunings one can no longer even have a normalized distribuafter a sudden change of the light-shift potential, and see if
tion function[41]. the two populations would evolve differently.

Double Gaussian functiong-itting the recordedexperi- Figures 3 and 4 seem to indicate a time dependence of the
mental or numericaldistribution functions to double Gaus- experimentally recorded velocity distribution. However, with
sians works even better than the Tsallis function. On the onthe current data sétising only the two cooling times 25 ms

Our results(experiments as well as numerical simula-
tions) show that the velocity distributions are compatible
with Gaussian functions for deep enough potenti@pi-
cally for U, larger than a hundred recoil energiedote that

B. Perspectives
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and 50 mg and with the current experimental uncertainties, Experiments as well as full-quantum simulatiofs 1D
we cannot draw any quantitative conclusion for the time de-and 3D should allow one to get new insights in the dynam-
pendence of the velocity distribution. In future work, we will ics of such systems. Apart from the suggestions above, future

study the velocity distribution as a function of time. work could, e.g., focus on the phase space dynamics of at-

It would also be interesting to extend the test functions®Ms in optical lattices and of quantum transport properties of

used in this paper to a narrow-line cooling scheme, whict}Itracold atoms or even Bose-Einstein condensates.
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