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Lower bounds on the entanglement of formation for general Gaussian states
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We derive two lower bounds on entanglement of formation for arbitrary mixed Gaussian states by two
distinct methods. To achieve the first one we use a local measurement procedure that symmetrizes a general
Gaussian state and the fact that entanglement cannot increase under local operations and classical communi-
cations. The second one is obtained via a generalization to mixed states of an interesting result already known
for pure states, which says that squeezed states are those that, for a fixed amount of entanglement, maximize
Einstein-Podolsky-Rosen-like correlations.
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I. INTRODUCTION et al.[4], who show that squeezed states are those that, for a
fixed amount of entanglement, maximize Einstein-Podolsky-
The guantification of the amount of entanglement a quanRosen-like correlations. These lower bounds are also useful
tum system possesses is still an open problem in quantunia ruling out several possible candidates for the analytical
information theory. Restricting our attention to bipartite sys-expression of the EOF for arbitrary Gaussian states, as we
tems, i.e., systems composed of two subsystems, we havlustrate in this article.
one measure of entanglement, entanglement of formation

(EOP [1], which has a clear physical meaning. Given an Il. FIRST LOWER BOUND

entangled statp, the EOF for this state expresses the num- _ ) ) - )

ber of maximally entangled states we need to creafg]. Let us begin setting the notation used in this article and
The formal definition of the EOF is some properties of Gaussian states. Consider a bipartite

Gaussian system of two modes described by the annihila-
) tion operators a;=(X;+iP;)/v2, where j=1, 2 and
E(p)=infX piE(4), (1) [X;,P;.]1=i5;;. This system can be alternatively described
. by its characteristic functiof6]
where we take the infimum over all pure-state decomposi- B
tions of p==,p;|¢;){¢|, =;p;=1, andE(y;) is the von x(r)=ufpD(r)], @
Neumann entropy of the pure state.

The analytical minimization of Eq1) is not an easy task.
Dealing with two-qubit systems, which are the simplest en- D(r)= e I(X1X1+P1P1+xpXo+ P2P2) 3
tangled bipartite systems, Woott¢B] obtained an analytical '
expression for the EOF and Giedkeal.[4] derived an ana- Equation (2) uniquely defines a statp and for Gaussian

lytical expression for the EOF for symmetric Gaussian stateSsiates it can always be put in the following form:
Gaussian states are very useful in quantum-optical imple-

mentation of several quantum information protoc¢@uan- X(r):efrTerfidTr 4

tum cryptography[5] is an important examplgeHence, a '

complete characterization of the amount of entanglement of here T means transpositiony is a 4x4 matrix which is
Gaussian states is desirable. The natural next step is thgied the correlation matrixCM), and d is a four-
search for an analytical expression for the EOF for arbitraryyimensional real vector. The first moments of a Gaussian

Gaussian states. , _ state(X;) and(P;) can always be set to zero using local

. In this article we give two analytical expressions that f“r'unitary operations, which implies that we can work with zero
nish lower bounds for the EOF for Gaussian states. We eMyean'Gaussian states when studying entanglement properties
ploy two different methods to derive such lower bounds. Theyt ¢ ,ch systems. The matrix elements of the CM can be

first lower bound is obtained using a local measurement proggcylated directly from the density matrixby the follow-
cedure derived by Giedket al. [6] which symmetrizes a in(tq formula:

general Gaussian state and the fact that entanglement canno

i_ncrease under local operatio.ns ar_ld cIa_ssicaI commuqica— i =t (RR;+ RR)p]—2 t{ R p]tr[R; p], (5)

tions(LOCC). The second one is derived via a generalization

to mixed states of an interesting result derived by GiedkeyvhereR=(X;,P;,X,,P,)". A matrix y represents a realiz-
able physical state if and only if it is strictly positive, real,
symmetric, and satisfid$]

wherer = (xy,p1,X2,P,) " is a column real vector and
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whereJ=@®Z_,J, is a 4x4 matrix withJ;= (3, 1. will have a tilde) Let us assume, without loss of generality,
A Gaussian system can also be represented by its Wignehatk,>0 andk,<0 [8]. The EOF for this symmetric state

distribution W(r). Assuming that we are working with a is[4]

zero-mean Gaussian state, we hivge

W(r)= R e rwr R Eq(o)=F (TR~ [k (Fi— k), (15)
K vdetyy '
where
The CM'’s y and yy are related by
')’W:JT’)/flJ, (8) f(8)=c,(dlogy[c.(8)]—c_(d)log,[c_(5)]. (16)

These two CM’s can be brought to the following standard
form by suitable local symplectic transformatidrg:

A C
y=< ) 9

Herec. = (& Y2+ §Y?)2/4. Using Eq.(14) we can write the
EOF given by Eq(15) in terms of invariants:

C' B Ef(o'):f(\/Tl_TS_ VT,—211T5). 7
where
Using EQgs.(8) and (14) we obtain the following relations
(n O (m 0 [k O among the invariants of the and y,, matrices:
lon)m T lo m T Lok (
The same set of equations appl : I _We I _W I _Ws I _Ws = !
q pply %@ : w2 Twg 4_V75' 5= W’
Aw Cw (18
= 11

whereWs=detyy andls=dety.
where Therefore, due to Eq(18) the EOF for our symmetric

Gaussian state, E@L7), can be expressed as
N O M O

Ky o) Ef(O'):f( \/Wl_w3_\/w“_2W1W3. (19)

Wy
0 K,

13

CW:

The four real parametersi(m,k, ,k,) completely character- But Giedkeet al. [6] have shown that a general bipartite
ize a two-mode Gaussian state and they are related to tHeaussian system can be transformed to a symmetrical bi-
four local symplectic transformation invariants as follows partite Gaussian system using LOCC. This implies that

[8]: E¢(p)=E;¢(o). Schematically, we have
[,=n=detA, (149 Loce
|2:m: detB (14b) p— UZ}Ef(P)ZEf(U)- (20)
I3=kyk,=detC, (140 Our only task now is to rewrite Eq19) in terms of the

invariants of they matrix of p. It is in this step that we use
l,=nm(ki+k3)=tr(AJJCJIBJIC"J;).  (14d  Giedke's symmetrization procedure.
Given a general bipartite Gaussian systgrand its yy,

Alternatively, the four real parameter&(M,K, ,K,) also  matrix, where we assume, without loss of generality, that
completely specify a two-mode Gaussian system. They cas-M, we can achieve by means of local operations a sym-
be also obtained by local symplectic transformation invari-metric state with the followingy,, matrix [6]:
ants. These invariants, which we céll,, W,, W5, andW,,
satisfy Eq.(14), where we chang@, B, andC to Ay, By,

andCy and (1,m,ky.kp) to (N,M,K,,K,). _[Aw Cw| tocc  [Ay Cy
We now pass to the derivation of the first lower bound. A W=ler B Wl o [0 (2D
w  Bw Cw Bw

symmetric Gaussian entangled statés completely speci-
fied by its CM[see Eq(9)], wheren=m="1. (From now on,
every parameter associated with a symmetric Gaussian stathere
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0
% co< 6+ M sir? 6 -
W 0 Ncog 6+NMsir? 6 |’ 22
cos 9+ M sir? 0
|
M 0 where
By=| cos 6+Msir? o . (29 a=W,—Ws+ W, tar? , (27)
0 Sirf #+M cog
e=Ws+ VW, (VW; W, — K2)tar? 6, (28)
K, cosé 2
N = — + — —
& =| 0FormiE 24 B=W,— 2W,W;+tar? 6] (W,—2W3—W3) W,
0 K, cosd +(1=Wy) KWy, (29
N2—M?2 Wi—We
tarf 6= : (25) tarf 6= , (30)
M —N(NM—KZ) VW, — YW (YW, W, K3)
Equation(25) guarantees that dat,=detB,,. This condition L, Wat VW3- 4w, W,W3
is the statement that the Gaussian system withjth@bove K= : (32)

is symmetrical 6].

X 2W, W,

Using Egs.(14) and (22—(24) and the assumption that Now, using Eq.(18) we can put Eq(26) in terms of the

|Ky|=|Kp| [9], we can write Eq(19) as follows:
Ef(0')=f< \/@»

(26)

invariants of they matrix. Hence, if we work withy in its
standard form given by Eq9), where we assume, without
loss of generality, thak,| = |k,|, Eq.(26) is rewritten after a
tedious but straightforward algebraic manipulatior] H3]

( \/nmh(n,m)—kxkph(m,n)Jrlka—nkp|\/h(n,m)h(m,n)
E(o)="f

where
h(n,m)=n—m(nm—k?)

(333

g(n,m)=m(1—m?)+nk?. (33b

a(n.m) ' (32

where|n); is thenth Fock state, that isa,;fajln>j=n|n)j v
=1,2, andr € (0,») is the squeezing parameter.

There exists an interesting relation between squeezed
states and Einstein-Podolsky-Rosd&PR correlations,
which Giedkeet al. [4] proved in their proposition 1: Given
a squeezed statel¢(r)) and an arbitrary pure two-mode
state|y) then, if they have the same EPR correlation, the

Equation(32) is our first lower bound for the EOF for gen- squeezed state is the least entangled. In other words, if we
eral Gaussian states. It is worthnoting that this lower boundienote byA (¥ ¢(r)) and A(y) the EPR correlations for the
reduces to the EOF for symmetric Gaussian states whenevego mentioned states and £(W(r))=A(y) then E(y)
n=m. =E(Wy(r)).

The EPR correlation is defined 4]

IIl. SECOND LOWER BOUND

1
— i - 2 _ 2
A two-mode squeezed stafd] is a symmetric Gaussian Alg)=min 1,5 [Ay(Xs=X) T AYP1HP)](, (35

pure state that belongs to the Hilbert spé&te H,®H, and

is described by the following vector:

o0

1
cosf(r)nE::o tanH'(r)[n);®|n),,

[Ws(r))= (34)

where AZ(R;)=(R%),—(R;)3 is the dispersion of the ob-

servableR;. The above expression measures the degree of
nonlocal correlations and is zero for the original EPR state
[4,11]. This means that the more a system is nonlocal the
more Eq.(35) approaches zero. We say that a system with

012307-3



G. RIGOLIN AND C. O. ESCOBAR PHYSICAL REVIEW A69, 012307 (2004

the minimalA(y) has the maximal EPR correlation. For our
squeezed state the EPR correlatiof4s Ef(p):; ij(‘Pj):; PE(W(rj))

A(Wy(r)=e"?. (36)
=$ piF(ACW(r)))). (42)

The EOF, which is equal to the von Neumann entropy, for

the squeezed state [i4]
Now due to proposition 1 of Giedket al.[4] we know that

E(W(r)=cosH(r)logy[ costt(r)] A(¢))=A(W¥4(r;j)). Hence, using this fact in Eq41) and
— sink?(r)logy[ Sink?(r) 1. (37) thatf is a decreasing function of its argument, we have
And it is shown thaf4] Ef(a)sz, pjf(A(goj))sZ pif(A(W4(r)))). (43
i j
E(Ws(r))=f(A(W(r))). (38)

Combining Eqs(42) and(43) we see that
Giedkeet al. [4] have shown thaf:(0,1]—[0,%) is a con-
. (04 19) Er(o)=<Eq(p). m (42

vex and decreasing function of its argument. Hence, as Eq.

(36) can glave any value between zelro akr)wd 1, the EOF fo& %he above theorem tells us that for mixed states the symmet-
squeezed state can assume any value between zero and Jji-giateq are those with less EOF given an EPR correlation.

finity. This property of the EOF for squeezed states, i.e., thaﬁ is interesting to note that can be any symmetric state,

they can assume any value, ,'S an ess'e.ntlal ingredient in O¥icluding symmetric states written as superpositions of
generalization of Giedket al's proposition 1[4]. Let us

. 2. squeezed states.
now state a_md then_ prove the following t_h_eorem, which is a The previous theorem automatically gives us a lower
generalization to mixed states of proposition 1] 4f.

. . . bound for the EOF for general Gaussian states. Using Eq.
Theorem 1For all bipartite Gaussian systermsve have (44) we get g 9=

Ei«(p)=E(0), if A(p)=A(0o) ando is a symmetric Gauss-
ian mixed state. Ei(p)=E¢(a)=T1(A(p)). (45)
Here A(p) is analogously defined as in E5).
Proof. Applying a suitable symplectic local transforma-
tion in the standard form of the matrix of o [4,12] we see
that the EPR correlation for this transformed matrix is

A(o)= \/(ﬁ—|~kx|)(ﬁ—|~kp|). But the amount of entangle-
ment is invariant by local symplectic transformations. This
means thaE:(o)=f(A(o))=1f(A(p)). Let us writep as

We now implement a local symplectic transformation in the
v matrix of p, Eq. (9), before calculating the EPR correla-
tion. (It does not alter the amount of entanglement, since itis
equivalent to a unitary local transformation in the density
matrix p.) This transformation can be viewed as an extension
to nonsymmetrical Gaussian states of the transformation in-
troduced by Giedkeet al. [4] for symmetric states. This
transformation multiplies X; by [(n+m)/2—|ky|]/[(n
p=2 pile) e, 39 +m)i2—|k,|1* P; is divided by the same quantity. Now

' calculatingA(p) we get the following expression for our sec-

where the above decomposition is the one that furnishes tHd lower bound:

EOF ofp, i.e., n+m n+m
Ef(p)zf(min[ 1\/( 5 —|kx|)( 5 —|kp|)}).
Er(p)=2 PiE()). (40 (46)

Again we see that this lower bound reduces to the EOF for
symmetric systems wheneverE=m. It is important to note

that when
n+m n+m
_|kx| _|kp| >1

2 2
we haveA(p)=1. For such cases this lower bound is not
useful since it simply shows th&i(p)=0.

Using the above expansion pf we have that

Ef(a>=f(A(§ |oj|qoj><<p,-|))<f(2j ij(¢,->)

s; piF(A(g)). (41)

The first inequality is a consequence of the concavity @)
(see the Appendjxand the fact thatis a decreasing function
of its argumenf{4]. The second inequality is due to the con-
vexity of f [4]. We now use the fact that a squeezed state can We now employ the two lower bounds derived previously,
assume any value of entanglement. With each pure state iBgs.(32) and(46), to see their usefulness in analyzing some
the decomposition gp above we associate a squeezed stat&aussian states. For completeness we present in terms of the
with the same amount of entanglemeng&(y;) invariants ,m,k, ,k,) three inequalities they must satisfy to
=E(¥(r;)). Therefore we have the following relation for be considered parameters that describe physically realizable
the EOF ofp: entangled Gaussian stat@. We will assume, without loss

IV. DISCUSSION AND EXAMPLES
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TABLE I. The first column shows the parameters of thena-  known fact that entanglement does not increase under
trix when written in its standard form. The second and third col-LOCC.
umns represent the two lower bounds for the EOF for mixed Gauss- The second lower bound, E@6), is a corollary of Theo-
ian states. Lower bound 1 is given by E§2) and lower bound 2is  rem 1, which can be interpreted as an extension of a previous
given by Eq.(46). result obtained by Giedket al.[4]: given two pure bipartite
systems with the same amount of entanglement, the squeezed

N, m, ky, ky LB1 LB2 states are those with the maximal EPR correlation. Our theo-
15,2 1.2-1 0.146 35 0.289 19 rem generalizes this fact to mixed states in the sense that
15 2 1.—1 0.086 87 0.146 72 symmetric Gaussian states are shown to be states with maxi-
23 18-1.2 0.024 48 0.006 81 mal EPR correlation for a fixed amount of entanglement.
17,26, 1.3-0.9 0.005 49 0
2,3,17,-12 0.007 25 0.001 42 ACKNOWLEDGMENTS
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dety+1=n?+m?+2k.k,, (479
nm-ki=1, (47b) APPENDIX: PROOF OF CONCAVITY OF A(p)
dety+1<n?+m?—2k.k,. (470 We need to prove thai\(p)=3;p;A(¢;), where p

=3,p;l ¢;){#;|. Applying the definition ofA(p) we obtain

The last inequality is the restrictiomamatrix must satisfy to  for the given expansion gf and for>;p;A(¢;) the follow-
represent an entangled Gaussian system. ing expressions:

Table | shows six entangled Gaussian systems and the
values of their two lower boundé.B1 and LB2. 1 2

These six Gaussian systems are very representativé&(P)Zmin{ 115[2 Dj(<X2>¢j+<P2>¢j)—(Z pj<x></>j>
Looking at their lower bounds we see that depending on the ! !
parameters of the system LB1 or LB2 is the strongest lower 2
bound. For example, the first two Gaussian systems have —(E p,—(P>¢j)
LB2 as the strongest lower bound but the four last Gaussian J
systems have LB1 as the strongest one. LB1 and LB2 are
also useful for discarding possible candidates for the EOF of . 1
a general mixed Gaussian state. Consider, just for iIIustrazj: p,-A(da,-):; Pj m'n[1'§[<x2>¢j+<P2>¢j
tion, the functions

f1=f(Jm=k ) (Fnm=Tkg ), (48) —<X>§>,-—<P>$>,-]} (A2)

nZ+m? )( n“+m? ))
fo=1 — [k kel | | =
(\/(\/ 7 Ik \/ 2 (49 =520 PILO) s+ (P2 = 005 —(P .

} , (A1)

(A3)
Both f, andf, reduce to the EOF for symmetric states when
n=m. For the Gaussian states withn,(,k,,kp)
=(2,2.5,1.3-1.2) we have LB*0.00173>f;=0.00091
and for (,mKk,,k,)=(1.5,2,1.1,-1) we get LB2 .
=O.208853>f2=0.18p6 21. These results show thgt and +<P2>¢i_<x>§sj_<P>§’j>2' Looking at Eq.(A2) we see
f, cannot be proved to be the EOF for general Gaussiathatitis not greater than 1. Thus, if Egh1) is equal to 1 we
systems since we have lower bounds for the EOF that argee thatA(p)=Z;p;A(¢;). But if it is less than 1A(p)
greater tharfl andfz_ BEJp]A((f)J) if the fO”OWing inequa”ty is satisfied:

whereX=X;—X, andP=P;+P,. The inequality is a con-
sequence of the fact that we may have at least <(X1’$¢j

2
V. CONCLUSION (2 pj<x>¢j +
We presented in this article two lower bounds for the EOF J
of general Gaussian two-mode systems. They were obtained
by two distinct methods. ) )
The first lower bound, Eq(32), was derived using an APPlying the Cauchy-ZSchwarz inequality3] for an observ-
interesting procedure derived by Giedéeal. [6] that sym- ~ ableRwe ge'@jpj(R)qu?(EjPJ<R>¢J.)2- Hence, Eq(A4) is
metrizes by local operations a Gaussian state and the wedlways satisfied. |

2
}j) pj<P>¢j) s}j) PiL(X)%, (P51
(Ad)
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