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Analysis of resonances in Mo” ller scattering in a laser field of relativistic radiation power
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Presently available laser sources can yield powers for which the ponderomotive energyUp of an electron
can be equal to or even larger than the rest energymc2 of an electron. Therefore it has become of interest to
consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work
we consider laser-assisted electron-electron scattering in such a field, assuming that the laser beam has linear
polarization. We investigate in detail the angular and polarization dependence of the differential cross sections
of the laser-assisted nonlinear processes as a function of the orderN of absorbed or emitted laser photonsv.
The present work is a continuation of our previous analysis of Compton scattering and of Mott scattering in a
linearly polarized laser field@Phys. Rev. A65, 022712~2002!; 65, 033408~2002!#.
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I. INTRODUCTION

The relativistic treatment of electron-electron scattering
quantum electrodynamics is called Mo” ller scattering@1#. De-
tails on this process can be found in the older book
Heitler @2# and shorter accounts can be found in the books
Bjorken and Drell@3# and by Itzykson and Zuber@4#. With
the advent of the laser, people became interested in inv
gating fundamental processes of quantum electrodynamic
the presence of a laser field. Such processes were, in pa
lar, Compton scattering@5# and electron-atom scattering@6#.
Surveys of early work can be found in Refs.@7,8#. Electron-
electron scattering in a laser field was investigated for
first time by Ole�nik @9# who showed that the effective cros
sections of Mo” ller scattering contain resonances connec
with the discrete nature of the energy spectrum of
electron1plane electromagnetic wave system. Similar fe
tures can apparently be found in laser-assisted potential
tering of electrons@10#. The resonance phenomena in las
assisted Mo” ller scattering were reinvestigated in more deta
including considerations in the nonrelativistic limit, by Bo¨s
et al. @11# and by Borisovet al. @12# who included radiative
corrections to eliminate the resonance divergences. A non
ativistic treatment of electron-electron scattering in a la
field was presented by Bergouet al. @13# and by Krainov and
Roshchupkin@14#. In all these calculations the laser field
represented by a monochromatic, circularly polarized e
tromagnetic plane wave. A survey of this early work
laser-assisted Mo” ller scattering can be found in the review b
Fedorov @15#. The possibility of the formation of bound
states in the electron-electron system at very high laser p
ers was investigated by Kazantsev and Sokolov@16,17#. The
problem of laser-assisted Mo” ller scattering at high radiation
powers, in the resonant and nonresonant regions, was
vestigated more recently in several papers by Roshchu
@18,19# and Denisenko and Roshchupkin@20,21#. A survey
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of the most recent work on the present topic and rela
processes can be found in the paper by Roshchupkinet al.
@22#. In the above investigations, comparatively little n
merical work was done to manage in general the evalua
of the generalized Bessel functions that appear in the ma
elements of all these laser-dressed fundamental process
quantum electrodynamics.

After having successfully dealt with Compton scatteri
and Mott scattering in the presence of a monochromatic,
liptically polarized electromagnetic plane wave field of re
tivistic radiation power such that the ponderomotive ene
of a free electron becomes of the order of magnitude or e
larger than the electron’s rest energy, i.e.,Up*mc2 @23–26#,
we shall reinvestigate in the present work Mo” ller scattering
under similar conditions, since presently available la
sources are able to produce such high radiation field inte
ties. We shall derive in the next section the general cr
section formula of Mo” ller scattering in an elliptically polar-
ized laser field and perform in Sec. III a detailed analysis
the scattering resonance conditions. On the basis of
analysis we shall present in Sec. IV some characteristic
merical examples of cross section data in the vicinity
these resonances at moderately high radiation powers
Sec. V we shall summarize our findings and present so
concluding remarks. We shall set\51 throughout this work.

II. LASER-DRESSED MO” LLER CROSS SECTIONS

The S-matrix element of Mo” ller scattering in a laser field
can be easily written down by using, for example, the ma
element for Mo” ller scattering, presented in the book
Bjorken and Drell @3#, and by replacing the free particl
wave functions by the corresponding Volkov solutions@27#
of electrons in an electromagnetic plane wave field. For t
bare ingoing electrons of four momenta (pi ,qi) and corre-
sponding outgoing electrons of momenta (pf ,qf) we thus
find
©2004 The American Physical Society04-1
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Sf i5S~pf ,qf ;pi ,qi !

52
i

cE dxdy@C̄pf
~x!egmCpi

~x!#Dmn~x2y!

3@C̄qf
~y!egmCqi

~y!#1
i

cE dxdy•••pf↔qf•••

~1!

in which the photon propagatorDmn(x2y) is given by

Dmn~x2y!5E dK
~2p!4

D̃mn~K!e2 iK•(x2y),

D̃mn~K!5
1

K 2 S gmn2k
KmKn

K 2 D , ~2!

andk is the gauge-fixing constant. The electron wave fu
tions Cpi ( f )

(x) and Cqi ( f )
(y) are Volkov solution. Thus we

can take over certain results from our calculations of Com
ton scattering and Mott scattering@23,25#. For a plane elec-
tromagnetic wave,Am(k•x), with k250, the normalized
Volkov solution for an electron of four momentump reads

Cp~x!5A m

VEp
f ~x;p!S 12

egnAn~k•x!gmkm

2k•p Dup ,

f ~x;p!5expS 2 ip•x2 i E
2`

k•xFeA~f!•p

p•k
2

e2A2~f!

2p•k Gdf D ,

~3!

whereup is a free particle Dirac spinor, obeying

~gmpm2mc!up50. ~4!

We consider a monochromatic, elliptically polarized pla
wave with two unit vectorseW1 , eW2 and an angled, describing
the ellipticity. Then its vector potential reads

Am~k•x!5A0@e1mcos~d!cos~k•x!1e2msin~d!sin~k•x!#,

e15~0,eW1!, e25~0,eW2!,

e1
25e2

252eW1
252eW2

2521, e1•e25eW1•eW250. ~5!

In that case~neglecting an unknown constant phase fact!
the functionf (x;p) in the Volkov wave Eq.~3! can be writ-
ten in the form

f ~x;p!5exp@2 i ~ p̄•x1Q~k•x;p!!# ~6!

in which we introduced the renormalized four momentap̄,
defined by

p̄5p1dn, n5
k

uk0u
,

01340
-

-

d5
~mc!2m2

4n•p
, m5

ueA0u
mc

,

p̄• p̄5m̄2c2, m̄25m2S 11
m2

2 D ~7!

and the functionQ(k•x;p) stands for the expression

Q~k•x;p!5eA0

p•e1

p•k
cos~d!sin~k•x!

2eA0

p•e2

p•k
sin~d!cos~k•x!

1
e2A0

2

8

1

k•p
cos~2d!sin 2~k•x!. ~8!

Therefore the Volkov wave equation~3! can be written in the
form

Cp~x!5A m

VEp
e2 i [ p̄•x1Q(k•x;p)]

3S 12
egnAn~k•x!gmkm

2k•p Dup . ~9!

With such Volkov solutions for the ingoing electrons of fo
momentapi and qi and outgoing electrons of momentapf
andqf the matrix element, Eq.~1!, using Eq.~2!, has to be
evaluated explicitly. We find

S~pf ,qf ;pi ,qi !52 i4paE dxdy
dK

~2p!4

3$D̃mn~K!e2 iK•(x2y)

3@C̄pf
~x!gmCpi

~x!#@C̄qf
~y!gnCqi

~y!#

2•••pf↔qf•••%. ~10!

Since the Volkov waves in Eq.~10! are periodic functions in
k•x and k•y, respectively, we can easily decompose theS
matrix into its Fourier components and perform the integ
tions overx andy. This yields

S~pf ,qf ;pi ,qi !52 i4pa~2p!4(
N

d~ p̄i1q̄i2 p̄f2q̄f

1Nk!
m2

V2AEpf
Epi

Eqf
Eqi

tN~pf ,qf ,pi ,qi !,

~11!

where the matrix elements,tN , corresponding to the absorp
tion or emission ofN laser photons are given by
4-2
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tN~pf ,qf ,pi ,qi !5(
M

$D̃mn~ q̄i2q̄f1Mk!FN2M
m ~pf ,pi !

3FM
n ~qf ,qi !2D̃mn~ q̄i2 p̄f1Mk!

3FN2M
m ~qf ,pi !FM

n ~pf ,qi !%. ~12!

In Eq. ~10! we have introduced the fine structure const
a5e2/4pc and in Eq. ~12! the Fourier coefficients
ns
a

e

th

e

ta

d

01340
t

FN
l (p8,p) are conveniently defined by the following rela

tion:

C̄p8~x!glCp~x!5
m

VAEp8Ep
(
N

ei ( p̄82 p̄2Nk)•xFN
l ~p8,p!

~13!

in which these coefficients are explicitly given by
FN
l ~p8,p!5ūp8Fgl1S eA0

2k•p8
gne1ngmkmgl2

eA0

2k•p
glg%e1%gsksD cos~d!

1

2
~BN111BN21!1S eA0

2k•p8
gne2ngmkmgl

2
eA0

2k•p
glg%e2%gsksD sin~d!

1

2i
~BN112BN21!2

e2A0
2

4~k•p8!~k•p!
Fgne1ngmkmglg%e1%gskscos2~d!S 1

2
BN

1
1

4
~BN121BN22! D1

1

4
~gne1ngmkmglg%e2%gsks1gne2ngmkmglg%e1%gsks!sin~2d!

1

2i
~BN122BN22!

1gne2ngmkmglg%e2%gskssin2~d!S 1

2
BN2

1

4
~BN121BN22! D G Gup , ~14!
tion

-

r-
where the generalized Bessel functionsBN are defined by the
Fourier expansion of the following generating function:

ei [Q(k•x;p8)2Q(k•x;p)]5(
N

eiNk•xBN~a,b;a!. ~15!

The argumentsa,b,a of the functionsBN follow from Eq.
~8!, according to which the generating function in Eq.~15!
for the BN can be explicitly expressed in the form
exp$i@asin(k•x2a)1bsin 2(k•x)#%. While the Fourier decom-
positions of theS-matrix element and the decompositio
into generalized Bessel functions is straightforward and w
done analytically, the algebraic evaluations of the matrix
ements in Eq.~14!, containing a considerable number ofg
matrices, was done by means of computer programs for
purpose.

With the above results we can now evaluate the nonlin
differential cross sectionsdsN of laser-assisted Mo” ller scat-
tering. We find, with reference to our definitions and no
tions for renormalized, laser-dressed four-momenta~7!,

dsN5
4m4c6a2

A~pi•qi !
22~mc!4E d3pf

Epf

d3qf

Eqf

d~ p̄i1q̄i2 p̄f

2q̄f1Nk!utN~pf ,qf ,pi ,qi !u2. ~16!

In order to evaluate the integrals in Eq.~16! we first have to

find the Jacobianu]qW f /]q̄W f u, which can be evaluated to yiel
s
l-

at

ar

-

U]qW f

]q̄W f

U511
~mc!2m2

4~ q̄f•n!2 F q̄W f•nW

q̄f 0

21G ~17!

by means of which the integration overd3qf in Eq. ~16! can
be performed and we obtain

dsN5
4m4c6a2

A~pi•qi !
22~mc!4

J~ q̄f ,qf !

Epf
Eqf

E d3pfd~ p̄i01q̄i02 p̄f 0

2q̄f 01Nk0!utN~pf ,qf ,pi ,qi !u2, ~18!

where we have introduced for the Jacobian the abbrevia

u]qW f /]q̄W f u5J(q̄f ,qf). Finally, we are left with the integra
tion over the remaining one-dimensionald function. To this
end, we first rewrited3pf into the following expression

d3pf5dVpf
pW f

2dpf5dVpf
upW f upf 0dpf 0 ~19!

and we can then perform the final integration in Eq.~18!
over dpf 0 to obtain the final differential cross section fo
mula

dsN

dVpW f

5
4m4c4a2

A~pi•qi !
22~mc!4

J~ q̄f ,qf !

uDu
upW f u
qf 0

3utN~pf ,qf ,pi ,qi !u2, ~20!
4-3
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where in the denominator the coefficientD is the derivative
of the argument of thed function and it is given by the
expression

D512

mUpS v

c
2

pf 0

pW f
2

kW•pW f D v

c

~k•pf !
2

2
pf 0

q̄f 0

q̄W f•pW f

pW f
2

1

mUpS v

c
2

pf 0

pW f
2

kW•pW f D
~k•pf !

2
q̄W f•kW . ~21!

In the formula~20! there appear the outgoing four-momen
pf and qf , and also the renormalized ones,p̄f and q̄f , de-
fined by Eqs.~7! @or by Eqs.~33! and~34! below#. However,
due to the energy-momentum conservation equation

p̄i1q̄i2 p̄f2q̄f1Nk50 ~22!

and the on-mass-shell conditions,

pf
25qf

25m2c2, ~23!

the outgoing four-momenta can be expressed in terms of
incoming four-momentapi andqi , and the scattering angle
upf

andwpf
of one of the outgoing momentapW f . Due to the

nonlinear character of the Eqs.~22!, ~23!, and~7!, this solu-
tion does not exist in a closed form and, for this reason,
have not substituted it into Eq.~20!. Nevertheless, this solu
tion can be determined numerically. In this sen
pf , qf , p̄f , and q̄f , appearing in Eq.~20!, are known pro-
vided thatpi ,qi and the scattering anglesupf

and wpf
are

given.

III. ANALYSIS OF SCATTERING RESONANCES

In the early work on laser-assisted Mo” ller scattering@9#,
the appearance of laser-induced resonances was discuss
is the purpose of the present section, to derive the neces
kinematical conditions for the observation of these re
nances in order to define a convenient set of parame
which permit us to analyze them numerically. These re
nances are defined by poles of the photon propagators in
~12!. Namely, among all the possible values ofM there could
exist such integersM2 for which

~ q̄i2q̄f1M2k!250 ~24!

or

~ q̄i2 p̄f1M2k!250. ~25!

Since our further analysis is similar for both of these tw
equations, we shall therefore concentrate on the first of th
Hence, the resonance conditions are defined by the five
lar equations

p̄i1q̄i2 p̄f2q̄f1Nk50, ~26!
01340
he

e

,

d. It
ary
-
rs
-
q.

.
a-

k8250, ~27!

where

k85q̄i2q̄f1M2k5 p̄f2 p̄i2M1k ~28!

and

N5M11M2 . ~29!

In our discussion below, the intensity of the laser field will
determined by the ponderomotive energy

Up5
e2A0

2

4m
5

mc2m2

4
, ~30!

so that the following relations between the renormalized a
bare four-momenta are fulfilled:

p̄i5pi1
mUp

k•pi
k, ~31!

q̄i5qi1
mUp

k•qi
k, ~32!

p̄f5pf1
mUp

k•pf
k, ~33!

q̄f5qf1
mUp

k•qf
k. ~34!

The above equations are invariant under boosts and r
tions. Consequently, there is no need to retain a partic
symmetry and we can choose one specific reference fra
defined as follows:

pW i52qW i , ~35!

px50, ~36!

py50, ~37!

ky50. ~38!

Using these relations, let us parametrize the solution of E
~26! and ~27! as follows:

k5
v

c
~1,sinu,0,cosu!, ~39!

pi5S E

c
,0,0,pD , ~40!

qi5S E

c
,0,0,2pD , ~41!

k85
v8

c
~1,j,6A12j22z2,z!, ~42!

where
4-4



, t

ce

m

tic

th

b

n

ter-
we

of

l to

ANALYSIS OF RESONANCES IN MØLLER SCATTERING . . . PHYSICAL REVIEW A69, 013404 ~2004!
p5AE2

c2
2m2c2 ~43!

andj andz define the null four-vectork8. In order to make
sure that the components of this vector are real numbers
parametersj andz have to fulfill the condition

j21z2<1, ~44!

which appears to be crucial for determining the resonan
The energies, belonging to the final four-momentapf andqf
should be positive. No further conditions need to be i
posed. The casev850 satisfies by itself the conditionk82

50 and therefore does not need to be excluded. This par
lar case will be briefly discussed later.

Let us now analyze the on-mass-shell equations for
final momentapf andqf

pf
25m2c2, ~45!

qf
25m2c2. ~46!

After some algebraic manipulations they lead to

M1pi•k1S pi1
mUp

pi•k
kD •k81M1k•k850 ~47!

and

2M2qi•k1S qi1
mUp

qi•k
kD •k81M2k•k850. ~48!

The four-vector products in the last two equations can
expressed in terms of our parameters. We find that

pi•k5
v

c
p2 , ~49!

qi•k5
v

c
p1 , ~50!

pi•k85
v8

c FE

c
2pzG , ~51!

qi•k85
v8

c FE

c
1pzG , ~52!

k•k85
vv8

c2
@12j sinu2z cosu#, ~53!

where

p65
E

c
6p cosu. ~54!

In this way, Eqs.~45! and ~46! can be transformed into
01340
he

s.

-

u-

e

e

2M1

v

c
p25

v8

c F S E

c
2pz D1

mUp

p2
@12j sinu2z cosu#

1M1

v

c
@12j sinu2z cosu#G , ~55!

M2

v

c
p15

v8

c F S E

c
1pz D1

mUp

p1
@12j sinu2z cosu#

1M2

v

c
@12j sinu2z cosu#G . ~56!

As we can see, for the casev850, this set of equations ca
be solved only ifM15M250. Then the equationk850,
which follows from the definition~42!, leads to the result
pi5pf and this relates to the case of forward elastic scat
ing. We shall not consider this case any further. Next
eliminatev8 from the foregoing two equations and find

M2p1S E

c
2pz D1M2mUp

p1

p2
@12j sinu2z cosu#

1M1p2S E

c
1pz D1M1mUp

p2

p1
@12j sinu2z cosu#

12M1M2

E

c

v

c
@12j sinu2z cosu#50. ~57!

This is evidently a linear equation inj, z of the general form
Aj1Bz1C50 with the coefficientsA, B, andC being ex-
plicitly given by

A52
p2

p1
mUpM1sinu2

p1

p2
mUpM2sinu

22
Ev

c2
M1M2sinu,

B52pp1M22
p1

p2
mUpM2cosu1pp2M1

2
p2

p1
mUpM1cosu22

Ev

c2
M1M2cosu,

C5
E

c
p1M21

p1

p2
mUpM21

E

c
p2M11

p2

p1
mUpM1

12
Ev

c2
M1M2 . ~58!

It is well known from analytic geometry that the distance
a straight line

Aj1Bz1C50 ~59!

from the origin of the Cartesian coordinate system is equa
4-5
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D5
uCu

AA21B2
. ~60!

On the other hand, we know that the parametersj and z
must fulfill the inequality~44!. This means thatD<1 and we
therefore obtain the condition

f ~M1 ,M2!5C22A22B2<0. ~61!

This inequality, defined for a set of initial scattering para
etersE, Up , u and v, and for the physical conditions tha
the energies of the final electrons should be larger thanmc2,
is permitting us to determine all possible integersM1 and
M2 @hence also the total number of laser photons absorbe
emitted during the scattering process,N5M11M2, as well
asv8 from Eq. ~55! or ~56!# for which resonance scatterin
takes place. By choosing one of these possible sets of
gers (M1 ,M2), we can determine the range of permitt
parameter values forj and z by analyzing Eqs.~59! and
~44!. It appears that for all these allowed parameter val
the three-dimensional unit vectornW k85kW8/ukW8u draws a
closed trajectory on the unit sphere. This circle can be
rametrized by means of the angle 0<b<2p such that

j52
BAA21B22C2

A21B2
cosb1

AC

A21B2
, ~62!

z51
AAA21B22C2

A21B2
cosb1

BC

A21B2
, ~63!

6A12j22z25
AA21B22C2

AA21B2
sinb. ~64!

This trajectory determines all possible values of the fi
momentapf andqf in the following way: Any angleb de-
fines the four-vectork8 from which we calculate the four

FIG. 1. Shown is the scattering geometry. In the center of m

system the electrons collide with the momentapW i andqW i along thez

axis while the laser beam with wave vectorkW propagates in the

(x,y) plane.u is the angle betweenkW and thez axis. pW f andqW f are

the momenta of the outgoing electrons and the direction ofpW f is
specified by the anglesupW f

andwpW f
.

01340
-

or

te-

s

a-

l

momentum p̄f , applying Eq. ~28!, whereas the energy
momentum conservation condition~26! determines the four-
momentumq̄f . Finally, by applying the equations

pf5 p̄f2
mUp

k• p̄f

k̄, ~65!

qf5q̄f2
mUp

k•q̄f

k̄, ~66!

we can determine the momenta of the scattered electron

IV. NUMERICAL EXAMPLES

In the present work, we are particularly interested in t
conditions of resonances occurring in laser-assisted Mo” ller
scattering and in the corresponding cross section values
particular valuesN of absorbed or emitted laser photonsv.
For our analysis, we have chosen the following parame
values. The initial kinetic energy of the colliding electrons

s

FIG. 2. For the laser and electron parametersv51.54 eV, I
51017 W cm22 andEi5104 eV cross section data are presented
the nonresonant region of pairs (M1 ,M2). The parameters areu
5130°, wpW f

530°, andN52100, i.e., 100 photons of the linearl
polarized laser field are emitted during the scattering process.

polarization vector«W 1 of this field is located in the (x,y) plane and
upW f

is measured in radians. The data in the upper and lower pa
are the same, except that they are presented on different scale
4-6
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the center of mass system isEi5104 eV and the laser field
of frequencyv51.54 eV has the moderate field intensity
I 51017 W cm22.

In Fig. 1 we show the envisaged geometry of the scat
ing process. Along thez axis the electrons collide in th
center of mass system with the momentapW i and qW i in the
presence of the laser beam with the wave vectorkW propagat-
ing in the (x,z) plane. The direction of propagation is dete
mined by the angleu betweenkW and thez axis. The momenta
of the outgoing electrons arepW f andqW f , respectively, where
the direction of propagation of the outgoing electrons of m
mentumpW f is specified by the polar anglesupW f

andwpW f
.

Before we discuss the resonance phenomena in Mo” ller
scattering, we first present in Fig. 2 cross section data for
process in the nonresonant domain of points (M1 ,M2). The
data were evaluated for the laser and electron parame
quoted above withN52100, while, with reference to Fig
1, the polar angleu5130° and the azimuthwpW f

530°. The

laser field is linearly polarized and the unit vector«W 1 is lo-
cated in the (x,z) plane of Fig. 1. The scattering angleupW f

in
our figure is measured in radians. The cross section
shown in the upper and in the lower panels are the same

FIG. 3. For the same electron and laser parameters as in F
all pairs (M1 ,M2), permitted by the condition~61!, are presented
for u5130°.
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they are presented on different scales. In this way we
recognize the enormous differences in the values of the
in the regions of large and small scattering angles. Moreo
we find in the lower panel that at very small scattering ang
upW f

there is a ‘‘dark window’’ into which marginally few
electrons are scattered.

In Fig. 3 we present for the above laser and electron
rameters in the plane of numbersM1 and M2 all pairs
(M1 ,M2) permitted by the inequality~61! for the particular
polar angleu5130° betweenkW and thez axis. The pairs
(M1 ,M2) shown as gray region in this figure have to
discarded, since they would correspond to negative kin
electron energies. The units along the abscissa and ord
for M1 andM2 are in powers of 1023.

In Fig. 4 we have enlarged a certain part of the data
Fig. 3, showing along the straight line those pairs (M1 ,M2)
for which the auxiliary conditionM11M2521 is fulfilled.
The corresponding points in the (M1 ,M2) plane refer to
resonances in inelastic Mo” ller scattering with the emission o
one laser photonv.

For the selected points (M1 ,M2) of Fig. 4, we show in
Fig. 5, with reference to Fig. 1, all possible projections of t

. 2
FIG. 4. Shown is an enlarged section of the data (M1 ,M2)

depicted in Fig. 3 for which, in particular, the conditionM11M2

521 holds. These pairs (M1 ,M2) refer to resonances in inelasti
Møller scattering with the emission of one laser photonv.
irs

r
n
e

r
st
ss

e
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FIG. 5. Presented for the selected pa
(M1 ,M2) with M11M2521, shown as gray

circles in Fig. 3, are the possible projections ofpW f

into the (x,y) plane close to forward direction fo
which the Mo” ller cross sections are infinite o
account of the singularities determined by th
condition ~24!. Apparently, to any permitted pai
(M1 ,M2) there corresponds a closed line, almo
a circle, for close to forward scattering. The cro
sections forwpW f

530° and for smallupW f
are form-

ing a straight line. Their crossing points with th
above circles indicate the occurrence of res
nances at the points, denoted by 1,2, . . . ,5.
4-7
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corresponding final momentapW f into the (x,y) plane in the
close to forward direction for which the cross sections
Mo” ller scattering become infinite on account of the singula
ties, determined by the condition~24!. The singularities, due
to the second condition~25! are not considered in the prese
discussion. As we can observe, to any allowed pair (M1 ,M2)
of integers there corresponds in this figure a closed line,
can be well approximated by a circle in the case of close
forward scattering. By calculating the cross sections of
elastic Mo” ller scattering for a particular valuewpW f

530° of

the azimuth and for smallupW f
~shown as a straight line in thi

figure!, we should expect to observe resonances at the po
marked by 1,2, . . . ,5.

This is demonstrated in Fig. 6 where the cross section
inelastic Mo” ller scattering~in a.u.! are presented for the
emission of one laser photonv and forwpW f

530° and for the
same parameter values chosen initially. As indicated bef
we really observe in the upper panel rapid changes of
cross section values at the points 1,2, . . . ,5 of Fig. 4 where
the resonance condition~24! is fulfilled. For the particular
case of the crossing point, denoted by 1 in Fig. 4, we
recognize in the lower panel that the resonance, at which
cross sections become infinite, is accompanied by a dip.

FIG. 6. Shown in the upper panel are the cross sections in
vicinity of the expected resonances of Mo” ller scattering, determined
by the crossing points of the straight lines with the circles, p
sented in Fig. 5. Details of the first resonance in the upper pane
presented in the lower panel in which both the resonant peak as
as the dip can be recognized.
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In order to explain why the appearance of an infinity
the laser-induced resonance is accompanied by a dip of
cross sections of Mo” ller scattering, we shall approximate th
scattering amplitude very close to the resonance by
terms, namely its singular part, leading to the infinity, and
constant contribution of the remaining background

f ~u!5
a

u2u r
1b, ~67!

whereu r is the polar angle of the direction ofpW f at which the
resonance appears anda andb are constants. Hence, near th
resonance the differential cross section has the structure

u f ~u!u25
ubu2

~u2u r !
2 S u2u r1

a

bD S u2u r1
a*

b*
D ~68!

and we see that there are in general two complex angleu r
2a/b andu r2a* /b* for which the cross section vanishe
The fact that the dip shows up very close to the resona
indicates thatuau!ubu which is also compatible with our ap
proximation. The expression~68! shows that foru5u r
1Re(a/b) we should expect a minimum of the cross secti
which can have the value zero only ifa/b is a real number.
Since the numerical work of our present investigation
rather complicated, we were not able to also consider
damping mechanisms that would eliminate the resonance
vergences, as considered in the work of Bo¨s et al. @11# and
Borisov et al. @12#.

V. SUMMARY AND CONCLUSIONS

In the present work we reconsidered Møller scattering i
laser field of relativistic radiation power and presented sc
tering formulas for arbitrary elliptic polarization. Particula
attention was devoted to a detailed analysis of the conditi
required, in order to observe resonances during the la
assisted scattering process. For a selected set of initial
rameter values we presented characteristic examples of t
laser-induced resonances. Since the numerical work of th
investigations is rather complicated and time-consuming,
were not able to also consider any damping mechani
which would prevent the appearance of divergences at
points of resonance. In the nonresonant regions of scatte
we found ‘‘dark angular windows’’ at very small scatterin
angles where the cross sections are extremely small.
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