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Nonorthogonal projective positive-operator-value measurement of photon polarization states
with unit probability of success
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In this paper we describe a scheme for performing a nonorthogonal projective positive-operator-value
measurement of any arbitrary single-photon polarization input state with unit probability of success. While this
probability is reached in the limit of infinite cycles of states through the apparatus, only one actual physical
setup is required for a feasible implementation. Specifically, our setup implements a set of three nonorthogonal
measurement operators at angles of 120° to each other.
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[. INTRODUCTION and two conventional beam splittefsartially silvered mir-
rors). The basis of the polarizing beam splitters is in a plane
rotated by an anglé; relative to an arbitrary fixed vector in

The rapidly increasing interest in gquantum-informationthe chosen plane. The conventional beam splitters have equal
theory and its applicationsee( 1] for a comprehensive over- amplitude transmission coefficients .
view) has resulted in a renewed interest in the theory of The first polarizing beam splitter splits the incoming pho-
guantum measurement. In particular, the theory and possibken into its polarization components. Each of these compo-
implementations of generalized measurements in the form ofents is in turn divided by the conventional beam splitters,
positive-operator-value measuréBOVMs) have increas- after which part of the polarization component amplitudes
ingly attracted attention over the past decade, as POVMs a@e reunited at the second polarizing beam splitter.
an essential tool in quantum-information processing and es- Following the conventional notation used in a quantum-
pecially in quantum cryptography2—5|. A wide variety of  information context for single photons in an interferometric
guantum mechanical phenomena such as teleport§&ihn
interaction-free measuremefi7], and nonlocality[8—10] 2|
have been demonstrated using single phofdis-14. Re- V 1 — Joy[?|¥)
cently, it was shown that the operations necessary for quan-
tum computation can be implemented using linear optics ajM9j|\I/> A R
[15,16. To date, however, proposed optical implementations
of nonorthogonal POVM operatof$,17-19 have concen-
trated on nonprojective sets of nonorthogonal operators,
mostly for the purpose of distinguishing nonorthogonal o 0;
states. In such nonprojective measurements only the prob-
ability of detection is of interest, and not the collapse of the
statep to M;pM; for a set of measurement operat$hd;},
which in fact does not occur in these setups.

In this paper we describe a single-photon implementation
of a projective nonorthogonal positive-operator-value mea-
surement with three measurement operators which measure
the polarization of the photon along three axes in a plane |‘I’> B
separated by angles of 120°. This corresponds to the toy o M} |0
problem proposed by Preski[R0]. Our measurement has 0; 7T
unit probability of success for any arbitrary input state and
can be generalized to more than three operators. FIG. 1. The basic module which implements a single measure-

ment operator. The input staj#) first passes through a polarizing
Il. THE SETUP beam splitter with the polarization basis at angjewith respect to
the fixed vector in the chosen plane. The resulting beams are then

Our setup is comprised of three modules, each of whicltivided again by conventional beam splitters of equal amplitude
implements a measurement operator of the POVM. Thesgansmission coefficients; . The reflected components are then
modules are in series, meaning that the state exiting oneunited, so that the input staf#’) reemerges aR, diminished in
module is fed into the entrance of the next. The basic modamplitude by a factor of/1—[a;[?. At A and B, ajM9j|\If> and
ule, shown in Fig. 1, consists of two polarizing beam splitterSajM;,j|\If> emerge, respectively.
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setup[5,10,12,14, the total evolution of a pure photon state  Introducing the projection operator#t,, —|1//0 ><:,bg|
|¥y=a|H)+b|V) through one module is given by —Mz andMg _|¢0 ><¢0 |—M '2 £q.(2) can be wntten as
[W)=alH)+b|V),
_ _ (W)= My [ W)[sa) + ;M [W)]sg) + V1 =] |*|W)[sg)
—aj(acosd;+bsing;)(coshj|H)+sin6;|V))|ss) ! ! 3)

+aj(asing;—b cosé;)(sin¢;|H)—cosé;|V))|sg)
To perform the chosen POVM three such modules are

+\1-|af](alH)+b|V))|sg), (1)  placed in series, with
where|H) and|V) are states of horizontal and vertical po-
larization. This can be much more simply written as = \/I — \F =1
1— 31 (1’2— 21 a3 3
W) — a4 ) [ W) ) + |, ), ) s
il 2 4
+ 1_|aj||\l,>|SR>’ (2) 01:0, 02:§7T, 03:§7T (4)
where |</;,,j>=cosej|H>+sin vy and |z,b;j)=sin 6;|H)
—cosej|\/). Thus a single-photon input state evolves as follows:

J
[W)—ay(Mg,|W)[sp)+Mj [W)[sg) + V1=[as]?| W)[sg)
—>a1(M,91|\If)|S%\>+M;)1|\I’>|Sé>)+\/ — ey az(Maz|‘I’>|5A>+Mo|q’>|SB>)+\/1_|a1|2\/1_|a2|2|q’>|3R>
g, [V [S3)+ M 1)) + VT Tag Para M Y|S0+ M, 1)1 520)

1= [agl* V-] as[Pas(M g | W)|sR) + My [ W) s3)) + V1— [ V1—|ao|®V1—asl’| W) sd). (5)

Using Eq.(4) we obtain

\P\/IHlbvl\F ngH‘/jstZ\/Is‘/ng
W)=\ z@H)sp)+blV)ss)) + \/ 3 2 PJIH)+|Zrat 2blIV) s+ \/5|{ 72— 5 b|H)
e 1lovz\/I Bl 22 as 2o|ivy sz
| —gat b lse)+ \5|| za— 7 b|IH)+|——a+ ;b][V)[sp)
\/I Sar Zoliy+ | Zas Lo vy is 6
+ § Za—i-j | >+ Za-f'z | >|SB>. ()
|
Hence, if we place detectors at tlieexits of the three 1 V3 V3 3
modules, we will measure one of three possible outcomes: a a+—b |H)+ Za+ —b]|V)
state
|p2)= \/ 9
a2+— al|b +— b|?
|$2)=IH) (7) @l 5 lallol g
emerging from module 2 with probability
emerging from module 1 with probability
C1f{1 V3 |2 1](v3 3b 2
. P2=3]\287 7 312277
=zlal® ®) (L e V3 0
3| zlal*+ = lallbl+ 7 b/, (10
or a second state or a third state
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V3 V3 1
Ea——3b IHy+ ——3a+§b V) 5([11) + |¥2) + [93)
4° 4 4° 4 1
|¢3)= — - (1D y’ H(wr) + 2) — [s))
Jlal?= " Jallbl+ b
3([1) = I2) + 1))
emerging from module 3 with probability
11 V3 \|2 1|/ v3 3 \[]? 1) (1¥1) — [v2) — [3))
Pa=3 za‘zb) +§‘ TaAtgb
V3
=3 31ale= 5 tllol+ 31bf. 1z )

- Y /
Note that the probability of any of these measurements| V3)
occurring isp=p;+ p,+ ps=1/2. This means that the three  FiG. 2. The reunification setup for three states. Stafe’ and

possible measurement outcomes constitute a projective, nofis,) are brought together and then each output is combined with a
orthogonal POVM with overall probabilitp=1/2 and mea- branch of the splity;) state. All beam splitters have transmission

surement operators coefficients of 50%.
M. — \ﬁ 10 another beam splitter together with one of the above mix-
% N3lo 0/ tures of|#4) and|y,), giving the four output states
" :\ﬁ 14 V34 i(lm)ﬂw»)ﬁ}( 1 1)(|w1>+|¢2>)
%2 N3\v3i4 3/4) i\ ) 2\ -1 1)\ |3
\F 14  —v3l4 :E( [+ 2)+b3) ) (15
Mo= N3l _vaa 2 |- (13 2\ =[i) = h2) +|13)

This, in itself, is of course not particularly interesting, and
since we have simply chosen to perform measurements on a
subset of a larger set of orthogonal pairs of POVM operators 1 ( ) ) 1/ 1 1
{M gj,M,’,j} (for j=1,...,3). Of greater importance is the V3 | =)+ ) ~o2l-1 1

fact that the other three operatcws’,,j form a similar POVM

with probability p=1/2. Therefore, if we can reunify the - E
beams emerging from thB exits we will reconstruct our 2
original input state. Thus, if this reunification is possible, by
feeding the reconstructed state into the measurement appara-One of the four final stateighe first state in Eq(15)] is
tus we can perform another POVM on this new input statghe original input statéyq)=|41)+[2) +|¢3). This state
with a probability of success of 1/2, increasing the total prob-can be fed back into the measurement apparatus. The three
ability of a successful POVM to 3/4. In the limit of infinite other states produced are, however, different superpositions
cycles the probability of performing a successful POVM of the original input states, namely,
tends to unity. We have found a technique for performing the
reunification starting with the three mutually nonorthogonal 1
states| 1), |#,), and|s), which is achieved by the setup lp1) = 7(|¢1>—|<//2>+|1113>),
illustrated in Fig. 2. 3
To perform the reunification, firdt/,) and|#,) enter a
conventional50%) beam splitter simultaneously, each occu- , 1
pying one of the two possible entrance path states, in the |2) = ‘/_§(|¢1>+|¢2>_|¢3>)’
basis of which the following vectors are to be understood:

(Im)) 1 ( 1 1)(|w1>
N
lyy) val—1 1)\[¥2)
where we have flipped the sign of the first two states. How-
The third input state is passed through a beam splitter bgver, if these three states are fed back into this reunification
itself, and then each of the resulting states is passed througietup, one obtains the following four states:

( |4r3) )
=) + )
=)+ )+ |h3)
_|¢1>+|¢2>_|¢3>)' (16

_1
Y

|1) + | 42)
=) + )

1
|¢é>=‘/—§(—|¢1>+|¢z>+|¢3>), 17

19
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Mty pMy, Mty oMy, Mig pMg,

§(|wi>+|wé>+|wg>>=%2<|¢1>+|¢2>+|¢3>), ) Ty T e ,,
1 , L 3 1 ~B
2=l + o= = (o)~ 192)+3la)), & ~c
1 1 o 65
§(|¢i>+|</fé>_|lﬂé>):\/TZ(3|¢1>_|¢2>_|¢3>): r 2
1 1 b2 b
2 (~10+100)+ 190 = < (—[9) + 3l)~ ) N 7S
(189 1
Thus this cycle yields another copy of the state)) ) 51 o C

=)+ o) +|3). As can easily be seen, feeding the last

three states of Eq18) into the setup again will give another ~ FIG. 3. The complete POVM setup including measurement and
copy of| ). In the limit of an infinite number of cycles the reunification for three measurement operators With=0, 6,
three states can be successfully reunited to fopg) with =273, O3=4/3, a;= 173, ap= 172, anda;=1. Note the cy-
unit probability. Hence, for the POVM setup states emergingﬂ'c reunification scheme where the three undesired output states of

from the B exits ig. 2 are in turn fed back into the entrand®®8,C of the reunifi-

cation setup, while the desired std®) is fed back into the en-
1 trance of the entire POVMbottom lef). Measurements are per-
|,7/,1>: \[gb|v>, formed at t_he three outputs at the top of thg diagram,_w_hich yield
the normalized statel I,ipM‘gi /tr(MQingi) with probabilitiesp;
=tr(M];ipM9i), respectively, wherep=|¥)(¥|. This scheme is

1(/3 V3 —V3 1 . L .
l)=\/=|| a— —b||H)+| ——a+ =b]||V)|, possible because we are considering single photons or narrow
3[\4 4 4 4 pulses. For photon cascades the setup would still be possible, but
experimental realization would be more difficult.
= \F 3 i b|H v - b|lV
2= \3||z2+ 7 b/M)+{Za+tzb/V)], single-photon stat¢sand the possibility of delaying and re-

(199 unifying the amplitudes from®, B, andC arising in subse-
quent cycles of¥), before collectively feeding them into the
reunification setup. This allows for the sequential use of only
one physical setup for an arbitrary number of cycles as there
is no overlap of pulses. Thus, in the limit of an infinite num-

3 3 ber of cycles in both the POVM and reunification setups, the
28 Tb)“—l) POVM is performed with unit probability of success. For
cascades of photons the setup would still be possible but

we get

[ o) =1w1) +|h2) + | h3)

=\/§b|v>+\/§

-3 1 1 V3 rather more difficult to implement. Further to this work, we
+(Ta+ Zb V) |+ 3 Za+ Zb>|H> have found a generalization to a setup for projective nonor-
thogonal POVMs withN measurement operators, where the
V3 1 restrictions on the choices of angles lessen considerably for
+ Ta+ Zb V) N>6. This work is to be published separately.
V3
__ 11l. CONCLUSIONS
7 (a|H>+b|V)), (20

We have proposed a scheme for performing a nonorthogo-
which, when normalized, is just our initial input stdt) to  nal projective POVM measurement of the polarization state
the entire measurement apparatus. The complete arrangef a single photon with unit probability of success. Unlike
ment for performing the POVM, including the reunification, the work that has been published on optical implementations
is shown in Fig. 3. of POVMs, which focuses on nonprojective POVMs, our

Given the recent progress in experiments dealing with thegrojective setup provides an outcome not only in terms of a
manipulation of single photorfd1-14], our reunification is  detection probability, but also in the form of one of three
experimentally feasible if we consider narrow puldes  possible output states to which the input state is projected.
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