
PHYSICAL REVIEW A 69, 012710 ~2004!
Field-linked states of ultracold polar molecules

A. V. Avdeenkov, D. C. E. Bortolotti, and J. L. Bohn*
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

~Received 20 August 2003; published 22 January 2004!

We explore the character of a novel set of ‘‘field-linked’’ states that were predicted by Avdeenkov and Bohn
@Phys. Rev. Lett.90, 043006~2003!#. These states exist at ultralow temperatures in the presence of an elec-
trostatic field, and their properties are strongly dependent on the field’s strength. We clarify the nature of these
quasibound states by constructing their wave functions and determining their approximate quantum numbers.
As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we
construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermo-
lecular axis makes with the electric field. Within an adiabatic approximation we solve the two-dimensional
Schrödinger equation to find bound states, whose energies correlate well with resonance features found in fully
converged multichannel scattering calculations.

DOI: 10.1103/PhysRevA.69.012710 PACS number~s!: 34.10.1x, 33.15.2e, 36.90.1f
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I. INTRODUCTION

In the modern world of physics, manipulation of quantu
phenomena in atoms and molecules forms the basis for
ture applications. With the development of new techniqu
for cooling and trapping polar molecules, new opportunit
to harness them appeared@1–9#. In particular, the interac-
tions between pairs of molecules are likely to be suscept
to manipulation in an electric field. This in turn may imp
an ability to direct the course of chemical reactions@10#, to
influence the many-body physics of degenerate Bose
Fermi gases composed of polar molecules@11–15#, or to
manipulate quantum bits@16#.

A particularly attractive opportunity for controlling inter
molecular interactions emerges in a set of novel long-ra
bound states of molecular pairs@17,18#. In the presence of an
external electric field, the counterplay between Stark a
dipole-dipole interactions generates shallow potentials
are predicted to support bound states of two polar molecu
For OH molecules we have estimated that the bound st
do not exist at all for fields below about 1000 V/cm@17#.
Thus the field plays an essential role in binding the m
ecules into an@OH#2 dimer; we have accordingly dubbe
this new kind of molecular state a ‘‘field-linked’’ state. Th
purpose of this communication is to further clarify the stru
ture of field-linked~FL! states. Interestingly, quadrupolar in
teractions between metastable alkaline-earth atoms ex
similar states in the presence of magnetic fields@19–21#.

Schematically, the FL states originate in avoided crossi
between a pair of potential energy curves: one that repres
an attractive dipolar interaction converging to a high-ene
Stark threshold and one that represents a repulsive dip
interaction converging to a lower-energy threshold. The ch
acteristic size of the FL states is therefore roughly de
mined by equating the dipolar energym2/R3 to the Stark
energymE. HereR is the distance between the molecules,m
is their dipole moment, andE is the field strength. The lengt
scale of the avoided crossing is thenRscale5(m/E)(1/3)

*Electronic address: bohn@murphy.colorado.edu
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'1250E 21/3 for a ‘‘typical’’ dipole moment of 1 D, where
Rscale is measured in units ofa0 ~the bohr radius! andE is
measured in V/cm. Thus for a reasonable-sized labora
field of 104 V/cm, the size of the FL state is;60a0, al-
though extremely weakly bound states can be far larger t
this.

Reference@17# described the FL states in this simp
curve-crossing picture. Adiabatic potential curves for t
OH-OH interaction were constructed by expanding the r
evant potential into partial waves in the intermolecular co
dinate. For clarity, only the lowest partial waves,L50,2
were included. While intuitively appealing, this picture
inadequate, and indeed a partial-wave expansion is inap
priate, for the following reason. The dipole-dipole interacti
can strongly couple different values ofL, with a strength of
the order of'm2/R3. At the typical scale distanceRscale,
the dipole coupling exceeds the centrifugal interaction b
ratio 2mm2/\2Rscale, wherem is the reduced mass of th
molecular pair. For our example case ofm51 D, E
5104 V/cm, and for a light molecule~like OH! with a re-
duced massm510, this ratio is already'100. The ratio
becomes even larger in a stronger field, or for a heav
molecule. ThereforeL is no longer a good quantum numb
for the FL states, but rather the relative orientation of t
molecules is of more significance.

Accordingly, in this paper we present a formulation of F
states in terms of potential energy surfaces in (R,u), whereu
is the angle that the intermolecular axis makes with resp
to the electric field. Within an adiabatic representation,
compute FL states as bound states of a single surface. Q
tatively, these identify the FL states as confined to a narr
range aboutu50, so that their motion consists primarily o
vibration along the field axis. Additionally, we show that th
binding energies predicted by this adiabatic approximat
agree remarkably well with resonance positions determi
from fully converged multichannel scattering calculations

II. MODEL

Because the FL states are generated primarily by the c
petition between Stark and dipolar interactions, our mo
©2004 The American Physical Society10-1
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will focus almost exclusively on these two terms in t
Hamiltonian. In particular, our simplifying assumptions he
are as follows.

~1! The individual molecules are assumed to be in th
electronic ground states, to be rigid rotors, and to lie in th
rotational ground states. It is assumed that none of th
degrees of freedom can be excited at the large intermolec
separations and low relative energies that we consider.

~2! Each molecule is assumed to have total spinj and to
have a non-S electronic ground state that can support
L-doublet. Again, at the intermolecular separations, en
gies, and fields of interest, it is assumed thatj is approxi-
mately conserved. We ignore hyperfine structure in
model, so thatj is an integer for bosonic molecules, and
half integer for fermionic molecules. While hyperfine stru
ture is well known to be important in ultracold collisions,
is not germane to the main discussion of dipolar interactio
and can in any event be included in a straightforward w
later.

~3! The projection of each molecule’s angular moment
onto its own interatomic axis, denotedv, takes only the two
values6uvu. As a point of comparison, the energy diffe
ence between thej 53/2, uvu53/2 ground state and thej
53/2, uvu51/2 excited state of OH is 270 K@22#, so this
restriction is not such a bad one.

~4! We work in the limit of large electric field, i.e., in th
linear Stark regime where the electric-field interaction dom
nates theL-doublet splitting. Thus the molecular states a
characterized by the signed quantities6v, rather than linear
combinations ofv and 2v characteristic of the zero-field
limit. We will describe some effects ofL doubling in the
following, but they will be perturbative in this limit. A read
able account of molecular wave functions in this approxim
tion is given in Ref.@23#.

~5! Finally, we assume that the molecules never get cl
enough together for short-range interactions, such as hy
gen bonding, exchange, or chemical reactions, to contrib
In addition, we neglect long-range interactions such as
persion and quadrupole-quadrupole interactions, as b
negligible compared to dipole-dipole interactions.

Although this model does not describe any particular m
ecule, it lays the groundwork for constructing FL states
any desired molecule. To keep the magnitudes of observ
quantities realistic in the following, we use as model para
eters the dipole moment~1.68 D!, L-doublet splitting
(0.055 cm21), and mass~17 amu! of the OH radical.

A. Basis set

Within the simplifications outlined above, the intern
state of an individual rigid-rotor molecule is specified
three quantum numbers:j, v, and the projection of the mol
ecule’s angular momentum on an appropriate external a
To describe the Stark interaction this axis is convenien
taken as the electric-field axis. However, to describe
states we choose instead to quantize this angular mome
along the intermolecular axis. This emphasizes the dimer
ture of the FL states and allows a reasonable descriptio
01271
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how the dipole-dipole forces act ultimately to keep the m
ecules from crashing into one another.

Each molecule (i 51,2) is thus described by a rigid-roto
wave function,

^êi u jk iv i&5A2 j 11

8p2 Dkiv i

j* ~a i ,b i ,g i !, ~1!

where notation for the electronic wave function is su
pressed, under the assumption that it plays no role at
temperatures and electric fields of interest. Hereki and v i
are the projections of total angular momentumj onto the
intermolecular axis and onto the molecule’s own body-fra
axis, respectively. The Euler anglesêi5(a i ,b i ,g i) are re-
ferred to the intermolecular axis. We further couple the m
lecular angular momenta into a total angular momentumJ:

^ê1 ,ê2u~1,2!JK&5 (
k1k2

^ê1u jk1v1&^ê2u jk2v2&^ j 1k1 j 2k2uJK&.

~2!

Here we introduce the shorthand notation (1,2) do denote
internal molecular quantum numbers (j 1v1 , j 2v2).

As for the relative motion of the molecules, we wish
avoid an expansion into partial waves, as mentioned in
Introduction. We thus consider a basis set for the comp
wave function

C (1,2)JK
M ~R,u,f,ê1 ,ê2!5

1

A2p
exp~ iMf!F (1,2)JK

M ~R,u!

3^ê1 ,ê2u~1,2!JK&, ~3!

where theF ’s are as-yet-unspecified functions of (R,u). The
projection of the total angular momentum onto the electr
field axis,M, is the only rigorously conserved quantity i
the Hamiltonian for FL states; we therefore separate it at
outset. It will affect the functionsF via centrifugal energies

In addition, the wave functions must incorporate t
proper symmetry under the exchange of identical molecu
denoted by the operatorP̂12. The symmetrized states ar
constructed in Appendix A, and define a pair of quantu
numberss andx:

P̂12F (1,2)JK
M,s 5sF(1,2)JK

M,s ,

P̂12u~1,2!JK&x5xu~1,2!JK&x . ~4!

The quantitiess and x are not separately conserved by t
Hamiltonian, but must satisfy the constraint

sx5H 11 for bosons

21 for fermions.
~5!

Finally, it is useful to consider the effect of the pari
operatorÎ that inverts all coordinates through the system
center of mass. Eigenvaluese of this operator are obviously
not conserved by the electric field, yet we can construct b
0-2
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FIELD-LINKED STATES OF ULTRACOLD POLAR MOLECULES PHYSICAL REVIEW A69, 012710 ~2004!
sets that are eigenfunctions ofÎ , as is done in Appendix A
When we consider matrix elements of the electric field a
dipole-dipole Hamiltonia, we find that the quantity

q[es~21!K ~6!

is rigorously conserved~see Appendix B!. Our completely
general basis then takes the form

C (s,x)(1,2)JK
M,q 5

1

A2p
exp~ iMf!F (1,2)JK

M,s u~1,2!JK&x,q , ~7!

whose explicit representation in terms of unsymmetrized
sis functions is given in Appendix A.

B. Hamiltonian matrix elements

To uncover the joint motion in (R,u) that governs the FL
states, we will expand the total wave function into the ba
Eq. ~7! and integrate over all other degrees of freedom
derive a set of coupled-channel differential equations for
functionsF. In this section we therefore construct the Ham
tonian matrix elements in the ‘‘internal’’ basisu(1,2)JK&x,q .

Ignoring the short-range, dispersion, and higher-or
multipole interactions as we did in Ref.@17#, our model
Hamiltonian can be written as

H5 (
i 51,2

~Ti1Hi
S!1Vmm , ~8!

where Ti and Hi
S are the translational kinetic-energy an

Stark energy of each molecule, andVmm is the dipole-dipole
interaction.

In the following sections we list the matrix elements
the various terms of the Hamiltonian in the unsymmetriz
basis. Transformation into the symmetrized basis set is
complished in Appendix B.

1. Stark interaction

An electric field with strengthE that points along the posi
tive z axis in the laboratory frame will have spherical com
ponentsEq in the reference frame that rotates with the int
molecular axis. The relation between the two is given b
Wigner rotation matrix:

Eq5ED0q
1 ~f,u,0!. ~9!

The components of the molecular dipole momentm can be
written in terms of reduced spherical harmonicsC1q(a,b)
where, as above,a and b are Euler angles relative to th
intermolecular axis. The Stark Hamiltonian for a single m
ecule is then

2m•E52mE(
q

~21!qC1q~a,b!D02q
1 ~f,u,0!. ~10!

The integration over each molecule’s internal coordina
yields, for the unsymmetrized basis set~and remembering
that j 15 j 25 j ) @24#,
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^~1,2!JKuHSu~18,28!J8K8&

52mE~21! j 1K8@ j #2@J#@J8#d1,18d2,28d0,K82K
1

~u!

3H J8 1 J

j j j J S J 1 J8

K K82K 2K8
D

3F ~21!v1S j 1 j

2v1 0 v1
D

1~21!v21J1J8S j 1 j

2v2 0 v2
D G , ~11!

where@y#[A2y11.

2. Dipolar interaction

The dipole-dipole interaction reduces to a particula
simple form in the rotating frame:

Vmm5
m1•m223~R̂•m1!~R̂•m2!

R3
52

A6

R3@m1^ m2#0
2 .

~12!

Here @m1^ m2#0
2 is the ~2,0! component of the second-ran

tensor formed by the product ofm1 andm2. The zero refers
to the cylindrically symmetric component around the inte
molecular axis.

Following a treatment similar to the Stark effect abov
we note that

@m1^ m2#0
25m2(

q
C1q~a1 ,b1!C12q~a2 ,b2!^1q12qu20&.

~13!

Now the angular integration over each molecule’s inter
coordinates is again straightforward, yielding

^~1,2!JKuVmmu~18,28!J8K8&

52
m2

R3
A30~21!K82v12v2@J#@J8#@ j #4S j 1 j

2v1 0 v1
D

3S j 1 j

2v2 0 v2
D S J 2 J8

2K 0 K8
D H J8 2 J

j 1 j

j 1 j
J .

~14!

This matrix element is independent of the orientationu, as it
must be.

3. Kinetic energy

The centrifugal Hamiltonian in the rotating frame is n
longer diagonal, but rather couples states withK,K61 pro-
jections. Within our basis it is more convenient to present
angular-momentum operator as@25#

l̂ 25Ĵ21 Ĵ222Ĵz2~ Ĵ2Ĵ11 Ĵ1Ĵ2!. ~15!
0-3
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Knowing that

Ĵ2uJ~1,2!K&5J~J11!uJ~1,2!K&,

and

Ĵ6uJ~1,2!K&5AJ~J11!2K~K61!uJ~1,2!K61&
~16!

and using the definition of the angular-momentum opera
Ĵ2 and Ĵ6 @26# we have

l̂ 2exp~ iMf!F (1,2)JK
M ~R,u!uJ~1,2!K&

5eiMf~ uJ~1,2!K&Â0~K !1uJ~1,2!K21&Â21~K !

1uJ~1,2!K11&Â11~K !)F (1,2)JK
M ~R,u!,

where

Â0~K !52
]2

]u2
2cot~u!

]

]u
1

1

sin2~u!
M 21J~J11!22K2,

Â61~K !52
1

A2
AJ~J11!2K~K71!S 2

]

]u
6M 1

sin~u! D .

~17!

For convenience, in the following we will neglect th
Coriolis-type couplingsÂ61. Like many other perturbations
these can be incorporated later, if necessary.

C. Schrödinger equation

Within our scheme we have the following Schro¨dinger
equation:

2S \2

2m

]2

]R2
1ED f i~R,u!1(

i 8
@V̂i ,i 8

cent
~R,u!

1Vi ,i 8~R,u!# f i 8~R,u!50, ~18!

wherei 5$M,(1,2)JK,x,q% and f i5Fi /R .
Solutions of the coupled-channel partial differential equ

tions ~18!, subject to scattering boundary conditions, yie
both the energies and resonance widths of the FL states
clarify the nature of these states, however, we first invok
Born-Oppenheimer approximation. Thus we will diagonal
the model Hamiltonian for fixed values of the pair (R,u),
and seek bound state in one of the resulting potentials.
single adiabatic surfaceVadiab(R,u), the Schro¨dinger equa-
tion reads
01271
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\2

2mF ]2

]R2
1

1

R2 S ]2

]u2
1cot~u!

]

]u
2

1

sin2~u!
MF

22J~J

11!12K2D G1Vadiab~R,u!2EJ ~R,u!50. ~19!

III. CHARACTERISTICS OF THE FIELD-LINKED STATES

For concreteness, we consider here a pair of bosonic m
ecules withj 51, and parameters corresponding to the O
radical, as discussed above. From the similar model in R
@17#, we then expect to see a small number of FL states
modest electric-field values. Our aim in this section is
describe these states approximately in terms of the quan
numbers in our basis set defined in the preceding sectio

A. Adiabatic surfaces

The number of adiabatic potential surfaces is set by
number of internal states of the molecules.~Contrast this to
an expansion in partial waves, where the number of chan
is, in principle, infinite.! For a pair of j 51 molecules, the
present model contains 36 channels, hence 36 surfa
Moreover, conservation ofq @defined in Eq.~6!# implies that
these 36 surfaces split into two sets of 18 channels each.
surfaces forq51 andq521 are identical, if only the Stark
and dipolar interactions are included, as we assume. We
that including theL-doublet interaction leaves theq521
surfaces unchanged, but introduces some weak avo
crossings among theq51 surfaces. SinceL doubling is a
perturbation for the fields we consider, we will ignore th
small effect. Hereafter we report on theq521 surfaces.
Additionally, the quantitiesv i are conserved in the absenc
of L doubling, meaning that we can further classify the s
faces according to whetherv15v2 or v152v2.

Subdividing the surfaces in this way yields nine surfac
with q521 andv15v2, which are of greatest interest her
Slices through these surfaces at a fixed angleu55° are
shown in Fig. 1. Here we take the applied electric-fie
strength to beE5104 V/cm. Empirically, we find that sur-
faces composed primarily of even values of^J& ~solid lines!

FIG. 1. A ‘‘slice’’ through the adiabatic potential energy surfac
for an electric-field strengthE5104 V/cm. In these surfacesq5
21, v15v2, and even~solid line! and odd~dashed line! values of
^J& are distinguished.
0-4
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are only weakly coupled to surfaces composed of odd va
of ^J& ~dashed lines!. This consideration further reduces th
number of surfaces necessary to describe the FL states.

The FL states are bound states of the highest-lying sur
in Fig. 1, which is clearly generated by avoided crossin
The complete surface in the (R,u) plane is shown in Fig. 2
for both the rotationless caseM50 and a rotating case with
M51. Addition of the centrifugal energy makes theM
51 surface substantially more shallow than theM50 sur-
face; in fact we find six bound states forM50, and only
two for M51 ~see Table I!.

To gain a better understanding of the nature of the
states, it is useful to evaluate mean values of the quan
numbers in our basis set. In general, the symmetry-t
quantum numbersx, s, and e are badly nonconserved, an
average to zero. However, the angular-momentum quan

FIG. 2. Adiabatic potential-energy surfaces corresponding to
highest-lying slice in Fig. 1. TheM50 ~a! andM51 ~b! cases are
shown.

TABLE I. Binding energies in kelvin of FL states. Each state
identified by its rotationM about the electric-field axis, and by
vibrational quantum numberv. These energies refer to states ev
under the reflectionu→p2u. Additional states, odd under thi
symmetry, are separated in energy by less than severalmK from
those listed.

M v Energy~K!

0 0 0.0282
0 1 0.00550
0 2 0.000455
1 0 0.00545
01271
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numbersJ and K typically have well-defined mean value
that are useful for interpretation.

Figure 3 shows surface plots of the mean values^J& and
^K& for the FL potential surface~note that the axes are ro
tated relative to Fig. 2!. Near the minima of the potentia
wells, we find that̂ J&'^K&'2. These values characteriz
the FL states at large separationR. Reference@23# presents a
simple and useful semiclassical picture of the dipole’s ori
tation in the OH molecule. In this model the dipole preces
around the molecule’s total angular momentumj, and on
average points alongj when v.0, and againstj when v
,0. Thus when̂ J&'^K&'2 andv1v2, as is the case here
the dipole moments are both aligned on average in the s
direction, roughly along the intermolecular axis, and hen
attract one another.

At smaller values ofR, ^J& remains nearly equal to 2, bu
^K& drops all the way to 0. This reflects the influence of t
avoided crossings in the surfaces. Again invoking a semic
sical picture,^J&52, ^K&50 implies that the dipole mo-
ments are now aligned roughly perpendicular to the interm
lecular axis, in a side-by-side orientation where they re
one another. This is the reason the FL state is stable ag
collapse to smallerR.

The avoided crossings that allow FL states to be s
ported have their origin in the fact that the Stark interact
is diagonal in the laboratory frame~defined by the field axis!,
whereas the dipolar interaction is diagonal in the rotat
frame ~defined by the intermolecular axis!. Competition be-
tween these two symmetries generate the avoided cross
However, in the limit whereu→0 the two axes coincide an
both interactions become diagonal inK. In this case the
avoided crossings become diabatic crossings, and there
conical intersection in the surfaces. Our description in ter
of adiabatic surfaces is, therefore, incomplete. It is howe
useful, as we will see in the following section. There may
interesting information on geometrical phases inherent in
FL states; this will be a topic of future study.

B. Bound states

To complete a description of the FL states we must
derstand their motion inR andu. Each bound state is nearl
doubly degenerate with respect to reflection in theu5p/2

e

FIG. 3. Average values ofJ and K for the M50 potential in
Fig. 2. Note that the orientation of the axes is different from that
Figs. 2 and 4.
0-5
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FIG. 4. Wave functions of FL states, for the potential surfac
shown in Fig. 2. ForM50, there are three vibrational states,v
50 ~a!, v51 ~b!, andv52 ~c!. For M51, there is a single state
with v50 ~d!.
01271
plane. In Fig. 4 we present wave-function plots of tho
bound states that have even reflection symmetry, corresp
ing to the bound states listed in Table I. In this figure,~a!–~c!
refer to theM50 case and~d! to theM51 case. ForM
50, it is immediately evident that these states exhibit o
zero-point motion in theu direction and that excitations ar
primarily in theR direction. We therefore label the FL state
with a vibrational quantum numberv. For M51, a nodal
line appears along theu50 direction, owing to the centrifu-
gal energy that forces the molecules away from the elect
field axis.

In realistic laboratory circumstances, the FL states
quasistable, being subject to dissociation into free molecu
in lower-energy internal states@17#. Nevertheless, the adia
batic bound states we have identified here correspond to
features of these dissociating states. To show this, we h
carried out a complete coupled-channel scattering calcula
in a laboratory-frame representation, similar to that in R
@18#, but without including hyperfine structure. We have i
cluded partial waves up toL516 to ensure convergence
the several percent level in scattering observables.

We compute the lifetime of the resonant state against p
dissociation into all allowed channels via the time delay@29#

t52\
dd

dE
, ~20!

s

FIG. 5. Time delay as defined in Eq.~20! for theM50 ~a! and
M51 ~b! FL states. Resonance peaks appear at characteristic
ergies that correlate well with the binding energies as determi
from the FL adiabatic surfaces~vertical lines!. Note that the off-
resonant time delay can be negative; we have therefore added
to the computed result, to allow plotting on a logarithmic scale.
0-6
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FIELD-LINKED STATES OF ULTRACOLD POLAR MOLECULES PHYSICAL REVIEW A69, 012710 ~2004!
whered is the eigenphase sum, i.e., the sum of the inve
tangents of the eigenvalues of the scatteringK matrix. This
quantity, plotted in Fig. 5, exhibits peaks at energies wh
resonances occur. There is also a significant backgro
component, arising from threshold effects, but the peaks
nevertheless visible. Also indicated by vertical lines are
binding energies of the FL states as given in Table I. T
good agreement between the two calculations suggests
when FL resonances are observed in experiments, the n
of the resonant states will be well approximated by the w
functions determined above.

In general, resonances in ultracold polar molecular s
tering will come in three varieties. The ‘‘true’’ field-linked
states, those ones that we describe here, are largely inde
dent of physics at small values ofR. We can verify this
assertion by changing the small-R boundary conditions in
our multichannel scattering calculation. The positions of
FL resonances do not depend at all on these boundary
ditions. However, their lifetimes can fluctuate within a fact
of ;2, since the continuum states into which they can de
do depend on short-range physics.

A second type of FL state appears to have componen
both large and smallR. Examples of these are found fo
states lying below the middle threshold in Fig. 1. We fi
that their positions are relatively insensitive to the sho
range boundary conditions, but that their lifetimes va
widly. We refer to these as ‘‘quasi-FL’’ states. Finally a thi
category of resonance is strongly sensitive to initial con
tions, both in position and width. These are resonant state
the short-range interaction, which are expected to be num
ous in realistic low-energy molecular collisions@30,31#.

While our interest here has been in the structure of the
states, it is also worthwhile to remark on their lifetime
From Fig. 5 it is clear that the lifetimes in the present mo
are of the order of 10 ns. These comparatively short lifetim
are not an impediment to observing FL resonances in s
tering experiments@18# or in using them in photoassociatio
experiments to determine short-range scattering param
@17#. On the other hand, direct time-dependent field mani
lation of FL states may prove difficult on the nanoseco
time scale. However, the lifetimes are extremely sensi
functions of applied electric~and presumably magnetic!
fields, and the maximum expected lifetime remains u
known. This is a topic for future study.

IV. OUTLOOK

We have left out many details of molecular structure a
interactions, in order to emphasize the basic structure of
field-linked states. This structure is remarkably simple, a
consists primarily of a pair of molecules in relative vibr
tional motion along an axis that nearly coincides with t
direction of the electric-field. The number of FL states is n
large, since the forces holding them together are necess
weak.

Significantly, to adapt this simple picture to a particu
molecular species requires only a detailed knowledge of
structure of each molecule separately, plus some informa
on long-range parameters such as dispersion coefficient
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other words, realistic modeling of experimentally probed
states can probably be achieved using currently existing
formation. This is in stark contrast with molecular collision
involving close contact between the molecules, in which c
existing potential-energy surfaces are likely to be inadequ
for to describe collisions at ultralow temperatures.
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APPENDIX A: SYMMETRIZED WAVE FUNCTIONS

To incorporate the effects of symmetrization under t
exchange (P̂12) and parity (Î ) operations, we follow the
treatment of Alexander and DePristo@27#. To this end it is
convenient to relate the Euler angles of each molecule to
electric-field axis rather than the intermolecular axis; the
Euler angles are denoted byêL. The symmetry operations
then perform the following functions:

P̂12: R→2R,

ê1
L→ê2

L ,

ê2
L→ê1

L .

Î : R→2R,

ê1
L→ Î ~ ê1

L!,

ê2
L→ Î ~ ê2

L!.

The last two lines imply thatÎ acts on each molecule b
inverting the molecule’s coordinates through its own cen
of mass.

The effect of particle exchange on the internal coordina
is determined by making the explicit rotation to the la
frame:

P̂12̂ ê1 ,ê2u~1,2!JK&

5 P̂12(
m12

^ê1
L ,ê2

Lu~1,2!Jm12&Dm12 ,K
J ~f,u,0!

5(
m12

~21!2 j 1J^ê1
L ,ê2

Lu~2,1!Jm12&

3~21!JDm12 ,2K
J ~f,u,0!

5~21!2 j^ê1 ,ê2u~2,1!J2K&.

Here we have used the reflection symmetry of the WigneD
functions,

DmK
J ~p1f,p2u,0!5~21!JDm2K

J ~f,u,0!,
0-7
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and the usual exchange symmetry of the Clebsch-Gor
coefficients. Similarly the relative wave functions transfo
as

P̂12@exp~ iMf!F (1,2)JK
M ~R,u!#

5~21!Mexp~ iMf!F (1,2)JK
M ~R,p2u!.

An appropriately symmetrized basis for exchange is the
fore given by Eq.~4!, where

F (1,2)JK
M,s 5

1

2
@F (1,2)JK

M ~R,u!1s~21!M

3F (1,2)JK
M ~R,p2u!#,u~1,2!JK&x

5
1

A2~11d12dK0!
@ u~1,2!JK&

1x~21!2 j u~2,1!J2K&],

with sx561 for bosons/fermions.
These basis functions can in turn be assembled into pa

eigenfunctions. Note thatÎ has the same effect on the relativ
coordinates as doesP̂12, so thateiMfF (1,2)JK

M,s is already a
parity eigenstate with eigenvalues. Denoting the parity of
the total wave function bye, the parity of the relative wave
functions should bep5es, or p5q(21)K in terms of our
quantum numberq defined in Eq.~6!. This definition seems
~and is! completely arbitrary; it is justified by explicitly
working out the matrix elements for the Stark and dipo
dipole interactions, and finding that both conserve the va
of q.

The influence ofÎ on each molecule is to reverse its d
rection of rotation about its own axis and to introduce
phase@28#

Î ^êLu j ,m,v&5~21! j 2s^êLu jm2v&.

Because the phase factor is the same for each molecule
action of Î on the molecule pair is, by arguments similar
those above,

Î ^ê1ê2u~1,2!JK&5~21!J^ê1ê2u~21,22!J2K&,

where the notation (1,2)→(21,22) implies
( j 1 ,v1 , j 2 ,v2)→ ( j 1 ,2v1 , j 2 ,2v2). The symmetrized in-
ternal basis function is then

u~1,2!JK&x,q

5
1

A2
@ u~1,2!JK&x1q~21!J1Ku~21,22!J2K&x].

APPENDIX B: CONSERVATION OF q

It is straightforward~if somewhat tedious! to write the
symmetrized matrix elements for different contributions
the Hamiltonian, in terms of the unsymmetrized basis.
present here some of the key results, which rely mostly
01271
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the symmetry properties of the angular momentum rec
pling coefficients, as described in Brink and Satchler@24#.

Dipolar interaction. In Eq. ~14!, the 9j symbol must be
invariant under exchanging its second and third rows,
this operation introduces a phase shift (21)J121J8. There-
fore, we must haveJ1J85 even, and the matrix elemen
~14! is invariant under the substitution (1,2)→(2,1), K→
2K. In the symmetrized basis it reads

x^~1,2!JKuVmmu~18,28!J8K8&x

5S 11xx8

2 D 1

A~11d12dK0!~11d1828dK80!

3@^~1,2!JKuVmmu~18,28!J8K8&

1x8~21!2 j^~1,2!JKuVmmu~28,18!J82K8&#.

Thus the exchange quantum numberx is explicitly con-
served. Similarly, the matrix elements are invariant un
simultaneously reversing the signs of allv ’s andK, whereby

x,q^~1,2!JKuVmmu~18,28!J8K8&x8,q8

5S 11qq8~21!K1K8

2
D @x^~1,2!JKuVmmu~18,28!J8K8&x8

1q8~21!x8
K8^~1,2!JKuVmmu~218,228!J82K8&x8#.

BecauseK5K8 for the dipolar interaction, this implies in
turn thatq is conserved. The matrix derivation of symm
trized matrix elements for theL doubling is exactly the
same, and this interaction also conservesq.

Stark interaction.Symmetrized matrix elements of th
Stark Hamiltonian~11! are slightly more complicated, sinc
reversing the sign ofK also affects the Wignerd function.
Exploiting symmetries of thed functions yields

x^~1,2!JKuHSu~18,28!J8K8&x8

5S 12xx8~21!K1K8

2
D 1

A~11d12dK0!~11d1828dK80!

3@^~1,2!JKuHSu~18,28!J8K8&d0,K82K
1

~u!

1x8~21!2 j^~1,2!JKuHSu~28,18!J8

2K8&d0,K82K
1

~u!#.

In general, neitherx, nor K, nor the productx(21)K, is
conserved by this part of the Hamiltonian. However, the m
trix elements in the basis Eq.~7! become

x,q^~1,2!JKuHSu~18,28!J8K8&x8,q8

5S 11qq8

2 D @x^~1,2!JKuHSu~18,28!J8K8&x8

1q8~21!x8
K8^~1,2!JKuHSu~218,228!J82K8&x8#,

illustrating the conservation ofq.
0-8
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Centrifugal energy.Symmetrized overx, the centrifugal
energy reads

x^~1,2!JKuVcentu~18,28!J8K8&x8

5
\2

2mR2
dJ,J8S 11xx8

2 D
3S 1

A4~11d1,2dK,0!~11d18,28dK8,0!
D @„Â0~K !dK,K8
ev

nd

.M

a

an

G

e

G

-

in

.

01271
1Â21~K !dK,K8111Â11~K !dK,K821…d1,18d2,28

1x8„Â0~K !d2K,K81Â21~K !d2K,K811

1Â11~K !d2K,K821…d1,28d2,18#. ~B1!

From this point, translation into thex,q symmetrized basis is
trivial. In general,q is not conserved by the Coriolis term
that changeK, but in the present treatment these terms
ignored.
nd
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