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Nonorthogonal projective positive-operator-value measurement of photon polarization states
with unit probability of success
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~Received 29 January 2003; published 22 January 2004!

In this paper we describe a scheme for performing a nonorthogonal projective positive-operator-value
measurement of any arbitrary single-photon polarization input state with unit probability of success. While this
probability is reached in the limit of infinite cycles of states through the apparatus, only one actual physical
setup is required for a feasible implementation. Specifically, our setup implements a set of three nonorthogonal
measurement operators at angles of 120° to each other.
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I. INTRODUCTION

The rapidly increasing interest in quantum-informati
theory and its applications~see@1# for a comprehensive over
view! has resulted in a renewed interest in the theory
quantum measurement. In particular, the theory and poss
implementations of generalized measurements in the form
positive-operator-value measures~POVMs! have increas-
ingly attracted attention over the past decade, as POVMs
an essential tool in quantum-information processing and
pecially in quantum cryptography@2–5#. A wide variety of
quantum mechanical phenomena such as teleportation@6#,
interaction-free measurement@7#, and nonlocality @8–10#
have been demonstrated using single photons@11–14#. Re-
cently, it was shown that the operations necessary for qu
tum computation can be implemented using linear op
@15,16#. To date, however, proposed optical implementatio
of nonorthogonal POVM operators@5,17–19# have concen-
trated on nonprojective sets of nonorthogonal operat
mostly for the purpose of distinguishing nonorthogon
states. In such nonprojective measurements only the p
ability of detection is of interest, and not the collapse of t
stater to MirMi for a set of measurement operators$Mi%,
which in fact does not occur in these setups.

In this paper we describe a single-photon implementa
of a projective nonorthogonal positive-operator-value me
surement with three measurement operators which mea
the polarization of the photon along three axes in a pl
separated by angles of 120°. This corresponds to the
problem proposed by Preskill@20#. Our measurement ha
unit probability of success for any arbitrary input state a
can be generalized to more than three operators.

II. THE SETUP

Our setup is comprised of three modules, each of wh
implements a measurement operator of the POVM. Th
modules are in series, meaning that the state exiting
module is fed into the entrance of the next. The basic m
ule, shown in Fig. 1, consists of two polarizing beam splitt
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and two conventional beam splitters~partially silvered mir-
rors!. The basis of the polarizing beam splitters is in a pla
rotated by an angleu j relative to an arbitrary fixed vector in
the chosen plane. The conventional beam splitters have e
amplitude transmission coefficientsa j .

The first polarizing beam splitter splits the incoming ph
ton into its polarization components. Each of these com
nents is in turn divided by the conventional beam splitte
after which part of the polarization component amplitud
are reunited at the second polarizing beam splitter.

Following the conventional notation used in a quantu
information context for single photons in an interferomet

FIG. 1. The basic module which implements a single measu
ment operator. The input stateuC& first passes through a polarizin
beam splitter with the polarization basis at angleu j with respect to
the fixed vector in the chosen plane. The resulting beams are
divided again by conventional beam splitters of equal amplitu
transmission coefficientsa j . The reflected components are the
reunited, so that the input stateuC& reemerges atR, diminished in
amplitude by a factor ofA12ua j u2. At A and B, a jM u j

uC& and
a jM u j

8 uC& emerge, respectively.
©2004 The American Physical Society12-1
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setup@5,10,12,14#, the total evolution of a pure photon sta
uC&5auH&1buV& through one module is given by

uC&5auH&1buV&,

→a j~a cosu j1b sinu j !~cosu j uH&1sinu j uV&)usA&

1a j~a sinu j2b cosu j !~sinu j uH&2cosu j uV&)usB&

1A12ua j
2u~auH&1buV&)usR&, ~1!

where uH& and uV& are states of horizontal and vertical p
larization. This can be much more simply written as

uC&→a j ucu j
&^cu j

uC&usA&1a j ucu j
8 &^cu j

8 uC&usB&

1A12ua j
2uuC&usR&, ~2!

where ucu j
&5cosujuH&1sinujuV& and ucu j

8 &5sinujuH&
2cosujuV&.
s:

01231
Introducing the projection operatorsM u j
5ucu j

&^cu j
u

5M u j

2 andM u j
8 5ucu j

8 &^cu j
8 u5M u j

82 Eq. ~2! can be written as

uC&→a jM u j
uC&usA&1a jM u j

8 uC&usB&1A12ua j u2uC&usR&
~3!

To perform the chosen POVM three such modules
placed in series, with

a15A1

3
, a25A1

2
, a351,

u150, u25
2

3
p, u35

4

3
p. ~4!

Thus a single-photon input state evolves as follows:
uC&→a1~M u1
uC&usA

1&1M u1
8 uC&usB

1&)1A12ua1u2uC&usR
1&

→a1~M u1
uC&usA

1&1M u1
8 uC&usB

1&)1A12ua1u2a2~M u2
uC&usA

2&1M u2
8 uC&usB

2&)1A12ua1u2A12ua2u2uC&usR
2&,

→a1~M u1
uC&usA

1&1M u1
8 uC&usB

1&)1A12ua1u2a2~M u2
uC&usA

2&1M u2
8 uC&usB

2&)

1A12ua2u2A12ua1u2a3~M u3
uC&usA

3&1M u3
8 uC&usB

3&)1A12ua1u2A12ua2u2A12ua3u2uC&usR
3&. ~5!

Using Eq.~4! we obtain

uC&→A1

3
~auH&usA

1&1buV&usB
1&)1A1

3 F S 1

4
a1
)

4
bD uH&1S)4 a1

3

4
bD uV&G usA

2&1A1

3 F S 3

4
a2
)

4
bD uH&

1S 2)

4
a1

1

4
bD uV&G usB

2&1A1

3 F S 1

4
a2
)

4
bD uH&1S 2)

4
a1

3

4
bD uV&G usA

3&

1A1

3 F S 3

4
a1
)

4
bD uH&1S)4 a1

1

4
bD uV&G usB

3&. ~6!
Hence, if we place detectors at theA exits of the three
modules, we will measure one of three possible outcome
state

uf1&5uH& ~7!

emerging from module 1 with probability

p15
1

3
uau2, ~8!

or a second state
a

uf2&5

S 1

4
a1
)

4
bD uH&1S)

4
a1

3

4
bD uV&

A1

4
uau21

)

2
uauubu1

3

4
ubu2

~9!

emerging from module 2 with probability

p25
1

3 US 1

4
a1
)

4
bD U2

1
1

3 US)4 a1
3

4
bD U2

5
1

3 S 1

4
uau21

)

2
uauubu1

3

4
ubu2D , ~10!

or a third state
2-2
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uf3&5

S 1

4
a2
)

4
bD uH&1S 2

)

4
a1

3

4
bD uV&

A1

4
uau22

)

2
uauubu1

3

4
ubu2

~11!

emerging from module 3 with probability

p35
1

3 US 1

4
a2
)

4
bD U2

1
1

3 US 2
)

4
a1

3

4
bD U2

5
1

3 S 1

4
uau22

)

2
uauubu1

3

4
ubu2D . ~12!

Note that the probability of any of these measureme
occurring isp5p11p21p351/2. This means that the thre
possible measurement outcomes constitute a projective,
orthogonal POVM with overall probabilityp51/2 and mea-
surement operators

M u1
5A1

3 S 1 0

0 0D ,

M u2
5A1

3 S 1/4 )/4

)/4 3/4 D ,

M u3
5A1

3 S 1/4 2)/4

2)/4 3/4 D . ~13!

This, in itself, is of course not particularly interestin
since we have simply chosen to perform measurements
subset of a larger set of orthogonal pairs of POVM opera
$M u j

,M u j
8 % ~for j 51, . . .,3). Of greater importance is th

fact that the other three operatorsM u j
8 form a similar POVM

with probability p51/2. Therefore, if we can reunify th
beams emerging from theB exits we will reconstruct our
original input state. Thus, if this reunification is possible,
feeding the reconstructed state into the measurement ap
tus we can perform another POVM on this new input st
with a probability of success of 1/2, increasing the total pro
ability of a successful POVM to 3/4. In the limit of infinite
cycles the probability of performing a successful POV
tends to unity. We have found a technique for performing
reunification starting with the three mutually nonorthogon
statesuc1&, uc2&, and uc3&, which is achieved by the setu
illustrated in Fig. 2.

To perform the reunification, firstuc1& and uc2& enter a
conventional~50%! beam splitter simultaneously, each occ
pying one of the two possible entrance path states, in
basis of which the following vectors are to be understood

S uc1&

uc2&
D→ 1

&
S 1 1

21 1D S uc1&
uc2&

D5
1

&
S uc1&1uc2&

2uc1&1uc2&
D .

~14!

The third input state is passed through a beam splitte
itself, and then each of the resulting states is passed thro
01231
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another beam splitter together with one of the above m
tures ofuc1& and uc2&, giving the four output states

1

&
S uc1&1uc2&

uc3&
D→ 1

2 S 1 1

21 1D S uc1&1uc2&
uc3&

D
5

1

2 S uc1&1uc2&1uc3&
2uc1&2uc2&1uc3&

D ~15!

and

1

&
S uc3&

2uc1&1uc2&
D→ 1

2 S 1 1

21 1D S uc3&
2uc1&1uc2&

D
5

1

2 S 2uc1&1uc2&1uc3&
2uc1&1uc2&2uc3&

D . ~16!

One of the four final states@the first state in Eq.~15!# is
the original input stateuc08&5uc1&1uc2&1uc3&. This state
can be fed back into the measurement apparatus. The t
other states produced are, however, different superposit
of the original input states, namely,

uc18&5
1

)
~ uc1&2uc2&1uc3&),

uc28&5
1

)
~ uc1&1uc2&2uc3&),

uc38&5
1

)
~2uc1&1uc2&1uc3&), ~17!

where we have flipped the sign of the first two states. Ho
ever, if these three states are fed back into this reunifica
setup, one obtains the following four states:

FIG. 2. The reunification setup for three states. Statesuc1& and
uc2& are brought together and then each output is combined wi
branch of the splituc3& state. All beam splitters have transmissio
coefficients of 50%.
2-3
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1

2
~ uc18&1uc28&1uc38&)5

1

A12
~ uc1&1uc2&1uc3&),

1

2
~ uc18&2uc28&1uc38&)5

1

A12
~2uc1&2uc2&13uc3&),

1

2
~ uc18&1uc28&2uc38&)5

1

A12
~3uc1&2uc2&2uc3&),

1

2
~2uc18&1uc28&1uc38&)5

1

A12
~2uc1&13uc2&2uc3&).

~18!

Thus this cycle yields another copy of the stateuc08&
5uc1&1uc2&1uc3&. As can easily be seen, feeding the la
three states of Eq.~18! into the setup again will give anothe
copy of uc08&. In the limit of an infinite number of cycles th
three states can be successfully reunited to formuc08& with
unit probability. Hence, for the POVM setup states emerg
from theB exits

uc1&5A1

3
buV&,

uc2&5A1

3 F S 3

4
a2
)

4
bD uH&1S 2)

4
a1

1

4
bD uV&G ,

uc3&5A1

3 F S 3

4
a1
)

4
bD uH&1S)4 a1

1

4
bD uV&G ,

~19!

we get

uc08&5uc1&1uc2&1uc3&

5A1

3
buV&1A1

3 F S 3

4
a2
)

4
bD uH&

1S 2)

4
a1

1

4
bD uV&G1A1

3 F S 3

4
a1
)

4
bD uH&

1S)4 a1
1

4
bD uV&G

5
)

4
~auH&1buV& D , ~20!

which, when normalized, is just our initial input stateuC& to
the entire measurement apparatus. The complete arra
ment for performing the POVM, including the reunificatio
is shown in Fig. 3.

Given the recent progress in experiments dealing with
manipulation of single photons@11–14#, our reunification is
experimentally feasible if we consider narrow pulses~or
01231
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single-photon states! and the possibility of delaying and re
unifying the amplitudes fromA, B, andC arising in subse-
quent cycles ofuC&, before collectively feeding them into th
reunification setup. This allows for the sequential use of o
one physical setup for an arbitrary number of cycles as th
is no overlap of pulses. Thus, in the limit of an infinite num
ber of cycles in both the POVM and reunification setups,
POVM is performed with unit probability of success. F
cascades of photons the setup would still be possible
rather more difficult to implement. Further to this work, w
have found a generalization to a setup for projective non
thogonal POVMs withN measurement operators, where t
restrictions on the choices of angles lessen considerably
N.6. This work is to be published separately.

III. CONCLUSIONS

We have proposed a scheme for performing a nonortho
nal projective POVM measurement of the polarization st
of a single photon with unit probability of success. Unlik
the work that has been published on optical implementati
of POVMs, which focuses on nonprojective POVMs, o
projective setup provides an outcome not only in terms o
detection probability, but also in the form of one of thre
possible output states to which the input state is projecte

FIG. 3. The complete POVM setup including measurement
reunification for three measurement operators withu150, u2

52p/3, u354p/3, a15A1/3, a25A1/2, anda351. Note the cy-
clic reunification scheme where the three undesired output state
Fig. 2 are in turn fed back into the entrancesA,B,Cof the reunifi-
cation setup, while the desired stateuC& is fed back into the en-
trance of the entire POVM~bottom left!. Measurements are per
formed at the three outputs at the top of the diagram, which y
the normalized statesM u i

† rM u i
/tr(M u i

† rM u i
) with probabilitiespi

5tr(M u i

† rM u i
), respectively, wherer5uC&^Cu. This scheme is

possible because we are considering single photons or na
pulses. For photon cascades the setup would still be possible
experimental realization would be more difficult.
2-4
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