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Noncollinear and collinear relativistic density-functional program
for electric and magnetic properties of molecules
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We present the general theory of the collinear and noncollinear description for the magnetic effects within
the full relativistic density-functional method. As examples for the implementation in a molecular code with
numerical basis functions we present results with an even number of electrghsuf&twith an odd number
of active electrongNiAu). The results are promising.
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[. INTRODUCTION energy starts with a purely nonrelativistic approach with or
without spin-orbit interaction, continues with the zeroth-
The quick development of computational methods inorder regular approximatiofil7,18 and ends with a fully
Physics and Chemistry nowadays allows us to calculate erfelativistic description. A comparison of these approxima-
ergies and other properties of atoms, molecules, and smdfens and corresponding results can be found in Refs.
clusters withab initio methods. In the first place these are [19,20: _ _ ,
“classical” but still very popular methods in quantum chem- . N the last three decades a series of different approxima-
istry such as the Hartre@irac)Fock method§1—3], con- tions for the exchar)ge and correlatlon. functionals were in-
figuration interaction, multiconfiguration Dirac-Fock, second(fduced. An overview can be found in Ref21,22. Al
order Mbler-Plesset (MP2) [4], coupled cluster single these functionals can be written either in relativistic or non-
double triple) excitation[CCSDT)] [5-8], and so on. The relativistic form[23]. The two forms lead to different total

great advantage of all these methods is the possibility t(?nergies_, but almost the same bond energies _and bond
achieve the “exact” solutioriwithin the chosen methodust engths in the case of moleculgk9]. Therefore we will not

X ; : X distinguish between these two forms and the results for one
by increasing the number of configurations. Unfortunatelysorm a1so represent the results for the other one.

this number increases as power of 4, 5, or even 7 with the A fyrther difference between various density functionals
number of active electrons, so that all these methods fight the treatment of the spin of the electrons. In the simplest
with the limit of the memory and central processing unitform of nonrelativistic density functionals spin is completely
(CPU) power. Therefore these methods can nowadays onlyjeglected. This approximation works quite well for closed-
be applied to systems with relatively small numbers of activeshell systems but leads to wrong results for open-shell mo-
electrons such as atoms, small molecules, and small clustelligcular as well as atomic systems. A very important improve-
The results achieved for these systems are very good antlent was achieved by extending these functionals to spin-
serve as benchmarks. In the last two decades, however, mapyglarized forms[24]. In a relativistic description the spin
computational improvements are made to make these metlhould actually be included in the relativistic form of the
ods more efficient. With some approximations, for exampledensity functionals, which directly depends on the four cur-
it was possible to achieve first a quadrdficl0] and later on  rent density[25,26, but this approach is not yet suitable for
even a lineaf11,12 scaling for the Hartree-Fock method. A practical applications. Alternatively, the spin can be included
linear scaling has been also achieved for the NIB214] as  into the relativistic form of the density functionals in a theo-
well as for the CCSDI) [15] methods. This scaling behavior retically consistent way via the magnetization density using a
behind the high accuracy makes them very attractive also fdiictitious external magnetic field which is set to zero in the
large systems. end formulagfor more details see Refl21,22). In this case

In 1964 Hohenberg and KoHi6] were able to show that the exchange and/or correlation functionals depend not only
the total energy of any system in an external field can ben the density but also on the magnetization den&ge
described by a functional of its density only. This pioneerdetails in Refs[21,22,27). The magnetization density at any
work is the basis of the density-functional thedBFT) and  point in space is defined as magnetic moment per volume
provides an incentive for many theoreticians to find this[28]. Following this, it is a vector which, in general, points to
functional. In the last three decades many approximations fadifferent directions at different points in space. In order to
the energy density functional were made which gave quitesimplify the calculations in most implementations the mag-
good results, but the exact form of the functional is still netization density is aligned to the axis of the highest sym-
unknown. metry (z axis), which in the literature is called the collinear

DFT calculations depend on the choice of the exchangeapproximation. There are only a few implementations of the
correlation functional and the treatment of the kinetic energynoncollinear approximations for atoms and solids known in
The spectrum of the different approximations of the kineticthe literaturg27,29,3Q. Only one of them reports an imple-
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mentation for molecules where the authors used a ScalaHere n; are the Occupation numbe"—é,and F—éq are the elec-
relativistic deSCI’IptIOI’[31]. In a recent pape[r32] we were tronic and nuclear CoordinateS, respective'y, WIS the

able to present the first four-component implementation oohr magneton. The indexuns over all occupied molecular
the noncollinear density functionals for the diatomic mol- grhitals M, which in our case are four-component Dirac

eclultt_e Pit T_her;a IS alfot.a V;éy recent report about a new fu”spinors. The four-component spin operaﬁF(Ex,Ey,Ez)
relativistic implementatio33]. is built from the two-component Pauli matrix. The Dirac

In this paper we present a detailed description of theg,. .. : :
. . inetic-energy operator has the forfwe use atomic units
method to describe the magnetic effects. As the only othe{ gy op

example in this paper in addition to the homonuclear mol_hroughou}

ecule P, we present results for the heteronuclear system R

NiAu with an odd number of electrons which lead to a dras- t=ca-p+c3(B-1), (2.9
tic effect of the noncollinear description in the molecule it-

self. Our theoretical values calculated with the noncollinear -

approximation are as good as the ones for Rtthe Appen-  Wherea=(ay,ay,a;) andp are the four-component Dirac
dix details are presented for the calculation of the Hartrednatrices in the standard representafig4] andl is the four-

potential within this program. component unit matrix.
VN is the nuclear potential

Il. METHOD
Starting from QED Rajagopal and Callaw&g5] were W= _ *Zpe 2.5
able to prove that the ground-state energy is an unique func- p |r—Rp| '

tional of the ground-state four current and introduced a func-

tional for the relativistic electron gas. Practical experienceWh ; o
. ? : re the in runs over all nuclei in the molecular -
has shown that the functionals which depend on the densﬁyeme e the indexp runs over all nuclei in the molecular sys

enly cannot reproduce the experime_ntal re_s[nazq. One EXC is the exchange-correlation energy function&f. is
of the reasons was that the three-dimensional current for fhe electronic Hartree potential

relativistic electron gas is zero, and therefore these function-
als cannot describe the system with internal magnetic field R
properly. One can rewrite the functional using the Gordon o> p(r') -

decomposition as functional dependent on the density and Vi(r)= |F— F’|d r. (2.6
magnetization density. In the Gordon decomposition the

three-dimensional current is represented as the sum of the

orbit current and the magnetization. The first term is usuallySince the calculation of the Hartree potential from the SCF
neglected because in most cases it is small in comparison @ensity (2.2) is very time consuming, we approximagein

the second one. A general derivation can be found in RefEq. (2.2) by a model density. We expand our model den-
[21,22. One can prov¢21,27 that the ground-state energy sity into series of “atomic” multipole-densities centered on
is an unique functional of the ground-state dengityand  the nuclei. To determine the expansion coefficients we mini-
magnetization densitgn, provided the system is not subject mize the Hartree energies calculated from the difference of
to an external magnetic field. This means that the system cahe SCF density and model density. This procedure leads
be completely described by its density and magnetizationo small corrections to the total energ®.1) which are no

density. longer linear, but quadratic in the differenpe-p [35]. We
_ Within this method the total energy of a molecular systemy|sq emphasize that only the procedure described here has
is given by the expression this property. All other similar methods such as Mulliken
M [36,37, density fitting [38,39, or even direct projection
E=S ni<l/fi|f|</fi>+f VNpd3r + lf VHpd3F + EX p,m] methods[40], lead to errors in the total energy which are
i=1 2 linear in the difference of densities. However, all methods
converge to the right Hartree potential if the basis for the
model density becomes more and more complete.

Another improvement of our method is the possibility to
control and avoid the linear dependency of the fit-basis func-
with the densityp and magnetization density which are  tions. We diagonalize the fit matrix in the symmetry-adapted
defined by basis and set the occupation numbers for all orthogonalized

symmetry-adapted fit functions which have a small norm
.M . . (length explicitly to zero. All these improvementfor more
p(r)=2 myl (N y(r), (2.2 details see Appendjxallow an accurate calculation of the
=1 Hartree energy as will be shown in Sec. Il C.
M The variation of the energy functioné?.1) leads to the
> — T RS relativistic Kohn-ShamKS) equations in their general form
m(r) “B; M (1B (). @3 for the molecular orbitalsy,

ZpZq

— (2.9
p>a |Ry—Ry|
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. 5 5Ex0[p,rﬁ] 5EXC[p,nT]] are d.ependent on the _d_en.sity as well as on the magnetization
T+ VNV — L — — B ———— =, density. The nonrelativistic form of the GGAs cannot be
op om used because these are dependent on the spin densities, and
) because from a magnetization density which is not aligned to
i=1...M". (2.7 an axis these densities cannot be calculated. The simplest

“H ) ] solution of this dilemma is to describe the system at each
HereV" is the Hartree potential from the model density andpoint in the space in a frame where the magnetization is

M’=M is the number of molecular orbitals. parallel toz axis. This could be done by rotation of the mag-
netization density at each point in space as long as it be-
A. Collinear case comes aligned to the axis [43]. Now it could be used to

The collinear approximation of DFT is widely used in calculate the generalized spin densities and in a following
practice and motivated by the nonrelativistic DFT, where the>t€P also the exchange-correlation potentials. These poten-
tials include one part which is dependent only on the density

spin is a good quantum number if the spin-orbit coupling is T L
neglected. In this approximation one defines spin-up an@nd other part which is dependent on the magnetization den-

spin-down densities, and uses exchange-correlation functiofly (internal magnetic field In order to get the right

als which depend on these densities. In the relativistic theonFXchange-correlation potential for EG2.7) the last part
however, the exchange-correlation functionals should depe _OUId be rotated back. Since hath rotations are made locally
on the density and the magnetization density. Unfortunatel{iS Procedure leads to the exact solution of the general equa-
up till now only the exchange part of the relativistic local- 10" (2.7). Itis well known[34] that a rotation in a real space
density approximatiofRLDA) [41] is known in this form. IS equal to a rotation in the spin space. From practical point

Practice shows that one can still use the exchange-correlatidt] VieW the last one has some advantages, therefore we
functionals in their nonrelativistic form for relativistic mo- 2dapted this type of rotation in our program and present it

lecular calculations because the difference between the r@_lso in this paper.
sults achieved by using one form or another are sidal). We want to introduce a four-vector

In order to be able to define the spin densities in the relativ- 1M 1M
istic description(compare Ref[31]) one assumes that the g (1)=Z > i, S(H=2 nigl By,
magnetization density at every point in the space is aligned 2= 2=
to the symmetry(z) axis. In this case one can calculate from (2.10
the total density and the magnetization densities the general- R
ized spin densitief21,22] where the spin densit$ is related to the magnetization den-
" sity by expression
-1 .1 35> (1EB2,
pi(r)_z P(r)"‘MBmz(r) _i=l niwi 2 l,bi- rﬁ:_ZMBé. (211)

(2.9
_ - _ . It is well known that for every four-vector, there is a corre-
Using these densities the KS equatid@s7) can be written  sponding spinor of order 34] which is built from the com-

in the form ponents of this vector. In our case the matrix has the form
- R > - .
t+ VN +VR(r) + %V’f(r) - SotS, SISy
§(r)= _ . (2.12
1—322 S+ ISy SO_ S,

e VEO (D =€) (2.9 _ .
All rotations of the four-vector, which includes not only ro-
tations in the real three-dimensional space but also rotations

with in the Minkovsky space, can also be represented as rotations
L 8B, .p. 1 SE*Tp.m SEX T p.m in th_e spin space. In t.hIS paper we are only interested in
VX(r) = Lo+ op-] = Lp,m,] ¥ Lp,m,] ) rotations in the three-dimensional space, therefore a general

MB
op- op om; transformation is given by the unitary mattix(r) [34]

B. Noncollinear case B . B )
. . : cos; el gin=e~ (2@~
In noncollinear case the KS equations in their general 2 2

form (2.7) should be solved. One problem appearing in this u(r)=
case is that the variation of the exchange-correlation func- =

tionals SE*q p,m]/dm is only known for the relativistic
exchange-only LDA. On the other hand, it is well known that (2.13
this functional describes all electronic systems much worse

than the GGA's(general gradient approximatiprin general Here«, 8, andy are Euler rotational angles. We can diag-
these functionals should be extended to functionals whiclonalize the matrix2.12) and determine these angles by us-

sin'ge(”z)(“‘ » cosge‘(”z)(“* »
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ing the transformation_ matri>(2.13. This means that we VXC(F)=UT(F)diaguﬁc,u’ic)U(F), (2.19
have to solve the matrix equation = = =
- . - which has the form
S(r)=U'(r)diag S}, ,S")U(r). (2.14
. . o _ VX(r)
This matrix equation is equal to a system of linear equations=
B LB 1 B
Xecog = +v*%siP = = sin-e *(v**—p*°
811=S’+0052§+SLsin2§, vICOS ZHUySInG  Fsinge fuius)
L B e ey xeaieB s xeoodB |
Szzzsirsin2§+s’_co§§, 5 sinye (v’ 0™ v+sm2§+v+co§§
(2.20

ReS;,=3cosa sinB(S,. —S'),
or rotate the four-vector B,=(3(v*°+v%%,0,05(v%°
ImS,,=—3sinasinB(S,.—S"). (2.15 —0v*9) in real three-dimensional space. It is interesting to
note that the internal magnetic field of a system and the
We want to denote that the rotation angleloes not appear “normal” exchange correlation potential are not independent
in these equations and therefore can be chosen arbitrarilpf each other because both together build a four-vector. This
This is due to the rotational symmetry of the magnetizatiorfact is not important for this noncollinear case where only
density with respect to the nex/ axis. In order to simplify  rotations in the three-dimensional space are involved. But if
the end expressions we set this rotational angle to zero. Thalso Lorentz transformations are involved which correspond

solution of this system has the form to a rotation in the four-dimensional space and involve also
the time coordinate then this fact becomes very important.
Im(S;2) After the rotation we get for the internal magnetic field
tana=— ,
Re(S;,) .. .
B(r)={3(v%*—v*cosasinB,3(v*°
[S12l
== _ . XC R 1/ XC_ _ XC
tang 2811—522’ v*%)cosa sing, 3 (v*°—v*°)cosB}. (2.21)
R B B We want to stress again that all these steps are performed at
S;(r):(SnCOSZE—SzzSirFE) / cosp, each point in space, and therefore the solution which we
achieve in this way is a exact solution of the general equation
8 8 (2.7.
S’(F):(Szzco§§—sllsin2§ /cosﬁ. (2.1
C. Test of the completeness of the atomic basis sets

. . and of the accuracy of the Hartree ener
The eigenvalues of the matri®2.12) are connected to the Hracy 9y

components of the four-vector by the expression The relativistic Kohn-Sham equations in the noncollinear
form (2.7) were solved by using numerical atomic orbitals as
$=3(S,+8.), S$,=3(S.-8). (2.17  basis functions by the molecular orbital—linear combination

of atomic orbitals method. The advantage of this method is
We want to point out that in contrast to the nonrelativisticthe small number of basis functions which are required to
case the sum of eigenvalues $g) does not give the total achieve high accuracy by solving the many-centers Kohn-
density of the system. This is due to the presence of the smalham equations. In this section we would like to show that
components and reflects the fact that a relativistic systerthe minimal basis plus only four to five additional basis func-
cannot be completely spin polarized because the spin of #ons lead to a final basis set error in the total energy of down
particle (an electron is not a good quantum number in the to 0.01 eV only.

relativistic description. Using the expressitth17) for the z Besides this final basis set error there is also an error in
component of the spin density in the rotated system one caghe calculation of the Hartree potenti@nergy V" in Eq.
calculate the spin-up and the spin-down densities (2.7). As is described in the Appendix we use for the calcu-
. . . R lation of the Hartree potential a model density which is ex-
p+(r)=3{p(r)F[S,(r)—S_(r)]}. (2.18  panded into multicenter multipolar fit-basis functions. Gen-

erally speaking these can be chosen independently from the
Now we are able to calculate the exchange correlation pobasis for the wave functions. However our experience shows
tentialsv”® andv* using the generalized spin densities. Tothat this leads to larger errors than if the same basis functions
determine the exchange-correlation potential in the nonroare applied. Due to this fact we use as fit functions the radial
tated system we can either make a rotation back in the spisubshell densities multiplied by spherical harmonics up to a
space maximal numbetf ., which can be defined at the beginning
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TABLE |. Total energies of Lj for different basis sets. All calculations are performed with relativistic
kinetic energy an, exchange-energy functional.

Basis no. Basis functions Total ener@yu)
1 1S4/, 254 nNeutral —14.5397640
2 Basis no. ¥ 2py,,, 2p3p, (Lit?H) —14.5484306
3 Basis no. 2 3s;,,, 3Py, 3pap (LiL3Y) —14.5491881
4 Basis no. 3 3dy,, 3ds, (B%?") —14.5492755
5 Basis no. 4 4s,/,, 4p1j2, 4pap (BZY) —14.5496747
6 Basis no. 5 5s;,,, 5p1/p, 5Pz (N1 —14.5498011
7 Basis no. 6-6s;,,, 6Py, 6Pz, (O°8) —14.5498077
8 Basis no. & 4fg,, 4f,, Ne>'5" —14.5498127
9 Basis no. & 7sy, 7p1j2, 7P (NeB2) —14.5498187
[46] FEM —14.5498278

of the calculation. Therefore a basis set optimization mini-multipole moment. In most cases it is sufficient to use the
mizes both the final basis set and Hartree-energy error.  contributions up to the quadrupole term in the model density.
In order to achieve the basis set optimization we start with  One also observes a nearly constant difference between
numerical minimal basis functions for a neutral atpt]. In  the values for the same multipoles for the two basis sets
the second step, we add basis functions of the next subshelhown here. This means that the error from the incomplete-
from a calculation of an atom with a defined degree of ion-ness of the basis never will be compensated by use of higher
ization (we use noninteger occupation numbet/e make  mytipole moments.
several molecular calculations with different partial occupa- |, addition we should mention that wave functions like

tion numbers for the additional basis functions and find the)st/2 or 4f,,, which have a structure in the angular part of

Ejnlmmumf (.)f t_het_totall e?her%.%f otllmer asf_futr;]ctmn t(_)flthe the wave functions but no nodes in the radial part give a
egree of lonization. In the third step, we Tix the partial 0C- g contribution to the total energy or even can lead to

cupation numbers for these two basis sets and optimize the o : .
- X . . worse results. This is due to the increased linear dependency
additional basis functions of the next subshell in the same - . . o .
f the basis functions. To avoid this in the fit procedure we

way as the previous subshell. In this way we increase th . . . i
number of basis functions subshell by subshell until the tota}!S€ @ method described alsa in the Appeno_llx. In this method
e have a cut parametgsee Eq.(A21)] which, generally

energy change by further increase of the number of basi¥’ X ) )
functions was smaller than a chosen value. speaking, can influence the results of the calculation. We also

In order to test the accuracy of the Hartree energy westudy the dependency of the total energy from this cut pa-
study the dependence of the total energy as function of theameter and find that the change in the total energy for cut
basis functions. The only basis-independéFid [45], e.g., Parameters between 16-10 ¢ are much smaller than the
FEM [46]) reference value which we found was the value forother errors discussed above. This means that for this choice
Li,. In the first step, we increase successively the number dif the cut parameter the linear dependency of the fit-basis set
the basis functions. By using this optimization procedure weds reduced while the basis is still sufficiently large to repre-
find the degrees of ionization listed in Table I. As it can besent the SCF density quite well. A cut parameter outside this
seen from this table, the total energy converges quite fashterval makes the set too smdbigger € values or too
with increasing number of basis functions to the exact valuelinear dependentsmall values In both cases the final result

In the second step, we study the dependence of the tothlecomes worse. We use in our calculation a value®10
energy on the maximal angular momentum quantum number As summary of these more technical but important details
Imax IN the model density in Eq(ALl). The results of this we can say that the approximations together with the optimi-
study are collected in Table Il where we present the resultgation procedure work quite well. This allows one to calcu-
for the smallest and the biggest basis sets only. We can sedate the total energies of molecular systems with accuracies
very rapid convergence of the total energy with the maximabelow 0.01 eV and all differences above this limit are due to

TABLE II. Total energies of Lj for different basis sets as a function of angular momenta quantum
number which was used in the calculation of the Hartree energy.

Basis no. Monopole Dipole Quadrupole Octupole
1 —14.5411696 —14.5398017 —14.5397934 —14.5397640
9 —14.5744133 —14.5499900 —14.5498213 —14.5498187
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TABLE Ill. Ground-state properties of the homonuclear moleculed?id heteronuclear open-shell molecule NiAu. The abbreviation
RLDA means the relativistic local density approximation for exchange [@8}; B88 means the exchange only functional from Belekd,
P86 means the correlation functional from Perdd&], and VWN means the correlation functional from Vosioal. [49].

Molecule NiAu Py

Reference Method D(eV) R. (a.u.) o (cm™ 1) D, (eV) Re (a.u.) o (cm™ 1)
This work RLDA/VWN (SP 4.30 3.16 315 4.19 4.35 239
This work RLDA/VWN (SP,non 4.30 3.16 317 4.00 4.35 235
This work B88/P86(SP 4.43 2.49 280 3.28 4.42 225
This work B88/P86G(SP,non 4.44 2.49 276 3.12 4.42 224
[53], [50] Expt. 4.443-0.002 2.52-0.17 3.14-0.02 4.40867 (83) 222.460.66

the choice of the density functionals and thus the methodeparately. Using these basis sets we performed the calcula-

itself. tions for NiAu. Our results are collected in Table IIl. As it is
already shown the case for,Rhe GGA result§B88/P86 in
IIl. RESULTS AND DISCUSSION combination with the spin polarization can reproduce very
well the bond length as well as the bond energies for this
A. Homonuclear molecular closed-shell system Rt open-shell molecule.

Table Il shows the bond energies, bond length, and vi- From the experimental data it is known that the ground
brational frequencies for RtA comparison between differ- state of NiAu is a"Ag, state. We performed some analysis in

ent theoretical methods can be found in R§&2] and[50].  °rder to figure out the symmetry of the system from our
We calculated vibrational frequencies from the Morse po_calculatlons. The integral over the magnetization density

; ) .-~ gives us per definition the total magnetic moment of the
teenn(;urzly[sci]r\tgt?r?clf dicr)::gr tﬁil?s!;:ﬁgt(;/t?(lzu\?:luoef ]ctg;m?roﬁ?t'al' molecular system which correlates to the total spin of the

. g system. We found that the total spin of this molecular system
ferent ~ exchange-correlation  functionals.  For — everyigg_ 1/ in agreement with experimental observation. From
combination we performed a spin-polarized collin€&P 55 analysis of the occupied orbitdtee belowwe estimated
and a spin-polarized noncollineé8P,non calculation. From  he ground state symmetry of the NiAu molecule &%,

potential curve we can see that the system has no open spins|n the experimental papdb3] the authors predicted the

and therefore it behaves in the calculation around the miniground-state configuration of this molecule todggdoc>.

mum of the potential-energy curve as a closed-shell systent find evidence for this we looked to the expansion coeffi-
From this the ground state of the,Pholecules should be an cients of the occupied molecular orbitals. Due to the large
O, state, presumable translating . Due to this fact we overlap of the 4y;,3dy; and 6s,,5d,, all these orbitals
get essentially the same total molecular energies for all thre@ere far away from “pure” atomic states. In most cases
forms. This can be seen from the very little change in themore than two atomic orbitals contributed to the outer mo-
bond distance and the vibrational frequencies. The mealecular orbitals. When we looked to the leading term in each
change in the bond energy comes from the larger total energyxpansion we found that botrs4rbitals as well as thed;,
of the molecular system at very large internuclear distancesrbital from Ni are unoccupied. From the Mulliken overlap
In other words, the difference comes from the atomic calcupopulation analysis we additionally found that the first two
lations for the open-shell system of the Pt atom. This agreesorrespond to the antibonding orbitals and the last one to
with other calculations with and without spin polarization the antibondingl § state. From the overlap population analy-
[52]. We determined the total energy of the Pt atom by calsis we also can see that all molecular orbitals formed from
culating the Pt molecule at large internuclear distancesthe d orbitals of both atoms of the NiAu molecule do not
(>40 a.u.). The calculations of the Pt atom with our mo-have well-pronounced bonding or antibonding character.
lecular program using the same grid as used in the molecularhis agrees with the assumption of the experimentdl&as
calculations at the minimum of the potential curve give aln order to check how good this assumption works we per-
difference which is much smaller than the uncertainty in theformed the Mulliken analysis to estimate the electron distri-
total energy due to the final number of basis functions usedsution in the molecule. These are presented in Table IV. One
can see some charge transfer from tlsg A0 3d subshell of

B. Heteronuclear molecular open-shell system NiAu Ni. One can also see that thehole resides mostly on nickel

site. This means that the assumption made by the experimen-

In order to test the calculational method which we discus alists about the ground state of the NiAu molecule are quite
here we have chosen one of the few experimentally know 00d 9 q

[53] heteronuclear diatomic molecules with an odd numbe®?°%:
of electrons, at least one nd hole, and where at least one atom
is very heavy: NiAu.

We optimized the basis functions in the way as it is de- As summary one can say that we have been able to cal-
scribed in the preceding section for the,Mdind Aw, systems  culate two very different diatomic molecules. This makes us

C. Conclusion
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TABLE IV. Mulliken occupation numbers for the heteronuclear open-shell molecule NiAu at the bound

distance.

Basis type Occupation Basis type Occupation

Ni minimal basis Au minimal basis

15,,—3P3p 17.9816976 $1/,-5Pa 68.0056798

3dg, 3.6251786 8y, 3.9263932

3ds, 5.3712440 8, 5.7907258

4s,), 0.9061068 (S 1.0887852

Sum minimal basis 27.8842268 Sum minimal basis 78.8115840

Additional basis 0.2890275 Additional basis 0.0151617

Total 28.1732543 Total 78.8267457
hopeful that calculations of larger molecules will lead to ac- Na Mg Lj | FL(£)YM( 6, b
curate results not only for the bond energies and distanceg(r)= >, > Q}("I‘J R LA
but also for magnetic moments and magnetic moment distri- K=1j=11=0 m=-I | €k — &kl
butions. (A3)
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APPENDIX: CALCULATION OF THE ELECTRONIC 1 "=0 :<'+1
HARTREE POTENTIAL ﬁ = "
: : k= & -

Only for a single atontone-center systenthe calculation oK > %P,,(cosa),() <&k
of the electronic Hartree potentié2.6) is relatively simple. 1'=0 &'k
In the multicenter case the calculation of this potential from (A4)
the self-consistent densit§2.2) is very difficult. Therefore
usually an approximative Hartree potential is u$88,39.  |f we replace the Legendre polynomid®s by real spherical

We use a multipole, multicenter expansion of the moleculatharmonichm/
charge density. We approximate it by 1o

. Npo Mg L | _ 4 1’ ’ ’
(N=2 2 2 2 QRFk(&)Y(0c. by). Pi(coso)=—— 3 Y (0, )Y (0., bk)
K:lJ:l|:O m=—| 2| +1mr:7|/
(A1) (A5)

Here Fl (&) =[P?(£k) + G?(£«)] are the atomic shell den- we can rewrite Eq(A4) in the form
sities which are built from the large; and smallG; com-

ponents of the atomic wave functiond] are the real spheri-
cal harmonics, andg]Kn', are the occupation numbets.runs
over all atoms in the molecular systeN), j runs over all
shells in the atoni, andl runs over all angular momentg

of the shellj. Since the Hartree potential is linear in the
density we can write it as a sum

NA MK LJ | F] (gl)Ym(al ¢!)
V(r)= > QJKan k(YT 0k PK) (o,
K=1j=11=0 m=-I [r—r’|
(A2) Ax
After the coordinate transformatidfor coordinate definition FIG. 1. Electronic coordinates in molecular,(’) and atomic
see Fig. 1 we get (k. &x) frame.Ry is the displacement vector of the atdfn
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“ &k 4w
1 |,EO gl'fl 21" +1 2 YI' (aKad’K)YV (0K'¢K) §K>§I'(,
= K m'=—

= (AB)
|§K_§K| ” gll 41 i ’ ’
lE g,lﬁl 1 El Y1 (0 b)Y (O i), Ex<éic
’:O K m/:7 !
|
If we insert this in Eq.(A2) and integrate over the angular Q]mv ¢,= F{<(§K)Y|m( b« , i), (A9)

coordinates and take into account the orthogonality of the

spherical harmonics o -
where v represents any combination of the indices

Come o eom (K,j,I,m). In the new basis EQA1) can be rewritten in the
J dQY["(O &)Yy (O ) =1 Sy s (A7) form

we get the formuld39]

Na Mg L | B(F):ZV 4., - (A10)
Vin=2 2 2 E 2|+1 Y.(0¢>
1j=11= -1
To determine the occupation numbeys we use the least-
K oy orlt2e ( or square fit metho@38]. We minimize the Hartree energg4]
P 0 dg'ém R (€) calculated from the difference of the SCF density and model
K density[35]
+4 fwdg'g'l—'mf')l. (A8)
“Je “ [p(r)— p<r>][p<r )=p(r)] - o
1 d*rd°r’ =min.
Ir—r
1. Fit of the molecular density (A11)
In order to simplify the following discussion we introduce
new occupation numbers and fit-basis functions Inserting Eq.(A10) into Eq.(Al1l) we get
|
(p<F>—E qm))(mrn—z qm(?')) !
J f AR d3rd3’ =min. (A12)
r=r’|
|
We vary this functional by preservation of multipole mo- 0. (Do (r )
ments. In practice we normally use the first two—monopole f f S L derder,
momentQ and dipole momend, r—r i
R R I x={q,,\i/2},
S a. 0.0, T q.[ fe.ci-d. (@13 x=lannz
. . . - p(Ne,(r) 37437
These constraints can be included in the variation by the b,= P =, drdr,
standard Lagrange multiplier technigb]. After the varia-
tion of g, and\ we get the matrix equation
b={b,,Q,dy,d,.d}. (A15)
A x=b, (A14) )
In principle Eq.(A14) solves the problem of the determi-
with nation of the fit occupation numbers.
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2. Symmetry-adapted basis this system of linear equations to estimate the symmetry-
A major disadvantage of EqA14) is that by solving it adapted _occupatior_l numbers. T_he back transformation_ to
the symmetry of the molecular system cannot be used. 1€ &omic occupation numbegs is given by the expression
order to improve this we use symmetry-adapted basis func-
tions ¢, which we expand in a series of the atomic basis quz CjX;- (A19)
function ¢, !

3. Linear depe dence of the atomic fit-basis functions
b= E C ©,. Al6
k -~ vk¥ v ( )

From the general point of view the ansd#xl10) is over-

Here (C,,)’s are the symmetry coefficients which can be complete. This can easily be verified if the number of the
vk atomic fit-basis functions is infinite. In this case each atomic

determined from group-theoretical properties of the molecu-b i t build mplet t of basis function that wi
lar system[56]. In the new basis th& matrix gets a block asls set builds a complete Set ot basis functions, so that we

. = . . do not need the fit-basis functions from all other atoms and
structure[57] with only one full symmetric representation may therefore exclude them from the fit procedure. In the

n case of a finite number of basis functions this is not that
obvious because a very small number of them can build an
A= O (A17) orthogonal basis set. But by increasing the number of basis
= O ' functions the basis becomes more and more linear depen-
0 dent, which could lead to numerical problems. In order to
minimize these problems we use the following method
The density itself is fully symmetric, too. Therefore it has anWhich is analogous to the canonical method to solve the
overlap only with the basis functions from this symmetry €igenvalue problem$8]. We diagonalize thé matrix in the
block and is orthogonal to all other symmetry-adapted basi§ymmetry-adapted basis
functions from other symmetry blocks. The matrix equation _
(A14) therefore has the form AY=aY. (A20)

The eigenvalues;; of this matrix are the norm@engths of

= X1 by the eigenvectorsy;. The eigenvectors with the smallest
u X2 0 length span a small part of the basis space. On the other
n X3 1ol (A18)  hand, these vectors are very sensitive to numerical errors
because by the normalization of them we have to divide by a
D\ %4 0 very small number. Therefore we set the occupation numbers
X; means the part of the solution vector which corresponds t8f eigenvectors with small length
symmetry blocki. b, are the overlap integrals between the a;<e (A21)
molecular density and symmetry-adapted basis functions
from the total symmetric block. explicitly to zero and use these conditions as additional con-

This matrix equation is split up intg (number of irreduc- straints in our variation problem, Eq(All). In the
ible representations of the symmetry groumependent sys- symmetry-adapted basis these constraints have the form
tems of linear equations. It is easy to see that only the system
which corresponds to the fully symmetric representation 0_2 . AD2

. .. . 4 y“X] . ( )
gives a nontrivial solution. We therefore have to solve only ]
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