
PHYSICAL REVIEW A 69, 012307 ~2004!
Lower bounds on the entanglement of formation for general Gaussian states
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We derive two lower bounds on entanglement of formation for arbitrary mixed Gaussian states by two
distinct methods. To achieve the first one we use a local measurement procedure that symmetrizes a general
Gaussian state and the fact that entanglement cannot increase under local operations and classical communi-
cations. The second one is obtained via a generalization to mixed states of an interesting result already known
for pure states, which says that squeezed states are those that, for a fixed amount of entanglement, maximize
Einstein-Podolsky-Rosen-like correlations.
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I. INTRODUCTION

The quantification of the amount of entanglement a qu
tum system possesses is still an open problem in quan
information theory. Restricting our attention to bipartite sy
tems, i.e., systems composed of two subsystems, we
one measure of entanglement, entanglement of forma
~EOF! @1#, which has a clear physical meaning. Given
entangled stater, the EOF for this state expresses the nu
ber of maximally entangled states we need to creater @2#.
The formal definition of the EOF is

Ef~r!5 inf(
j

pjE~c j !, ~1!

where we take the infimum over all pure-state decomp
tions of r5( j pj uc j&^c j u, ( j pj51, and E(c j ) is the von
Neumann entropy of the pure statec j .

The analytical minimization of Eq.~1! is not an easy task
Dealing with two-qubit systems, which are the simplest e
tangled bipartite systems, Wootters@3# obtained an analytica
expression for the EOF and Giedkeet al. @4# derived an ana-
lytical expression for the EOF for symmetric Gaussian sta

Gaussian states are very useful in quantum-optical im
mentation of several quantum information protocols.~Quan-
tum cryptography@5# is an important example.! Hence, a
complete characterization of the amount of entanglemen
Gaussian states is desirable. The natural next step is
search for an analytical expression for the EOF for arbitr
Gaussian states.

In this article we give two analytical expressions that fu
nish lower bounds for the EOF for Gaussian states. We
ploy two different methods to derive such lower bounds. T
first lower bound is obtained using a local measurement p
cedure derived by Giedkeet al. @6# which symmetrizes a
general Gaussian state and the fact that entanglement ca
increase under local operations and classical commun
tions~LOCC!. The second one is derived via a generalizat
to mixed states of an interesting result derived by Gied
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et al. @4#, who show that squeezed states are those that, f
fixed amount of entanglement, maximize Einstein-Podols
Rosen-like correlations. These lower bounds are also us
in ruling out several possible candidates for the analyti
expression of the EOF for arbitrary Gaussian states, as
illustrate in this article.

II. FIRST LOWER BOUND

Let us begin setting the notation used in this article a
some properties of Gaussian states. Consider a bipa
Gaussian systemr of two modes described by the annihila
tion operators aj5(Xj1 iP j )/&, where j 51, 2 and
@Xj ,Pj 8#5 id j j 8 . This system can be alternatively describ
by its characteristic function@6#

x~r !5tr@rD~r !#, ~2!

wherer 5(x1 ,p1 ,x2 ,p2)T is a column real vector and

D~r !5e2 i ~x1X11p1P11x2X21p2P2!. ~3!

Equation ~2! uniquely defines a stater and for Gaussian
states it can always be put in the following form:

x~r !5e2r Tgr /42 idTr , ~4!

whereT means transposition,g is a 434 matrix which is
called the correlation matrix~CM!, and d is a four-
dimensional real vector. The first moments of a Gauss
state^Xj& and ^Pj& can always be set to zero using loc
unitary operations, which implies that we can work with ze
mean Gaussian states when studying entanglement prope
of such systems. The matrix elementsg i j of the CM can be
calculated directly from the density matrixr by the follow-
ing formula:

g i j 5tr@~RiRj1RjRi !r#22 tr@Rir#tr@Rjr#, ~5!

whereR5(X1 ,P1 ,X2 ,P2)T. A matrix g represents a realiz
able physical state if and only if it is strictly positive, rea
symmetric, and satisfies@6#

g>JTg21J, ~6!
©2004 The American Physical Society07-1
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whereJ5 % k51
2 J1 is a 434 matrix with J15(1 0

0 21).
A Gaussian system can also be represented by its Wi

distribution W(r ). Assuming that we are working with
zero-mean Gaussian state, we have@7#

W~r !5
1

p2

1

AdetgW

e2r TgWr . ~7!

The CM’s g andgW are related by

gW5JTg21J. ~8!

These two CM’s can be brought to the following standa
form by suitable local symplectic transformations@6#:

g5S A C

CT BD , ~9!

where

A5S n 0

0 nD , B5S m 0

0 mD , C5S kx 0

0 kp
D . ~10!

The same set of equations apply togW :

gW5S AW CW

CW
T BW

D , ~11!

where

AW5S N 0

0 ND , BW5S M 0

0 M D , ~12!

CW5S Kx 0

0 Kp
D . ~13!

The four real parameters (n,m,kx ,kp) completely character
ize a two-mode Gaussian state and they are related to
four local symplectic transformation invariants as follow
@8#:

I 15n5AdetA, ~14a!

I 25m5AdetB, ~14b!

I 35kxkp5detC, ~14c!

I 45nm~kx
21kp

2!5tr~AJ1
TCJ1

TBJ1
TCTJ1!. ~14d!

Alternatively, the four real parameters (N,M ,Kx ,Kp) also
completely specify a two-mode Gaussian system. They
be also obtained by local symplectic transformation inva
ants. These invariants, which we callW1 , W2 , W3 , andW4 ,
satisfy Eq.~14!, where we changeA, B, andC to AW , BW ,
andCW and (n,m,kx ,kp) to (N,M ,Kx ,Kp).

We now pass to the derivation of the first lower bound
symmetric Gaussian entangled states is completely speci-
fied by its CM@see Eq.~9!#, wheren5m5ñ. ~From now on,
every parameter associated with a symmetric Gaussian
01230
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will have a tilde.! Let us assume, without loss of generalit
that k̃x.0 andk̃p,0 @8#. The EOF for this symmetric stat
is @4#

Ef~s!5 f „A~ ñ2uk̃xu!~ ñ2uk̃pu!…, ~15!

where

f ~d!5c1~d!log2@c1~d!#2c2~d!log2@c2~d!#. ~16!

Herec65(d21/26d1/2)2/4. Using Eq.~14! we can write the
EOF given by Eq.~15! in terms of invariants:

Ef~s!5 f „AĨ 12 Ĩ 32AĨ 422 Ĩ 1 Ĩ 3…. ~17!

Using Eqs.~8! and ~14! we obtain the following relations
among the invariants of theg andgW matrices:

I 15
W2

W5
, I 25

W1

W5
, I 35

W3

W5
, I 45

W4

W5
2 , I 55

1

W5
,

~18!

whereW55detgW and I 55detg.
Therefore, due to Eq.~18! the EOF for our symmetric

Gaussian state, Eq.~17!, can be expressed as

Ef~s!5 f SAW̃12W̃32AW̃422W̃1W̃3

W̃5

D . ~19!

But Giedke et al. @6# have shown that a general biparti
Gaussian systemr can be transformed to a symmetrical b
partite Gaussian systems using LOCC. This implies that
Ef(r)>Ef(s). Schematically, we have

r ——→
LOCC

s⇒Ef~r!>Ef~s!. ~20!

Our only task now is to rewrite Eq.~19! in terms of the
invariants of theg matrix of r. It is in this step that we use
Giedke’s symmetrization procedure.

Given a general bipartite Gaussian systemr and itsgW
matrix, where we assume, without loss of generality, thaN
.M , we can achieve by means of local operations a sy
metric state with the followingg̃W matrix @6#:

gW5S AW CW

CW
T BW

D ——→
LOCC

g̃W5S ÃW C̃W

C̃W
T B̃W

D , ~21!

where
7-2



ÃW5

N cos2 u1~NM2Kx
2!sin2 u

cos2 u1M sin2 u
0

2 2 , ~22!
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S
0

N cos u1NM sin u

cos2 u1M sin2 u

D

t

t

B̃W5S M

cos2 u1M sin2 u
0

0 sin2 u1M cos2 u
D , ~23!

C̃W5S Kx cosu

cos2 u1M sin2 u
0

0 Kp cosu
D , ~24!

tan2 u5
N22M2

M2N~NM2Kx
2!

. ~25!

Equation~25! guarantees that detÃW5detB̃W. This condition
is the statement that the Gaussian system with theg̃W above
is symmetrical@6#.

Using Eqs.~14! and ~22!–~24! and the assumption tha
uKxu>uKpu @9#, we can write Eq.~19! as follows:

Ef~s!5 f SAa2Ab

e
D , ~26!
-
n

ev

n

01230
where

a5W22W31AW2 tan2 u, ~27!

e5W51AW1~AW1W22Kx
2!tan2 u, ~28!

b5W422W2W31tan2 u@~W422W32W3
2!AW2

1~12W2!Kx
2AW1#, ~29!

tan2 u5
W12W2

AW22AW1~AW1W22Kx
2!

, ~30!

Kx
25

W41AW4
224W1W2W3

2

2AW1W2

. ~31!

Now, using Eq.~18! we can put Eq.~26! in terms of the
invariants of theg matrix. Hence, if we work withg in its
standard form given by Eq.~9!, where we assume, withou
loss of generality, thatukxu>ukpu, Eq.~26! is rewritten after a
tedious but straightforward algebraic manipulation as@10#
Ef~s!5 f SAnmh~n,m!2kxkph~m,n!1umkx2nkpuAh~n,m!h~m,n!

g~n,m!
D , ~32!
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where

h~n,m!5n2m~nm2kp
2! ~33a!

g~n,m!5m~12m2!1nkp
2. ~33b!

Equation~32! is our first lower bound for the EOF for gen
eral Gaussian states. It is worthnoting that this lower bou
reduces to the EOF for symmetric Gaussian states when
n5m.

III. SECOND LOWER BOUND

A two-mode squeezed state@4# is a symmetric Gaussia
pure state that belongs to the Hilbert spaceH5H1^ H2 and
is described by the following vector:

uCs~r !&5
1

cosh~r ! (
n50

`

tanhn~r !un&1^ un&2 , ~34!
d
er

whereun& j is thenth Fock state, that is,aj
†aj un& j5nun& j , j

51,2, andr P(0,̀ ) is the squeezing parameter.
There exists an interesting relation between squee

states and Einstein-Podolsky-Rosen~EPR! correlations,
which Giedkeet al. @4# proved in their proposition 1: Given
a squeezed stateuCs(r )& and an arbitrary pure two-mod
state uc& then, if they have the same EPR correlation, t
squeezed state is the least entangled. In other words, i
denote byD„Cs(r )… and D~c! the EPR correlations for the
two mentioned states and ifD„Cs(r )…5D(c) then E(c)
>E„Cs(r )….

The EPR correlation is defined as@4#

D~c!5minH 1,
1

2
@Dc

2~X12X2!1Dc
2~P11P2!#J , ~35!

where Dc
2(Rj )5^Rj

2&c2^Rj&c
2 is the dispersion of the ob

servableRj . The above expression measures the degre
nonlocal correlations and is zero for the original EPR st
@4,11#. This means that the more a system is nonlocal
more Eq.~35! approaches zero. We say that a system w
7-3



ur

fo

E
or
d
h
o

s

-

a-

is

-
is

t

n-
ca
te
ta

r

et-
ion.
,
of

er
Eq.

he
-
t is
ity
ion
in-

c-

for

ot

ly,
e

f the
o
able

G. RIGOLIN AND C. O. ESCOBAR PHYSICAL REVIEW A69, 012307 ~2004!
the minimalD~c! has the maximal EPR correlation. For o
squeezed state the EPR correlation is@4#

D„Cs~r !…5e22r . ~36!

The EOF, which is equal to the von Neumann entropy,
the squeezed state is@4#

E„Cs~r !…5cosh2~r !log2@cosh2~r !#

2sinh2~r !log2@sinh2~r !#. ~37!

And it is shown that@4#

E„Cs~r !…5 f ~D„Cs~r !…!. ~38!

Giedkeet al. @4# have shown thatf :(0,1#→@0,̀ ) is a con-
vex and decreasing function of its argument. Hence, as
~36! can have any value between zero and 1, the EOF f
squeezed state can assume any value between zero an
finity. This property of the EOF for squeezed states, i.e., t
they can assume any value, is an essential ingredient in
generalization of Giedkeet al.’s proposition 1@4#. Let us
now state and then prove the following theorem, which i
generalization to mixed states of proposition 1 of@4#.

Theorem 1. For all bipartite Gaussian systemsr we have
Ef(r)>Ef(s), if D(r)5D(s) ands is a symmetric Gauss
ian mixed state.

HereD~r! is analogously defined as in Eq.~35!.
Proof. Applying a suitable symplectic local transform

tion in the standard form of theg matrix of s @4,12# we see
that the EPR correlation for this transformed matrix

D(s)5A(ñ2uk̃xu)(ñ2uk̃pu). But the amount of entangle
ment is invariant by local symplectic transformations. Th
means thatEf(s)5 f „D(s)…5 f „D(r)…. Let us writer as

r5(
j

pj uw j&^w j u, ~39!

where the above decomposition is the one that furnishes
EOF of r, i.e.,

Ef~r!5(
j

pjE~w j !. ~40!

Using the above expansion ofr, we have that

Ef~s!5 f XDS (
j

pj uw j&^w j u D C< f S (
j

pjD~w j ! D
<(

j
pj f „D~w j !…. ~41!

The first inequality is a consequence of the concavity ofD~r!
~see the Appendix! and the fact thatf is a decreasing function
of its argument@4#. The second inequality is due to the co
vexity of f @4#. We now use the fact that a squeezed state
assume any value of entanglement. With each pure sta
the decomposition ofr above we associate a squeezed s
with the same amount of entanglement:E(w j )
5E„Cs(r j )…. Therefore we have the following relation fo
the EOF ofr:
01230
r
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Ef~r!5(
j

pjE~w j !5(
j

pjE„Cs~r j !…

5(
j

pj f ~D„Cs~r j !…!. ~42!

Now due to proposition 1 of Giedkeet al. @4# we know that
D(w j )>D„Cs(r j )…. Hence, using this fact in Eq.~41! and
that f is a decreasing function of its argument, we have

Ef~s!<(
j

pj f „D~w j !…<(
j

pj f ~D„Cs~r j !…!. ~43!

Combining Eqs.~42! and ~43! we see that

Ef~s!<Ef~r!. j ~44!

The above theorem tells us that for mixed states the symm
ric states are those with less EOF given an EPR correlat
It is interesting to note thats can be any symmetric state
including symmetric states written as superpositions
squeezed states.

The previous theorem automatically gives us a low
bound for the EOF for general Gaussian states. Using
~44! we get

Ef~r!>Ef~s!5 f „D~r!…. ~45!

We now implement a local symplectic transformation in t
g matrix of r, Eq. ~9!, before calculating the EPR correla
tion. ~It does not alter the amount of entanglement, since i
equivalent to a unitary local transformation in the dens
matrix r.! This transformation can be viewed as an extens
to nonsymmetrical Gaussian states of the transformation
troduced by Giedkeet al. @4# for symmetric states. This
transformation multiplies Xj by @(n1m)/22ukpu#/@(n
1m)/22ukxu#1/4. Pj is divided by the same quantity. Now
calculatingD~r! we get the following expression for our se
ond lower bound:

Ef~r!> f XminH 1,AS n1m

2
2ukxu D S n1m

2
2ukpu D J C.

~46!

Again we see that this lower bound reduces to the EOF
symmetric systems whenevern5m. It is important to note
that when

AS n1m

2
2ukxu D S n1m

2
2ukpu D.1

we haveD(r)51. For such cases this lower bound is n
useful since it simply shows thatEf(r)>0.

IV. DISCUSSION AND EXAMPLES

We now employ the two lower bounds derived previous
Eqs.~32! and~46!, to see their usefulness in analyzing som
Gaussian states. For completeness we present in terms o
invariants (n,m,kx ,kp) three inequalities they must satisfy t
be considered parameters that describe physically realiz
entangled Gaussian states@6#. We will assume, without loss
7-4
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of generality,m>n and ukxu>ukpu:

detg11>n21m212kxkp , ~47a!

nm2kx
2>1, ~47b!

detg11,n21m222kxkp . ~47c!

The last inequality is the restriction ag matrix must satisfy to
represent an entangled Gaussian system.

Table I shows six entangled Gaussian systems and
values of their two lower bounds~LB1 and LB2!.

These six Gaussian systems are very representa
Looking at their lower bounds we see that depending on
parameters of the system LB1 or LB2 is the strongest lo
bound. For example, the first two Gaussian systems h
LB2 as the strongest lower bound but the four last Gaus
systems have LB1 as the strongest one. LB1 and LB2
also useful for discarding possible candidates for the EOF
a general mixed Gaussian state. Consider, just for illus
tion, the functions

f 15 f „A~Anm2ukxu!~Anm2ukpu!…, ~48!

f 25 f XASAn21m2

2
2ukxu D SAn21m2

2
2ukpu D C.

~49!

Both f 1 and f 2 reduce to the EOF for symmetric states wh
n5m. For the Gaussian states with (n,m,kx ,kp)
5(2,2.5,1.3,21.2) we have LB150.001 73. f 150.000 91
and for (n,m,kx ,kp)5(1.5,2,1.1,21) we get LB2
50.208853. f 250.186 21. These results show thatf 1 and
f 2 cannot be proved to be the EOF for general Gauss
systems since we have lower bounds for the EOF that
greater thanf 1 and f 2 .

V. CONCLUSION

We presented in this article two lower bounds for the E
of general Gaussian two-mode systems. They were obta
by two distinct methods.

The first lower bound, Eq.~32!, was derived using an
interesting procedure derived by Giedkeet al. @6# that sym-
metrizes by local operations a Gaussian state and the

TABLE I. The first column shows the parameters of theg ma-
trix when written in its standard form. The second and third c
umns represent the two lower bounds for the EOF for mixed Ga
ian states. Lower bound 1 is given by Eq.~32! and lower bound 2 is
given by Eq.~46!.

n, m, kx , kp LB1 LB2

1.5, 2, 1.2,21 0.146 35 0.289 19
1.5, 2, 1,21 0.086 87 0.146 72

2, 3, 1.8,21.2 0.024 48 0.006 81
1.7, 2.6, 1.3,20.9 0.005 49 0

2, 3, 1.7,21.2 0.007 25 0.001 42
2, 2.5, 1.3,21.2 0.001 73 0.000 01
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known fact that entanglement does not increase un
LOCC.

The second lower bound, Eq.~46!, is a corollary of Theo-
rem 1, which can be interpreted as an extension of a prev
result obtained by Giedkeet al. @4#: given two pure bipartite
systems with the same amount of entanglement, the sque
states are those with the maximal EPR correlation. Our th
rem generalizes this fact to mixed states in the sense
symmetric Gaussian states are shown to be states with m
mal EPR correlation for a fixed amount of entanglement.
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APPENDIX: PROOF OF CONCAVITY OF D„r…

We need to prove thatD(r)>( j pjD(f j ), where r
5( j pj uf j&^f j u. Applying the definition ofD~r! we obtain
for the given expansion ofr and for( j pjD(f j ) the follow-
ing expressions:

D~r!5minH 1,
1

2 F(
j

pj~^X
2&f j

1^P2&f j
!2S (

j
pj^X&f j D 2

2S (
j

pj^P&f j D 2G J , ~A1!

(
j

pjD~f j !5(
j

pj minH 1,
1

2
@^X2&f j

1^P2&f j

2^X&f j

2 2^P&f j

2 #J ~A2!

<
1

2 (
j

pj@^X
2&f j

1^P2&f j
2^X&f j

2 2^P&f j

2 #,

~A3!

whereX5X12X2 andP5P11P2 . The inequality is a con-
sequence of the fact that we may have at least one^X2&f j

1^P2&f j
2^X&f j

2 2^P&f j

2 .2. Looking at Eq.~A2! we see

that it is not greater than 1. Thus, if Eq.~A1! is equal to 1 we
see thatD(r)>( j pjD(f j ). But if it is less than 1,D(r)
>( j pjD(f j ) if the following inequality is satisfied:

S (
j

pj^X&f j D 2

1S (
j

pj^P&f j D 2

<(
j

pj@^X&f j

2 1^P&f j

2 #.

~A4!

Applying the Cauchy-Schwarz inequality@13# for an observ-
ableR we get( j pj^R&f j

2 >(( j pj^R&f j
)2. Hence, Eq.~A4! is

always satisfied. j

-
s-
7-5
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