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Noncollinear and collinear relativistic density-functional program
for electric and magnetic properties of molecules
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We present the general theory of the collinear and noncollinear description for the magnetic effects within
the full relativistic density-functional method. As examples for the implementation in a molecular code with
numerical basis functions we present results with an even number of electrons (Pt2) and with an odd number
of active electrons~NiAu!. The results are promising.
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I. INTRODUCTION

The quick development of computational methods
Physics and Chemistry nowadays allows us to calculate
ergies and other properties of atoms, molecules, and s
clusters withab initio methods. In the first place these a
‘‘classical’’ but still very popular methods in quantum chem
istry such as the Hartree-~Dirac-!Fock methods@1–3#, con-
figuration interaction, multiconfiguration Dirac-Fock, seco
order Mo” ller-Plesset ~MP2! @4#, coupled cluster single
double~triple! excitation@CCSD~T!# @5–8#, and so on. The
great advantage of all these methods is the possibility
achieve the ‘‘exact’’ solution~within the chosen method! just
by increasing the number of configurations. Unfortunat
this number increases as power of 4, 5, or even 7 with
number of active electrons, so that all these methods fi
with the limit of the memory and central processing u
~CPU! power. Therefore these methods can nowadays o
be applied to systems with relatively small numbers of act
electrons such as atoms, small molecules, and small clus
The results achieved for these systems are very good
serve as benchmarks. In the last two decades, however, m
computational improvements are made to make these m
ods more efficient. With some approximations, for examp
it was possible to achieve first a quadratic@9,10# and later on
even a linear@11,12# scaling for the Hartree-Fock method.
linear scaling has been also achieved for the MP2@13,14# as
well as for the CCSD~T! @15# methods. This scaling behavio
behind the high accuracy makes them very attractive also
large systems.

In 1964 Hohenberg and Kohn@16# were able to show tha
the total energy of any system in an external field can
described by a functional of its density only. This pione
work is the basis of the density-functional theory~DFT! and
provides an incentive for many theoreticians to find t
functional. In the last three decades many approximations
the energy density functional were made which gave q
good results, but the exact form of the functional is s
unknown.

DFT calculations depend on the choice of the exchan
correlation functional and the treatment of the kinetic ener
The spectrum of the different approximations of the kine
1050-2947/2004/69~1!/012505~10!/$22.50 69 0125
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energy starts with a purely nonrelativistic approach with
without spin-orbit interaction, continues with the zerot
order regular approximation@17,18# and ends with a fully
relativistic description. A comparison of these approxim
tions and corresponding results can be found in Re
@19,20#.

In the last three decades a series of different approxi
tions for the exchange and correlation functionals were
troduced. An overview can be found in Refs.@21,22#. All
these functionals can be written either in relativistic or no
relativistic form @23#. The two forms lead to different tota
energies, but almost the same bond energies and b
lengths in the case of molecules@19#. Therefore we will not
distinguish between these two forms and the results for
form also represent the results for the other one.

A further difference between various density functiona
is the treatment of the spin of the electrons. In the simp
form of nonrelativistic density functionals spin is complete
neglected. This approximation works quite well for close
shell systems but leads to wrong results for open-shell m
lecular as well as atomic systems. A very important impro
ment was achieved by extending these functionals to s
polarized forms@24#. In a relativistic description the spin
should actually be included in the relativistic form of th
density functionals, which directly depends on the four c
rent density@25,26#, but this approach is not yet suitable fo
practical applications. Alternatively, the spin can be includ
into the relativistic form of the density functionals in a the
retically consistent way via the magnetization density usin
fictitious external magnetic field which is set to zero in t
end formulas~for more details see Refs.@21,22#!. In this case
the exchange and/or correlation functionals depend not o
on the density but also on the magnetization density~see
details in Refs.@21,22,27#!. The magnetization density at an
point in space is defined as magnetic moment per volu
@28#. Following this, it is a vector which, in general, points
different directions at different points in space. In order
simplify the calculations in most implementations the ma
netization density is aligned to the axis of the highest sy
metry (z axis!, which in the literature is called the collinea
approximation. There are only a few implementations of
noncollinear approximations for atoms and solids known
the literature@27,29,30#. Only one of them reports an imple
©2004 The American Physical Society05-1
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mentation for molecules where the authors used a sca
relativistic description@31#. In a recent paper@32# we were
able to present the first four-component implementation
the noncollinear density functionals for the diatomic m
ecule Pt2. There is also a very recent report about a new
relativistic implementation@33#.

In this paper we present a detailed description of
method to describe the magnetic effects. As the only ot
example in this paper in addition to the homonuclear m
ecule Pt2, we present results for the heteronuclear syst
NiAu with an odd number of electrons which lead to a dra
tic effect of the noncollinear description in the molecule
self. Our theoretical values calculated with the noncollin
approximation are as good as the ones for Pt2. In the Appen-
dix details are presented for the calculation of the Hart
potential within this program.

II. METHOD

Starting from QED Rajagopal and Callaway@25# were
able to prove that the ground-state energy is an unique fu
tional of the ground-state four current and introduced a fu
tional for the relativistic electron gas. Practical experien
has shown that the functionals which depend on the den
only cannot reproduce the experimental results@19,20#. One
of the reasons was that the three-dimensional current f
relativistic electron gas is zero, and therefore these funct
als cannot describe the system with internal magnetic fi
properly. One can rewrite the functional using the Gord
decomposition as functional dependent on the density
magnetization density. In the Gordon decomposition
three-dimensional current is represented as the sum of
orbit current and the magnetization. The first term is usua
neglected because in most cases it is small in compariso
the second one. A general derivation can be found in R
@21,22#. One can prove@21,22# that the ground-state energ
is an unique functional of the ground-state densityr and
magnetization densitymW , provided the system is not subje
to an external magnetic field. This means that the system
be completely described by its density and magnetiza
density.

Within this method the total energy of a molecular syst
is given by the expression

E5(
i 51

M

ni^c i u t̂ uc i&1E VNrd3rW1
1

2E VHrd3rW1Exc@r,mW #

1 (
p.q

ZpZq

uRW p2RW qu
, ~2.1!

with the densityr and magnetization densitymW which are
defined by

r~rW !5(
i 51

M

nic i
†~rW !c i~rW !, ~2.2!

mW ~rW !52mB(
i 51

M

nic i
†~rW !bSW c i~rW !. ~2.3!
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Hereni are the occupation numbers,rW andRW q are the elec-
tronic and nuclear coordinates, respectively, andmB is the
Bohr magneton. The indexi runs over all occupied molecula
orbitals M, which in our case are four-component Dira
spinors. The four-component spin operatorSW 5(Sx ,Sy ,Sz)
is built from the two-component Pauli matrixs. The Dirac
kinetic-energy operator has the form~we use atomic units
throughout!

t̂5caW •pŴ 1c2~b2I !, ~2.4!

whereaW 5(ax ,ay ,az) andb are the four-component Dira
matrices in the standard representation@34# andI is the four-
component unit matrix.

VN is the nuclear potential

VN5(
p

2
Zp

urW2RW pu
, ~2.5!

where the indexp runs over all nuclei in the molecular sys
tem.

Exc is the exchange-correlation energy functional.VH is
the electronic Hartree potential

VH~rW !5E r~rW8!

urW2rW8u
d3rW8. ~2.6!

Since the calculation of the Hartree potential from the S
density~2.2! is very time consuming, we approximater in
Eq. ~2.2! by a model densityr̃. We expand our model den
sity into series of ‘‘atomic’’ multipole-densities centered o
the nuclei. To determine the expansion coefficients we m
mize the Hartree energies calculated from the difference
the SCF densityr and model densityr̃. This procedure leads
to small corrections to the total energy~2.1! which are no
longer linear, but quadratic in the differencer2 r̃ @35#. We
also emphasize that only the procedure described here
this property. All other similar methods such as Mullike
@36,37#, density fitting @38,39#, or even direct projection
methods@40#, lead to errors in the total energy which a
linear in the difference of densities. However, all metho
converge to the right Hartree potential if the basis for t
model density becomes more and more complete.

Another improvement of our method is the possibility
control and avoid the linear dependency of the fit-basis fu
tions. We diagonalize the fit matrix in the symmetry-adap
basis and set the occupation numbers for all orthogonal
symmetry-adapted fit functions which have a small no
~length! explicitly to zero. All these improvements~for more
details see Appendix! allow an accurate calculation of th
Hartree energy as will be shown in Sec. II C.

The variation of the energy functional~2.1! leads to the
relativistic Kohn-Sham~KS! equations in their general form
for the molecular orbitalsc i
5-2
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H t̂1VN1ṼH1
dExc@r,mW #

dr
2mBbSW •

dExc@r,mW #

dmW
J c i5e ic i ,

i 51, . . . ,M 8. ~2.7!

HereṼH is the Hartree potential from the model density a
M 8>M is the number of molecular orbitals.

A. Collinear case

The collinear approximation of DFT is widely used
practice and motivated by the nonrelativistic DFT, where
spin is a good quantum number if the spin-orbit coupling
neglected. In this approximation one defines spin-up
spin-down densities, and uses exchange-correlation func
als which depend on these densities. In the relativistic the
however, the exchange-correlation functionals should dep
on the density and the magnetization density. Unfortuna
up till now only the exchange part of the relativistic loca
density approximation~RLDA! @41# is known in this form.
Practice shows that one can still use the exchange-correla
functionals in their nonrelativistic form for relativistic mo
lecular calculations because the difference between the
sults achieved by using one form or another are small@42#.
In order to be able to define the spin densities in the rela
istic description~compare Ref.@31#! one assumes that th
magnetization density at every point in the space is alig
to the symmetry~z! axis. In this case one can calculate fro
the total density and the magnetization densities the gen
ized spin densities@21,22#

r6~rW !5
1

2 Fr~rW !7
1

mB
mz~rW !G5(

i 51

M

nic i
† 16bSz

2
c i .

~2.8!

Using these densities the KS equations~2.7! can be written
in the form

H t̂1VN~rW !1ṼH~rW !1
11bSz

2
V1

xc~rW !

1
12bSz

2
V2

xc~rW !J c i~rW !5e ic i~rW ! ~2.9!

with

V6
xc~rW !5

dExc@r1 ,r2#

dr6
5

dExc@r,mz#

dr
7mB

dExc@r,mz#

dmz
.

B. Noncollinear case

In noncollinear case the KS equations in their gene
form ~2.7! should be solved. One problem appearing in t
case is that the variation of the exchange-correlation fu
tionals dExc@r,mW #/dmW is only known for the relativistic
exchange-only LDA. On the other hand, it is well known th
this functional describes all electronic systems much wo
than the GGA’s~general gradient approximation!. In general
these functionals should be extended to functionals wh
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are dependent on the density as well as on the magnetiza
density. The nonrelativistic form of the GGA’s cannot b
used because these are dependent on the spin densities
because from a magnetization density which is not aligne
an axis these densities cannot be calculated. The simp
solution of this dilemma is to describe the system at e
point in the space in a frame where the magnetization
parallel toz axis. This could be done by rotation of the ma
netization density at each point in space as long as it
comes aligned to thez axis @43#. Now it could be used to
calculate the generalized spin densities and in a follow
step also the exchange-correlation potentials. These po
tials include one part which is dependent only on the den
and other part which is dependent on the magnetization d
sity ~internal magnetic field!. In order to get the right
exchange-correlation potential for Eq.~2.7! the last part
should be rotated back. Since both rotations are made loc
this procedure leads to the exact solution of the general e
tion ~2.7!. It is well known@34# that a rotation in a real spac
is equal to a rotation in the spin space. From practical po
of view the last one has some advantages, therefore
adapted this type of rotation in our program and presen
also in this paper.

We want to introduce a four-vector

S0~rW !5
1

2 (
i 51

M

nic i
†bc i , SW ~rW !5

1

2 (
i 51

M

nic i
†bSW c i ,

~2.10!

where the spin densitySW is related to the magnetization den
sity by expression

mW 522mBSW . ~2.11!

It is well known that for every four-vector, there is a corr
sponding spinor of order 2@34# which is built from the com-
ponents of this vector. In our case the matrix has the for

S~rW !5S S01Sz Sx2 iSy

Sx1 iSy S02Sz

D . ~2.12!

All rotations of the four-vector, which includes not only ro
tations in the real three-dimensional space but also rotat
in the Minkovsky space, can also be represented as rotat
in the spin space. In this paper we are only interested
rotations in the three-dimensional space, therefore a gen
transformation is given by the unitary matrixU(rW) @34#

U~rW !5S cos
b

2
e( i /2)(a1g) sin

b

2
e2( i /2)(a2g)

sin
b

2
e( i /2)(a2g) cos

b

2
e2( i /2)(a1g)

D .

~2.13!

Herea, b, andg are Euler rotational angles. We can dia
onalize the matrix~2.12! and determine these angles by u
5-3
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ing the transformation matrix~2.13!. This means that we
have to solve the matrix equation

S~rW !5U†~rW !diag~S18 ,S28 !U~rW !. ~2.14!

This matrix equation is equal to a system of linear equati

S115S18 cos2
b

2
1S28 sin2

b

2
,

S225S18 sin2
b

2
1S28 cos2

b

2
,

ReS125 1
2 cosa sinb~S18 2S28 !,

ImS1252 1
2 sina sinb~S18 2S28 !. ~2.15!

We want to denote that the rotation angleg does not appea
in these equations and therefore can be chosen arbitra
This is due to the rotational symmetry of the magnetizat
density with respect to the newz8 axis. In order to simplify
the end expressions we set this rotational angle to zero.
solution of this system has the form

tana52
Im~S12!

Re~S12!
,

tanb52
uS12u

S112S22
,

S18 ~rW !5S S11cos2
b

2
2S22sin2

b

2 D Y cosb,

S28 ~rW !5S S22cos2
b

2
2S11sin2

b

2 D Y cosb. ~2.16!

The eigenvalues of the matrix~2.12! are connected to the
components of the four-vector by the expression

S085 1
2 ~S18 1S28 !, Sz85 1

2 ~S18 2S28 !. ~2.17!

We want to point out that in contrast to the nonrelativis
case the sum of eigenvalues (2S08) does not give the tota
density of the system. This is due to the presence of the s
components and reflects the fact that a relativistic sys
cannot be completely spin polarized because the spin
particle ~an electron! is not a good quantum number in th
relativistic description. Using the expression~2.17! for the z
component of the spin density in the rotated system one
calculate the spin-up and the spin-down densities

r6~rW !5 1
2 $r~rW !7@S18 ~rW !2S28 ~rW !#%. ~2.18!

Now we are able to calculate the exchange correlation
tentialsv1

xc andv2
xc using the generalized spin densities.

determine the exchange-correlation potential in the non
tated system we can either make a rotation back in the
space
01250
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Vxc~rW !5U†~rW !diag~v1
xc ,v2

xc!U~rW !, ~2.19!

which has the form

Vxc~rW !

5S v1
xccos2

b

2
1v1

xcsin2
b

2

1

2
sin

b

2
e2a~v1

xc2v2
xc!

1

2
sin

b

2
e2a~v1

xc2v2
xc! v1

xcsin2
b

2
1v1

xccos2
b

2

D ,

~2.20!

or rotate the four-vector Bn5„

1
2 (v1

xc1v2
xc),0,0,12 (v1

xc

2v2
xc)… in real three-dimensional space. It is interesting

note that the internal magnetic field of a system and
‘‘normal’’ exchange correlation potential are not independe
of each other because both together build a four-vector. T
fact is not important for this noncollinear case where on
rotations in the three-dimensional space are involved. Bu
also Lorentz transformations are involved which correspo
to a rotation in the four-dimensional space and involve a
the time coordinate then this fact becomes very importan

After the rotation we get for the internal magnetic field

BW ~rW !5$ 1
2 ~v1

xc2v2
xc!cosa sinb, 1

2 ~v1
xc

2v2
xc!cosa sinb, 1

2 ~v1
xc2v2

xc!cosb%. ~2.21!

We want to stress again that all these steps are performe
each point in space, and therefore the solution which
achieve in this way is a exact solution of the general equa
~2.7!.

C. Test of the completeness of the atomic basis sets
and of the accuracy of the Hartree energy

The relativistic Kohn-Sham equations in the noncolline
form ~2.7! were solved by using numerical atomic orbitals
basis functions by the molecular orbital—linear combinati
of atomic orbitals method. The advantage of this method
the small number of basis functions which are required
achieve high accuracy by solving the many-centers Ko
Sham equations. In this section we would like to show t
the minimal basis plus only four to five additional basis fun
tions lead to a final basis set error in the total energy of do
to 0.01 eV only.

Besides this final basis set error there is also an erro
the calculation of the Hartree potential~energy! ṼH in Eq.
~2.7!. As is described in the Appendix we use for the calc
lation of the Hartree potential a model density which is e
panded into multicenter multipolar fit-basis functions. Ge
erally speaking these can be chosen independently from
basis for the wave functions. However our experience sho
that this leads to larger errors than if the same basis funct
are applied. Due to this fact we use as fit functions the ra
subshell densities multiplied by spherical harmonics up t
maximal numberl max which can be defined at the beginnin
5-4
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TABLE I. Total energies of Li2 for different basis sets. All calculations are performed with relativis
kinetic energy andXa exchange-energy functional.

Basis no. Basis functions Total energy~a.u.!

1 1s1/2, 2s1/2 neutral 214.5397640
2 Basis no. 112p1/2, 2p3/2 (Li 1.21) 214.5484306
3 Basis no. 213s1/2, 3p1/2, 3p3/2 (Li 1.31) 214.5491881
4 Basis no. 313d3/2, 3d5/2 (B3.21) 214.5492755
5 Basis no. 414s1/2, 4p1/2, 4p3/2 (B2.91) 214.5496747
6 Basis no. 515s1/2, 5p1/2, 5p3/2 (N5.11) 214.5498011
7 Basis no. 616s1/2, 6p1/2, 6p3/2 (O5.81) 214.5498077
8 Basis no. 714 f 5/2, 4f 7/2 Ne5.751 214.5498127
9 Basis no. 817s1/2, 7p1/2, 7p3/2 (Ne8.21) 214.5498187
@46# FEM 214.5498278
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of the calculation. Therefore a basis set optimization m
mizes both the final basis set and Hartree-energy error.

In order to achieve the basis set optimization we start w
numerical minimal basis functions for a neutral atom@44#. In
the second step, we add basis functions of the next sub
from a calculation of an atom with a defined degree of io
ization ~we use noninteger occupation numbers!. We make
several molecular calculations with different partial occup
tion numbers for the additional basis functions and find
minimum of the total energy of dimer as function of th
degree of ionization. In the third step, we fix the partial o
cupation numbers for these two basis sets and optimize
additional basis functions of the next subshell in the sa
way as the previous subshell. In this way we increase
number of basis functions subshell by subshell until the to
energy change by further increase of the number of b
functions was smaller than a chosen value.

In order to test the accuracy of the Hartree energy
study the dependence of the total energy as function of
basis functions. The only basis-independent~FD @45#, e.g.,
FEM @46#! reference value which we found was the value
Li2. In the first step, we increase successively the numbe
the basis functions. By using this optimization procedure
find the degrees of ionization listed in Table I. As it can
seen from this table, the total energy converges quite
with increasing number of basis functions to the exact va

In the second step, we study the dependence of the
energy on the maximal angular momentum quantum num
l max in the model density in Eq.~A1!. The results of this
study are collected in Table II where we present the res
for the smallest and the biggest basis sets only. We can s
very rapid convergence of the total energy with the maxim
01250
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multipole moment. In most cases it is sufficient to use
contributions up to the quadrupole term in the model dens

One also observes a nearly constant difference betw
the values for the same multipoles for the two basis s
shown here. This means that the error from the incomple
ness of the basis never will be compensated by use of hig
multipole moments.

In addition we should mention that wave functions lik
3d3/2 or 4f 7/2 which have a structure in the angular part
the wave functions but no nodes in the radial part give
small contribution to the total energy or even can lead
worse results. This is due to the increased linear depende
of the basis functions. To avoid this in the fit procedure
use a method described also in the Appendix. In this met
we have a cut parameter@see Eq.~A21!# which, generally
speaking, can influence the results of the calculation. We
study the dependency of the total energy from this cut
rameter and find that the change in the total energy for
parameters between 1024–1026 are much smaller than th
other errors discussed above. This means that for this ch
of the cut parameter the linear dependency of the fit-basis
is reduced while the basis is still sufficiently large to rep
sent the SCF density quite well. A cut parameter outside
interval makes the set too small~bigger e values! or too
linear dependent~small values!. In both cases the final resu
becomes worse. We use in our calculation a value 1025.

As summary of these more technical but important det
we can say that the approximations together with the opti
zation procedure work quite well. This allows one to calc
late the total energies of molecular systems with accura
below 0.01 eV and all differences above this limit are due
tum
TABLE II. Total energies of Li2 for different basis sets as a function of angular momenta quan
number which was used in the calculation of the Hartree energy.

Basis no. Monopole Dipole Quadrupole Octupole

1 214.5411696 214.5398017 214.5397934 214.5397640
9 214.5744133 214.5499900 214.5498213 214.5498187
5-5
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TABLE III. Ground-state properties of the homonuclear molecule Pt2 and heteronuclear open-shell molecule NiAu. The abbrevia
RLDA means the relativistic local density approximation for exchange only@23#, B88 means the exchange only functional from Becke@47#,
P86 means the correlation functional from Perdew@48#, and VWN means the correlation functional from Voskoet al. @49#.

Molecule NiAu Pt2
Reference Method De (eV) Re (a.u.) v (cm21) De (eV) Re (a.u.) v (cm21)

This work RLDA/VWN ~SP! 4.30 3.16 315 4.19 4.35 239
This work RLDA/VWN ~SP,non! 4.30 3.16 317 4.00 4.35 235
This work B88/P86~SP! 4.43 2.49 280 3.28 4.42 225
This work B88/P86~SP,non! 4.44 2.49 276 3.12 4.42 224
@53#, @50# Expt. 4.44360.002 2.5260.17 3.1460.02 4.40867 (83) 222.4660.66
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the choice of the density functionals and thus the met
itself.

III. RESULTS AND DISCUSSION

A. Homonuclear molecular closed-shell system Pt2

Table III shows the bond energies, bond length, and
brational frequencies for Pt2. A comparison between differ
ent theoretical methods can be found in Refs.@32# and@50#.

We calculated vibrational frequencies from the Morse p
tential @51# fitted to our calculated values of the potentia
energy curve including the asymptotic value for Pt2 for dif-
ferent exchange-correlation functionals. For eve
combination we performed a spin-polarized collinear~SP!
and a spin-polarized noncollinear~SP,non! calculation. From
an analysis of the occupied orbitals at the minimum of
potential curve we can see that the system has no open
and therefore it behaves in the calculation around the m
mum of the potential-energy curve as a closed-shell syst
From this the ground state of the Pt2 molecules should be a
Og state, presumable translating to1S. Due to this fact we
get essentially the same total molecular energies for all th
forms. This can be seen from the very little change in
bond distance and the vibrational frequencies. The m
change in the bond energy comes from the larger total en
of the molecular system at very large internuclear distan
In other words, the difference comes from the atomic cal
lations for the open-shell system of the Pt atom. This agr
with other calculations with and without spin polarizatio
@52#. We determined the total energy of the Pt atom by c
culating the Pt2 molecule at large internuclear distanc
(.40 a.u.). The calculations of the Pt atom with our m
lecular program using the same grid as used in the molec
calculations at the minimum of the potential curve give
difference which is much smaller than the uncertainty in
total energy due to the final number of basis functions us

B. Heteronuclear molecular open-shell system NiAu

In order to test the calculational method which we disc
here we have chosen one of the few experimentally kno
@53# heteronuclear diatomic molecules with an odd num
of electrons, at least one nd hole, and where at least one
is very heavy: NiAu.

We optimized the basis functions in the way as it is d
scribed in the preceding section for the Ni2 and Au2 systems
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separately. Using these basis sets we performed the cal
tions for NiAu. Our results are collected in Table III. As it
already shown the case for Pt2 the GGA results~B88/P86! in
combination with the spin polarization can reproduce ve
well the bond length as well as the bond energies for t
open-shell molecule.

From the experimental data it is known that the grou
state of NiAu is a2D5/2 state. We performed some analysis
order to figure out the symmetry of the system from o
calculations. The integral over the magnetization dens
gives us per definition the total magnetic moment of t
molecular system which correlates to the total spin of
system. We found that the total spin of this molecular syst
is S51/2, in agreement with experimental observation. Fr
an analysis of the occupied orbitals~see below! we estimated
the ground state symmetry of the NiAu molecule as2D5/2
which agrees with the experimental determined one.

In the experimental paper@53# the authors predicted th
ground-state configuration of this molecule to bedNi

9 dAu
10s2.

To find evidence for this we looked to the expansion coe
cients of the occupied molecular orbitals. Due to the la
overlap of the 4sNi ,3dNi and 6sAu ,5dAu all these orbitals
were far away from ‘‘pure’’ atomic states. In most cas
more than two atomic orbitals contributed to the outer m
lecular orbitals. When we looked to the leading term in ea
expansion we found that both 4s orbitals as well as the 3d5/2
orbital from Ni are unoccupied. From the Mulliken overla
population analysis we additionally found that the first tw
correspond to the antibondings orbitals and the last one to
the antibondingdd state. From the overlap population anal
sis we also can see that all molecular orbitals formed fr
the d orbitals of both atoms of the NiAu molecule do n
have well-pronounced bonding or antibonding charac
This agrees with the assumption of the experimentalists@53#.
In order to check how good this assumption works we p
formed the Mulliken analysis to estimate the electron dis
bution in the molecule. These are presented in Table IV. O
can see some charge transfer from the 4s1/2 to 3d subshell of
Ni. One can also see that thed hole resides mostly on nicke
site. This means that the assumption made by the experim
talists about the ground state of the NiAu molecule are qu
good.

C. Conclusion

As summary one can say that we have been able to
culate two very different diatomic molecules. This makes
5-6
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TABLE IV. Mulliken occupation numbers for the heteronuclear open-shell molecule NiAu at the b
distance.

Basis type Occupation Basis type Occupation

Ni minimal basis Au minimal basis
1s1/2–3p3/2 17.9816976 1s1/2–5p3/2 68.0056798
3d3/2 3.6251786 5d3/2 3.9263932
3d5/2 5.3712440 5d5/2 5.7907258
4s1/2 0.9061068 6s1/2 1.0887852
Sum minimal basis 27.8842268 Sum minimal basis 78.8115840
Additional basis 0.2890275 Additional basis 0.0151617
Total 28.1732543 Total 78.8267457
c
c

str

m

m

la

-

-

e

hopeful that calculations of larger molecules will lead to a
curate results not only for the bond energies and distan
but also for magnetic moments and magnetic moment di
butions.

ACKNOWLEDGMENTS

J.A. gratefully acknowledges the financial support fro
the Deutsche Forschungsgemeinschaft~DFG!.

APPENDIX: CALCULATION OF THE ELECTRONIC
HARTREE POTENTIAL

Only for a single atom~one-center system! the calculation
of the electronic Hartree potential~2.6! is relatively simple.
In the multicenter case the calculation of this potential fro
the self-consistent density~2.2! is very difficult. Therefore
usually an approximative Hartree potential is used@38,39#.
We use a multipole, multicenter expansion of the molecu
charge density. We approximate it by

r̃~rW !5 (
K51

NA

(
j 51

MK

(
l 50

L j

(
m52 l

l

Qjm
Kl FK

j ~jK!Yl
m~uK,fK!.

~A1!

HereFK
j (jK)5@Pj

2(jK)1Gj
2(jK)# are the atomic shell den

sities which are built from the largePj and smallGj com-
ponents of the atomic wave functions,Yl

m are the real spheri
cal harmonics, andQjm

Kl are the occupation numbers.K runs
over all atoms in the molecular systemNA , j runs over all
shells in the atomK, andl runs over all angular momentaL j
of the shell j. Since the Hartree potential is linear in th
density we can write it as a sum

V~rW !5 (
K51

NA

(
j 51

MK

(
l 50

L j

(
m52 l

l

Qjm
Kl E FK

j ~jK8 !Yl
m~uK8 ,fK8 !

urW2rW8u
d3rW8.

~A2!

After the coordinate transformation~for coordinate definition
see Fig. 1! we get
01250
-
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r

V~rW !5 (
K51

NA

(
j 51

MK

(
l 50

L j

(
m52 l

l

Qjm
Kl E FK

j ~jK8 !Yl
m~uK8 ,fK8 !

ujWK2jWK8 u
d3jWK8 .

~A3!

We can rewrite the term 1/ujWK2jWK8 u by using the Legendre
polynomialsPl 8(cosvK) in the form

1

ujWK2jWK8 u
55 (

l 850

` j8K
l 8

jK
l 811

Pl 8~cosvK! jK>jK8

(
l 850

` jK
l 8

j8K
l 811

Pl 8~cosvK! jK,jK8 .

~A4!

If we replace the Legendre polynomialsPl 8 by real spherical

harmonicsYl 8
m8 ,

Pl 8~cosvK!5
4p

2l 811
(

m852 l 8

l 8

Yl 8
m8~uK ,fK!Yl 8

m8~uK8 ,fK8 !

~A5!

we can rewrite Eq.~A4! in the form

FIG. 1. Electronic coordinates in molecular (rW,rW8) and atomic

(jWK,jWK8 ) frame.RW K is the displacement vector of the atomK.
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` j8K

l 8 4p
(
l 8

Yl
m8~uK ,fK!Yl
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1

ujWK2jWK8 u
55 l 850 jK

l 811 2l 811 m852 l 8
8 8

(
l 850

` jK
l 8

j8K
l 811

4p

2l 811
(

m852 l 8

l 8

Yl 8
m8~uK ,fK!Yl 8

m8~uK8 ,fK8 !, jK,jK8 .

~A6!
r
th

e

es

del
If we insert this in Eq.~A2! and integrate over the angula
coordinates and take into account the orthogonality of
spherical harmonics

E dVK8 Yl
m~uK8 ,fK8 !Yl 8

m8~uK8 ,fK8 !5d l l 8dmm8 , ~A7!

we get the formula@39#

Ṽ~rW !5 (
K51

NA

(
j 51

MK

(
l 50

L j

(
m52 l

l 4pQjm
Kl

2l 11
Yl

m~u,f!

3F 1

jK
l 11E0

jK
dj8j8 l 12FK

j ~j8!

1jK
l E

jK

`

dj8j812 lFK
j ~j8!G . ~A8!

1. Fit of the molecular density

In order to simplify the following discussion we introduc
new occupation numbers and fit-basis functions
o-
ol

th

01250
e
qn5Qjm

Kl , wn5FK
j ~jK!Yl

m~uK ,fK!, ~A9!

where n represents any combination of the indic
(K,j,l,m). In the new basis Eq.~A1! can be rewritten in the
form

r̃~rW !5(
n

qnwn . ~A10!

To determine the occupation numbersqn we use the least-
square fit method@38#. We minimize the Hartree energy@54#
calculated from the difference of the SCF density and mo
density@35#

E E @r~rW !2 r̃~rW !#@r~rW8!2 r̃~rW8!#

urW2rW8u
d3rWd3rW85

!

min.

~A11!

Inserting Eq.~A10! into Eq. ~A11! we get
E E S r~rW !2(
n

qnwn~rW ! D S r~rW8!2(
n

qnwn~rW8! D
urW2rW8u

d3rWd3rW85
!

min. ~A12!
i-
We vary this functional by preservation of multipole m
ments. In practice we normally use the first two—monop
momentQ and dipole momentdW ,

(
n

qnE wnd3rW5Q, (
n

qnE rWwnd3rW5dW . ~A13!

These constraints can be included in the variation by
standard Lagrange multiplier technique@55#. After the varia-
tion of qn andl we get the matrix equation

A x5b, ~A14!

with
e

e

Amn5E E wm~rW !wn~rW8!

urW2rW8u
d3rWd3rW8,

x5$qn ,l i /2%,

bn5E E r~rW !wn~rW !

urW2rW8u
d3rWd3rW8,

b5$bn ,Q,dx ,dy ,dz%. ~A15!

In principle Eq.~A14! solves the problem of the determ
nation of the fit occupation numbers.
5-8



.
n

si

be
cu

an
try
s

on

s
he
on

-
te
io
nl

try-

he
ic

t we
nd

the
hat

an
asis
pen-
to

od
the

st
ther
rors
y a
ers

on-

NONCOLLINEAR AND COLLINEAR RELATIVISTIC . . . PHYSICAL REVIEW A 69, 012505 ~2004!
2. Symmetry-adapted basis

A major disadvantage of Eq.~A14! is that by solving it
the symmetry of the molecular system cannot be used
order to improve this we use symmetry-adapted basis fu
tions fk which we expand in a series of the atomic ba
function wn

fk5(
n

Cnkwn . ~A16!

Here (Cnk)’s are the symmetry coefficients which can
determined from group-theoretical properties of the mole
lar system@56#. In the new basis theA matrix gets a block
structure@57# with only one full symmetric representation

A5S h

h

h

h

D . ~A17!

The density itself is fully symmetric, too. Therefore it has
overlap only with the basis functions from this symme
block and is orthogonal to all other symmetry-adapted ba
functions from other symmetry blocks. The matrix equati
~A14! therefore has the form

S h

h

h

h

D S X1

X2

X3

X4

D 5S b1

0

0

0

D . ~A18!

Xi means the part of the solution vector which correspond
symmetry blocki. b1 are the overlap integrals between t
molecular density and symmetry-adapted basis functi
from the total symmetric block.

This matrix equation is split up intog ~number of irreduc-
ible representations of the symmetry group! independent sys
tems of linear equations. It is easy to see that only the sys
which corresponds to the fully symmetric representat
gives a nontrivial solution. We therefore have to solve o
m

m
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this system of linear equations to estimate the symme
adapted occupation numbersxj . The back transformation to
the atomic occupation numbersqn is given by the expression

qn5(
j

Cj nxj . ~A19!

3. Linear dependence of the atomic fit-basis functions

From the general point of view the ansatz~A10! is over-
complete. This can easily be verified if the number of t
atomic fit-basis functions is infinite. In this case each atom
basis set builds a complete set of basis functions, so tha
do not need the fit-basis functions from all other atoms a
may therefore exclude them from the fit procedure. In
case of a finite number of basis functions this is not t
obvious because a very small number of them can build
orthogonal basis set. But by increasing the number of b
functions the basis becomes more and more linear de
dent, which could lead to numerical problems. In order
minimize these problems we use the following meth
which is analogous to the canonical method to solve
eigenvalue problems@58#. We diagonalize theA matrix in the
symmetry-adapted basis

A Y5a Y. ~A20!

The eigenvaluesaii of this matrix are the norms~lengths! of
the eigenvectorsYi . The eigenvectors with the smalle
length span a small part of the basis space. On the o
hand, these vectors are very sensitive to numerical er
because by the normalization of them we have to divide b
very small number. Therefore we set the occupation numb
of eigenvectors with small length

aii ,e ~A21!

explicitly to zero and use these conditions as additional c
straints in our variation problem, Eq.~A11!. In the
symmetry-adapted basis these constraints have the form

05(
j

y j i xj . ~A22!
m.

em.

em.
@1# D.R. Hartree, Proc. Cambridge Philos. Soc.24, 89 ~1928!.
@2# V. Fock, Z. Phys.61, 126 ~1930!.
@3# C.C.J. Roothaan, Rev. Mod. Phys.23, 69 ~1951!.
@4# C. Mo” ller and M.S. Plesset, Phys. Rev.46, 618 ~1934!.
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