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Quantum channels with a finite memory
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In this paper we study quantum communication channels with correlated noise effects, i.e., quantum chan-
nels with memory. We derive a model for correlated noise channels that includes a channel memory state. We
examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For
the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for
certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the
asymptotic limit, and specifically, for perfectfinite-memory channel where no information is lost to the
environment, achieving the upper bound implies that the channel is asymptotically noiseless.
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[. INTRODUCTION and the correlation length of the channel, which may be de-
fined as the maximum number of channel uses for which the

Quantum communication through noisy channels has, t@oise is not conditionally independent. Any channel with a
date, mainly concentrated on quantum channels that arfénite correlation length may be generated by a channel with
memoryless. A memoryless channel is defined as a nois§ finité memory, according to this model. Although a physi-

channel where the noise acts independently on each symb "f"I interpretatipn of the quel is not necessary to achieve the
transmitted through the channel. In classical informatio oal of determining capacity theorems, it may give an under-

theory the discrete memoryless channel is well understood iﬁtandlng of the physical motivation. Over short times the

terms of the capacity of the channel. and the capacity of suc nvironment with which the transmitted state acts may be
1€ capacity . ! pacity ssumed to be arbitrarily large, with interactions between
channels is invariant under inclusion of feedback or share

q lati h O o th ¢ omponents of the vast environment essentially making the
random correlation§l]. The existing capacity theorems for ecoyery of the information impossible. The memory, how-

quantum channels have also concentrated on the memorylegge; may be interpreted as a subspace of the environment
case[2-5]. The calculation of capacities for classical chan-, hich does not “decay” over the time scale of separate uses

nels with correlated noise, amemorychannels, has had f the channel, and is therefore dependent on the previous
much more limited success. One type of classical memor;,ia of the channel.

channel for which the capacity is known is the channel with o physical example of a memory channel is the recent
Markov correlated noise. In this paper, we examine the quansroposal by Bosé7], which uses unmodulated spin chains to
tum extension of the channel with Markov correlated noiseansmit quantum information. In this case the initial state
In particular, we examine a model of a correlated noise chan,iroquced to the chain by Alice acts as both the input state
nel which utilizes unitary operations between the transmme%‘gd a part of the memory state for further uses of the chan-
states, an environment, and a shared memory state, and g5 45 it is assumed Alice replaces each transmitted state
termine some of the characteristics of such a class of quaith 4 new spin state after each use of the channel, while the

tum channels. remaining elements of the spin chain constitute both the

The fact that entangled alphabet states may increase thgsical channel, the memory of the channel, and the output
classical capacity of a particular correlated noise channel hagate \which may be removed from the chain for future de-
been showri6]. For the corresponding memoryless channelcodin’g by Bob.

the capacity is known to be additive, and hence entangled
input states cannot increase the classical capacity of the ||. A MODEL FOR QUANTUM MEMORY CHANNELS
memoryless channel over product state encoding.

The phrasédinite memoryis used to describe one aspect of ~ The Kraus representation theord®] is an elegant and
the model, a memory state of finite dimension. The finitenes®owerful method of representing quantum dynamics in two
of the memory is defined only in terms of the model used todifferent ways, as a sum over operators acting on the state, or
describe the correlated noise of the channel, and is not ne@ltérnatively as a unitary evolution of a state and environ-
essarily a physical consideration. The correlations betweefent. The unitary interaction model provides an intuitive
errors may be considered either temporally over each use ¢fnderstanding of open quantum systems, as well as provid-
a single channel, or spatially between uses of many paralldéNd @ method of calculation. In deriving our model of a quan-
channels. The dimension of the memory is determined by th&im memory channel, we try to preserve the useful aspects
number of Kraus operators in the single channel expansioHat such a unitary representation provides.

A. Unitary representation of memoryless channels

*Electronic address: gab30@cam.ac.uk A quantum channel is defined as a completely positive,
"Electronic address: stefano.mancini@unicam.it trace preserving map from the set of density operators to
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itself. Any such map may be represented as a unitary operaits before being reset to the initial state. However, this chan-
tion between the system state and an environment with ael is essentially just a memoryless channel in the higher
known initial state. For a single channel use the output statdimension space, transmitting qudits of dimension four, and
is given by cannot therefore be considered useful as a model of a
memory channel. This channel also does not fit into the

pG=TrelUge(po®|0e)(0e) Ube], (1) model of Eq.(4) as the memory is erased separately after

every two qubits. All such channels which may be factored

with pq the input state, an@g the output state. For a se- jnto memoryless channels for some finite number of uses

quence of transmissions through the channel, may therefore be described using the existing properties
) known for memoryless channels.
po=TrelUne - -U1g (po®|Og, - - - Og ) A simple example of a perfect memory channel is an ex-

tension of the qubit dephasing channel. For this channel
CNOT gates operate between the qubits going through the
channel and a target memory state, initially given as
=(Ap®---®A1)pq, (3 |Opm){Opn|, which replaces the environment. The output states

have the same reduced density matrices as if they had passed

where the stateo now represents &possibly entangled  through a memoryless dephasing channel, but the states are

input state across the channel uses, and the environmentalso correlated across channel uses, that is, a product input

X(Og, -0 NUlg - -Ule ] 2

state is a product StatGEl~ ~0g )= |051)® e ® |OEn>' state does not necessarily give a product output state. We call
this channel the correlated dephasing channel.
B. A unitary model for memory channels Using the unitaryswAp gate to model a channel simply

i acts as a shift by a single state. Since for this “shift channel”
One model of a quantum memory channel is where eackhe swap gate the unitaries act to increment the index for the
state going through the channel acts with a unitary '”teracposition of the input states, then on a blockmoinputs only

tion on the same channel memory stais well as an inde-  {he |ast input state is not recoverable. Hence the transmission
pendent environment. The backaction of the channel state Qyie for intact states for blocks of sireis simply 1—1/n

the message state therefore gives a memory to the channgjich approaches a noiseless channel in the limitee.
The general model thus includes a channel menidrand

the independent environments for each qihit Hence, D Channels with Markovian correlated noise

po=TruelUnme, - Uime,(po®@|MNM[®|0g - - - Og ) An important class of channels that may be represented
. : by the memory channel model are channels with Markovian
X(0g, - Og NUime, " Unme,] correlated noise. A Markovian correlated noise channel of

lengthn, is of the form,
=Try[Anm- - Arm(po® MMM, (4)

where pg and p, are the input and the output state of the AWp= 3> Pilin_qPin_qlin_p " PigligPig
channel while the trace over the environment is over all en- "
vironment states. If the unitaries factor into independent uni- X(A @ ®Ai0)p(AiT ®: - ®AiTO), (5)
taries acting on the memory and the combined state and en- !
vironment, that is,Un,MEn=Un,EnUM , then the memory )
traces out and we have a memoryless channel. If the unitarié’ghere the sef;, are Kraus opgratgrs for smgl'e uses of the
reduce toU,, , we can call it perfectmemory channel, as Cha_nnel on statk_[6]. The motivation for Iook_lng at Mar-
no information is lost to the environment. kovian channels is that the properties of typical sequences
The question remains as to what channels can be modeldgnerated from Markovian sources are well understood, and
by Eq. (4)? From the Kraus representation theorf8h we the typical sequences of errors generated in (Bpwill be
know that for any block of length, then any channel acting directly related to these typical sequences. _ '
on then states may be modeled with a memory plus envi- The correlated dephasing channel_ may be described using
ronment of dimension at most2", for d the dimension of the memory to correlate the dephasing error for each qubit,
the channel. However, the unitary operation may not be facthat is, the probability of théth qubit undergoing a phase

torable into a product of operators acting in the form of Eq.rror is determined exactly by whether an error occurred on
(4). the previous qubit. Thus, for the correlated dephasing chan-
nel with error operatorg\, =1 andA; =o{", acting on
C. Examples of finite-memory channels the nth qubit, the conditional probabilities are given by
pkn“nﬂ:&jk, with an initial probability of error given by
po=p1=1/2. This channel may be generated using the uni-
tary operation

A naive “memory” channel can be considered by the two
qubit channel given by the Kraus operatofg,=3(I®]),
and, A,=3(0;®05), and can be modeled by using a
memory state that is initially in the0)(0| state, and is the
target of a controlledkoT (CNOT) operation by only two qu- Ui ml o™y 0y =160 0y), (6)
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Ui,M|¢(i)>|1M>:Ug)|¢(i)>|1M>v (7) The noisy channel described by Macchiavello and Palma
[6] may be described in the context of E§), with the error
with an initial memory state|M>=1/\/§(|O)+|1)). The  operators given by the identit&(on=]1(“) and the Pauli spin
equivalence of the controlled phase gate in E@sand(7)  matrices A; =o{”, A, =0V, and A; =¢{", and the
to the use of @NOT with a memory initially in thd0y)(Om|  yransition matrix elements defined ”apk“ —(1- )Py

state is obtained by notingcppase= (1©H)Ucnor(1®H) + w3, whereu is a correlation parameter. The steady-state

for H a qubit Hadamard rotation on the memory state. The, qpapijities for this transition matrix are given by the uni-
channel is asymptotically noiseless, as all states with an eveqy ., distribution.

number of|1)'s are invariant, and therefore this subspace

may be mapped onto by simply adding a single ancilla qubit.
The encoding map frorﬂ—[®n to H®(n+1)’ may then trans- I1l. CAPACITIES FOR FINITE-MEMORY CHANNELS

form states with even numbers {f)’s to the same state Having generated a model for the channel, we must ad-
tensored withj0), and those states with odd numbersIfs  yress whether such a model is instructive in obtaining capac-
to @:‘2351? states tensored with). The coded subspace of ity theorems for the channels the model represents. The ex-
H is then noiseless. The rate of transmission throughstence of a unitary representation of an interaction with an
n+1 uses of the channel is therefané(n+1), which ap-  environment does allow the extension of results from memo-
proaches unity in the limio— . ryless channels which rely on similar arguments, such as the

For a general channel with Markovian correlated noisecoherent information bound and the quantum Fano inequality
that is, pjjj— 1= Pj|(j-1)(2)...; for alli<j, the channel may 9l.

be generated using the model given in E4), where the

unitary operator is given by, . .
yop 9 y A. Results for classical capacities

_ ONT _ A () . An upper bound on the classical information that may be
Uime, [6™) 1m0 ; PiAC ¢ k)i sent through the memory channel is given by the Holevo
(8 bound[10]. The maximum mutual information generated be-

o . tween sender and receiver, per channel usen fdrannels is
The initial memory state determined by the values of thethen given by,

initial  probability vector for the error operators
[Po.P1, - --.Pml], for a family of m operators, by the rela- 1 ;
tonship = max =18 2 Tl AR (poe pu)]
{pi '} '
a=T"1p 9

—Ei PiS(Trul ALY (pg® pw) 1) |, (10

for I' the transition matrix with entrieg;;, and a the
squares of the amplitudes for the initial memory st - i
=3,\a;|jm). This is, of course, provided that the transition where for eacn, Ay’=Any---Aqy, is a channel, and the
matrix is not singular. For a singular matrix we may utilize a @Symptotic limit is achieved by taking— <. The ensemble
different unitary operatiol on the initial use of the channel, Of Statespg=p), is a set of states generated by the sender,
which will not change the asymptotic behavior of the chan-Alice, for unassisted communication, ph=pjg is a set of
nel. We may also utilize a mixed initial memory staig shared entangled states between sender, Alice, and receiver,
:Ejaj|jM><j ul, instead of the pure state, without affecting Bob, for entanglement assisted communication, with the re-
the behavior of the channel. quirement thapg=pg . To reduce the number of subscripts,
The derivation of the specific model for the correlatedthe use of the notatiop'=pg for the signal states shall be
dephasing channel in Eq&) and (7) differs from the pre- used for the rest of this section.
scription given in Eq(8), in that it does not require the extra ~ The argument for achieving this upper bound does not
environment. The unitary operation on the initial states pro-extend easily to the memory channel case. The problem lies
duces orthogonal outputs, whereas in the general case tliethe fact that the coding for the channel cannot be broken
states for eachjy) in Eq. (8) may not necessarily be or- up into blocks ofn uses, as the memory state may be en-
thogonal without the environment. If the output state for atangled with the previous block and thus may not be identi-
given|ju) in Eq. (8) is orthogonal to all other outputs gen- cal for each block.
erated by different initial memory states, then the final envi- The bound in Eq(10) is achievable for a class of regular
ronment state for this particular output can “overlap” and Markovian correlated noise channels. The channels are as-
does not need to be orthogonal to the other environmergumed to be representable by unitary Kraus opergtomd
states. This occurs in the correlated dephasing channel, arde therefore unitgl and have initial error probability distri-
results in the channel requiring no environment at all. How-butions equal to the steady-state probabilities. The
ever, it shall be shown that the behavior of these two differ-asymptotic use of the channel may be segmented into ap-
ent channel constructions is identical, as the actual size of theroximate channels of length. That is, by tracing out all
memory becomes irrelevant in the asymptotic limit, providedother states for each lengthsegment, we obtain a channel
it is finite. where for a total length>n we have AV=AMg. ..
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@AM, From the theory of Markov chains, we know that the memory state, is an example. To analyze the behavior we
approximate channel for a product state input is given for assume that Bob has access to the memory after the block is
single use by sent, and as such he can measure the informatiovl s

well, then reset the memory to a given initial state before the

~ ~ next block. This gives an achievable rate,
A(l)pwiz pi ALPA =TryAR(p@py), (1D J

) 1
R= lim max—
n—ipip'}

S(Ei piA“‘)(p‘@pM))

wherep; =P; are the steady-state probabilitigs, is the
memory density matrix with thg; on the diagonal, and is

taken to be suitably large. The derivations required for this _ ) (n)( i
approximation are shown in the Appendix. Similarly, with Z PiSAT (P @ pw)) 13
large, two uses the channel are approximated by,
) - t < lim maleE p-TrM[A<”><p‘®pM>])
Al )p%in%,l Pilin_ 1 Pin A PAL ——— !
=AW (p@pu), 12 =3 STl A (' o p) )+ 2 logdy|  (14)
|

with Ai i =ALOA andp a possibly entangled input

state across the two transmissions through the channel. This ) 2

construction may be extended for arbitrary lengthsn the = Shax ;10920 (15
case that the initial distributiOIp)i0 is equal to the steady-

state distributionpi():f)i , the approximations in Eq41l)  where Eq.(14) follows from Eq.(13) by strong subadditivity

and (12) become exact. This is true for all lengthswith ~ and the factor 2 logly is an upper bound on entropy of the
diagpy, = diagpy, always, where diag is the density matrix Memory state living in a space of dimensidy . The bound
formed from the diagonal elements @f Therefore the for 'ghe rateR of a channel gener_ated from tracing both the
achievable rate is obtained immediately from tHelevo- ~ €nVironment and the memory, 18 then sandwiched by the
Schumacher-Westmoreland theor8v]. terms,nS;,+2 Iogz_dmanan o wh|_ch wquld approach

The correlated dephasing channel gives an easy examp‘i@e channel capacity for thg channel including access to the
of the achievability of the capacity, as for this channel anymemory, asi—c, for any finite-memory channel. The chan-
initial distribution is a steady-state probability. A rate equal€l capacity is thus only affected by the loss of information
to the unassisted classical capacity is achieved using the di@ the environment, and the loss of information into the
thogonal stateg|0),|1)} with a priori probability of p; memory state may be seen to vanish in the asymptotic I|m|_t.
=1/2 for this channel, and hence the limit is achieved in this™©F & perfect memory channel the channel will be asymptoti-
case whem=1. The entanglement assisted capacity for thiscally noiseless, as was shown for the examples of the shift
channelCg=2 is, however, only achieved in the asymptotic channel and the correlated dephasing channel.
limit as the block sizen— .

In the case that the initial error probabilities differ from B. Results for quantum capacities

the steady state, much of the deriva_tion above is still appli- The quantum capacities are determined by the maximum
cable. From the convergenc_e prop~ert|es of regular Markov'a'asymptotic rates at which intact quantum states may be trans-
sequences, we know that dipg—py asn becomes large, mitted through a noisy quantum channel. The coherent infor-
where py is the diagonal density matrix with eigenvalues mation bound9,11] on the quantum capacity applies directly
equivalent to the steady-state probabilities. Similarly, for anyto the case of memory channels. The role the memory plays
6>0 there exists am for which the total probability of the in the coherent information bound may be seen by examining
atypical sequences of Kraus operators is less thaithis  the converse to the bound, the quantum Fano inequality,
follows from the behavior of regular Markovian sources inwhich is shown in the following section.
the Shannon theorjl]. The contribution to the stat&(p There exist a number of quantum capacities dependent on
when the initial probabilities are not the steady-state probavailable additional resources. Primarily there is the unas-
abilities may therefore be small enough such that the boundsisted quantum capacity, the capacities assisted by classi-
on the total probability of error may be made arbitrarily cal side channel®;,Q®,Q,, denoting forward, backward
small asymptotically, although at present this remains arifeedback, and two way classical communication, respec-
open question. tively, and, the entanglement assisted quantum cap@xity

For any channel with a finite memory where the capacityachievable when sender and receiver share unlimited
equals the upper bound it may be seen that the exact natuagnounts of entanglement prior to communication taking
of the memory has little effect on the asymptotic behavior ofplace. For memoryless channels the situation is slightly sim-
the channel. The correlated dephasing channel, where twglified by the equivalenc®,=Q [12,13], whether this holds
possible constructions exist each with a different sizedor channels with memory is not yet known.
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The entanglement assisted quantum capacity is simply re- IV. CONCLUSION
lated to the entanglement assisted classical capacity by the
use of quantum dense coding and quantum teleportation, gi\ﬁa
ing the equalityCe=2Qg [14]. The actual nature of the
channel does not affect this relationship.

A model for a class of quantum channels with memory
s been proposed. The class of channels that may be de-
scribed by this model include the set of channels with Mar-
kovian correlated quantum noise. For these types of channels
it has been shown that the memory state required to generate
the channel is finite. These finite-memory channels have

The quantum Fano inequalif@] is used to give a con- similar asymptotic behavior to the quantum memoryless
verse to any quantum coding theorems. The inequality deshannels, in that they may be essentially described by the
scribes the loss in fidelity of the transmitted states that occur®ss of information to an initial product state environment
due to the exchange of entropy to the environment duringifter a unitary interaction with the states transmitted through
transmission through the channel. the channel. The size of the memory state is finite, and so the

Taking a statepg with a purification in terms of a refer- effect on loss from the channel is vanishing in the asymptotic
ence systerR, such thatpo=Trg| ¥gr){#orl, We define the limit. The simplest demonstration is the case of perfect
entanglement fidelity af =(y/qrlporl¥or), Wherepggis ~ memory channels where no information at all is lost to the
the total output state following the transmission p§  environment and so achievement of the upper bound on the
through the noisy channel. The quantum Fano inequalitgapacity for this class of channels will asymptotically give a
may be applied to the finite-memory channel by simply not-noiseless quantum channel.

C. The quantum Fano inequality

ing that the entropy exchange to the en\/ironnﬁmnay be It has also been demonstrated that Holevo-Schumacher-
rewritten as, Westmoreland coding can achieve the capacity bound for
channels with Markov correlated noise, where the Kraus op-
S(pé)ZS(p,/\AQR)SS(p,/\A)+S(p/QR). (16) erators are unitary, providing the initial error probabilities are
equal to the steady-state probabilities for the regular Markov
It is assumed here that the memory state is initially pure, a§nain-

it does not affect the derivation compared to a mixed The unitary representation of the channel also allows for

memory state. This is because any finite-memory state m?gerivation_s of bounds on the quantum capacity using the
be purified with another finite reference system. This is als¢Onerent information, and application of the quantum Fano

equivalent to applying the Fano inequality usiBpyg) as Inequality to finite-memory channels.
the environment, and then utilizing the Araki—Lieb inequal-

ity to obtainS(psr)=S(pg) — S(pw)- ACKNOWLEDGMENTS
This leads to a Fano inequality for channels with a finite  \while this work was undertaken, G.B. was supported by
memory, the Oxford-Australia Trust, the Harmsworth Trust, and Uni-
versities UK.

Se=<log,dy+h(F)+(1—F)logy(d>—1) (17
APPENDIX EVOLUTION OF THE CHANNEL

for Sg is the entropy exchange with the environménis the AND MEMORY STATE
entanglement fidelity, h(F) = —Flog,F —(1-F)log,(1-F) 1. Derivation of the channel from the unitary construction
the binary entropy of the entanglement fideldiythe dimen-
sion of Hy, anddy the dimension of the memory. For a i X
single channel use, this inequality may be weak, but in thotate determine the error operators for the next transmitted
case of multiple uses the inequality can become strongept@te- For the memory stafg, =2\, [im)(Iul, the chan-
This is due to the average entropy exchange for a large nunft€! for the next transmitted state is given by
ber of channel useN being given by

Here it is shown that the diagonal elements of the memory

%‘4 )\jITrME[UQME|¢Q>|jM>|OE><OE|<|M|<¢Q|U5ME]

1 1
NSEsN[Iogsz+h(F)+(1—F)Iogz(d2N—1)]
=> NjiTrw > \/pk|jpm\I5lek|¢Q>|kM><mM|<¢Q|A:n

~2(1—F)log,d, (18) I km
:; Ml@'l%ﬂ \/pk|jpm|IAk|¢><n|kM><mM|n><¢|Al1

where the first two terms in the sum on the right-hand side
may be made arbitrarily small, given large enoughThis
may be interpreted as the fact that a high entanglement fidel-
ity over many uses of the channel necessarily implies a low
average entropy exchange with the environment. In the
asymptotic limit the particular channel construction used,The error operators are determined by the diagonal elements
and the exact nature of any finite-memory state, are botlf the memory only, the off-diagonal matrix elements have
“irrelevant” in terms of the bounds on the channel capacity.no effect on the channel.

= 2 \jj Ek P Al ¢Q><¢Q|Al'
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2. Convergence of the diagonal elements of the memory state

:; )\jj%1 \/pk\jpmlj<¢’|Ax1Ak| &) km){my|

The exact nature of the memory state itself depends on the
states transmitted through the channel. Perhaps surprisingly,
however, the diagonal elements of the stateiadgependent =S\
of the transmitted states. To show this we note for a memory T
initially in the statepyy =X\ [jm)(Im|, the new memory

state after one iteration of the channel is
+ > \/pkljpmlj<¢|ATmAk|¢’>|kM><mM|

k#m
; N Troel Ugmel do)|] M>|OE><0E|<IM|<¢Q|U6ME]

—

; pk|j<¢|AlAk| #) k) {(Knl

if m=k then the unitaries giva&' A,=1, therefore the diag-
onal elements ofy undergo the process of a Markov chain.
The off-diagonal elements do not necessarily vanish, but
they do not affect the error operators acting on the transmit-

= .5 oo b(nlA ke Mm Alln ted states. Only the diagonal elements of the memory state
%: I ”I;n:n PP (A ) ) (M€ ¢ Al ) affect the behavior of the channel.

:%: AjiTrg %n \/pk\jpmll5jIAk|¢Q>|kM><mM|<¢Q|ATm
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