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Enhanced molecular alignment by short laser pulses
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We study molecular alignment by trains of strong, ultrashort laser pulses. Single-pulse alignment is analyzed
both in classical and quantum-mechanical regimes. Moreover, we suggest multipulse excitation schemes lead-
ing to dramatically enhanced molecular alignment, and define conditions for femtosecond experiments of this
kind.
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[. INTRODUCTION multipulse alignment of molecules in the classical and
guantum-mechanical regime in more detail. We analyze and
The ability to align or orient macroscopic samples of mol-compare several strategies for enhanced multipulse molecu-
ecules is crucial for many applications in chemical reactiorar alignment. With help of quantum control theory, we de-
dynamics, surface processing, and ultrafast optics. Moleculdine parameters for optimal molecular alignment under vari-
alignment with the help of lasers has become an intensivelpus conditions, including different temperature regimes. The
studied subject in the last yedfsr a recent review see, e.g., Paper is organized as follows. Section Il describes Hamil-
Ref.[1]). Strong nonresonant laser fields have been shown tfnian of the system, and presents the action of a short
yield molecular alignment along the field polarization direc-Pulsed kick on a three-dimensional quantum rigid rotor. Sec-
tion [2—5] by creating pendular molecular sta{@s-8]. By  tion lll analyzes the time-dependent alignment factoea-
adiabatically turning on the laser field, the molecules may bsure of the angular distribution widttfollowing a single
trapped in pendular states the angular width of which reduceghort pulse, both in the quantum and classical limits. Optimal
with increasing intensity of the laser. However, this molecu-molecular alignment with a train of pulses is studied in Sec.
lar alignment disappears when the field is turned off adiabatilV for various pulse types. The results are summarized in
cally. On the other hand, rather short laser pulses may creaeC. V. The paper also contains two Appendixes with the
rotational wave packets that take a noticeable aligned shaystetails of the calculations.
after the end of the puls®-21], even under thermal aver-
aging [22,23. Alternatively, free aligned rotational wave II. THREE-DIMENSIONAL KICKED ROTOR
packets may be created by a sharp truncation of an adiabatic ) - )
strong laser pulsg24,25. Once being generated, aligned ro- Under certain conditions, the process of molecular al!gn-
tational states periodically retain the angularly squeezedent by laser fields can be described by a strongly driven
shape because of the phenomenon of quantum revivalflree-dimensional3D) rigid-rotor model. The Hamiltonian
Many applications may benefit from that transient alignmenff @ three-dimensional driven rotor is
at field-free conditionsGeneration of ultrashort light pulses
[26,27] and control of high harmonics generatif®8] are
only a few examples to mention.
Recently, we showed that there is a limit to the degree of

molecular alignment that can be attained by a single, ulyherelL is the angular momentum of the rotorjs its mo-
trashort laser pulsg29]. In order to achieve enhanced field- ment of inertia, and is the angle between the field polar-
free molecular alignment beyond this limit, more compleXization and molecular axis. A linear molecule without a per-
pulse shapes should be used. Methods of optimal contrghanent dipole couples to the external field via induced
have been applied to this problem in the past, providingyo|arization. For nonresonant laser fields, this interaction,

for producing angularly squeezed states of a rigid rotor by a

specially tailored series of short laser pulses was suggested V(6,H)=—LE2(t)[(ay— a,)co(0) +a, ]. )
in Ref. [35]. The proposed “accumulative squeezing” ' |
scheme leads to a dramatic narrowing of the rotor angulay,

distribution upon increasing the number of the pulses. Arbarallel and perpendicular to the molecular axis, &(t) is
atom optics realization of this stratef§6] has been already the envelopeof the laser pulse. By introducing the dimen-

algment by rains of ttashort aser pulses seems to be SOTIESS mer=til and the interaction strengte-(a
a 2 2 Honi i
feasible experimental procedure as we®,35,38. @, )E5()1/(477), the Hamiltonian can be written as
In a recent study[29], we proposed optimal two- and -5
three-pulse schemes for effective field-free molecular align- _ '-__
; . . H= e(7)cog 6. 3
ment. In the present work, we investigate the single- and 2

EZ

H=ar

+V(6,1), 1)

ere o) and o, are the components of the polarizability,
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We assume that the rotor is initially in its ground state,
1//(0,0):Y8(0). The wave function of the system can be

expanded in spherical harmonics, the eigenfunctions of the

free 3D rotor,

o

W(6,7)=2, a(nY/(h).

I=0

(4)

Since the interaction with the laser field depends only on

cosé, the z component of the angular momentum is con-

served during the interaction. In order to obtain the coeffi-

cientsa,(7) for any time dependence ef r) we numerically
integrate the Schobnger equation with the Hamiltonian in
Eq. (3). If the interaction with the field is short compared to
the typical rotational period of the roto@ (kick), the wave
function after the interaction can be expressed as

(5

whereP = [ e(7)d7 is the dimensionless interaction strength.
The wave function at time after the pulse is

(0,0 =exp(iP cos 6)y(6,07),

1
Var
wherer=t#/l is the dimensionless time. The coefficients
are given by

20 crexd —il (21+1)7]Y9,(6), (6)

P(0,7)=

1
r(1+= 1 3
c|=\/7r(4l+1)(iP)'—31F1 I+§,2I+§,iP).
rya2i+z
2
(7

where ;F; is the confluent hypergeometric function. Equa-
tion (7) is obtained by expanding exp(cosd) in terms of
spherical harmonicésee Appendix A

IIl. ALIGNMENT AFTER A SINGLE PULSE

In the following, we study the alignment of a molecular
system subject to a singi(shor) pulse, considering a system
that is initially in its ground statézero temperatujeWe use
the alignment factoA(r) =(1— co¢ 6) to characterize quan-

titatively the degree of molecular alignment. Defined in this

way, the alignment factor coincides with the variancefof
for well-aligned molecules{<1) and becomes zero if the
alignment is perfect.

We start with analyzing a classical ensemble of rotors, o
equivalently,
Classically, a rigid rotor driven by the external field, EB),
gains the angular velocity

w=—Psin(26,) (8)
as a result of a kick, where ¢, is the initial angle of the
rotor. After the kick, the rotor evolves freely, so that

0(7’)=6’0—P7'Sin(26'0). (9)
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FIG. 1. Quantum-mechanic&olid line) and classicaldashed
line) alignment factor for kick strengtR=10.

If the initial angular velocity of all rotors of the ensemble is
zero, the classical alignment factor can be calculated by av-
eraging over the isotropic initial angular distribution, that is,

1(n
Ay(r)=1- EJ d 6y Sin Hy coS[ Bp— P7sin(26,)].
0
(10

The classical alignment factor can be expressed in terms of
hypergeometric functiontsee Appendix B

11 75 )
Ac(T)= 5+ giF2| i, 70— (P7)
Ry (2-z g-—(PT)Z) (11
15°1 2\ " arar '

We note that the dynamics of a classical rotor depends only
on the producPr. The kick strength defines the time scale
of the process, but does not affect the shape ofAfér)
graph. The dashed line in Fig. 1 shows the classical align-
ment factor as a function of time. Starting from a uniform
distribution [A(0)=2/3], the particles in the northern
hemisphere start moving towards the north pale-Q), and

the particles in the southern hemisphere move towards the
§outh pole = 7). For a pictorial representation of the time-

an ensemble of particles moving on a Spher(;’dependent angular distribution of a kicked 3D classical rotor

and the discussion of related semiclassical catastrophes in the
distribution (focusing, rainbows, glogysee Refs[38,40.
The point of maximal angular squeezifginimal value of
the alignment factgris reached when most of the particles
are concentrated in the vicinity of the pole&,(;,~0.30 at
7~0.1 after the kick The classical alignment factor oscil-
lates around the valul.(7— ) =1/2.

In the quantum-mechanical description, the alignment
factor can be expressed as
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Note that the coefficients, [see Eq(7)] depend on the kick 045, 5 10 13 20 25 0 35

strengthP. Here,M is the time-averaged value ¢tos 6).
The solid line in Fig. 1 shows the qguantum-mechanical align-
ment factor for the kick strengtP=10. We see that the FIG. 2. The minimal alignment factor plotted as a function of
classical and quantum-mechanical alignment factors coincidge kick strengttP (a). The line indicates the classical value and the
for 7<1, which means that shortly after the kick, the systemarrows mark the “magic” kick strengths. THe dependence of the
behaves more or less classically. However, the dynamics of factor M, Eq. (13), is shown in(b).

guantum-mechanical rigid rotor is completely periodic, and

the alignment factor repeats itself after one revival periodshort off-resonant strong laser pul@mpare Figs. 1 and 2
Tie,=27. Moreover, we can see minima of the alignmentof the present paper with Figs. 1 and 4 from Ref]).

factor atr~ 7/2 andr= 7, which do not appear in the clas-
sical picture. The global minimum of the alignment factor
(Amin=0.097, which is roughly one-third of the classical
Va|ue occurs in the quantum domain at=3.06 after the NeXt, we Study the effect of a finite initial temperature on
kick. Although the appearance of the global minimumrat the molecular alignment by short pulses. If the temperature
~q is a purely quantum-mechanical phenomenon, we caRf the system is nonzero, thg all.gp.ment factor has to be av-
relate this minimal alignment factor to a classically definegéraged over the all contributing initial states, so that

value. For this, we consider the alignment factorriegative o lo

times(which corresponds to kicking the system to the equa- — Mo

tor direction. In Fig. 1 one can see a maximum of the align- Alm) |02=0 Plo) OE A'0 (). 139
ment factor for small negative times, where the system still

behaves classically,,x~0.925 atr~ —0.08). The period- where

icity of the quantum-mechanical alignment factor allows us

kick strength P

Single-pulse alignment at finite temperature

mo=—lg

to relate this value to the corresponding valuerats. It 1 lo(lo+1)
follows from Eq.(12) that P(lg)==exg — 5 (16)
Q ZUth
A(r+A7T)=1-A(A7)+(1-2M), (14

. is the thermal distribution at temperaturg with oy,
whereM is given by Eq.(13). We expectM to be equal t0  _ (\_T/2B)Y2 Here kg is the Boltzmann constar® is the
1/2 in the classical limit, when all the kicked particles rOtatepartition function,B=#2/2! is the rotational constant, and

uniformly along the circular trajectories passing through the
poles. Figure th) showsM as a function of the kick strength

Mo —1—
P. As can be seen, it is always smaller than 1/2 and ap- A (n=1 (¢(m)[cos 6]y(7)) 17)
proaches this value fd?— <. It means that for large enough
values ofP we may neglect the term (12M) in Eq. (14), is the alignment factor for the initial statk,,mg). Since the

and the globally minimal quantum alignment factor can bequantum numbem is preserved during the interaction, we
estimated via the “classical” maximal valu&, ., as A(7) can write

=1-A,a=0.075. The global minimum of the alignment

factor nearr~= depends in a nonmonotonic way on the * i

kick strength. As can be seen in Figa® there are “magic” |p(7))= 2 almo(r)ex;{ — EI(I +1)7
kick-strength values that provide local minima of the align- 1=0

ment factor as a function oP (P,;=5.4P»,=11.8P3 _ ) _
—18.2...). It is worth mentioning that our analytical re- For an marb|trary time dependence of the pulse, the coeffi-
sults are in very good agreemebbth qualitative and quan- cientsa, °(7) can be obtained by numerically integrating the
titative) with recent direct numerical simulatio®23] of  Schralinger equation. For the case oféekicked rotor, the
postpulse alignment of a Nal molecule excited by a veryproblem has an analytical solution,

[l,mg). (18
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IV. OPTIMAL ALIGNMENT WITH SEVERAL PULSES

Until now, we only considered the interaction of the mo-
lecular system with a single short laser pulse. However, the
molecular alignment can be improved by applying a series of
several laser pulses. A regular strategy to enhance the align-
ment (or orientation of a kicked rotational system was pro-
posed in Ref[35]. As mentioned above, the angular distri-
bution of the molecules is maximally squeezed at some time
A7, after the first kick. According to the “accumulative
squeezing strategy’35], the second kick is applied exactly
at that time,r,= A 7. Immediately after the second kick, the
system has the same angular distribution as before the kick,
but 7= 7, is no longer a stationary point for the alignment
factor A(7). As a result,A(7) will reach a new minimal
value at some point,+ A 7,, and this new minimum will be
smaller than the previous one. By continuing this way, one
can apply a sequence of kicks at time instants = 7

FIG. 3. Quantum-mechanical alignment factor for kick strength+ A, , and the amount of alignment will accumulate with
P=10. The solid line represents the alignment factor at zero temtjme.

perature. For the dashedotted line, the temperaturd corre-

sponds too,=1.74 andoy,= 3.9, respectively.

+1)(21g+ 1)
21+1

- 21’
" 7-)=a|m°=|,§=:0 c \/(

X (1",15,0,01,00(1" 15,0mg|l,mg),  (19)

wherec; is given in Eq.(7). With the help of Eq.(18), we
can write

A(7)=1- ;0 a)la(7)|?

-2 Relzo Ba,(m)a " (r)exd —i(2l+3)7],

I+2
(20)
where
o= 2|11 (I+21I)j;m§ I;—_mlé} @1
and
1[I0+ 1*-mgl[(1+2)*—mg]
'm0:2|+3\/ (21+1)(21+5) - (29

Although this strategy leads, in principle, to an unlimited
alignment by applying more and more pulses, it can be made
even more efficient by a proper optimization, especially if
only a few pulses are used. The problem of coherent and
optimal laser control of rotational degrees of freedom has
been already addressed in several publicati@is-34,36.
Here we specifically analyze the optimal routes to molecular
alignment by a series of short laser pulses by minimizing the
alignment factor with respect to a certain number of param-
eters describing the shape of the pulses. This class of optimal
fields is especially attractive for potential experimental real-
ization of the enhanced angular squeezing.

Assuming that the shape of the laser pulses is Gaussian,
the time-dependent interaction strength in E8). can be
written as

N 2
(1=, P/ exp(—(T—;)), 23)
=1

g

wherer’ are the peak intensities, awmdis the duration ofN
pulses. The delay times between the pulses are denoted by
7j. In order to find the optimal sequence Nfpulses, we
numerically solve the Schdinger equation with the Hamil-
tonian of Eq.(3) and minimize the alignment factor. Due to
nonlinearity, the optimization problem is rather involved
even forN=2 or 3. Therefore, we first reduce the number of
parameters by imposing various restrictions on the shape of
the pulses. These restrictions are then gradually removed,
using the previous results as the starting point for more com-
lex optimization schemes. In the following, we summarize

Figure 3 shows the averaged alignment factor for differentne results of the different optimization problems. In Secs.

temperatures compared to the zero-temperature (susiel
line). For o,=1.74(dashed lingand o,,= 3.9 (dotted ling,

A—C, we assume that the molecular system is initially in its
ground state. The effect of finite initial temperature is dis-

the oscillations around= 7/2 are completely washed out. ,ssed in Sec. D.

However, the pronounced minima around 0 andr= 7 are
preserved. For ICI molecules that have rotational constant of

B=0.114 cm! and polarizability anisotroppa=a|—a;
=9A3 [41], o,=1.74 corresponds to temperatife= 1 K,
and o, = 3.9 corresponds td =5 K.

A. Alignment with identical & kicks

First, we consider only very short pulses, so that the
Gaussian pulse shape in E@3) is reduced to & function

013402-4
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TABLE I. Accumulative and optimal alignment with identical 10°
pulses in the classical regime.

No. Asce Aopt
1 0.297 0.297 5
2 0.219 0.215 g

Sy
3 0.169 0.137 5
4 0.137 0.086 g
o0
=

with the strengtiP;= Pj’ o /7. Moreover, we assume that all
pulses have the same strendij=P. As the first step, we
will treat the problem classically. In this case, the number of
parameters is reduced even more because, as it can be se
from Eq.(10), the optimal classical alignment factor does not 10 y :
depend on the kick strength. The latter defines only the time kick strength P
scale of the driven rotational dynamics. The only relevant
parameters are thénormalized delay times between the FIG. 5. Minimal alignment factor as a function of the kick
kicks. Table | compares the best alignment for up to fourstrengthP for a system kicked by one pulgsolid line) and for the
pulses applied according to the accumulative squeezing stra@ptimized sequence of tw@ashegland thregdotted ling identical
egy [35] and for the optimal sequence of pulses. It can bePulses.
seen that for two pulses, the optimal solution is only slightly
better than the accumulative squeezing. However, for thretor P<4 we observe a strong dependencePoand find the
and four pulses a considerable improvement can be achievégkst value for the alignment fact@,;,~0.13 for P~3,
by optimizing the delay times between the pulses. which is almost half of the “classical” value. We note that
In the quantum-mechanical regime, the alignment factothe same behavior, which is of purely quantum-mechanical
does depend on the kick strendgth Therefore, we have to origin, was observed in a related problem of squeezing cold
perform the optimization for different values & The re- atoms by pulsed optical latticd86]. The previous results
sults of the quantum optimization for twé kicks can be permit finding the local quantum optimum for the alignment
seen in Fig. 4. Here we looked for a pulse sequence in whicproblem in the vicinity of the classical solution. However,
the second pulse is applied with a short delay<€T,,,  the most profound alignment of a molecular system kicked
=21r) after the first pulse, using the results of the classicaby a singles pulse occurs deeply in the quantum domain,
optimization as the starting guess. The figure shows the miniaround 7=T,,/2= 7 (see Fig. 1L Therefore, it can be as-
mal alignment factor as a function & We can see that for sumed that a second pulse with a delay time- 7 leads to
P>4, the alignment factor is almost independenttoind  a more effective alignment. The optimization results corre-
has the classical valud,;,~0.21 (see Table ). However, sponding to this initial guess are indeed better, as shown in
Fig. 5. The three curves present the minimal value of the

8 10

0.8 ' ' ' ' ' ' ' ' ' alignment factor for one, two, and three pulses as a function
of the kick strengthP. We searched for the optimal solution
071 1 for in case when the second pulse is applied arotyyd 7
after the first pulse, and the third pulse acts shortly after the
06F second one. Shifting the third pulse againity- 7 does not
B result in further improvement of the alignment. We see that
& ost the quality of alignment can be considerably improved by
= applying two or three pulses instead of one. Thelepen-
E 04l dence of the alignment factor shows nonmonotonous behav-
& ior also for two and three kicks. The first minimum occurs at
c P=4.88. ForN=2, it is A,i,=0.037 and forN=3, the
037 minimal value A,;,=0.022 can be achieved. With three
equal pulses, the alignment can be improved by almost a
027 factor of 4 compared to the results achieved with a single
kick of an arbitrary strength.
* 2 4 6 8 10 _ . . :
B. Alignment with é kicks of different strength
kick strength P

Another possibility to further improve the angular squeez-

FIG. 4. Minimal alignment factor for a system kicked with two ing is to use pulses with different strength. We start with
pulses, where the second pulse is applied in the vicinity of the firsproposing a simple, but effective two-pulse excitation
pulse, as a function of the kick strength scheme. The first pulse prealigns the molecules and concen-
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' ' " ' ' TABLE IIl. Optimal alignment for a single pulse with finite
pulse widtho for a given peak intensity?’, and integrated inten-
» sity P.
5 107
8 P’ o Anmin P
5 200 0.015 0.0866 5.46
g 400 0.008 0.0851 551
2 800 0.004 0.0844 5.41
= 1000 0.003 0.0843 5.51
§ 2000 0.002 0.0841 5.51
§ 4000 0.0008 0.0839 6.02
L2 T e 1 8000 0.0004 0.0839 6.02
......................... strength. For this excitation range, concentration of the avail-

0 10 20 30 40 50 able intensity in a single pulse is preferable. The optimal

total kick strength solution shows a bifurcation &~5.0, after which the op-
FIG. 6. Optimal alignment factor of a 3D rotor kicked with a timal .allgnment IlmprO\_/resi)lby”Splrllttlng tk;]e a\aa"able "'?‘SE(; en-
single pulsesolid line), or with a sequence of twedashed linpor €9y INto o pulses. Table Il shows that the optimized ex-

three(dotted ling pulses for the given total kick strengiy . F“aFiF’” process is very similar to the above described
intuitive double-pulse alignment scheme. Her~50, the

double-pulse quantum alignment factor saturates, and the
"hinimal value ofA=0.008 is reached. However, the optimal

Ssolution experiences another branching even before that. At
+~11 a three-pulse solution emerges providing better align-

trates them in the harmonic region of the angular interactio
potential. In order to estimate the efficiency of the proces
we choose the first magic kick streng®y,; = 5.4 for the first

pulse. The second pul'se is applied at the time of minima ent for the same total kick strengtbee Table . Note that
angular spreaddel'ay time 7,=2.99). It ;hoyld be much P, and P, are rather weak compared to the third pulse, and
stronger than the first pulse, so that the kinetic energy galneﬁ]1e delay between the first two pulsesris= . Again, the

bY th_e _molecules during the f'rSt. kick can be_ neg_lecteq. Infirst two pulses create a well prelocalized quantum rotational
this limit, the second pulse provides a classical-like align-

. Y L . Y "state that is further squeezed in angle by the third pulse act-
ment of the “frozen” angular distribution formed by the first ing as a classical kic(ll The three-p%lseélignment Fi)mproves
pulse in the harmonic region. FB,=50, the minimal align- '

ment factorA, .. =0.017 can be achieved. This way, the de_W|th increasing the total kick strength and saturatesAat

gree of molecular alignment can be improved by more than 50'005 forP,~60.

factor of 4 compared to the single-pulse alignment. Further
improvement of molecular alignment could be achieved by
continuing this procedure with three and more pulses. Next, we consider the effect of laser pulses having finite
In order to explore the prospects of multikick alignmentwidth. We assume that the envelope of the laser pulses has
more systematically, we minimize the alignment factor keep-Gaussian shapesee Eq.(23)]. First, we examine the degree
ing the total kick strengtrPtzij\Lle fixed. The result of of alignment that can be achieved with a single pulse. We are
the optimization is shown in Fig. 6. Here, the minimal align- looking for the optimal pulse widtler for a given peak in-
ment factor forN=1 (solid line), N=2 (dashed ling and tensityP’. Table Ill shows the results for different values of
N=3 (dashed dotted linepulses is plotted as a function of P’. It can be seen that the minimal alignment factor de-
P.. Exemplary excitation parameters are shown in Table licreases with increasing peak intensity. The optimal pulse
For small total kick strengttP,<5, single-pulse and multi- width decreases too, which is in agreement with the results
pulse excitations give the same results for the same total kickf Ref.[17]. In order to show that the system approaches the
S-pulse limit for large peak intensities, we calculated the
TABLE I1. Optimal sequence of pulses for a given numteo,)  integrated intensity? = P’ o for optimal pulses. It can be
of kicks and for the total kick Strengtﬁt. The table shows the Seéen that for all peak intensities shown in Table I, the inte-
strength of the kicksR;,P,,P3), the delay time between the kicks grated intensity is arounB=5.5, which is close to the first
(7, and 1), the detection timery, and the minimal alignment magic strength of & pulse[see Fig. 2a)].

C. Alignment with pulses of finite duration

factor Anin - As an example, we consider laser alignment of ICI mol-
ecules that have rotational period of,=1/(2Bc)
No. P Pp Py Pg Ty 72 Td  Amin ~146 ps. Since the envelope of the laser pulse 6t)
1 5 5 208 0088 =477I_pexp (—tzlAf)/p, whe_relp is the peak intensity, the di-
5 10 456 5.65 288 006 0.034 mensionless peak intensity is relatedl toby
2 55 460 504 2.94 0.01 0.008 Aal
3 60 438 288 527 286 0.13 0.01 0.005 p'= o Iy (24)
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TABLE IV. Optimal alignment with a sequence of two pulses of ~ TABLE VI. Alignment factor (A,,;,) at different temperatures
the durationo. The optimization is performed for a given value of for the casega)—(d) in Table V.

P,.
(@ (b) (© (d)

P2 F)1 o 71 Td Amin T (K) Amin Amin Amin Amin

10 4.64 0.007 2.89 0.024 0.022 0.003 0.019 0.011 0.025 0.066

10 4.63 0.003 2.90 0.036 0.019 0.1 0.023 0.014 0.027 0.067

20 4.61 0.007 3.02 0.019 0.021 0.3 0.068 0.048 0.049 0.072

20 4.60 0.003 2.92 0.018 0.011 8 0.433 0.30 0.175 0.116

20 4.60 0.001 2.92 0.022 0.010 33 0.536 0.375 0.318 0.191

30 4.76 0.007 2.98 0.003 0.023

30 4.63 0.003 2.94 0.011 0.011

30 4.60 0.0008 293 0.016 0.008 by Eq.(15). We calculated the temperature-dependent align-

ment factor for a quantum rotor having the rotational con-
stant of ICI(Table VI). The excitation parameters are listed

For ICI molecules, P'=200 corresponds to I, in Table V.

=9.6x 10 W/cn? and P’=8000 corresponds tol Let us consider the exampib). The parametericase(b)
=3.8x 10" W/cn?. The pulse duration in Table Ill ranges of Table V] are chosen to produce maximal alignment at zero
from A,=350 fs (¢=0.015) toA,=9 fs (¢c=4X10"%). temperaturgsee Table IV for the given pulse durationo(

In order to find the optimal parameters for molecular =0.003 orA=67 fs). Obviously, the alignment worsens
alignment with two pulses, we minimize the alignment factorWith increasing the temperature. Nevertheless, for low
for a given(integrated kick strengthP, of the second pulse €nough temperatureT(1 K in our casg a considerable
and for different values of the pulse duration. As a starting2lignment can still be obtained. However, if the thermal ro-
guess we use the results of optimal double-pulse alignmer@tional energy is of the order of the energy the molecules
with & kicks. The results of the optimization can be seen inaccumulate during the kicKor ICl molecules and>;~4.6
Table IV. For a given value oP,, the degree of alignment atT~1 K) the alignment is rather poor. Better alignment at
can be enhanced by applying shorter puléasd thus ap- higher temperatures can be obtained by using two re_latlvely
proaching thes-pulse limit as in the above described single- strong kicks for excitation. An example can be seen in case
pulse case. For very short pulses, the alignment improves) of Table VI. Here, the kick strengths afé,=P,=30
with increasingP,, the same as fos pulses(Sec. IVB). (see Table V. Although t_axcnatlon with these parameters_
These results support again our belief that the simplifiel0€s not lead to the optimal results at low temperature, it
model of § kicks (sudden limit may be rather valuable for provides enhanced alignment for _relat|vely_h|gh tempera-
identification of the optimal regimes for molecular angulartures. The pulses needed to obtain a considerable double-
squeezing by a series of short laser pulses. Excitation pararfISe alignment at temperatufe=1 K are rather intense. In
eters for ICI forP,=10 andP,=30 are shown in cases) order to avoid ionization of molecu_les it r_nlght be preferable_
and (b) of Table V, respectively. With peak intensities of the to use more pulses with moderate intensity. As we showed in

order of 162 W/cr?, enhanced two-pulse alignment should Ref.[40], applying multiple pulses according to the accumu-
be feasible experimentally. lative squeezing strategy35] leads to the “unlimited”

squeezing even at thermal conditions.

D. Double-pulse alignment at finite temperature V. SUMMARY

In the previous sections we investigated the prospects of In this work we studied the alignment of a molecular sys-

aligning molecules that are initially in the ground rotational :
- tem subject to strong, nonresonant laser pulses. The problem
state. Here we analyze the effect of finite temperature on the

two-pulse alignment. The quantum-mechanical aIignmen*Nas treated as a process of squeezing in the angular coordi-

. nate. We analyzed in detail molecular alignment after a
factor for an ensemble of molecules at temperaluikegiven . . . .
single pulse, both in the classical and gquantum-mechanical

_ ) regimes, and defined the limit for single-pulse alignment.

TABLE V. Parameters for alignment of ICl molecules with a £ rihermore, we showed that the alignment can be dramati-
sequence of two pulses of the duratibp=67 fs. Herely, andly, 51 enhanced by applying a proper sequence of two or
are the peak intensities of the first and the second pulse, respeg: ore pulses. With the help of quantum control theory, we
tively, andr, is the delay time. defined optimal trains of laser pulses leading to effective
molecular alignment. According to our estimates, enhanced
multipulse molecular alignment is experimentally feasible

lp1 (102 W/cn?) I p2 (10 W/en?) 7 (p9

@ 4.1 (P,=4.6) 9.0 P,=10) 67.5 with the current laser technology. Further analysis of experi-
(b) 4.1 (P,=4.6) 27.0 P,=30) 68.5 mental conditions should involve a more elaborated descrip-
() 9.7 (P;=10.8) 27.0 P,=30) 72.4 tion of molecules, effects of rotational-vibrational coupling,

(d) 27.0 (P,=30) 27.0 P,=30) 72.0 laser noise, spatial inhomogeneity of the laser field, etc. Mo-

lecular alignment at these conditions poses new problems,
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part of which may be resolved by more sophisticated closedand thereforé , 5 =0 for | >v. The coefficientsl, can now
loop learning control approach§43,44. The results of the be written as
present paper provide an insight into the physics of multi-

pulse alignment, and may serve as an initial guess for more

complicated optimization schemes.
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APPENDIX A: EXPANSION OF exp (iP cog 0)
IN SPHERICAL HARMONICS Tl ovt1+ E
In this appendix, we calculate the coefficients of the ex- X 2 (A8)
pansion rf2l+ E+ v
2
exp(iP cog 9)220 d,Y2(6). (Al)  Next, we express all Gamma functions and factorials in

Due to the parity of the cd8 interaction, the coefficients,
are zero for odd. Therefore, we can write

w2
d2,=477f d6 sin6 exp(iP cofH)Y5(6). (A2)
0

terms of Pochhammer symbols with index

In order to calculate the integral, we express the exponential

term as a power series,
o (iP)y”
d2| =4772 1 I v,2 (A3)
v=0 V:

with

/2
|, 2= fo désingcos” 6Y9,(0)

M+l (2
= —f de sinfcos” 6 Py(cosh), (Ad)
47 Jo

whereP,, are Legendre polynomials. Substituting cosé,

we have
4141 1
l2= ?J’dexz”Pz,(x), (A5)

which is[42]
1
STV

A+l Fd=»ri3
2= yp (—1)

r(—v)r(|+§+v

(AB)

Note, that the Pochhammer symbol has the value

CT(-v+)

(—V)|—m:0 for >, (A7)

( 1 B 1 ( 1
r V+|+§ = |+§ VF |+§ ,
I 3 —( I 3 ( I 3)
F 2+§+V — 2+§VF 2+§,
(I1+1),
(—v=D=(=D'(v+1)=(-D'T(1+1) :
(1),
(v+D)'=(+21),I'(+1),
vI=(1),. (A9)
Inserting these relations into EGA8) we get
1
r '+% = (iP)? |+5)
dy=\m(4l+1)(iP)' 3 20 o 3
r(2|+—) o 2|+—)
2 2 ,
(A10)

Now, the sum represents a confluent hypergeometric func-
tion, and we can write

1
C|Ed2|:\/77(4|+1)(ip)| 3 1F1(|+§,2|+§,ip>.
r 2|+§

(A11)

APPENDIX B: CLASSICAL ALIGNMENT FACTOR

If the initial temperature of the ensemble of rotors is zero,
the classical alignment factor

A (7)=(1—co¥ 6) (B1)

013402-8
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can be calculated by averaging over thaiform) initial spa-
tial distribution of the rotors,

1 (=
Ag=1- EJ d 6 sin 6 coS[ 6p— 7siN(26)]
0

1 1 (w2
:E_EJ d 6 sinfycog26,—27sin(26,)].
0

(B2)

We split the integral into four parts,

2

1 1[ (= (3 _
Ac|(T)=§—§ f dfysin = 6y |cog27sinby)

0

w 1
—j daosin(§60>cos(273in60)
0
g 1 . .
+J d90c05<§00)sm(2¢sm90)
0

T 3
_ fo dé, cos<§00)sin(275in 90)} (B3)

and with the help of

b

Fdxsin(bx)cos{a sinx)= — 2b sin2< ; )s_lyb(a)
0
(B4)

PHYSICAL REVIEW A 69, 013402 (2004

and
fowdxcos{bx)sin(asinx)=2co§(b7w) Sop(@), (B5)
where
Zu+1
Sul2D)= (p—v+1)(pnt+v+ 1)?

XF,

1 3),2 ST
5 (w=vH3), S (utv+3)—

(B6)

is the Lommel function, we can calculate the integral Eq.
(B2) and obtain

1 1)1 1 17 5 £l 1 35 )
T e i
lF 1_55 2+1F139 )

R e T R ey E
(B7)
Finally, we combine the hypergeometric functions to
1 1 75 5
Aa(n) =5+ aiFa| L 77
i F 2-7 2 B8
ETl 2 !Z!Z’ T ( )
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