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Entanglement in double photoionization of rotating linear molecules

N. Chandra and R. Ghosh
Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur 721302, India

~Received 2 July 2003; published 27 January 2004!

This paper investigates the relationship, if any, which may exist between the electron-electron correlation
and spin entanglement of two electrons ejected simultaneously from a linear molecule following the absorption
of a single photon. In order to properly learn about the influence of the molecular dynamics on this relationship
and also to take into account the parity of the molecular states, double photoionization has been studied by
including rotational degrees of freedom in the Hund’s coupling schemes~a! and ~b!. Entanglement properties
of the ejected pair of electrons with respect to their spins have been investigated in each of these coupling
schemes without or with taking spin dependent interactions into account. The existence, or otherwise, of the
entanglement is predicted on the basis of the negativity of the partial transpose of the density matrix calculated
for each case considered in this paper.
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I. INTRODUCTION

Electron-electron correlation is an important physical e
tity which plays a significant role in determining the prope
ties and behavior of systems containing more than one e
tron. It has been known to play a crucial role in decidi
various electronic and magnetic properties of strongly in
acting solids. For example, kinematic correlation amo
electrons with parallel spins, introduced by the antisymme
of their wave function, is known to reduce the Coulom
repulsion energy as electrons with parallel spins are seld
very near to each other@1#. Traditionally, correlation energy
has come to imply the difference between the exact eig
value and the expectation value in the Hartree-Fock appr
mation of the Hamiltonian of a system in a given state@2#.

Recent studies of double photoionization~also called
photodouble ionization! of atoms and molecules have show
yet one more process which takes place due to elect
electron correlation. In this process, absorption of a sin
photon in the electric dipole (E1) approximation simulta-
neously ejects two electrons from an atom@3# or a molecule
@4#. These two electrons, which were an integral part of
same system before they became free but now moving in
field of the photo-dication~i.e., residual, doubly charge
positive ion!, not only share between themselves the ene
of the absorbed photon in excess to the potential for dou
ionization and affect each other’s angular distributions,
also have an important influence on the mutual orientation
their spins @5–7#. These two electrons, in the context
double photoionization~DPI!, are said to be correlated~with
respect to, e.g., their energies, directions of emission an
spin quantization, etc.! in the sense that their simultaneo
ejection, following the absorption of a single photon, can
be understood within the frame-work of an effective on
particle model. Thus DPI is a direct manifestation
electron-electron correlation. Had the independent part
model of an atom or molecule been valid, the simultane
ejection of two electrons, resulting from the absorption
only a single photon~which will be represented by a one
particle operator!, would not have taken place. Moreover, th
DPI of an atom or a molecule can be said to be analogou
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the parametric down conversion~PDC! @8–12#, wherein a
single photon in a nonlinear medium decays in two n
photons in a single step.

One more phenomenon has recently been ascribed to
word ‘‘correlation.’’ Both theoretical as well as experiment
studies of this new phenomenon have continued to be
subject of intense activities for the last several years. It w
originally proposed by Einstein, Podolsky, and Rosen@13#,
and later interpreted for two spin-1/2 particles by Bohm@14#.
According to the Einstein-Podolsky-Rosen-Bohm@13,14# in-
terpretation, two particles, say electrons, are said to be
related if their combined state cannot be expressed as a p
uct of the states of two electrons. Such particles in a p
have been called correlated, entangled, nonseparable, or
ply an EPR@13# pair of particles. Until about 10–12 year
ago, studies of entanglement were confined to purely ph
sophical implications related to the incompleteness, or oth
wise, of quantum theory@13,14#. However, recent sugges
tions that entangled particles can be used technologicall
encrypt@15# and teleport@16# information as well as to build
computers@17,18# which can perform certain operation
much faster than the presently available ‘‘classical’’ comp
ers, have opened the new field of quantum informat
theory @19#. These new developments have given rise to
tivities for the production of pairs of entangled particles,
the one hand, and for suggesting stringent quantitative m
ods which can be used to determine whether two given p
ticles are entangled or not, on the other hand.

Two particles in which neither@8–12,20–23#, both @24–
28#, or one of the two@29,30# possesses a rest mass differe
from zero have been used in experimental@8–12,20–26,29#
as well as theoretical@27,28,30# studies of entanglement. Fo
example, two photons produced in two-step~cascade! transi-
tions in atoms from a suitable excited state to the grou
state @20,21#, or simultaneously emitted from a metastab
atomic state in a true second-order decay process@22#, or
ejected in a single step in the PDC@8–12,23# are the en-
tangled particles with no rest mass; photodissociation
dimers of the199Hg2 isotopomore using a spectroscopy s
lective stimulated Raman process@25#, the interaction of
two-level Rydberg atoms with a resonant field@26,27# or
©2004 The American Physical Society15-1
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atomic DPI@28# are some of the processes which have b
suggested to produce particles which are entangled wi
nonzero rest mass; Kurtsieferet al. @29# and Chanet al. @30#,
on the other hand, have entangled an spontaneously em
photon with its recoiling atom.

It is, in principle, believed that if the two particles are n
prepared independently and in total isolation of each ot
then a decomposition of their combined state into a prod
~i.e., a separable or unentangled! state is, in general, impos
sible and the particles are necessarily entangled. Probab
very simple, and the best possible, example of this proced
is provided by the DPI of atoms and molecules. According
two photoelectrons, whose simultaneous ejection follow
the absorption of a single photon by the target is due co
pletely to the electron-electron correlation, must always b
a nonseparable state. But, in a recent analysis of the
tanglement properties of two electrons produced in DPI of
atomic target, both without and with spin-orbit interactio
~SOI!, Chandra and Chakraborty@28# found that electron-
electron correlation, whose presence is necessary for DP
take place in an atomic target, is not always sufficient
entangling two simultaneously ejected electrons with resp
to their spins. Thus, the word correlation in the context of
atomic DPI has come to mean@28# only those effects in an
interacting, quantum, many-body system that are not pre
in an independent particle model@3–7,31#, but are essentia
for two electrons to come out simultaneously. In view of th
meaning of the word correlation for atoms, the two pho
electrons in DPI may or may not be entangled@28# with
respect to their spins, but are certainly correlated@31#.

Recently, several@4,6,7,32# studies, both theoretical an
experimental, have also been performed on DPI of lin
molecules. In these targets, in addition to the electr
electron correlation, the nuclear rotation has also been fo
to influence the DPI@6,7#. Moreover, the spin-dependent in
teractions in molecules include@33–35#, unlike in atomic
systems, not only the SOI but also the spin-rotation inter
tion ~SRI!. It will be quite interesting to see how and to wh
extent these two additional physically important interactio
plus other typically molecular effects~e.g., the noncentra
nature of the molecular potential, nuclear rotation, etc.! in-
fluence the entanglement of the spin of two electrons eje
together in the DPI of a molecule. In this paper, we theref
analyze the spin entanglement properties of a pair of e
trons ejected in the DPI of a linear molecule. Rotationa
resolved experimental studies of DPI of molecules like H2 ,
N2 , NO, O2, etc. are feasible in not too distant a futu
because integrated and/or angular photocurrents arising
the production of singly charged ions of these and other s
lar diatomics in their different rotational states have alrea
been measured@36,37#.

Molecular systems which have all their nuclei in a straig
line belong to either of theD`h or C`v point group. In ad-
dition to taking into account the group theoretical propert
of these molecules, it is necessary that their other symm
properties also be included in a proper theoretical descrip
of their rotational motion and of spin-dependent interactio
In this paper we, therefore, represent the molecular sta
both before and after DPI, by the first two@i.e., ~a! and ~b!#
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of the four Hund’s schemes@33–35# for coupling angular
momenta present in a rotating linear molecule.

Each wave function associated with an energy level of
atom or molecule may be classified as having even or
parity according to whether it remains unchanged or chan
sign on inversion of the spatial coordinates of all its partic
~i.e., both electrons and nuclei in the case of molecul!
through origin. Parity adapted states@e.g., Eqs.~4!, ~7!, and
~8!#, both for D`h and C`v molecules, can be prepare
@37,38#, for example, by multiphoton absorption. It is, how
ever, not at all necessary to use parity adapted states
studying entanglement properties of the electrons ejected
pair in the DPI of a linear molecule. But there are seve
advantages of using such states: Their application dire
gives @6,7# the parity selection rules for transitions whic
lead to DPI and are allowed in theE1 approximation; use of
these states makes it very easy to separately study the i
ences of SOIs and of SRIs on DPI, in general, and on
tanglement, in particular, etc. Parity adapted states@34,35,38#
have, therefore, been used for each of the Hund’s coup
schemes~a! and ~b! considered in the present communic
tion.

Furthermore, the two electrons in DPI are emitted with
possible kinetic energies~subject to the conservation of th
total energy! in all possible directions. Also, their spins ca
be quantized in any direction as well. Moreover, the residu
doubly charged, positive ion~i.e., dication! of the target mol-
ecule may be left in any of its energetically accessi
rotational-vibrational-electronic ~i.e., rovibronic! states.
Hence, the two photoelectrons and the dication are i
mixed state after DPI.

A pure separable~i.e., unentangled! state of two particles
is always known to satisfy Bell’s celebrated inequalities@39#.
It has, however, been shown@40–43# that if the two particles
are not in a pure state then a nonviolation of Bell’s inequa
ties does not necessarily mean that they are not entang
Thus, a violation of Bell’s inequalities is a necessary a
sufficient condition for the entanglement of two particles
they are in a pure state. But, for two particles in a mix
state, this violation does not provide a complete charac
ization of entanglement. A mixed state can be nonsepar
~i.e., entangled! even without violating Bell’s inequalities
@40–43#.

Peres@44#, on the other hand, developed a more string
condition for determining the entanglement of two particle
This condition is equally applicable to both pure as well
mixed states. It was later shown by Horodeckiet al. @45# to
be a sufficient as well as necessary condition for a pu
mixed state of two particles to be nonseparable. Accordin
this Peres-Horodecki@44,45# requirement, the density matri
~DM! of a separable mixed state remains positive when s
jected to partial transposition.

In Sec. II, we first establish some relevant conventio
and briefly describe density operators and states neede
the present study. The DM for DPI of a rotating linear mo
ecule without taking any spin-dependent interactions~SDIs!
into account is developed in Sec. III. This DM is then an
lyzed for all possibilities in which the DPI of a linear mo
ecule can take place in the absence of SOIs and SRIs acc
5-2
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ENTANGLEMENT IN DOUBLE PHOTOIONIZATION OF . . . PHYSICAL REVIEW A 69, 012315 ~2004!
ing to the stringent Peres-Horodecki@44,45# condition to
determine whether electrons ejected in a pair are entan
with respect to their spin angular momenta. Therein, we a
study the pure or mixed nature of all the density matric
calculated in Sec. III, and the degree of spin entanglem
present in those cases wherein the two photoelectrons a
a non-separable state.

Section IV contains a study of our problem in the pre
ence of spin-dependent interactions. Here we distinguish
different cases arising by the inclusion of only the SRI and
the SRI plus the SOI. Such a study demands that one sh
develop expressions for two different density matrices, o
each obtained in the Hund’s coupling schemes~b! and ~a!,
respectively. Although the dynamical terms in the two ca
are, of course, very different from each other, the form
structure of the DM for case~a! is found to be identical to
that for case~b!. Also, the DMs calculated including SDIs i
Sec. IV are quite dissimilar in every respect from that o
tained in Sec. III when no SDIs are taken into account. T
DMs in Sec. IV are then analyzed in terms of the Per
Horodecki@44,45# condition in order to determine the non
separability of the state of two photoelectrons when th
experience either the SRI or both the SOI plus the SRI. S
tion V presents the conclusions of the investigations p
formed in this paper.

II. PRELIMINARIES

Let us represent bye1 ande2 the two freely moving elec-
trons whose entanglement properties we want to investig
The propagation vector of thei (51,2)-th electron iskW i
5(ki ,u i ,f i) such that its kinetic energy is given bye i

5\2ki
2/2m. Also, m i(561/2) represents the projection o

the spin angular momentum of thei -th electron along its spin
quantization directionûi5(q i ,w i). These two electrons
along with others, form an integral part of a linear molecu
say,AB and are assumed to be simultaneously ejected fro
following the absorption of a single photon. IfAB21 denotes
the residual dication, then our process can schematicall
represented by

hn r~ u,W r u51,mr !1ABu0&→AB21u f &1e1~m1û1kW1!

1e2~m2û2kW2!. ~1!

Here, Er5hn r is the energy of the absorbed photon w
u, r u51 its angular momentum in theE1 approximation;u0&
and uf& represent, respectively, parity adapted@34,35,38#
products of the rotational and antisymmetrized electro
states ofAB and of AB21. If E0 and Ef are the respective
energies ofAB in the stateu0& and ofAB21 in the stateu f &,
we then havee11e25hn r2(Ef2E0) from energy conser-
vation.

It is well known that only two polarization directions of
photon are linearly independent.~These directions, in addi
tion to being orthogonal to each other, are perpendicula
the photon’s direction of propagation as well.! Nevertheless,
many workers~see, e.g., Refs.@46#, @47#! have represented
for convenience, states of polarization of a photon by
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kets u1mr& ~with mr50 and61! in the E1 approximation.
Here @46,47#, while mr521 and 11 correspond, respec
tively, to left circular polarization~LCP! and right circular
polarization~RCP! of the photon, its state withmr50 is with
respect to the electric field vector of the electromagne
wave. That is, a linearly polarized~LP! photon is represented
@46,47# by the stateu10& in the present notation.@An unpo-
larized ~UP! electromagnetic wave is taken to be an ev
mixture of RCP and LCP waves.# According to this specifi-
cation of the polarization of the incident radiation, the po
axis of our coordinate system, called the photon-~or space-!
fixed frame of reference, is taken to be along the elec
vector of the LP ionizing radiation; whereas, RCP, LCP,
UP electromagnetic beams are incident in the direction of
OZ axis of our photon frame~PF!. This coordinate system
and some of the vectors used in this communication
shown in Fig. 1. Unless stated otherwise, all the vectors~e.g.,
kW i , ûi , etc.! used herein refer to the PF.

A molecule can be prepared in a specific rovibronicu0&
state in several ways: for example, by its rotational cool
@36#, by the electrostatic hexapole method@48#, or by multi-
photon absorption@37,38#. Let us take the moleculeAB to be
unpolarized before its DPI. Its density operator is then giv
by u0&^0u. Further,r r5u1mr&^1mr u is the density operator o
the ionizing radiation. The incident photon and the molec
are uncorrelated before the interaction between the two ta
place. This, in other words, means that the density oper
of the combined (AB1photon) system in Eq.~1! is simply
given by the direct product

r i5r0^ r r . ~2!

In order to write the density operator for the process rep
sented by Eq.~1!, we need to introduce the photoionizatio
operatorFp5Am/\2F, where the operatorF in the E1 ap-
proximation is defined, for example, in Ref.@49#. Then the
desired density operator for the present case can readil
written in analogy to that@28# used for the DPI of atomic
targets. It is, therefore, given by

r f5KpFpr iFp
† . ~3!

Here @49#, Kp53p(e2/a0Er)
2 which contains the dimen

sionless fine structure constanta0 .
It has already been discussed in Sec. I that we will inv

tigate herein the entanglement betweene1 ande2 both in the
absence and in the presence of SDIs. It is well known t
the best description of the dynamics of a linear molecule
achieved in the Hund’s coupling scheme~b! when SDIs are
not taken into account@33–35#. For a proper representatio
of a molecular state in this, and indeed even in oth
schemes, one also needs to include the rotational motio
the constituent nuclei.~Inclusion of the nuclear vibration, on
the other hand, merely requires that product of a matrix e
ment with the appropriate initial and final vibrational stat
be integrated over the internuclear separation. This is rea
achieved in all four of the Hund’s coupling schemes mer
by calculating the desired matrix elements as a function
5-3
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FIG. 1. Coordinate system
showing the photon-fixed frame o
referenceXYZand the propagation

directions (k̂1 ,k̂2) as well as the
spin quantization directions
(û1 ,û2) of the two photoelectrons
(e1 ,e2) simultaneously ejected
from the rotating, linear molecule
AB following the absorption of a
single photon. Each electron en
ters its own Mott detector@58#,
oriented alongû1(q1 ,w1) for e1

and û2(q2 ,w2) for e2 . These de-
tectors record whether the a pho
toelectron’s spin is up or down
with respect to its own quantiza
tion direction.
e

r
,
a

-

tely
-

he
the internuclear separation. Consequently, we no longer m
tion the vibrational dynamics of a molecule in this paper.!

A parity adapted state of the linear rotating moleculeAB
in Hund’s case~b! is given by@34,35,38#

u0&5
1

&
@ un0L0&uN0L0MN0

&

1~21!p0un02L0&uN02L0MN0
&] uS0MS0

&. ~4!

In this state,L0(5NW 0•R̂) is the projection of the angula
momentumNW 05LW 01RW 0 along the internuclear axis. Here
LW 0 andRW 0 are, respectively, the electronic orbital and nucle
rotational angular momenta ofAB, whereasR̂ is the instan-
taneous direction of the axis~taken to be along the line join
ing all the constituent nuclei! of the rotating molecule.
01231
n-

r

MN0
(5NW 0•OẐ), on the other hand, is the projection ofNW 0

along the polar axis of our PF. Ketun0L0& in Eq. ~4! is the
spatial part of the electronic state ofAB. ~Here,n0 represents
the additional quantum numbers needed to comple
specifyun0L0&, but have not explicitly been shown for brev
ity.! uS0MS0

&, on the other hand, is the spin state of t

molecular electrons with total spin angular momentumSW 0
and its projection along theOZ axis of Fig. 1 given by
MS0

(5SW 0•OẐ). The rotation ofAB in Eq. ~1! is described
by the normalized function@50#

^vuN0L0MN0
&5S 2N011

8p2 D 1/2

DL0MN0

N0 ~v! ~5!

present in the stateu0& defined by Eq.~4!. Here,v~[a, b, g!
represents three Euler angles@50# which specify the instan-
5-4
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taneous orientation of the rotating molecule with respec
the PF.D’s in Eq. ~5!, and elsewhere in this paper, are t
rotational harmonics@50#. Furthermore, state~4! always has
the parity@34,35,38# (21)N01p01s with p050 or 1. But, for
L050 ~i.e., for S6)-states,p050 @34,35,38# and then Eq.
~4! reduces to

u0&5un0L0&uN0L0MN0
&uS0MS0

&, ~6!

with parity (21)N01s. In addition, the parameters50 al-
ways, except forS2 states whereins51. Thus, when Eq.~6!
corresponds to aS1-state, its parity is simply (21)N0,
whereas, if Eq.~6! is to represent aS2-state, then its parity
becomes (21)N011.

The forces which depends on the electronic spin of a
tating molecule can arise due to the interaction of the s
magnetic moment with the magnetic moment produced
nuclear rotation and with that generated by the electro
orbital angular momentum@33#. The former is usually called
spin-rotation interaction, whereas, the latter is the w
known spin-orbit interaction. It is obvious that SRI can on
be present in molecular systems; but both atoms as we
molecules can possess SOI.

In this paper, we want to study the entanglement prop
ties of the twin electrons (e1 ,e2) ejected in process~1! in all
the three possibilities, i.e., the target molecule possessin
SDIs, possessing only SRI, or both SRI and SOI. It has
ready been mentioned elsewhere in this paper that state~4!
represents a rotating molecule with neither SRI nor SOI. T
state@34#

u0&5~21!S02N02M0S 2J011

2 D 1/2

3 (
MN0

MS0

S N0 S0 J0

MN0
MS0 2M0

D @ un0L0&uN0L0MN0
&

1~21!p0un02L0&uN02L0MN0
&] uS0MS0

&, ~7!

on the other hand, describesAB with only SRI, but SOI has
not been taken into account. It is obvious that state~7! also
belongs to the Hund’s case~b! @34#.

In order to properly describeAB by including the total
SDIs ~i.e., both SRI plus SOI!, one needs to use Hund
coupling scheme~a!. The molecular state in this case is give
by @34,35,38#

u0&5
1

&
@ un0L0&uJ0V0M0&uS0S0&

1~21!p0un02L0&uJ02V0M0&uS02S0&]. ~8!

Here,JW05NW 0(5LW 01RW 0)1SW 0 is the total angular momentum
of the molecule. Its projections along the molecular axis a
along the polar axis of the PF are given byV05JW0•R̂ and
M05JW0•ÔZ, respectively.S0(5SW 0•R̂) is the component of
the total spin angular momentum of all the electrons ofAB
along its axis. It is obvious from the above discussion t
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the spin electronic states@ uS0S0&,uS02S0&] in Eq. ~8!, un-
like uS0MS0

& occurring in Eqs.~4!, ~6!, and ~7! and each
quantized in the PF, have been referred to the axis of
rotating molecule. The rotational wavefunction^vuJ0V0M0&
of the moleculeAB in the Hund’s case~a! state~8! is written
analogous to that given in Eq.~5! for case~b!.

It is probably needless to write that the appropriate sta
of the dicationAB21 corresponding to Eqs.~4!–~8! for AB
are readily obtained on replacing the subscript ‘‘0’’ prese
therein by the subscript ‘‘f.’’

Before proceeding further, we need to specify the wa
functions for the twin electrons (e1 ,e2) needed to calculate a
matrix for the density operatorr f , defined in Eq.~3!, for the
DPI process~1!. In order to be able to study the entangl
ment betweene1 ande2 for any arbitrary directions of their
propagation and energies of motion, the most general form
the spin-orbital for thei th electron in Hund’s coupling
scheme~b! is already discussed in detail in the respect
references@51# and @6# in the context of angle- and spin
resolved Auger spectroscopy and of DPI of rotating line
molecules. The required spin orbital in the PF is given
@6,51#

um i ûikW i&5S \2

m D 1/2

(
, il i
min i

i , ie2 is, iDl imi

, i ~v!@Dm in i

1/2 ~v i !#*

3@Y, i

mi~ k̂i !#* U12 n i L uF, il i

2 ~ki !&. ~9!

Here,s, i
is the Coulomb phase@49# for the, i th partial wave

of the photoelectron;l i and mi are the projections of, i

along the molecular axis and alongOẐ, respectively. Both
the Coulomb phases, i

and the space partF, il i

2 (ki ;rW i)

[^rW i uF, il i

2 (ki)& of the spin orbital~9! depend upon energye i

~i.e., the magnitudeki of the propagation vectorkW i) of the
photoelectron ei . The superscript ‘‘2’’ indicates that
uF, il i

2 (ki)&, in addition, satisfies the incoming wave boun

ary conditions@52# appropriate for photoionization.u 1
2n i& is

the spin state of thei -th photoelectron quantized along th
polar axis of the PF, i.e.,n i is the projection of this electron’s
spin angular momentum along theOZ axis shown in Fig. 1.
A rotation by the Euler angles@50# v i(w i ,q i ,0) brings the
polar axis of the PF in coincidence with the directio
ûi(q i ,w i) along which the spin quantization of theei th pho-
toelectron is observed in our experiment being performed
the PF. (m i is the projection of the spin of photoelectronei
along ûi .) Also, note that in Hund’s scheme~b! neither the
Coulomb phases, i

nor the space partuF, il i

2 (ki)& in Eq. ~9!

depends upon the spin variable.
A spin-orbital for thei th photoelectron in Hund’s case~a!,

on the other hand, is given by@6,51#

um i ûi ,kW i&5S \2

m D 1/2

(
, il imi
n is i

i , ie2 is, is iDl imi

, i ~v!@Y, i

mi~ k̂i !#*

3@Dm in i

1/2 ~v i !#* Ds in i

1/2 ~v!uF, il is i

2 ~ki !& ~10!
5-5
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Unlike in Eq. ~9!, both the Coulomb phases, is i
and the

space partF, il is i

2 (ki ;rW i)[^rW i uF, il is i

2 (ki)& in the spin orbital

~10! depend upon the spin variables i ~the projection of the
spin angular momentum of the photoelectronei along the
molecular axis! to take the SOI in the continuum proper
into account. But, similar to the orbital~9!, these two quan-
tities depend upon the energyki of the photoelectronei as
well.

A state of the (photon1molecule)-system, present on th
left hand side of the process~1!, can now be written as

u0;1mr&5u0&u1mr&. ~11a!

Here,u0& represents one of the states@Eqs.~4! and~6!–~8!# of
the moleculeAB before its DPI. The total (AB211e11e2)
system on the right hand side of Eq.~1! is, on the other hand
described by

u f ;m1û1kW1 ;m2û2kW2&5u f &um1û1 ,kW1&um2û2kW2&. ~11b!

One merely needs to substitute appropriate kets into~11b!,
both for the photodicationAB21 and thei th photoelectron,
in Hund’s coupling scheme~a! or ~b! according to the de-
scription already given elsewhere in this paper. Each of
molecular electronic states used herein is properly antis
metrized.

III. ENTANGLEMENT IN DPI IN THE ABSENCE OF SPIN
DEPENDENT INTERACTIONS

A. Density matrix

In this section, we will investigate the circumstances
which two electrons simultaneously ejected from a rotat
linear molecule, following the absorption of a single photo
can form an EPR pair of particles with respect to their spi
This study is performed disregarding all forces which m
arise due to the spins of all electrons participating in proc
~1! @i.e., electrons inAB, in AB21, and the two photoelec
trons (e1 ,e2)]. Thus, neither the SRI nor SOI is taken in
account.

In order to carry out the desired investigations, we fi
need to obtain a matrix for the density operatorr f defined in
Eq. ~3!. It is obvious from the discussion presented in Sec
that this density matrix should now be calculated in Hun
coupling scheme~b!. In the absence of SDIs and due to t
spin-independent nature@53# of the E1 interaction repre-
sented by the operatorFp in Eq. ~3!, the total spin of the
system before and after the DPI process~1! is conserved, i.e.
Eq. ~A1! in Appendix A of this paper must be satisfied.

Furthermore, the twin photoelectrons (e1 ,e2) in a pair,
whose spin entanglement we want to study, may have s
@e15e2 ~i.e., k15k2)# or different @e1Þe2 ~i.e., k1Þk2)#
energies~subject to satisfying the conservation conditio!

and moving in any two directionsk̂1 and k̂2 . For this, one
needs a density matrix which should be diagonal in ener
and in the directions of propagation~i.e., diagonal inkW1 and
kW2). But this density matrix must necessarily be nondiago
with respect to the components of the spin angular mome
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~i.e., m1 , m2) of the two photoelectrons (e1 ,e2).
In order to obtain such a density matrix, the appropri

functions to be used for the targetAB and the twin photo-
electrons (e1 ,e2) are those given by Eqs.~4!, ~5!, and ~9!,
respectively; whereas a wave function appropriate for
dicationAB21 is similar to Eqs.~4! and~5!. In Appendix A,
we have developed a completely general expression, in
pendent of all dynamical models, for the desired density m
trix for process~1! in the absence of SDIs in the Hund
coupling scheme~b!. It is shown in Eq.~A7! that this density
matrix can be expressed as a product of two independ
factors in the following form:

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

5
d3s~mr !

de1dk̂1dk̂2

s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
. ~12!

This represents, in addition to other things, two partic
@i.e., photoelectrons (e1 ,e2)] which are not prepared inde
pendently and in total isolation of each other. These t
electrons, before their simultaneous ejection, were an i
gral part of a system, i.e., the target moleculeAB. Thus, the
density matrix~12! could only be calculated by fully taking
electron-electron correlation~without SDIs, but including, of
course, exchange! effects into account in an interacting
many particle system.

It is obvious from Eq. ~A8! that the first term@i.e.,
d3s(mr)/de1dk̂1dk̂2] on the right hand side of the densit
matrix ~12! depends upon, among other things, the directio
of propagation (k̂1 ,k̂2) as well as energies (e1 ,e2) of two
photoelectrons (e1 ,e2), the state of polarization of the ion
izing radiation. This term, in addition, contains also the d
namical amplitudes defined by Eq.~A9!. These are shown in
Eq. ~A9! to be determined by the electronic states ofAB and
AB21, by the rotational states of these two species throu
their respective angular momentaN0 andNf . The dynamical
amplitude~A9! will, consequently, also depend on the ene
gies of the emitted particles, on the phase shifts, etc. Th
the presence of the Dirac’s bracket~A9! in expression~A8!
means that the first term on the right-hand side of the den
matrix ~12! is very much dependent on the dynamics of D
which includes, among other things, energies~i.e.,e1 ande2)
of two photoelectrons.

It should also be pointed out herein th
d3s(mr)/de1dk̂1dk̂2 has an implicit dependence on th
spins S0 and Sf of the two molecular systems involved i
process~1!, for energies of the molecular statesu0& and uf&
depend on their multiplicities (2S011) and (2Sf11), re-
spectively. This term, however, remains completely un
fected by the spins of the two photoelectrons (e1 ,e2). In
conclusion, one can say that the termd3s(mr)/de1dk̂1dk̂2 ,
present in the density matrix~12!, represents purely angula
correlation between the twin photoelectrons (e1 ,e2) and dy-
namical effects defined by Eqs.~A8! and ~A9! for DPI ~1!
described in Hund’s coupling scheme~b! in the absence of
SDIs. This angular correlation is alwayspositiveand it acts
purely as amultiplicative factor in the density matrix~12!.
5-6
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The second term@i.e.,s(S0 ;Sf ;û1 ,û2)m1m2 ,m
18m

28
], present

in the density matrix~12!, is defined in Eq.~A10!. Unlike
angular correlation~A8!, Eq. ~A10! is a 434 matrix which
does not depend on any of those physical quantities@e.g.,
dynamical term~A9!, polarization of the ionizing radiation
electronic as well rotational states and angular moment
AB andAB21, directions of propagation of (e1 ,e2), on any
energy, etc.# which contributes tod3s(mr)/de1dk̂1dk̂2 . The
four-dimensional s(S0Sfû1 ,û2)m1m2 ,m

18m
28

matrix, on the

other hand, is seen from Eq.~A10! to be completely deter
mined by the Euler angles (v1 ,v2) which specify the direc-
tions (û1 ,û2) of spin quantization, and by the projection
@m1(m18),m2(m28)# along these directions of the spin angu
momenta, of the twin photoelectrons (e1 ,e2). Hence, the
second terms(S0 ;Sf ;û1 ,û2)m1m2 ,m

18m
28

in the density matrix

~12! represents purely spin correlation between two electr
simultaneously ejected in DPI ofAB.

Another important point which deserves a discussion h
is that the presence ofS0 and of Sf , as arguments in
s(S0 ;Sf ;û1 ,û2)m1m2 ,m

18m
28
, suggests that the spin correlatio

between two photoelectrons should be affected by the t
spins of AB and AB21. But expression ~A10! for
s(S0 ;Sf ;û1 ,û2)m1m2 ,m

18m
28

contains, on the other hand, ne

ther of these two spin quantum numbers. It is obvious b
from Eq.~A1! and the 6-j symbol present in Eq.~A10! that 0
and 1 are the only values which can contribute to the s
over se present in the latter equation. But, at the same tim
this variable must also satisfy the triangular requirem
uS02Sf u<se<S01Sf implied by the spin conservation con
dition ~A1!. This, in other words, means that expressi
~A10! will cease to identically vanish wheneverS05Sf
and/or uS02Sf u51. Thus the spin-correlation term
s(S0 ;Sf ;û1 ,û2)m1m2 ,m

18m
28

in the density matrix~12! has an

implicit dependence on the total spins ofAB and ofAB21.
The presence of this condition also gives us a spin selec
rule for a double-photoionizing transition in theE1 approxi-
mation from stateu0& of moleculeAB to the stateuf& of the
dication in the Hund’s coupling scheme~b! in the absence o
SDIs. That is, the total spins of these two species mus
such thatDS[uS02Sf u50,1. Thus values ofse to be in-
cluded in the sum present in expression~A10! for the spin
correlation terms(S0 ;Sf ;û1 ,û2)m1m2 ,m

18m
28

be determined

from the two conditions given by Eq.~A1!.
Hence, in the absence of SDIs, the density matrix for

angle- and spin-resolved DPI process~1! in a rotating mol-
ecule reduces to the product of a dynamically determi
angular correlation function which is always positive and
light polarization as well as dynamics insensitive 434 spin-
correlation matrix dependent upon the spins ofAB and
AB21, and on the spin quantization of the twin photoele
trons (e1 ,e2).

B. Nonseparability of the density matrix

One expects that, as the two photoelectrons in proces~1!
@in addition to being, before their emission, an integral a
correlated part of a single system, i.e., the moleculeAB# were
01231
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not prepared independently and in total isolation of ea
other, a decomposition of their density matrix~12! into a
product should, in general, be impossible, implying, there
that (e1 ,e2) should form an EPR pair. Peres@44# and Horo-
decki et al. @45# have shown that a necessary and suffici
condition for the separability of a mixed state of two pa
ticles is that the partial transpose of its density matrix sho
remain positive.~A Hermitian matrix is said to be positive i
each of its eigenvalues is greater than zero. The determi
of a matrix is well known to be the product of all of it
eigenvalues. Hence, a value less than zero of a determi
means that its matrix is negative. If this determinant, on
other hand, is greater than zero, then the corresponding
trix can still be negative if it has an even number of eige
values less than zero.!

We have, therefore, investigated the separability of
photoelectrons (e1 ,e2) emitted in process~1! in the absence
of SDIs by applying the stringent, as well as necessary
sufficient, condition proposed in Refs.@44#, @45# to our den-
sity matrix given by Eqs.~12! and ~A8!–~A10!. It has al-
ready been discussed elsewhere in this paper that the an
correlation partd3s(mr)/de1dk̂1dk̂2 of the density matrix
~12! is always positive and acts simply as a multiplicati
factor. We, therefore, do not write the angular correlati
explicitly and represent, for brevity, the density matrix~12!
simply by its second term. That is, unless stated otherwise
the present section we write

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

→s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
. ~13!

In the remaining part of this subsection, we study t
separability of the density matrix~13! using the Peres-
Horodecki@44,45# condition. An application of this condition
requires @44,45# a partial transpose of the density matr
~13!. Following the definition introduced by Peres@44# and
Horodeckiet al. @45#, partial transpose of Eq.~13! is given
by

g~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
5s~S0 ;Sf ;û1 ;û2!m1m

28 ,m
18m2

.

~14!

It is obvious from the discussion presented in Sec. III A th
there are only three possibilities, depending upon the sp
S0 of AB and Sf of AB21 for which density matrix~13!
cannot vanish identically. In the following, we investigate t
entanglement between (e1 ,e2) in all these three cases.

~i! MoleculeAB and its residual dicationAB21 are each
in their singlet electronic state~i.e., S0 , Sf50). In this case,
only a single value, i.e.,se50, will contribute to the sum
present in Eq.~A10!. The corresponding density matrix ha
been calculated in Eq.~A12a!. Consequently, the density ma
trix ~A10!, when bothAB and its photodicationAB21 are in
their singlet electronic states, becomes

s~0;0;û1 ,û2!m1m2 ,m
18m

28
5s~S0 ;Sf ;û1 ,û2!m1m2 ,m

18 ,m
28
u~se50!.

~15a!
5-7
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Its partial transpose

g~0;0;û1 ,û2!m1m2 ,m
18 ,m

28

5g~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
,u~se50!, ~15b!

on the other hand, is obtained from Eq.~A12b!. These are
completely general forms of the two matrices: Independ
of all dynamical models and applicable for any kind of p
larization of the ionizing radiation and directions of prop
gation as well as of spin quantization, including all possi
allowed energies, of the simultaneously ejected electr
(e1 ,e2).

These matrices can be diagonalized even in their pre
general as well as analytical forms using, for example,MATH-

EMATICA @54#. As both Eqs.~15a! and ~15b! are Hermitian,
their eigenvalues should necessarily be real. In the pre
case, these, in addition, are found to be totally independ
of all four angles@ û1(q1 ,w1),û2(q2 ,w2)# which specify the
spin quantization directions of (e1 ,e2) in Eq. ~15!. One,
thus, obtains eigenvalues to be~0, 0, 0, 1! with det(s)50 for
the density matrix~15a! and ~1/2, 1/2, 21/2, 1/2! with
det(g)52224 for its partial transpose~15b!. In view of the
stringent, as well as necessary and sufficient, condition s
gested in Refs.@44#, @45#, we therefore conclude that th
density matrix ~15a! represents a nonseparable spin sta
Thus, two photoelectrons ejected simultaneously in the D
of a rotating linear molecule are always entangled as lon
neither the target nor its residual photodication possesses
electronic spin angular momentum. This result shall not
affected by either the electronic states ofAB and ofAB21 or
the rotational states of these two species, or by the DPI
namics@i.e., photon polarization, energies involved, propag
tion (k̂1 ,k̂2) as well as spin quantization (û1 ,û2) directions
of (e1 ,e2)].

This result is an obvious consequence of spin conse
tion in the absence of SDIs. In this case, we haveS0 , Sf
50, implying thereby, in view of Eq.~A1!, the sum of the
spins of (e1 ,e2), i.e., se50. Hence, the photoelectron
(e1 ,e2) are in the well known entangled state@a(1)b(2)
2a(2)b(1)#/&, i.e., a singlet spin state, irrespective of a
other physical conditions.

Let us further investigate the properties of the dens
matrix ~15a!. Among its four eigenvalues~0, 0, 0, 1!, only
one is nonzero. This suggests@55# that Eq.~15a! represents a
pure state. Even an application of the necessary and s
cient condition@55# for a density matrix to represent a pu
state shows that for Eq.~15a!, Tr(s2)5(Trs)251. Here, Tr
means a trace of a given matrix. This too implies@55# that
Eq. ~15a! describes a pure state. The reduced density ma
@55# for Eq. ~15a! is easily calculated to be

Red@s~0;0;û1 ,û2!m1m2 ,m
18m

28
#5S 1/2 0

0 1/2D .

This gives a degree of nonseparability~participation ratio or
Schmidt number! @56#, defined only for a pure state,K
5@(1/2)21(1/2)2#2152. This means@56#, that a pure state
represented by the density matrix~15a!, is a Bell state. This
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is in complete agreement with the result arrived at above
the two photoelectrons (e1 ,e2) in the present case are in
singlet spin state.

The simplest possible example of this result is the DPI
H2 in its ground electronic (1Sg

1) state. The two photoelec
trons which simultaneously come out in the DPI of this m
ecule are not only correlated but also form an EPR pair w
respect to their spins. Some of the other possible simple
amples for the present case can be DPIs

hn r1Li2~1sg
21su

22sg
2 1Sg

1!→Li2
21~1sg

21s2
22sg

0 1Sg
1!

1e1~m1û1kW1!1e2~m2û2kW2!

and

hn r1CO~1s22s23s23s24s21p45s2 1S1!

→CO21~1s22s23s23s24s21p45s0 1S1!

1e1~m1û1kW1!1e2~m2û2kW2!

in the ground electronic configurations of Li2 and CO, re-
spectively. Although the SDIs in neither of these two mo
ecules are as insignificant as, for example, in the case of2 ,
nevertheless the two photoelectrons (e1 ,e2) which come out
in each of the above two processes, in the absence of s
dependent interactions, are always correlated as well as
tangled in a singlet spin state.

~ii ! Spin S0 of moleculeAB and Sf of its photodication
AB21 differ by 1 ~i.e., uS02Sf u51). Let us now consider the
DPI of a rotating linear molecule in the absence of SD
when either both, or at least one, ofAB andAB21 is in other
than a singlet electronic state. That is, we may now have
of the three situations:S050, Sf51; S051, Sf50; or Sf
5uS061u, with S0>1. It is obvious from Eqs.~A1! and
~A10! that, out of the two~0, 1! possible values, onlyse
51 now needs to be taken into account. The required den
matrix, again calculated from Eq.~A10!, is given in Eq.
~A13a!. Therefore, in the present cases we have

s~ uS02Sf u51;û1 ,û2!m1m2 ,m
18m

28

5s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
u~se51! ~16a!

Its partial transpose~A13b! is readily obtained using Eq.~14!
and is written as

g~ uS02Sf u51;û1 ,û2!m1m2 ,m
18m

28

5g~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
u~se51!. ~16b!

An element of~16a! is found to be related to the correspon
ing element of Eq.~15a! by

s~ uS02Sf u51;û1 ,û2!m1m2 ,m
18m

28

5
1

3
dm1m

18
dm2m

28
2

1

3
s~0;0;û1 ,û2!m1m2 ,m

18m
28
.

~17!
5-8
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An identical relationship exists between the partial transp
matrices ~15b! and ~16b!. Equation ~17!, in other words,
means that, although the diagonal elements of the two m
ces~15! ~for S0 ,Sf50) and~16! ~for uS02Sf u51) are lin-
early independent, their nondiagonal elements have a lin
dependence.

The eigenvalues and determinant of the density ma
~16a! are ~1/3, 1/3, 0, 1/3! and det(s)50, respectively;
whereas the corresponding respective quantities for the
tial transpose~16b! are ~1/6, 1/6, 1/6, 1/2! and det(g)
5224323. That is, the partial transpose of the density mat
remains positive. This, according to the stringent condit
developed in Refs.@44#, @45#, means that the density matri
~16a! represents a separable spin state of (e1 ,e2). Hence, the
photoelectrons ejected in process~1! in the absence of SDIs
do not form an EPR pair with respect to their spin angu
momenta when the spins ofAB and of AB21 differ by 1.
However, (e1 ,e2) are still correlated. This shows that th
correlation and spin entanglement of two electrons ejec
simultaneously in the single process of DPI are totally in
pendent and unrelated properties. Two correlated elect
are not necessarily spin entangled. This is a totally gen
result, independent of all dynamical models and of exp
mental geometries. The only requirement for it to be ap
cable is that no SDIs are taken into account, and the spin
the target and of its photodication must differ by one.

Furthermore, the density matrix~16a! has been shown to
have more than one nonzero eigenvalue value; also,
finds that Tr(s2)@51/3# is less than (Trs)2@51#. Each of
these two facts simply means@55# that the density matrix
~16a! represents a mixed state. The two photoelectr
(e1 ,e2) in the present case have been shown to have a
spin angular momentumse51. There are, consequentl
three spin states $a(1)a(2);b(1)b(2);@a(1)b(2)
1a(2)b(1)#/&% available for each pair of ejected ele
trons. Hence, the state represented by the density m
~16a! is probably a mixture of the three triplet spin stats
(e1 ,e2).

Among the lightest possible molecules in whic
such a DPI can take place without much effe
from SDIs are B2(1sg

21su
22sg

22su
21pu

2 3Sg
2) and

CO(1s22s23s23s24s21p45s2 1S1). The photodication
of the two molecules are B2

21(1sg
21su

22sg
22su

21pu
0 1Sg

1)
and CO21(1s22s23s24s21p25s2 3S2), respectively. Ac-
cording to the analysis presented herein, the two photoe
trons ejected in either of these two cases are only correl
but not entangled with respect to their spins. There can
many such examples of DPI of rotating linear molecules
the absence of SDI withuS02Sf u51 wherein one can pro
duce electrons (e1 ,e2) in a pair which are correlated but in
separable, mixed spin state.

~iii ! Spin S0 of the moleculeAB andSf of its photodica-
tion AB21 are equal and greater than zero~i.e., S05Sf
>1/2). Finally, let us consider entanglement properties
photoelectrons (e1 ,e2) simultaneously emitted in DPI in th
absence of SDIs, when multiplicities of the electronic sta
u0& and uf& involved in process~1! are equal and greater tha
one. Unlike the last two cases considered so far in this s
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section, now both of the two possible values ofse(50,1)
will simultaneously contribute to the calculation of the de
sity matrix ~A10!. The density matrix and its partial trans
pose, in the present case, are

s~S05Sf>1/2;û1 ,û2!m1m2 ,m
18m

28

5s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
u~se50 and 1! ~18a!

and

g~S05Sf>1/2;û1 ,û2!m1m2 ,m
18m

28

5g~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
u~se50 and 1!, ~18b!

respectively. The right-hand sides of these two respec
equations are given by Eqs.~A14a! and~A14b!. An element
of the density matrix~18a! can also be obtained from th
corresponding element of Eq.~15a! by using

s~S05Sf>1/2;û1 ,û2!m1m2 ,m
18m

28

5 1
3 dm1m

18
dm2m

28
1 2

3 s~0;0;û1 ,û2!m1m2 ,m
18m

28
. ~19!

This relation can also be used to obtain the partial transp
~18b! from its counterpart~15b!.

Both of matrices~18! can readily be diagonalized with
their respective eigenvalues given by~1/3, 1/3, 1/3, 1! and
~2/3, 2/3, 0, 2/3! and the determinants by 323 and 0. This
data show that both the matrices~18a! and its partial trans-
pose~18b! are positive. Hence, applying the stringent as w
as sufficient and necessary Peres-Horodecki@44,45# condi-
tion, one concludes that the photoelectrons (e1 ,e2) in pro-
cess~1! in the absence of SDIs are not entangled with resp
to their spins if the multiplicities of the electronic states
AB and ofAB21 are equal and greater than 1. This, again
a completely general result and is independent of all dyna
cal models. Although the photoelectrons (e1 ,e2) are not pre-
pared independently and in total isolation from each other
addition to being an integral part of the same system~i.e., a
linear rotating molecule in the present case! before their
emission, they are simply correlated but not spin entang
The presence of correlation is necessary, otherwise the
electrons would not have come out simultaneously follow
the absorption of a single photon. This study also prov
similar to what was discussed in section~ii !, electron-
electron correlation and spin entanglement are two indep
dent properties. Two correlated electrons may or may
form an EPR pair with respect to their spin angular m
menta. That is, electron-electron correlation is respons
for the ejection of two electrons simultaneously in DPI bu
does not necessarily provide them with spin entanglem
Moreover, in the absence of SDIs, the entanglement pro
ties of electrons with respect to their spin angular mome
do not depend on the photoionization dynamics.

The relevant examples for the present case can be DP

CN~1s22s23s24s21p45s1 2S1!

→CN21~1s22s23s24s11p45s0 2S1!
5-9
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and

NO~1s22s23s24s25s21p42p1 2P!

→NO21~1s22s23s24s15s11p42p0 2S1!.

In both these cases, although SDIs may not be as wea
they are, for example, in the case of a lighter molecule, e
H2 , nevertheless, the analysis presented in this subse
means that the pair of photoelectrons ejected in eithe
these two processes, although correlated, will never be
entangled.

Both eigenvalues as well as Tr(s2)@54/3#<(Trs)2

@52# suggest that the density matrix~18a! represents a
mixed state. This density matrix has been arrived at by s
ming Eq. ~A10! over both the possible values of the tot
spin angular momentum of photoelectrons (e1 ,e2), i.e., se
50 and 1. This, in other words, means, that the state re
sented by the density matrix~18a! is, probably, a mixture of
the one singlet and three triplet spin states of photoelect
(e1 ,e2). This mixture forms a product state such th
(e1 ,e2) are not spin entangled.

IV. ENTANGLEMENT IN DPI IN THE PRESENCE
OF SPIN DEPENDENT INTERACTIONS

Let us now investigate the entanglement properties of
photoelectrons (e1 ,e2) ejected in process~1! when spin de-
pendent forces are taken into account. If one discards
effects of nuclear spin then, unlike in atomic targets wher
only SOI is effective, one should consider two forces, rat
than one force, arising due to electronic spin in a molec
That is, SRI, in addition to the SOI. It is, however, not ne
essary that both SOI and SRI are either simultaneou
present or are of equal importance in any given molecule
will, naturally, be quite interesting to see the roles played
these two SDIs separately as well as jointly in entangl
two photoelectrons ejected in DPI of a rotating linear m
ecule. In the following subsection we, therefore, first calc
late the DM for DPI by taking only SRI into accoun
whereas, in Sec. IV B both the SRI and SOI are conside

A. Density matrix for DPI with spin-rotation interaction

Appendix B in the present paper describes in detail
calculation of the density matrix for the angle- and sp
resolved DPI of a rotating linear molecule by including SR
This spin interaction is assumed to be present in the ta
AB as well as in its photodicationAB21. The present density
matrix, given in Eq.~B6!, is very different as well as much
more complicated than Eq.~12! @i.e., Eq.~A7!# obtained in
Appendix A without SRI, although both Eqs.~B6! and ~A7!
have been calculated in Hund’s coupling scheme~b!.

First, the former equation@i.e., Eq.~B6!#, unlike the latter
@i.e., Eq.~A7!#, cannot be written as a product of an angu
correlation factor and a spin correlation matrix. This, con
quently, means that in the present case it is not possibl
study spin entanglement properties of (e1 ,e2) without con-
sidering the dynamics of DPI. That is, unlike in the previo
case of DPI without SRI, there will now be important d
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namical effects on the spin entanglement of two photoe
trons ejected in the presence of SRI in Hund’s coupl
scheme~b!. Second, although similar to the first density m
trix ~A7!, the present Eq.~B6! too is a 434 matrix; each of
the 16 elements in the latter can, however, be shown to c
tain a very large~. 100! number of complicated terms com
pared to the three/four simple terms contributing to E
~A10! @see, for example, Eqs.~A12a!, ~A13a!, and/or
~A14a!#.

B. Density matrix for DPI with spin-rotation
and spin-orbit interactions

Finally, let us consider DPI in a rotating linear molecu
by taking the full effects of electrons’ spin angular momen
into account. For this, one needs to include, in addition
SRI plus SOI in the bound electronic stateu0& of AB anduf& of
AB21, SOI in the continua@5,6,51# of two photoelectrons
emitted in process~1!. This requires that one should work i
Hund’s coupling scheme~a! @33–35#. Appendix C to this
paper describes, in detail, calculation of such a density
trix. This again is, obviously, a 434 matrix which can not be
separated into an angular and a spin correlation parts
each element consists of, similar to that of case~b! in Eq.
~B6!, about 100 terms.

Furthermore, it is shown in Appendix C that the form
the density matrix calculated in Hund’s case~a! by including
both SRI plus SOI, is identical to that obtained in Eq.~B6!
for Hund’s case~b! on the inclusion of only SRI with, of
course, different dynamical amplitudes and normalizat
factors contributing in two cases. In case~b!, density matrix
~B6!, we use the dynamical amplitudes given in Eq.~B5!;
whereas, for the case~a!, amplitudes~C4! are to be substi-
tuted in the density matrix~B6!.

C. Entanglement in DPI in the presence of SRI or„SRI¿SOI…

It is, fortunately, possible to represent the two dens
matrices obtained in the Secs. IV A and IV B by a sing
form given in Eqs.~D1!. It @i.e., Eq.~D1!# is a fairly complex
expression for any density matrix. In order to analyze suc
complicated expression and draw some physically mean
ful conclusions from it about the entanglement of two ph
toelectrons simultaneously ejected in DPI of a rotating lin
molecule in the presence of SDIs, we first simplify Eq.~D1!
by specializing it to a collinear experimental geometry
which (e1 ,e2) are moving in opposite directions, i.e
k̂252 k̂1 . The resulting density matrix will further be sim
plified by aligning the colliner directions of the two ejecte
electrons along the polar axis of our PF shown in Fig. 1. T
means that we specialize Eq.~D1! to k̂1(u150,f1) and
k̂2(u25p,p1f1) @i.e., geometry~D2!# and obtain the den-
sity matrix ~D3!.

A reduction of density matrix~D1! to the form of
Eq. ~D3! for DPI in a collinear geometry means that i
each of the 16 elements can now be completely rep
sented by the six parameters@A0

00(mr),A1
01(mr),A1

10(mr),
A0

11(mr),A1
11(mr),A2

11(mr)] defined by Eq.~D3b!. It is obvi-
ous from Eq.~D3b! that these parameters, although do n
5-10
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contain any angles, very much depend upon the dynamic
DPI @which includes also the energies of (e1 ,e2)], the angu-
lar momenta involved in process~1!, among other things
Consequently, unlike in the previous case discussed in d
in Sec. III for DPI in the absence of SDIs, now the entang
ment properties of the two photoelectrons will not be ind
pendent of the dynamics of DPI as well as of other phys
variables present in the density matrix~D3!. In order to ob-
tain a quantitative physical insight on the entanglement
(e1 ,e2) in the present case and to see what kind of influe
the dynamics of DPI and other physical variables have on
we further simplify Eq.~D3! by assuming that both photo
electrons (e1 ,e2) have their spins quantized in theXY plane
of the PF. That is, Eq.~D3! is now specialized to the geom
etry given in Eq.~D4!. After these simplifications, the den
sity matrix ~D3! reduces to the form given in Eq.~D6a!
which can be analyzed analytically. The partial transpose
this density matrix, readily obtained using relation~14!, is
given in Eq.~D6b!.

A density matrix is supposed to be Hermitian@55#. This
demands that, in Eq.~D6a!,

A0* 5A0 , A01* 5A01, A10* 5A10,

Am* 5Am , ~Ap1A11!* 5Ap2A11.J . ~20!

That is, while four (A0 ,A01,A10,Am) of six parmeters in Eq.
~D5!, needed to describe the density matrix~D6a! and its
partial transpose~D6b! are purely real, the remaining tw
~i.e., A11, Ap) can be either complex or purely imaginar
However, the linear combination (Ap

22A11
2 ) of these last two

parameters is also a pure real, as well as a positive, qua
Using MATHEMATICA @54#, one can readily calculate de

terminants of both matrices~D6! without substituting nu-
merical values of the parameters present therein. We
that, while each of

det~r f !5@~A01Am!22~A011A10!
2#@~A02Am!2

2~A012A10!
214~A11

2 2Ap
2!# ~21a!

and

det~g f !5@~A02Am!22~A012A10!
2#@~A01Am!2

2~A011A10!
214~A11

2 2Ap
2!# ~21b!

is necessarily real, neither of them is positive definite. F
determinant~21a! to be less than zero, one should have eit

~A011A10!
2.~A01Am!2 ~22a!

or

~A012A10!
2.@~A02Am!214~A11

2 2Ap
2!#. ~22b!

Determinant~21a! will, however, be positive if both of the
inequalities ~22! are simultaneously satisfied. Likewise,
one wants determinant~21b! to be negative, one should the
satisfy either~but not both! of the conditions

~A012A10!
2.~A02Am!2 ~23a!
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~A011A10!
2.@~A01Am!214~A11

2 2Ap
2!#. ~23b!

With a proper combination of Eqs.~22! and~23!, one can
arrive at the appropriate conditions which will simult
neously make both the density matrix~D6a! and its partial
transpose~D6b! negative. For example, let us first assum
that (A11

2 2Ap
2)<0, then both conditions~22a! and~23b! are

simultaneously satisfied if one has

~A011A10!
2.~A01Am!2. ~24a!

However, the presence of

~A012A10!
2.~A02Am!2 ~24b!

will, on the other hand, mean that now both Eqs.~22b! and
~23a! are applicable. Alternatively, we may have (A11

2 2Ap
2)

>0. In this case, inequalities~22a! and ~23b! will simulta-
neously hold for

~A011A10!
2.@~A01Am!214~A11

2 2Ap
2!#, ~25a!

while, an applicability of

~A012A10!
2.@~A02Am!214~A11

2 2Ap
2!# ~25b!

will, otherwise, suggest that simultaneous satisfaction
Eqs.~22b! and ~23a! make both determinants~21! negative.

Hence, under appropriate conditions, discussed herei
Eqs.~23!–~25!, two photoelectrons ejected in process~1! in
two opposite directions along the polar axis of the PF a
with their spins quantized in theXY plane of this coordinate
system, are not only correlated but can also be entan
with respect to their spins. This situation occurs when o
takes either only the SRI or both the SRI1SOI into account.
It is obvious from the discussion given herein, that con
tions derived in Eqs.~23!–~25! very much depend upon th
polarization of the ionizing radiation as well as on the pho
ionization dynamics, in addition to several other physic
quantities. Another important thing which this discussi
shows is that, unlike in the case investigated in Sec. III
DPI without SDIs, now one cannot determinea priori, just
by looking at the multiplicities of the electronic states ofAB
and that of the photodicationAB21, or any of the other
physical variables, whether the twin photoelectrons (e1 ,e2)
which are necessarily cocorrelated, will be entangled or n
Thus the presence of SDIs, even in the form of merely S
has completely changed the entanglement properties
(e1 ,e2). Now, every physical quantity which may influenc
in however small way, DPI of a rotating linear molecule
process~1!, will possibly also have an effect on the tw
photoelectrons (e1 ,e2) forming a nonseparable state with r
spect to their spin angular momenta.

V. CONCLUSIONS

In the context of DPI word correlation is always used
convey those physical effects which cannot be underst
within the framework of an independent particle model a
5-11
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are responsible for simultaneous ejection of two electr
under the action of a one-body operator~i.e., absorption of a
single photon in theE1 approximation!. Had the indepen-
dent particle model been valid, two electrons would not ha
simultaneously come out following the absorption of a sin
photon. Thus, only those two electrons which are correla
by physical effects other than those present in the indep
dent particle model are simultaneously ejected in DPI. O
present analysis shows that these two photoelectrons, w
are neither prepared independently nor in isolation from e
other and were an integral part of the same system be
their ejection, do not necessarily form a state which is
tangled with respect to their spin angular momenta. Henc
the context of DPI, correlation and spin entanglement
two independent properties of twin photoelectrons.

Second, the present analysis further shows that the
entanglement of two correlated electrons ejected in DPI
pends upon factors which are different in different physi
situations corresponding to the exclusion or inclusion
SDIs. In the absence of SDIs, it is possible to predicta pri-
ori, by looking at the total spin angular momenta of t
target and of its residual photodication, the spin entang
ment properties of two simultaneously ejected electrons.
example, the twin photoelectrons are in a nonseparable
state if and only if both the target molecule and its dicat
are in their respective singlet electronic states. If either
or both of these species possess a total electronic spin a
lar momentum which is different from zero, the two eject
electrons, although still correlated, cease to be spin
tangled. This result is completely independent of all physi
quantities ~excluding the multiplicities of the electroni
states ofAB andAB21) which are needed to characterize t
DPI of a rotating linear molecule. On the other hand, if eith
SRI or both (SRI1SOI) are taken into account, it is ver
difficult to say a priori any thing about the spin entangle
ment of the ejected electrons. They may or may not be
nonseparable state, for the entanglement of their spins
depends on each of those physical entities which matter
the DPI of the targets being considered in this commun
tion.

Recently, Chandra and Chakraborty@28# have analyzed
entanglement properties of photoelectrons ejected in the
of atoms. Such targets are well known to be completely
ferent from a rotating linear molecule in each and every
spects. Moreover, unlike in the latter systems, wherein S
or (SRI1SOI) constitutes SDIs, it is only the SOI whic
needs to be taken into account for those forces which
pends on electronic spin in an atom~excluding, of course,
nuclear spin in both types of targets!. The density matrix
obtained in Ref.@28# in the absence of SOI is exactly in th
form of the present Eq.~12!, i.e., a product of an angula
correlation factor and a spin-correlation matrix. Although t
angular correlation factors in the two cases naturally invo
different sets of angular momenta and dynamical amplitud
the spin-correlation matrix given in Ref.@28# is, neverthe-
less, identical to that found in Eq.~A10! herein. In addition
to this, density matrices calculated by taking SDIs in t
present and the previous@28# papers into account are als
identical in their structures while differing in the angul
01231
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momenta and the dynamical amplitudes involved in
atomic and molecular DPI. Thus, the investigations repor
herein and in Ref.@28# have following important ramifica-
tions.

~a! Density matrices of identical forms describe the ang
and spin-resolved DPI of atoms and of rotating linear m
ecules. This is true with or without SDIs. This demonstrati
puts the DPI of these two entirely different kinds of syste
on an equal footing.~b! The spin entanglement properties
two electrons simultaneously ejected from each type of th
targets are identical; completely unaffected by the dynam
of DPI in the absence of SDIs, but very dependent on
dynamics of the respective systems in which DPI is tak
place in the presence of SDIs.~i! Without SDIs the spin
entanglement of two photoelectrons is completely de
mined by the electronic spin angular momenta of the giv
target before and after its DPI. Moreover, in this case,
same results are applicable no matter whether the target
atom or a rotating linear molecule. This, in other word
generalizes the results obtained by Chandra and Chakrab
@28# for spin entanglement without SDIs by restricting th
spin angular momenta of each of the two photoelectrons
be in theXY plane of our PF.~ii ! In the presence of SDIs, i
is possible neither for atomic nor molecular targets to pred
a priori the existence of entanglement between twin pho
electrons as it is now greatly dependent upon each and e
aspects of the complicated dynamics of DPI.~c! Finally, such
a kind of formal identity in the behavior of atoms and
rotating linear molecules with respect to the angle- and sp
resolved DPI and the spin entanglement of two photoe
trons could be established because we have taken the rot
of molecular nuclei into account and used parity adap
wave functions, within an appropriate Hund’s couplin
scheme, to describe rotational and electronic motion o
linear molecule. But the use of parity adapted states is, h
ever, not necessary for studying entanglement propertie
rolating linear molecules.
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APPENDIX A: DENSITY MATRIX FOR DOUBLE
PHOTOIONIZATION OF A ROTATING LINEAR

MOLECULE WITHOUT SPIN-DEPENDENT
INTERACTIONS IN HUND’S COUPLING SCHEME „b…

In this appendix, we briefly describe the derivation of t
density matrix used in Sec. III of the present paper. T
matrix is obtained for angle- and spin-resolved DPI of a
tating linear molecule in Hund’s coupling scheme~b! with-
out taking any interactions which may depend on electro
spin into account. In addition, the photoionization opera
@49# Fp in the density operator~3! is also well known@53# to
be independent of the spin of the absorbed photon. Th
things mean that in process~1!, the total spin angular mo
5-12
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mentum before and after DPI should be same. Therefore
the present case, we have

SW 05SW f1sWeF5S 1W

2
D

1

1S 1W

2
D

2
G ~A1!

Here, (1W /2)i is the spin angular momentum of thei th photo-
electron in Eq.~1! quantized alongûi(q i ,w i).

The most general form of the density operator~2!, which
represents a non-interacting photon plus an unpolarized m
eculeAB @in Hund’s coupling scheme~b!#, can now be writ-
ten as

r i5
1

~22d0L0
!~2N011!~2S011!

3 (
p0MN0

MS0

u0;1mr&^0;1mr u, ~A2!

whereu0;1mr& has already been defined in Eq.~11a!. In this
operator, we have averaged over all degenerate states oAB
represented byu0& and given in Eq.~4!. The density matrix

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

5Kp (
pf MNf

MSf

^ f ;m1û1kW1 ;m2û2kW2uFpr i~Fp!†u

3 f ;m18û1kW1 ;m28û2kW2& ~A3!

for the angle- and spin-resolved DPI~1! is obtained, on the
other hand, by summing over all degenerate statesuf& of
AB21. @See Eq. ~11b! for the definition of
u f ;m1û1kW1 ;m2û2kW2& representing the (AB211e11e2) sys-
tem.# This, on substituting Eq.~A2!, becomes

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

5
Kp

~22d0L0
!~2N011!~2S011!

3 (
p0MN0

MS0

pf MNf
MSf

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&

3^ f ;m18û1kW1 ;m28û2kW2uFpu0;1mr&* ~A4!

It probably needs to be pointed out here that, according
the declared aim of this appendix, the appropriate statesu0&

of AB andum i ûikW i& of the photoelectronei in Hund’s case~b!
are those given by Eqs.~4! and~9!, respectively; whereas,uf&
for AB21 is obtained on replacing 0 byf everywhere in its
counterpart ketu0& in Eq. ~4!.

The calculation of the density matrix~A4! requires an
evaluation of the matrix elements present on its right ha
side. This is done through a lengthy, but straightforwa
procedure which requires a rather heavy use of Racah a
bra. This matrix element involves an integration over t
01231
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nuclear angular coordinates@i.e., Euler anglesv ~5a,b,g!#
which represent an orientation in the space of the axis jo
ing all the molecular nuclei, multiplied by integrals over sp
tial coordinates of all electrons comprisingAB. All integrals
present in Eq.~A4! and elsewhere in this paper involvin
spatial coordinates of molecular electrons have to be don
the molecule frame~MF! of reference with its polar axis a
the line joining all the nuclei and Euler anglesv specify its
orientation with respect to the PF. We, therefore, first tra
form the photon stateu1mr& from the PF to the MF using
rotational harmonicsD @50#:

u1mr&5(
lr

Dlrmr

1 ~v!u1l r& ~A5!

Here,l r represents the component of the absorbed phot
angular momentum~51 in theE1 approximation! along the
molecular axis, i.e., the polar axis of the MF. Next, w
couple the three spin states (u1/2n1&, u1/2n2&, anduSfMSf

&),

present inu f ;m1û1kW1 ;m2û2kW2&, according to the vector addi
tion shown on the right hand side of Eq.~A1! obtaining

uSfMSf
&F S U12 n1L D

1
S U12 n2L D

2
G

5 (
semeSMS

~21!se2Sf1me1MSA~2se11!~2S11!

3S 1/2 1/2 se

l1 l2 2me
D S Sf se S

MSf
me 2MS

D uSMS&

~A6!

We now substitute states~4! of AB, Eq. ~A5! of the absorbed
photon, and Eq.~11b! @along with Eq.~A6!# of (AB211e1

1e2) in the matrix element̂ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&.
It then becomes an algebraic sum of four terms each m
plied, among other things, by the inner product ofuSMS& and
uS0MS0

&. The orthonormality of these two states imposes
spin conservation condition~A1! on the Dirac’s bracket

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr& as well as on the density ma
trix ~A4!.

Each of the four terms contributing t

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr& is multiplied, in addition to
other things, by a product of two 3-j symbols present in Eq
~A6!, two spherical harmonics~SH! of the forms@Y, i

#, two

rotational harmonics~RH! of the forms@D1/2(v i)#, and an
integral over a product of five rotational harmonics of t
type @D,1#* @D,2#* @DNf#* DN0D1 with Euler anglesv as
their arguments. This integral overv can be evaluated in
many ways, but the procedure we have used is as follo
We begin with by combining, with the help of Eq.~4.3.2!
from Edmonds@50# which expresses a product of two R
into a triple sum of products of two 3-j symbols
and one rotational harmonic, the first two as well
the last two of the RH present in the product of five R
each with its argumentv. This procedure reduce
@D,1#* @D,2#* @DNf#* DN0D1 to a six-fold sum of the produc
5-13
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of four 3-j symbols and three RH. Next we use Eq.~4.6.2!
from Ref. @50# which evaluates the integral overv of the
three remaining RH to another product of two 3-j sym-
bols. Finally, each of the four terms present

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr& will, interalia, contain two
SH and two RH of the types@Y, i

# and @D1/2(v i)#, respec-
tively, and a product of eight 3-j symbols. A similar expres-
sion will be obtained for the second Dirac’s bracket, name

^ f ;m18û1kW1 ;m28û2kW2uFpu0;1mr&* , present in the density ma
trix ~A4!.

Next, we substitute both of these Dirac brackets in E
~A4! and simplify the consequent long expression for
density matrix by using unitarity of 3-j symbols and combin-
ing, for i 51 as well as 2,D1/2(v i) with @D1/2(v i)#* and
Y, i

( k̂i) with @Y,
i8
( k̂i)#* using Eqs.~4.3.2! and ~4.6.5! from

Ref. @50#, respectively. Next, we consecutively use two tim
identity ~14.42! given by de Shalit and Talmi@57# in order to
01231
,

.
e

s

express a quaternion sum of the product of four 3-j symbols
into a double sum of the product of two 3-j and one 9-j
symbols; subsequent to this operation, one can twice ap
relation~6.2.8! from Ref. @50# for converting a triple sum of
the product of three 3-j symbols to a product of one 3-j and
one 6-j symbols.

These and some other simplifications can be shown
enable us to write the angle- and spin-resolved density
trix ~A4! for the DPI process~1! in the absence of SDIs in
the following form:

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

5
d3s~mr !

de1dk̂1dk̂2

s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
. ~A7!

Here we have defined
d3s~mr !

de1dk̂1dk̂2

5~21!mr1N01Nf
Kp

4p~22d0L0
!

~2Nf11! (
p0,1,18LL8L1LT

pf,2,28NN8L2M

~21!,181,281L81LT~2LT11!A~2L111!~2L211!

3S ,1 ,18 L1

0 0 0
D S ,2 ,28 L2

0 0 0
D S 1 1 LT

mr 2mr 0
D S L1 L2 LT

M 2M 0
D H LT N N8

N0 1 1
J H LT N N8

Nf L8 L
J

3H ,1 ,18 L1

,2 ,28 L2

L L8 LT

J @YL1

M ~ k̂1!#* @YL2

2M~ k̂2!#* ^nf NfL f pf ;@~,1,2!LNf #NuFun0N0L0p0 ;~N01!N&

3^nf NfL f pf ;@~,18,28!L8Nf #N8uFun0N0L0p0 ;~N01!N8&* ~A8!

with

^nf NfL f pf ;@~,1,2!LNf #NuFun0N0L0p0 ;~N01!N&

5~2 i !,11,2ei ~s,1
1s,2

!~21!N
1

2
A\2

m
@12~21!p01pf1,11,21N01Nf#~2N11!~2L11!A~2,111!~2,211!

3 (
l1l2lr
LLLN

~21!LLS ,1 ,2 L

l1 l2 LL
D S Nf N L

L f LN 2LL
D F S N0 1 N

L0 l r LN
D ^nfL f ;,1l1 ;,2l2uFun0L0 ;1l r&

1~21!p0S N0 1 N

2L0 l r LN
D ^nfL f ;,1l1 ;,2l2uFun02L0 ;1l r&G . ~A9!

The Dirac’s brackets, e.g.,̂nfL f ;,1l1 ;,2l2uFun0L0 ;1l r& in Eq. ~A9! is the matrix element of theE1 photoionization
operatorF between statesunfL f&uF,1l1

2 (k1)&uF,2l2

2 (k2)&[unfL f ;,1l1 ;,2l2& and un0L0&u1l r&[un0L0 ;1l r& @see Eqs.~4!,

~9!, and~11!#. In arriving at Eq.~A8!, we have used the definitionFp5Am/\2F, where the operatorF has been explained in
Ref. @49# both in theE1 length and inE1 velocity approximations, and the well known property@6#
5-14
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^nf2L f ;,12l1 ;,22l2uFun02L0 ;12l r&5^nfL f ;,1l1 ;,2l2uFun0L0 ;1l r&

of the matrix element of an operator between states of a linear molecule.
It is obvious that each of the matrix elements present in Eqs.~A8! and~A9! depends upon energies@e1 , e2 ~i.e., k1 , k2)#

of both photoelectrons. For brevity, however, this dependence of the matrix elements on the magnitudes ofkW1 andkW2 has not
explicitly been shown in Eqs.~A8! and ~A9! and elsewhere in this paper.

The density matrix~A7! further contains

s~S0 ;Sf ;û1 ,û2!m1m2 ,m
18m

28
5~21!m181m28(

se
(
sz

h1h2

~21!se2z~2s11!S 1/2 1/2 s

m1 2m18 h1
D S 1/2 1/2 s

m2 2m28 h2
D H 1/2 1/2 s

1/2 1/2 se
J

3@Dh1 ,z
s ~v1!#* @Dh2 ,2z

s ~v2!#* . ~A10!

It is obvious from Eq.~A1! and from the 6-j symbol present in Eq.~A10! thatse50 and 1 are the only two values allowe
for it. The circumstances which will decide as to how many and which of these valuesse can take in Eq.~A10! were discussed
in detail in Sec. III B of the present paper. In the following, we explicitly evaluate Eq.~A10! for all the three possibilities. In
order to write the corresponding density matrices in a concise form, let us introduce the following notations:

i[A~21!, s1[sinq1 , s2[sinq2 , s[sin~w22w1!,
c1[cosq1 , c2[cosq2 , c[cos~w22w1!.

. ~A11!

~i! The matrix~A10!, when the sum overse present in it is performed only withse50, becomes

~A12a!

Its partial transpose
012315-15



N. CHANDRA AND R. GHOSH PHYSICAL REVIEW A69, 012315 ~2004!
~A12b!

on the other hand, is obtained by substituting Eq.~A12a! into Eq. ~14!.
~ii ! On summing overse51 only, Eq.~A10! becomes

~A13a!

Its partial transpose is readily obtained, using Eq.~14!, to be
012315-16
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~A13b!

~iii ! Finally, we evaluate Eq.~A10! by summing overse for both the values allowed to it, i.e.,se50 and 1. The matrix
~A10! and its partial transpose, in the present case, are

~A14a!

and
012315-17
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~A14b!

respectively.

APPENDIX B: DENSITY MATRIX FOR DOUBLE PHOTOIONIZATION OF A ROTATING LINEAR MOLECULE
INCLUDING SPIN-ROTATION INTERACTION IN HUND’S COUPLING SCHEME „b…

This appendix contains a derivation of the density matrix calculated for DPI~1! of a rotating linear molecule taking th
interaction of electronic spin and nuclear rotation into account both in the targetAB and in its residual photodicationAB21.
As the spin-orbit interaction is not considered at all in this appendix, probably Hund’s coupling scheme~b! is again most
appropriate@34# to work with. The consequent density matrix has been used in Sec. IV A of the present paper. One now
to consider Ref.@34# the total angular momentum formed by the vector addition of the total spin angular momentu
electrons and rotational angular momentum of molecular nuclei. These are given byJW05NW 01SW 0 andJW f5NW f1SW f for AB and
AB21, respectively.

The density operator~A2!, describing the non-interacting incident photon and the targetAB, in the present case is given b

r i5
1

~22d0L0
!~2J011! (

p0M0

u0;1mr&^0;1mr u, ~B1!

The ketu0&, needed to represent the targetAB in the product stateu0;1mr& @see Eq.~11a!#, is given by Eq.~7! in the present
case. Similarly, the ket~11b! which represents (AB211e11e2)-system, now becomes

u f ;m1û1k̃1 ;m2û2k̃2&5~21!12Nf2M f
\2

m S 2Jf11

2 D 1/2

(
,1m1l1n1S1MS1

MSf

,2m2l2n2S2MS2
MNf

i,11,2e2i~s,1
1s,2

!

3~21!2S12MS1
2MS2A~2S111!~2S211!S Nf Sf Jf

MNf
MSf

2M f
D S Sf 1/2 S1

MSf
n1 2MS1

D
3S S1 1/2 S2

MS1 n2 2MS2
D @Dm1n1

1/2 ~v1!#* @Dm2n2

1/2 ~v2!#* Dl1m1

,1 ~v!Dl2m2

,2 ~v!

3@Y,1

m1~ k̂1!#* @Y,2

m2~ k̂2!#* @ unfL f ;,1l1 ;,2l2&uNfL fMNf
&1~21!pf unf2L f ;,1l1 ;,2l2&uNf

2L fMNf
&] uS2MS2

&, ~B2!

The required density matrix in the present case is, consequently, given by
012315-18
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^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&5
Kp

~22d0L0
!~2J011! (

p0M0
pf M f

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&

3^ f ;m18û1kW1 ;m28û2kW2uFpu0;1mr&* ~B3!

In order to proceed further, we now need to calculate each of the two Dirac’s bracket present on the right hand sid
~B3!. We, therefore, substitute Eqs.~7!, ~A5!, and~B2! into ^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&. As the photoionization operato
Fp is independent of the electronic spin, the orthogonality of the ketsuS0MS0

&, in state~7!, and of uS2MS2
&, in state~B2!,

means that total spin is conserved. Hence, Eq.~A1! is valid even in the present case when SRI is taken into account in the
~1! of a rotating linear molecule in Hund’s coupling scheme~b!.

The consequent matrix element, obtained after this simplification, has already been evaluated by Chandra and Se@6#. The
details of its evaluation procedure too are available in Sec. 3.2.1 of Ref.@6#. For the sake of completeness, for its furth
references in this paper, and for correcting minor mistakes related to the phase factors and normalization constants
Ref. @6#, we write this matrix element as follows:

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&

5~21!11mr1Nf2M f12J01L0A~2J011! (
,1m1n1 j 1nj 1

j tnt

,2m2n2 j 2nj 2
jn j

~2 j t11!@~2,111!~2,211!#21/2

3S ,1 1/2 j 1

2m1 2n1 nj 1
D S ,2 1/2 j 2

2m2 2n2 nj 2
D S j 1 j 2 j

nj 1
nj 2 nj

D S Jf J0 j t

2M f M0 nt
D

3S j t 1 j

2nt mr nj
DY,1

m1~ k̂1!Y,2

m2~ k̂2!Dm1n1

1/2 ~v1!Dm2n2

1/2 ~v2!^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~b!, ~B4!

where the reduced matrix amplitude

^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~b!5~2i !,11,2ei~s,1
1s,2

!~2 j 111!~2 j 211!~2 j 11!

3A~2,111!~2,211!~2N011!~2S011!~2Nf11!~2Jf11!

3 (
,psp
, tST

~2,p11!~2, t11!~2sp11!A2ST11H 1 ,p , t

sp j t j J H 1/2 1/2 sp

Sf S0 ST
J

3H ,1 ,2 ,p

1/2 1/2 sp

j 1 j 2 j
J H Nf N0 , t

Sf S0 sp

Jf J0 j t

J
3^nfNfL f pf ;~,1,2!,puF~, t!un0N0L0p0 ;1&~b! ~B5a!

is defined in terms of the photoionization amplitude

^nfNfL f pf ;~,1,2!,puF~, t!un0N0L0p0 ;1&~b!5
1

2
@12~21!p01pf1,11,21N01Nf#S \2

m D 1/2

(
l1l2lr

lpl t

S ,1 ,2 ,p

2l1 2l2 lp
D

3S 1 ,p , t

l r 2lp l t
D F S Nf N0 , t

L f 2L0 l t
D ^nfL f ;,1l1 ;,2l2uFun0L0 ;1l r&

1~21!p0S Nf N0 , t

L f L0 l t
D ^nfL f ;,1l1 ;,2l2uFun02L0 ;1l r&G . ~B5b!

Let us now substitute into Eq.~B3! Dirac’s bracket~B4! and its complex conjugate. The resulting expression for the den
matrix is simplified by using~a! once unitarity of 3-j symbols@50#; ~b! twice each of the addition theorems~4.3.2! and~4.6.5!
for RH and SH, respectively, given in Ref.@50#; ~c! thrice the identity~14.42! which converts@57# four sums of a product of
012315-19
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four 3-j symbols into a double sum of the product of two 3-j and one 9-j symbols;~d! once Eq.~6.2.8! for reducing@50# a triple
sum of the product of three 3-j symbols to a product of merely one 3-j symbol and one 6-j symbol.

With these and some additional simplifications, the density matrix~B3! in the present case of angle- and spin-resolved D
of a rotating linear molecule on taking SRI into account in Hund’s coupling scheme~b! can finally be written in the following
convenient form:

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&5~21!m181m28 (
S1NS1

MS1

S2NS2
MS2

S 1/2 1/2 S1

m1 2m18 NS1
D

3S 1/2 1/2 S2

m2 2m28 NS2
D ANS1

MS1
;NS2

MS2

S1S2 ~mr ;kW1kW2!D2NS1
MS1

S1 ~v1!D2NS2
MS2

S2 ~v2!.

~B6a!

Here,A’s are the dynamical amplitudes given by

ANS1
MS1

;NS2
MS2

S1S2 5~21!11mr1S11S21NS1
1NS2

Kp

4p~22d0L0
!

~2S111!~2S211! (
p0,1,18 j 1 j 18L1ML1

J1Lr j j t

pf,2,28 j 2 j 28L2ML2
J2MJj 8

~21!,181,281 j 1 j t1Lr

3~2J111!~2J211!~2Lr11!~2 j t11!A~2L111!~2L211!S ,1 ,18 L1

0 0 0
D S ,2 ,28 L2

0 0 0
D

3S 1 1 Lr

mr 2mr 0 D S J1 J2 Lr

MJ 2MJ 0 D S L1 S1 J1

ML1
MS1 MJ

D S L2 S2 J2

ML2
MS2 2MJ

D H 1 1 Lr

j j 8 j t
J

3H ,1 ,18 L1

1/2 1/2 S1

j 1 j 18 J1

J H ,2 ,28 L2

1/2 1/2 S2

j 2 j 28 J2

J H j 1 j 18 J1

j 2 j 28 J2

j j 8 Lr

J Y
L1

ML1~ k̂1!Y
L2

ML2~ k̂2!

3^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~b!^Jfpf ;,18,28 ;~ j 18 j 28! j 8uF~ j t!uJ0p0 ;1&~b!* . ~B6b!
u
o

tr
ol
in

ow

gle-

in
All of the matrix elements present in relations~B4!–~B6!,
including the electronic kets in Eq.~B2!, depend uponk1 and
k2 , in addition to other things. This dependence of vario
matrix elements on the photoelectron energies has not, h
ever, been explicitly shown for brevity.

APPENDIX C: DENSITY MATRIX FOR DOUBLE
PHOTOIONIZATION OF A ROTATING LINEAR

MOLECULE INCLUDING SPIN-ORBIT PLUS
SPIN-ROTATION INTERACTIONS IN HUND’S COUPLING

SCHEME „a…

In the present appendix, we calculate the density ma
for the angle- and spin-resolved DPI of a rotating linear m
ecule by including, in addition to the spin-rotation, the sp
orbit interaction of all the bound electrons ofAB, of AB21,
and of the two photoelectrons (e1 ,e2) ejected in process~1!.
The appropriate Hund’s coupling scheme to work with n
is ~a!. The appropriate form of the density operator~2! is
now given by
01231
s
w-

ix
-
-

r i5
1

~2J011! (
p0M0

u0;1mr&^0;1mr&. ~C1!

Consequently, the density matrix in the present case of an
and spin-resolved DPI including SDIs~i.e., SOI plus SRI! in
Hund’s scheme~a! is now calculated from

^ f ;m1û1kW1 ;m2û2kW2ur f u f ;m18û1kW1 ;m28û2kW2&

5
Kp

~2J011! (
p0M0
pf M f

^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&

3^ f ;m18û1kW1 ;m28û2kW2uFpu0;1mr&* ~C2!

Here,u0;1mr& is again given by Eq.~11a!. The ketu0& @i.e.,
Eq. ~8!# to be used herein is the one which representsAB in
Hund’s coupling scheme~a!; whereasu1mr& is taken from
Eq. ~A5!. In addition to this, one also needs to substitute
Eq. ~C2! Eq. ~11b! @containinguf& obtained from Eq.~8! after
5-20
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replacing the subscript 0 by the subscriptf# and product of
the photoelectron kets~10! for i 51 and 2.

In order to proceed further, next we need to calculate
matrix element̂ f ;m1û1k̃1 ;m2û2k̃2uFpu0;1mr& for the evalu-
ation of the density matrix~C2!. This matrix element, for the
states ofAB, of (AB211e11e2), and of the absorbed pho
01231
e

ton ~in the E1 approximation! to be used herein, has bee
calculated by Chandra and Sen@6#. That result is directly
applicable in the present case as well. For completen
brevity, and for its further references in the present comm
nication, we write the required matrix element@given by Eqs.
~35! and ~36! in Ref. @6## in the following form:
matrix
ive
^ f ;m1û1kW1 ;m2û2kW2uFpu0;1mr&5~21!11Jf1V f2V02M0A~2J011! (
,1m1n1 j 1nj 1

j tnt

,2m2n2 j 2nj 2
jn j

~21!nj~2 j t11!@~2,111!~2,211!#21/2

3S ,1 1/2 j 1

2m1 2n1 nj 1
D S ,2 1/2 j 2

2m2 2n2 nj 2
D S j 1 j 2 j

2nj 1
2nj 2 nj

D S 1 j j t

mr 2nj nt
D

3S Jf J0 j t

M f 2M0 nt
DY,1

m1~kW1!Y,2

m2~kW2!Dm1n1

1/2 ~v1!Dm2n2

1/2 ~v2!

3^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~a!. ~C3!

The reduced matrix element in this case is given by@6#

^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~a!5~2 i !,11,2ei~s,1 j 1
1s,2 j 2

!~2 j 111!~2 j 211!~2 j 11!

3A~2,111!~2,211!~2Jf11!(
JT

~2JT11!H 1 J0 JT

Jf j j t
J

3^nfL fS fV f pf ;,1,2 ;~ j 1 j 2! j uF~JT!un0L0S0V0p0 ;1&~a!, ~C4a!

which contains

^nfL fS fV f pf ;,1,2 ;~ j 1 j 2! j uF~JT!un0L0S0V0p0 ;1&~a!

5 (
l1s1mj 1

mj

l2s2mj 2

~2 !mjS ,1 1/2 j 1

2l1 2s1 mj 1
D S ,2 1/2 j 2

2l2 2s2 mj 2
D S j 1 j 2 j

2mj 1
2mj 2 mj

D S j J f JT

mj V f MT
D

3^nfL fS fV f pf ;,1l1s1 ;,2l2s2uF̄~JT!un0L0S0V0p0 ;1&~a! ~C4b!

and

^nfL fS fV f pf ;,1l1s1 ;,2l2s2uF̄~JT!un0L0S0V0p0 ;1&~a!

5
1

2
A\2

m
@11~21!p01pf1,11,22J01Jf#(

lr

~21!lrF S J0 1 JT

V0 l r MT
D

3^nfL fS fV f pf ;,1l1s1 ;,2l2s2uFpun0L0S0V0p0 ;1l r&1~21!p012V0S J0 1 JT

2V0 l r MT
D

3^nfL fS fV f pf ;,1l1s1 ;,2l2s2uFpun02L0 ,2S0 ,2V0 ,p0 ;1l r&G . ~C4c!

Each of the matrix elements in Eqs.~C3! and ~C4! depends, among other things, on the energiesk1 and k2 of the two
photoelectrons.

What now remains to be done is the final calculation of the density matrix obtained after substituting photoionization
element~C3! and its complex conjugate in Eq.~C2!. The resulting expression is simplified by the following success
operations involving~a! double application of the addition theorem~4.3.2! for RH given in Ref.@50#; ~b! use of the addition
theorem~4.6.5! for SH taken, for example, from Edmonds@50# two times;~c! double use of the identity~14.42! from Ref.@57#
5-21
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which expresses a quaternion sum of the product of four 3-j symbols into a double sum of two 3-j and one 9-j symbols;~d!
unitarity of the 3-j symbols;~e! application, once again, of the identity~14.42! from Ref @57#; and finally,~f! conversion of a
triple sum of the product of three 3-j symbols to a product of one 3-j and one 6-j symbols using Eq.~6.2.8! from Edmonds@50#.

With the help of these and some other simplifications, the density matrix which describes angle- and spin-resolved
a rotating liner molecule in Hund’s coupling scheme~a! on the inclusion of SDIs can finally be written in the form of Eq
~B6a! and ~B6b!. However, the normalization factor Kp /@4p(22d0L0

)# and the reduced amplitude

^Jfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (b) appropriate for Hund’s case~b! and present on the right hand side of Eq.~B6b!, are now
to be replaced byKp /(4p) and by those given in Eq.~C4a! suitable for using in Hund’s coupling case~a!.

APPENDIX D: DENSITY MATRIX FOR DOUBLE PHOTOIONIZATION OF A ROTATING LINEAR MOLECULE
INCLUDING SPIN-ORBIT PLUS SPIN-ROTATION INTERACTIONS IN HUND’S COUPLING

SCHEME „a… OR SPIN-ROTATION INTERACTION IN HUND’S COUPLING SCHEME „b…

The two density matrices, whose calculations have been described in the last two Appendixes B and C, can conven
represented by the following single equation:

^ f ;m1u1̂kW1 ;m2u2̂kW2ur f u f ;m18u1̂kW1 ;m28u2̂kW2&5~21!m181m281NS1
1NS2 (

S1NS1
MS1

S2NS2
MS2

S 1/2 1/2 S1

m1 2m18 NS1
D

3S 1/2 1/2 S2

m2 2m28 NS2
DD

2NS1
MS1

S1 ~v1!D2NS2
MS2

S2 ~v2!AMS1
,MS2

S1S2 ~mr ;kW1 ;kW2!,~D1a!

with

AMS1
,MS2

S1S2 ~mr ;kW1 ;kW2!5~21!11mr1S11S2~2S111!~2S211!K~i ! (
p0,1,18 j 1 j 18L1J1ML1

Lr j j 8

pf,2,28 j 2 j 28L2J2ML2
MJj t

~21!,181,281 j 1 j t~2J111!~2J211!

3~2 j t11!~2Lr11!A~2L111!~2L211!S ,1 ,18 L1

0 0 0
D S ,2 ,28 L2

0 0 0
D S L1 S1 J1

ML1
MS1 MJ

D
3S L2 S2 J2

ML2
MS2 2MJ

D S 1 1 Lr

mr 2mr 0 D S J1 J2 Lr

MJ 2MJ 0 D H 1 1 Lr

j j 8 j t
J H ,1 1/2 j 1

,18 1/2 j 18

L1 S1 J1

J
3H ,2 1/2 j 2

,28 1/2 j 28

L2 S2 J2

J H j 1 j 2 j

j 18 j 28 j 8

J1 J2 Lr

J Y
L1

ML1~ k̂1!Y
L2

ML2~ k̂2!^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~i!

3^Jfpf ;,18,28 ;~ j 18 j 28! j 8uF~ j t!uJ0p0 ;1&~i!* ~D1b!

Here, the superscripti51 or 2, such that the normalization factorsK(1)[Kp /@4p(22d0L0
)#, K(2)[Kp /(4p), with the

dynamical amplitudeŝJfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (1)[^Jfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (b) given in Eq. ~B5! and
^Jfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (2)[^Jfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (a) obtained from Eq.~C4!. Further, similar to Ap-
pendixes A, B, and C, the matrix elements on the right hand side of Eq.~D1b! and elsewhere in the current appendix depe
also upon the photoelectrons energiesk1 andk2 .

These definitions mean that in order to obtain a density matrix for the angle- and spin-resolved DPI~1! of a rotating linear
molecule in Hund’s coupling scheme~b! taking only the SRI into account, one should puti51 in Eq. ~D1! using the
corresponding values ofK(1) and of the dynamical amplitudeŝJfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (1) given by Eqs.~B5!;
whereas,i52 in Eq.~D1! with appropriate values ofK(2) and of^Jfpf ;,1,2 ;( j 1 j 2) j uF( j t)uJ0p0 ;1& (2) @taken from Eqs.~C4!#
will result in a DM for DPI in the presence of both SRI plus SOI in Hund’s case~a!.

On specializing the density matrix~D1! to the collinear geometry

k̂1~u150,f1! and k̂2~u25p,p1f1!, ~D2!

we obtain
012315-22
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^ f ;m1u1̂,kW1 ;m2u2̂,kW2ur f u f ;m18u1̂,kW1 ;m28u2̂,kW2&kW2i2OẐ

kW1iOẐ

[^ f ;m1u1̂,f1 ;m2u2̂,f2ur f u f ;m18u1̂,f1 ;m28u2̂,f2&

5~21!m181m281M11M2 (
SS1S2

MM1M2

S 1/2 1/2 S1

m1 2m18 M1
D S 1/2 1/2 S2

m2 2m28 M2
D

3S S1 S2 S

M 2M 0DD
2M1M
S1 ~v1!D2M22M

S2 ~v2!AS
S1S2~mr !. ~D3a!

In the above equation, we have defined

AS
S1S2~mr ![AS

S1S2~mr ;kW1 ;kW2!
kW2i2OẐ

kW1iOẐ

5~21!11mr~2S111!~2S211!~2S11!
K~i !

4p (
p0,1,18 j 1 j 18L1J1L j j t

pf,2,28 j 2 j 28L2J2Lr j 8

~21!,181,21 j 1 j t1J11J21L1

3~2L111!~2L211!~2L11!~2J111!~2J211!~2Lr11!~2 j t11!S ,1 ,18 L1

0 0 0
D S ,2 ,28 L2

0 0 0
D

3S 1 1 Lr

mr 2mr 0 D S L1 L2 L

0 0 0D S L S Lr

0 0 0 D H 1 1 Lr

j j 8 j t
J H ,1 1/2 j 1

,18 1/2 j 18

L1 S1 J1

J H ,2 1/2 j 2

,28 1/2 j 28

L2 S2 J2

J
3H j 1 j 2 j

j 18 j 28 j 8

J1 J2 Lr

J H L1 S1 J1

L2 S2 J2

L S Lr

J ^Jfpf ;,1,2 ;~ j 1 j 2! j uF~ j t!uJ0p0 ;1&~i!

3^Jfpf ;,18,28 ;~ j 18 j 28! j 8uF~ j t!uJ0p0 ;1&~i!* , ~D3b!

where the superscripti has its meaning already explained elsewhere in this appendix.
In order to further simplify the above density matrix, we take

v1~w1 ,q15p/2,g150! and v2~w2 ,q25p/2,g250!. ~D4!

in Eq. ~D3a!. For writing the consequent simplified density matrix in a concise form, let us introduce the following nota

A052
1

2
A0

00~mr !, A015
1

6
A1

01~mr !,

A105
1

6
A1

10~mr !, A115
1

6A6
A1

11~mr !,

Ap5
1

6)
FA0

11~mr !1
1

A10
A2

11~mr !G ,

Am5
1

6)
FA0

11~mr !2A2

5
A2

11~mr !G ~D5!

For the geometries@Eqs.~D2! and ~D4!#, density matrix~D1!, finally becomes
012315-23
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~D6a!

The partial transpose of this density matrix is readily obtained, using relation~14!, to be

~D6b!
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