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Quantum channels with a finite memory
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In this paper we study quantum communication channels with correlated noise effects, i.e., quantum chan-
nels with memory. We derive a model for correlated noise channels that includes a channel memory state. We
examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For
the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for
certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the
asymptotic limit, and specifically, for aperfect finite-memory channel where no information is lost to the
environment, achieving the upper bound implies that the channel is asymptotically noiseless.
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I. INTRODUCTION

Quantum communication through noisy channels has
date, mainly concentrated on quantum channels that
memoryless. A memoryless channel is defined as a n
channel where the noise acts independently on each sym
transmitted through the channel. In classical informat
theory the discrete memoryless channel is well understoo
terms of the capacity of the channel, and the capacity of s
channels is invariant under inclusion of feedback or sha
random correlations@1#. The existing capacity theorems fo
quantum channels have also concentrated on the memor
case@2–5#. The calculation of capacities for classical cha
nels with correlated noise, ormemory channels, has had
much more limited success. One type of classical mem
channel for which the capacity is known is the channel w
Markov correlated noise. In this paper, we examine the qu
tum extension of the channel with Markov correlated noi
In particular, we examine a model of a correlated noise ch
nel which utilizes unitary operations between the transmit
states, an environment, and a shared memory state, an
termine some of the characteristics of such a class of qu
tum channels.

The fact that entangled alphabet states may increase
classical capacity of a particular correlated noise channel
been shown@6#. For the corresponding memoryless chan
the capacity is known to be additive, and hence entang
input states cannot increase the classical capacity of
memoryless channel over product state encoding.

The phrasefinite memoryis used to describe one aspect
the model, a memory state of finite dimension. The finiten
of the memory is defined only in terms of the model used
describe the correlated noise of the channel, and is not
essarily a physical consideration. The correlations betw
errors may be considered either temporally over each us
a single channel, or spatially between uses of many par
channels. The dimension of the memory is determined by
number of Kraus operators in the single channel expan
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and the correlation length of the channel, which may be
fined as the maximum number of channel uses for which
noise is not conditionally independent. Any channel with
finite correlation length may be generated by a channel w
a finite memory, according to this model. Although a phy
cal interpretation of the model is not necessary to achieve
goal of determining capacity theorems, it may give an und
standing of the physical motivation. Over short times t
environment with which the transmitted state acts may
assumed to be arbitrarily large, with interactions betwe
components of the vast environment essentially making
recovery of the information impossible. The memory, ho
ever, may be interpreted as a subspace of the environm
which does not ‘‘decay’’ over the time scale of separate u
of the channel, and is therefore dependent on the prev
state of the channel.

A physical example of a memory channel is the rec
proposal by Bose@7#, which uses unmodulated spin chains
transmit quantum information. In this case the initial sta
introduced to the chain by Alice acts as both the input st
and a part of the memory state for further uses of the ch
nel, as it is assumed Alice replaces each transmitted s
with a new spin state after each use of the channel, while
remaining elements of the spin chain constitute both
physical channel, the memory of the channel, and the ou
state, which may be removed from the chain for future d
coding by Bob.

II. A MODEL FOR QUANTUM MEMORY CHANNELS

The Kraus representation theorem@8# is an elegant and
powerful method of representing quantum dynamics in t
different ways, as a sum over operators acting on the stat
alternatively as a unitary evolution of a state and enviro
ment. The unitary interaction model provides an intuiti
understanding of open quantum systems, as well as pro
ing a method of calculation. In deriving our model of a qua
tum memory channel, we try to preserve the useful asp
that such a unitary representation provides.

A. Unitary representation of memoryless channels

A quantum channel is defined as a completely positi
trace preserving map from the set of density operators
©2004 The American Physical Society06-1
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itself. Any such map may be represented as a unitary op
tion between the system state and an environment wit
known initial state. For a single channel use the output s
is given by

rQ8 5TrE@UQE~rQ^ u0E&^0Eu!UQE
† #, ~1!

with rQ the input state, andrQ8 the output state. For a se
quence of transmissions through the channel,

rQ8 5TrE@Un,En
•••U1,E1

~rQ^ u0E1
•••0En

&

3^0E1
•••0En

u!U1,E1

†
•••Un,En

† # ~2!

5~Ln^ •••^ L1!rQ , ~3!

where the staterQ now represents a~possibly entangled!
input state across then channel uses, and the environme
state is a product stateu0E1

•••0En
&5u0E1

& ^ •••^ u0En
&.

B. A unitary model for memory channels

One model of a quantum memory channel is where e
state going through the channel acts with a unitary inter
tion on the same channel memory state, as well as an inde-
pendent environment. The backaction of the channel stat
the message state therefore gives a memory to the cha
The general model thus includes a channel memoryM, and
the independent environments for each qubitEi . Hence,

rQ8 5TrME@Un,MEn
•••U1,ME1

~rQ^ uM &^M u ^ u0E1
•••0En

&

3^0E1
•••0En

u!U1,ME1

†
•••Un,MEn

† #

5TrM@Ln,M•••L1,M~rQ^ uM &^M u!#, ~4!

whererQ and rQ8 are the input and the output state of t
channel while the trace over the environment is over all
vironment states. If the unitaries factor into independent u
taries acting on the memory and the combined state and
vironment, that is,Un,MEn

5Un,En
UM , then the memory

traces out and we have a memoryless channel. If the unita
reduce toUn,M , we can call it aperfectmemory channel, as
no information is lost to the environment.

The question remains as to what channels can be mod
by Eq. ~4!? From the Kraus representation theorem@8#, we
know that for any block of lengthn, then any channel acting
on then states may be modeled with a memory plus en
ronment of dimension at mostd 2n, for d the dimension of
the channel. However, the unitary operation may not be
torable into a product of operators acting in the form of E
~4!.

C. Examples of finite-memory channels

A naive ‘‘memory’’ channel can be considered by the tw
qubit channel given by the Kraus operators,A05 1

2 (I^ I),
and, A15 1

2 (sZ^ sZ), and can be modeled by using
memory state that is initially in theu0&^0u state, and is the
target of a controlled-NOT ~CNOT! operation by only two qu-
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bits before being reset to the initial state. However, this ch
nel is essentially just a memoryless channel in the hig
dimension space, transmitting qudits of dimension four, a
cannot therefore be considered useful as a model o
memory channel. This channel also does not fit into
model of Eq.~4! as the memory is erased separately af
every two qubits. All such channels which may be factor
into memoryless channels for some finite number of u
may therefore be described using the existing proper
known for memoryless channels.

A simple example of a perfect memory channel is an
tension of the qubit dephasing channel. For this chan
CNOT gates operate between the qubits going through
channel and a target memory state, initially given
u0M&^0Mu, which replaces the environment. The output sta
have the same reduced density matrices as if they had pa
through a memoryless dephasing channel, but the state
also correlated across channel uses, that is, a product i
state does not necessarily give a product output state. We
this channel the correlated dephasing channel.

Using the unitarySWAP gate to model a channel simpl
acts as a shift by a single state. Since for this ‘‘shift chann
theSWAP gate the unitaries act to increment the index for t
position of the input states, then on a block ofn inputs only
the last input state is not recoverable. Hence the transmis
rate for intact states for blocks of sizen is simply 121/n,
which approaches a noiseless channel in the limitn→`.

D. Channels with Markovian correlated noise

An important class of channels that may be represen
by the memory channel model are channels with Markov
correlated noise. A Markovian correlated noise channel
lengthn, is of the form,

L (n)r5 (
i 0 , . . . ,i n

pi nu i n21
pi n21u i n22

•••pi 1u i 0
pi 0

3~Ai n
^ •••^ Ai 0

!r~Ai n
†

^ •••^ Ai 0
† !, ~5!

where the setAi k
are Kraus operators for single uses of t

channel on statek @6#. The motivation for looking at Mar-
kovian channels is that the properties of typical sequen
generated from Markovian sources are well understood,
the typical sequences of errors generated in Eq.~5! will be
directly related to these typical sequences.

The correlated dephasing channel may be described u
the memory to correlate the dephasing error for each qu
that is, the probability of thekth qubit undergoing a phas
error is determined exactly by whether an error occurred
the previous qubit. Thus, for the correlated dephasing ch
nel with error operatorsA0n

5I(n) andA1n
5sZ

(n) , acting on

the nth qubit, the conditional probabilities are given b
pknu j n21

5d jk , with an initial probability of error given by

p05p151/2. This channel may be generated using the u
tary operation

Ui ,Muf ( i )&u0M&5uf ( i )&u0M&, ~6!
6-2
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QUANTUM CHANNELS WITH A FINITE MEMORY PHYSICAL REVIEW A 69, 012306 ~2004!
Ui ,Muf ( i )&u1M&5sZ
( i )uf ( i )&u1M&, ~7!

with an initial memory stateuM &51/A2(u0&1u1&). The
equivalence of the controlled phase gate in Eqs.~6! and ~7!
to the use of aCNOT with a memory initially in theu0M&^0Mu
state is obtained by notingUCPHASE5(I^ H)UCNOT(I^ H)
for H a qubit Hadamard rotation on the memory state. T
channel is asymptotically noiseless, as all states with an e
number of u1& ’s are invariant, and therefore this subspa
may be mapped onto by simply adding a single ancilla qu
The encoding map fromH ^ n to H ^ (n11), may then trans-
form states with even numbers ofu1& ’s to the same state
tensored withu0&, and those states with odd numbers ofu1& ’s
to these states tensored withu1&. The coded subspace o
H ^ (n11) is then noiseless. The rate of transmission throu
n11 uses of the channel is thereforen/(n11), which ap-
proaches unity in the limitn→`.

For a general channel with Markovian correlated noi
that is,pj u j 215pj u( j 21)( j 22)••• i for all i , j , the channel may
be generated using the model given in Eq.~4!, where the
unitary operator is given by,

Ui ,MEi
uf ( i )&u j M&u0Ei

&5(
k

Apku jAk
( i )uf ( i )&ukM&u j Ei

&.

~8!

The initial memory state determined by the values of
initial probability vector for the error operator
@p0 ,p1 , . . . ,pm#, for a family of m operators, by the rela
tionship

aW 5G21pW ~9!

for G the transition matrix with entriespj u i , and aW the
squares of the amplitudes for the initial memory stateuM &
5( jAa j u j M&. This is, of course, provided that the transitio
matrix is not singular. For a singular matrix we may utilize
different unitary operationV on the initial use of the channe
which will not change the asymptotic behavior of the cha
nel. We may also utilize a mixed initial memory staterM
5( ja j u j M&^ j Mu, instead of the pure state, without affectin
the behavior of the channel.

The derivation of the specific model for the correlat
dephasing channel in Eqs.~6! and ~7! differs from the pre-
scription given in Eq.~8!, in that it does not require the extr
environment. The unitary operation on the initial states p
duces orthogonal outputs, whereas in the general case
states for eachu j M& in Eq. ~8! may not necessarily be or
thogonal without the environment. If the output state fo
given u j M& in Eq. ~8! is orthogonal to all other outputs gen
erated by different initial memory states, then the final en
ronment state for this particular output can ‘‘overlap’’ an
does not need to be orthogonal to the other environm
states. This occurs in the correlated dephasing channel,
results in the channel requiring no environment at all. Ho
ever, it shall be shown that the behavior of these two diff
ent channel constructions is identical, as the actual size o
memory becomes irrelevant in the asymptotic limit, provid
it is finite.
01230
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The noisy channel described by Macchiavello and Pa
@6# may be described in the context of Eq.~8!, with the error
operators given by the identityA0n

5I(n) and the Pauli spin

matrices A1n
5sX

(n) , A2n
5sY

(n) , and A3n
5sZ

(n) , and the

transition matrix elements defined aspku j5(12m)pk
1md jk , wherem is a correlation parameter. The steady-st
probabilities for this transition matrix are given by the un
form distribution.

III. CAPACITIES FOR FINITE-MEMORY CHANNELS

Having generated a model for the channel, we must
dress whether such a model is instructive in obtaining cap
ity theorems for the channels the model represents. The
istence of a unitary representation of an interaction with
environment does allow the extension of results from mem
ryless channels which rely on similar arguments, such as
coherent information bound and the quantum Fano inequa
@9#.

A. Results for classical capacities

An upper bound on the classical information that may
sent through the memory channel is given by the Hole
bound@10#. The maximum mutual information generated b
tween sender and receiver, per channel use, forn channels is
then given by,

Smax
(n) 5 max

$pi ,r i %

1

n FSS (
i

piTrM@LM
(n)~rQ

i
^ rM !# D

2(
i

piS~TrM@LM
(n)~rQ

i
^ rM !# !G , ~10!

where for eachn, LM
(n)5Ln,M•••L1,M , is a channel, and the

asymptotic limit is achieved by takingn→`. The ensemble
of statesrQ

i 5rA
i is a set of states generated by the send

Alice, for unassisted communication, orrQ
i 5rAB

i is a set of
shared entangled states between sender, Alice, and rece
Bob, for entanglement assisted communication, with the
quirement thatrB

i 5rB . To reduce the number of subscript
the use of the notationr i[rQ

i for the signal states shall b
used for the rest of this section.

The argument for achieving this upper bound does
extend easily to the memory channel case. The problem
in the fact that the coding for the channel cannot be bro
up into blocks ofn uses, as the memory state may be e
tangled with the previous block and thus may not be ide
cal for each block.

The bound in Eq.~10! is achievable for a class of regula
Markovian correlated noise channels. The channels are
sumed to be representable by unitary Kraus operators~and
are therefore unital!, and have initial error probability distri-
butions equal to the steady-state probabilities. T
asymptotic use of the channel may be segmented into
proximate channels of lengthn. That is, by tracing out all
other states for each lengthn segment, we obtain a chann
where for a total lengthl @n we have L ( l )'L (n)

^ •••
6-3
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^L(n). From the theory of Markov chains, we know that t
approximate channel for a product state input is given fo
single use by

L (1)r'(
i n

p̃i n
Ai n

rAi n
† 5TrMLM

(1)~r ^ r̃M !, ~11!

where p̃i n
5 p̃i are the steady-state probabilities,r̃M is the

memory density matrix with thep̃i on the diagonal, andn is
taken to be suitably large. The derivations required for t
approximation are shown in the Appendix. Similarly, withn
large, two uses the channel are approximated by,

L (2)r' (
i n ,i n21

pi nu i n21
p̃i n21

Ai n ,i n21
rAi n ,i n21

†

5TrMLM
(2)~r ^ r̃M !, ~12!

with Ai n ,i n21
5Ai n

^ Ai n21
, andr a possibly entangled inpu

state across the two transmissions through the channel.
construction may be extended for arbitrary lengthsn. In the
case that the initial distributionpi 0

is equal to the steady

state distributionpi 0
5 p̃i , the approximations in Eqs.~11!

and ~12! become exact. This is true for all lengthsn, with
diagrM5diagr̃M always, where diagr is the density matrix
formed from the diagonal elements ofr. Therefore the
achievable rate is obtained immediately from theHolevo-
Schumacher-Westmoreland theorem@3,4#.

The correlated dephasing channel gives an easy exa
of the achievability of the capacity, as for this channel a
initial distribution is a steady-state probability. A rate equ
to the unassisted classical capacity is achieved using the
thogonal states$u0&,u1&% with a priori probability of pi
51/2 for this channel, and hence the limit is achieved in t
case whenn51. The entanglement assisted capacity for t
channelCE52 is, however, only achieved in the asympto
limit as the block sizen→`.

In the case that the initial error probabilities differ fro
the steady state, much of the derivation above is still ap
cable. From the convergence properties of regular Markov
sequences, we know that diagrM→ r̃M asn becomes large
where r̃M is the diagonal density matrix with eigenvalu
equivalent to the steady-state probabilities. Similarly, for a
d.0 there exists ann for which the total probability of the
atypical sequences of Kraus operators is less thand. This
follows from the behavior of regular Markovian sources
the Shannon theory@1#. The contribution to the stateL (n)r
when the initial probabilities are not the steady-state pr
abilities may therefore be small enough such that the bou
on the total probability of error may be made arbitrar
small asymptotically, although at present this remains
open question.

For any channel with a finite memory where the capac
equals the upper bound it may be seen that the exact na
of the memory has little effect on the asymptotic behavior
the channel. The correlated dephasing channel, where
possible constructions exist each with a different siz
01230
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memory state, is an example. To analyze the behavior
assume that Bob has access to the memory after the blo
sent, and as such he can measure the information inM as
well, then reset the memory to a given initial state before
next block. This gives an achievable rate,

R[ lim
n→`

max
$pi ,r i %

1

n FSS (
i

piL
(n)~r i

^ rM ! D
2(

i
piS„L

(n)~r i
^ rM !…G ~13!

< lim
n→`

max
$pi ,r i %

1

n FSS (
i

piTrM@L (n)~r i
^ rM !# D

2(
i

piS„TrM@L (n)~r i
^ rM !#…12 log2dMG ~14!

5Smax
(n) 1

2

n
log2dM ~15!

where Eq.~14! follows from Eq.~13! by strong subadditivity
and the factor 2 log2dM is an upper bound on entropy of th
memory state living in a space of dimensiondM . The bound
for the rateR of a channel generated from tracing both t
environment and the memory, is then sandwiched by
terms,nSmax

(n) 12 log2 dM>nR>nSmax
(n) , which would approach

the channel capacity for the channel including access to
memory, asn→`, for any finite-memory channel. The chan
nel capacity is thus only affected by the loss of informati
to the environment, and the loss of information into t
memory state may be seen to vanish in the asymptotic lim
For a perfect memory channel the channel will be asympt
cally noiseless, as was shown for the examples of the s
channel and the correlated dephasing channel.

B. Results for quantum capacities

The quantum capacities are determined by the maxim
asymptotic rates at which intact quantum states may be tr
mitted through a noisy quantum channel. The coherent in
mation bound@9,11# on the quantum capacity applies direct
to the case of memory channels. The role the memory p
in the coherent information bound may be seen by examin
the converse to the bound, the quantum Fano inequa
which is shown in the following section.

There exist a number of quantum capacities dependen
available additional resources. Primarily there is the un
sisted quantum capacityQ, the capacities assisted by class
cal side channelsQ1 ,QFB,Q2, denoting forward, backward
~feedback!, and two way classical communication, respe
tively, and, the entanglement assisted quantum capacityQE ,
achievable when sender and receiver share unlim
amounts of entanglement prior to communication tak
place. For memoryless channels the situation is slightly s
plified by the equivalenceQ15Q @12,13#, whether this holds
for channels with memory is not yet known.
6-4
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QUANTUM CHANNELS WITH A FINITE MEMORY PHYSICAL REVIEW A 69, 012306 ~2004!
The entanglement assisted quantum capacity is simply
lated to the entanglement assisted classical capacity by
use of quantum dense coding and quantum teleportation,
ing the equalityCE52QE @14#. The actual nature of the
channel does not affect this relationship.

C. The quantum Fano inequality

The quantum Fano inequality@9# is used to give a con
verse to any quantum coding theorems. The inequality
scribes the loss in fidelity of the transmitted states that occ
due to the exchange of entropy to the environment dur
transmission through the channel.

Taking a staterQ with a purification in terms of a refer
ence systemR, such that,rQ5TrRucQR&^cQRu, we define the
entanglement fidelity asF5^cQRurQR8 ucQR&, whererQR8 is
the total output state following the transmission ofrQ
through the noisy channel. The quantum Fano inequa
may be applied to the finite-memory channel by simply n
ing that the entropy exchange to the environmentE may be
rewritten as,

S~rE8 !5S~rMQR8 !<S~rM8 !1S~rQR8 !. ~16!

It is assumed here that the memory state is initially pure
it does not affect the derivation compared to a mix
memory state. This is because any finite-memory state
be purified with another finite reference system. This is a
equivalent to applying the Fano inequality usingS(rME8 ) as
the environment, and then utilizing the Araki–Lieb inequ
ity to obtainS(rQR8 )>S(rE8 )2S(rM8 ).

This leads to a Fano inequality for channels with a fin
memory,

SE< log2dM1h~F !1~12F !log2~d221! ~17!

for SE is the entropy exchange with the environment,F is the
entanglement fidelity,h(F)52F log2F2(12F)log2(12F)
the binary entropy of the entanglement fidelity,d the dimen-
sion of HQ , and dM the dimension of the memory. For
single channel use, this inequality may be weak, but in
case of multiple uses the inequality can become stron
This is due to the average entropy exchange for a large n
ber of channel usesN being given by

1

N
SE<

1

N
@ log2dM1h~F !1~12F !log2~d 2N21!#

'2~12F !log2d, ~18!

where the first two terms in the sum on the right-hand s
may be made arbitrarily small, given large enoughN. This
may be interpreted as the fact that a high entanglement fi
ity over many uses of the channel necessarily implies a
average entropy exchange with the environment. In
asymptotic limit the particular channel construction us
and the exact nature of any finite-memory state, are b
‘‘irrelevant’’ in terms of the bounds on the channel capac
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IV. CONCLUSION

A model for a class of quantum channels with memo
has been proposed. The class of channels that may be
scribed by this model include the set of channels with M
kovian correlated quantum noise. For these types of chan
it has been shown that the memory state required to gene
the channel is finite. These finite-memory channels h
similar asymptotic behavior to the quantum memoryle
channels, in that they may be essentially described by
loss of information to an initial product state environme
after a unitary interaction with the states transmitted throu
the channel. The size of the memory state is finite, and so
effect on loss from the channel is vanishing in the asympto
limit. The simplest demonstration is the case of perf
memory channels where no information at all is lost to t
environment and so achievement of the upper bound on
capacity for this class of channels will asymptotically give
noiseless quantum channel.

It has also been demonstrated that Holevo-Schumac
Westmoreland coding can achieve the capacity bound
channels with Markov correlated noise, where the Kraus
erators are unitary, providing the initial error probabilities a
equal to the steady-state probabilities for the regular Mar
chain.

The unitary representation of the channel also allows
derivations of bounds on the quantum capacity using
coherent information, and application of the quantum Fa
inequality to finite-memory channels.
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APPENDIX EVOLUTION OF THE CHANNEL
AND MEMORY STATE

1. Derivation of the channel from the unitary construction

Here it is shown that the diagonal elements of the mem
state determine the error operators for the next transmi
state. For the memory staterM5( j l l j l u j M&^ l Mu, the chan-
nel for the next transmitted state is given by

(
j l

l j l TrME@UQMEufQ&u j M&u0E&^0Eu^ l Mu^fQuUQME
† #

5(
j l

l j l TrMF(
km

Apku j pmu ld j l AkufQ&ukM&^mMu^fQuAm
† G

5(
j l

l j l d j l (
kmn

Apku j pmu lAkuf&^nukM&^mMun&^fuAm
†

5(
j

l j j (
k

pku jAkufQ&^fQuAk
†.

The error operators are determined by the diagonal elem
of the memory only, the off-diagonal matrix elements ha
no effect on the channel.
6-5
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2. Convergence of the diagonal elements of the memory state

The exact nature of the memory state itself depends on
states transmitted through the channel. Perhaps surprisi
however, the diagonal elements of the state areindependent
of the transmitted states. To show this we note for a mem
initially in the staterM5( j l l j l u j M&^ l Mu, the new memory
state after one iteration of the channel is

(
j l

l j l TrQE@UQMEufQ&u j M&u0E&^0Eu^ l Mu^fQuUQME
† #

5(
j l

l j l TrQF(
kmn

Apku j pmu ld j l AkufQ&ukM&^mMu^fQuAm
† G

5(
j l

l j l d j l (
kmn

Apku j pmu l^nuAkuf&ukM&^mMu^fuAm
† un&
y

l,

o

01230
he
ly,

ry

5(
j

l j j (
km

Apku j pmu j^fuAm
† Akuf&ukM&^mMu

5(
j

l j j F(
k

pku j^fuAk
†Akuf&ukM&^kMu

1 (
kÞm

Apku j pmu j^fuAm
† Akuf&ukM&^mMuG

if m5k then the unitaries giveAm
† Ak5I, therefore the diag-

onal elements ofrM undergo the process of a Markov chai
The off-diagonal elements do not necessarily vanish,
they do not affect the error operators acting on the transm
ted states. Only the diagonal elements of the memory s
affect the behavior of the channel.
t-
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