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Experimental characterization of continuous-variable entanglement
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We present an experimental analysis of quadrature entanglement produced from a pair of amplitude
squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions,
and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree
of Einstein-Podolsky-RoseiEPR paradox. We introduce controlled decoherence in the form of optical loss to
the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and
EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an
intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum
information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those
protocols.
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[. INTRODUCTION Although the coherent amplitudes of the entangled beams
and the correlation matrix together provide a complete char-
Entanglementis one of the most intriguing features of acterization of quadrature entanglement, they do not directly
guantum mechanics. It was first discussed by Einstein, PodAeld a measure for the strength of the entanglement. In past
olsky, and Rosen in 193BL] who used the concept to pro- experiments the strength of an entangled resource has been
pose that either quantum mechanics was incomplete or locaharacterized in the spirit of either the Sattiroger[10—12
realism was false. Since that seminal paper experiments hawe Heisenberg picture$8,9,11], and the characterizations
shown entanglement to be a real property of the physicadead to qualitatively different results. In the Sctiger pic-
world [2]. Interest in entanglement has grown recently due taure, a necessary and sufficient criterion for the entanglement
its apparent usefulness as an enabling technology in quantuot a pair of subsystems is that the state describing the entire
information and communication protocols such as quantunsystem isinseparable That is, it is not possible to factor the
teleportation[3], dense codind4,5], and quantum computa- wavefunction of the entire system into a product of separate
tion [6]. The specific properties of the entangled state utilizectontributions from each subsystem. Given that an observable
in each of these protocols play a highly significant role in thesignature of the mathematical criterion for wave-function in-
success of the protocol. It is therefore important to be able tgeparability can be identified, one can define degree of
perform complete and accurate characterizations of an availnseparability for the state, and use it to characterize the
able entanglement resource, which is the topic of this papestrength of the entanglement. In the Heisenberg picture, a
We report the generation and characterization of Gaussiasufficient criterion for entanglement is that correlations be-
continuous-variable entanglement between the amplitude antdveen conjugate observables of two subsystems allow the
phase quadratures of a pair of light beams; henceforth termestatistical inference of either observable in one subsystem,
quadrature entanglementhis entanglement has been re- upon a measurement in the other, to be smaller than the
ported previously7]; the purpose of this paper is to present standard quantum limit, that is, the presence of nonclassical
further experimental results, to more fully characterize thecorrelations. This approach was originally proposed by Ein-
entanglement, and to elaborate on the results presented stein, Podolsky, and Rosé¢h] and has since been termed the
that paper. It is well known that Gaussian entanglement caEPR paradox Similarly to the Schrdinger picture we can
be fully characterized by the coherent amplitudes of the eneefine thedegree of EPR paraddwr a given entangled state,
tangled beams, and a matrix containing the correlations beand use it to characterize the strength of the entanglement.
tween each of the variables of interést our case the am- For pure states the Schiinger and Heisenberg approaches
plitude and phase quadratures of both entangled beamseturn qualitatively equivalent results suggesting consistency
termed thecorrelation matrix To our knowledge, although of the two methods. However, when decoherence is present,
previously there have been a number of experiments ogausing the state to be mixed, differences can occur. For
continuous-variable entanglemef8—12), none performed quadrature entanglement wave-function inseparability may
this characterization. Given some reasonable assumptiom® identified using thénseparability criterionproposed by
about our entanglement, we do so here. Duanet al.[13,14]. We use this criterion to define the degree
of inseparability of our entanglement. To define the degree of
EPR paradox we use the criterion for demonstration of the
*Present address: the Institutr #itom-und MoleKuphysik, Uni-  EPR paradox as quantified by Reid and Drumm[tt, and
versita Hannover, 30167 Hannover, Germany. refer to this as the EPR paradox criterion. By introducing
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decoherence in the form of optical loss to both of our en-metric amplifiers[16,12,7. Ultimately all of these tech-
tangled beams we observe qualitative differences betweemiques yield Gaussian continuous-variable entanglement of a
the degree of inseparability and the degree of EPR paradoform that can be modeled simply and, as we will see in Sec.
Finally, we characterize our entanglement in terms oflll, quite generally, by combining two quadrature squeezed
mean sideband photon numbé¢@. We find that the mean beams with orthogonal squeezing on a 50-50 beam splitter.
number of photons per bandwidth per time in the sidebandideed, it is this technique that we adopted to experimentally
of an entangled state can be broken into four categories: thgenerate quadrature entanglement. In general, the two beam
mean number of photons reqwred_ to maintain the entanglespmter outputsa,(t) anday(t) are of the form
ment, to produce any bias that exists between the amplitude

and phase quadratures of the beams, to produce the impurity ~ el bx _ _
of the state, and to produce any impurity bias between the a(t) = —=[asq{t) +€ g, 41)], (2
amplitude and phase quadratures. For our entanglement, V2

these four mean photon numbers provide an equivalent but

more intuitive characterization to the correlation matrix. We - ety ,

attach less significance to the mean photon numbers resulting ay(t)= ﬁ[asqz,it)_el Tasqz A1), (€
from impurity than those required to maintain and bias the

entanglement, and sum them to give the total mean photon ~ ~ o
number per bandwidth per time due to impurity. Our en-Wheréasqg {t) andasq {t) are the annihilation operators of

tanglement could then be represented on a three-dimensiorfd€ iNPut squeezed beams,defines the relative phase be-
photon number diagram. On a plane of this diagram, wéween them.g, and ¢, are phase shifts that rotate the op-
directly assessed the level of success achievable for quantu@hators such thai,(t) and a,(t) are real, and throughout
teleportation, demonstration of the EPR paradox, and higiliS paper the subscripts andy denote the beams being
and low photon number dense coding when utilizing ourinterrogated for entanglement. To avoid frequency-dependent
entanglement. The photon number diagram can also be usé@IiS€ sources present on our optical fields we examine our
to assess the effect of techniques such as distillation an%ntangled states in the frequency domain. The transfer from

purification, which can be used to improve the quality of antime to frequency domain can be achieved simply by taking
entangled state. a Fourier transform. Henceforth, we perform this transform

and distinguish operators in the frequency domain by replac-
ing the symbol with a . For conciseness where possible
we omit the frequency domain functionality]. We have
already taken the time domain coherent amplitude of the our
In the time domain, a single mode of the electromagnetioptical fields to be real, but this property does not carry over
field can be fully defined by its field annihilation operator to the frequency domain. We denote the real and imaginary
a(t), which has the commutation relatiga(t),a’(t)]=1.  Parts of the frequency domain coherent amplitude, respec-

II. PRODUCTION OF CONTINUOUS-VARIABLE
ENTANGLEMENT

a(t) is non-Hermitian but can be expanded as tively, as a"=Re{a(w)}=2(X") and o =Im{a(w)}
=2(X7). We take the input beams to be amplitude squeezed
- SXF (1) +i X (1) states A%Xg,, <1 andA2XJ,<1) with equal intensities
a(t)=a(t) + 5 : (D [aggAt)=as41)], and setd==/2 so that the squeezed

quadratures are orthogonal at the beam splitter. The fre-
- ] ) » ) quency domain amplitude and phase quadratures of the out-
where_&X*(t) are the time dome_un Hermitian amplltg(tm— put beams< andy can then be expressed as
perscript+) and phasésuperscript-) quadrature noise op-
erators, andx(t)=(a(t)) is the coherent amplitude of the K =L(+Xt A Xt X TXC
field which we defi<ne tcz be real throughout this paper with- X =2 Xoqp 1 Xz sz 2 Koz @
out loss of generality. The commutation relation %

- = = (X X AR, X - 5
[X*(t),X (t)]=2i follows directly from the commutation v = 2 (Xsqz, i Xsgz 2" Xsqz. " Xsaz 2 ©

relation ofa(t) anda'(t). This relation places a fundamental \we see that as the squeezing of the input beams approaches
limitation on how well one quadrature of an optical beam .t {Azf(ngyl,Az)ﬂ(;qZ,}HO) the quadrature noise opera-
can be known, given some knowledge of the orthogon

guadrature. This can be expressed as the uncertainty prodU((:)trS of beams< andy approach

AZX T (t)A2X(t)>1, where the operator variances are de- ok S oG

® 2~£) <~ 2W . . P .V I OXy _’%(5quz,l+ 5quz,2)v (6)
noted byA<X=((5X)?). It is this uncertainty product that
makes quadrature entanglement possible.

e N N
Several techniques may be used to generate quadrature OXy — F 2(Xsgz 1+ Xsqz,2 @
entanglement. It was first generated by @ual. in 1992
[8,9] using a nondegenerate optical parametric amplifier, and® that
more recently using the Kerr nonlinearity in fibgfd], and Gt L G2
interfering the outputs of two below threshold optical para- ((6X; +6X,)%)—0, ()
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(8%, — 8X,)2)—0. 9) Chn= 3 (XX, XpX5) — (XX (1)

Therefore in this limit an amplitude quadrature measurement = 105X X! 4+ 5% sxk 12
on beamx would provide an exact prediction of the ampli- 2 Xm¥ 2 12
tude quadrature of beayy and similarly a phase quadrature it {kI}e{+,~}, {mn}le{x,y}. The symmetry in the
measurement on bearwould provide an exact prediction fqrm of cKl dictates that in generg =c'* . The corre-

of the phase quadrature of begnThis is a demonstration of |00 matrix is therefore fully specified by ten independent
the EPR paradox in exactly the manner proposed in the semkqefficients.

nal paper of Einsteiet al.[1]. Analysis of the entanglement  the entangled beams analyzed in this paper were gener-
in the physically realistic regime whef?Xs,,;,A°X ;4 ated in a symmetric manner by interfering two amplitude
#0 is more complex, and is the topic of the following sec-squeezed beams with/2 phase shift on a 50-50 beam split-

tion. ter (as discussed in the preceding sectiaand encountered
identical loss before detection. Furthermore, the squeezed
[ll. CHARACTERIZATION OF CONTINUOUS-VARIABLE beams themselves were produced in an identical manner in
ENTANGLEMENT identical optical parametric amplifief©PAS, with no cross

o . . . quadrature correlations present either within each beam indi-
Characterization of continuous-variable entanglement ISyidually or between the beams. When applied to E4jsand

in many ways, a more .complex e'nterprise than its discrete(5) these symmetries dictate that the amplitughase
variable counterpart. Discrete-variable entanglement can be

fully characterized by a density matrix of finite dimension quad[alture \{a+r|ances of E’Eamsaf‘f' y are equal APX*
(usually 4x4). In contrast, complete characterization of =A°Xy =A?X{, so thatCpr,=AX*; and that the beams
continuous-variable entanglement requires a density matrigxhibit no cross-quadrature correlations, that is, @gf
of infinite size. This problem has received considerable in—=0. The correlation matrix is then given by

terest in the quantum optics community with, as of now, no

++ ++
consensus on the most appropriate characterization method Cxk 0 Gy O
[17]. However, experimental realizations of continuous- O C.- 0 C.-

L . XX Xy
variable entanglement have, to date, been limited to a sub- Mc=| .. s , (13
class of states—those with Gaussian statistics—for which Cyy 0 Cx 0
well-defined characterization techniques do exist. In this sec- 0 Cyy 0 Cox

tion we introduce the characterization techniques used for
our entanglement, and discuss an interpretation separatinghere complete specification now only requires characteriza-
the mean number of photons per bandwidth per time in thgion of A2X*, A2X", (8K XS + 6% 8%y, and

entangled state into components required to maintain ang{ Y Yo

bias the entangled state, and to produce and bias the impuri 5;2 ?;()é+ui5\i;ylei>ixtc>>. cﬁgfgcl?éﬁggt?or?foahﬁseevg)rlij;n%zr?)ﬁhe
present in the stater,18]. q

squeezed and antisqueezed quadratures of the pair of
squeezed beams produced by recombining the entangled
beams losslessly and inphase on a 50-50 beam spilitter.

Any Gaussian continuous-variable bipartite state can be
fully characterized by its amplitude and phase quadrature B. The inseparability criterion
coherent amplitudes, , ayi , and the correlatiofior cova-
riance matrix. In generaly, and a; are easily character-
ized, and do not contribute to the strength of entanglemer]
exhibited by the state. In our experiment the entangled stat(gn
was produced from two squeezed vacuum states, so that tla |
amplitude and phase quadrature coherent amplitudes (izf

beamsx andy were all zeroa, =a, =0. We will therefore = o e inseparability criterion recently proposed by Duan
focus on the correlation matrix here. The correlation matriXg; o). [13,14) which provides a necessary and sufficient con-

A. Gaussian entanglement and the correlation matrix

Specification of the correlation matrix, although it does
ffer a complete description of the entanglement, does not
mediately provide a measure of whether bearaady are
tangled, or how strongly they are entangled. We use two
teria, both of which can be inferred from the correlation
atrix, to measure those properties. In this section we dis-

Mc is given by dition for Gaussian entanglement; and in the section follow-
cHt cr- ot ot ing_ we introduce the EPR_ paradox criterion proposed by
xx xx Xy Xy Reid and Drummon15] which has been used to character-
Cri. Cup CX_yJr Cyy ize entanglement in past experiments. It should be noted that
Mc= ctt ot~ ctft ot | (10 strictly speaking, a good measure of entanglement should
yx yx vy yy satisfy the conditions given in Refgl9,20, and stated ex-
Cyx Cy Cy, Cyy plicitly later in this paper. Neither the inseparability nor EPR

] ) o ] o criteria have been shown to satisfy these conditions, and in-
tween two of the variableX; , X, , X;,r , andX, ; defined  continuous-variable entanglement. However, both criteria
as considered here have strong physical significance, have a
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straightforward dependence on the strength of the quantution matrix it can be taken into the standard form, and the
resources used to generate the entanglement, and are coimseparability criterion can then be applied. However, we
monly used to gauge the strength of entanglement in experwill see in the following analysis that if a product form of the
ments. Throughout this paper we, therefore, refer to botleriterion is taken, it becomes valid for a wider range of cor-
criteria as measures of the strength of entanglement. relation matrices and indeed is then directly applicable to our
The inseparability criterion relies on the identification of entanglement. Let us consider the effect that restrictiaBs

separability with positivity of theP-representation distribu-  and(16) have onA2X;" . ExpandingA2X;~ we find

tion of the state. Duaet al.[13] showed that through local
linear unitary Bogoliubov operations any bipartite Gaussian

2y * **
. . . ns . C . .
state can be transformed so that its correlation matrix has the AZKE =K2AZXC + Y2 Y XESXE)
standard form K2 c=* y
Cy |
++ ++
Cyx 0 ny 0 C;yi_lc++ C;xi_ - 2|C++
0 C., 0 C,., = ++ xx T -+ yy ~ Xy
M= - Vo (14) Coc =1 Cyy —1

Cht 0 C o0
0 Cy 0 C

(20

where the values oF, are restricted by the conditions =2[V(Co ~1)(Cyy ~ D= [Cy 7]

_ Crr—-1 Cr -1
Col =1 Cp —1 s + \/ Al \/ e (21)
yy XX

++ T~ ’
ny -1 ny -1 Y

and A comparison of Egs(21) with restrictions(15) and (16)
reveals that transforming a general bipartite Gaussian state
\/(c;fx+ — 1)(Cy+y+— 1)-— |c;x+y+|= \/(c;x— —-1)(C,, 1) into the standard form for which the inseparability criterion

of Eq. (17) is valid equatesA®X;” and A2X; (A2X;'
=A25(f). The inseparability criteria can therefore be
Given that the state is in this form, they showed that thetquivalently written in the product form

inseparability criterion
= = 1
\/Azx,*Azx,<(k2+ F) (22)

—[Cyy |- (16)

AKX+ AKX <2 17

1
k2+P

is a necessary and sufficient condition for the presence dft this form however, the criterion is insensitive to equal

o+ local squeezing operations on bearmandy. This was not
2 - -
Eg;asnglemenﬁm], whereAX; are the measurable correla the case for the sum criterion, where it was necessary that

restrictions(15) and (16) forbid those operations. The prod-

crr skt 2 uct form of the inseparability criterion is therefore valid for a
AZKE = | kexE— =2 y (18) wider set of correlation matrices. Indeed we find that validity
! X |szy:| ’ of the product form only requires one restriction on the form

of the correlation matrix, rather than the two in E¢kb) and
andk is a parameter that compensates for bias between sukt6). This restriction can be shown to be
systemsx andy and is given by

fe L\ [ U4 - o AZX;
= Cier 1) = ny 1 (19 C)J/ry+cxx _C;rerny = W(C;y+_c>:rx+)
Ciwx —1 Ciwx —1 !
2+
In fact, Duanet al. showed that if the state under interroga- T A /A X (Coo—Cu)
tion is separable satisfaction of criteriéh7) is impossible AZK e

for any arbitraryk. From an experimental perspectikean
then be thought of as a variable parameter. Satisfaction of the
criterion for anyk is a sufficient condition for entanglement.

A comparison of the form of the correlation matrix de- Since for our entanglemer€,,"=C,," and C,, =C,,~
scribing our entanglemefEg. (13)] with the standard form [see Eq.(13)], we see that this less stringent restriction is
of Duanet al. [Egs. (14)—(16)] reveals that, in general, we satisfied. The correlation matrix describing our entanglement
cannot directly apply the inseparability criterion of Efj7).  given in Eq.(13) is of the same form as that in EL4),

Of course, after a complete characterization of the correlatherefore the product form of the inseparability criterion is

(23
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directly valid for our entanglement. To provide a direct mea-inference of that variable in sub-systgnto better than the
sure of the strength of the entanglement we define the degrestandard quantum limit. Between the amplitude and phase

of inseparability quadratures of a pair of optical beams this is quantified by
_ _ the product of conditional variancgs5], we therefore define
VAZX[AZX] the degree of EPR paradog,
e e 2 A%
E=AZX APXyy s (27)

normalized such that beamsandy are entangled if<<1.
For entanglement produced as described in Sec. Il thehere the EPR paradox is demonstrated §erl and the

expression forZ becomes considerably simpler. The en-quadrature conditional variancAszf(jy are given by

tangled beams are produced on a 50-50 beam splitter, fur-

thermore, prior to detection they encounter only linear optics

i - o oL (X X, )|?
and incur equal loss. There is, therefore, symmetry between AZKE = AZKE— (X y i 28

the quadratures of beamsandy, so thatC;,~=C, " . In xly AP
this case we see from E@L9) thatk=1. Equation(24) can
then be written

cy'

= ~ :Cii_ y 29
T= AL AKX, (25) x T oxs (29

XX

whereAz(A)Xty is the minimum of the variance of the sum or
difference of the operatdd between beams andy normal-
ized to the two-beam shot noisedzéxiy= min((ﬁ@x

2 2 . .
*00,)7/2. This measure of entanglement in terms of thewheregi are experimentally adjustable variables. Satisfac-

product of sum and difference variances between the beana%n of the EPR paradox criterion between two beams is a

has been used previously in the literat{i?d]. sufficient but not necessary condition for their entanglement.

of Xveiif;ﬁ?stgrﬁﬁtfﬁemgﬁg Ef;?;fjgiO;i(zjoihnesr:n;realbniI;[thecfrci)trez- his criterion has been used to characterize the strength of
P P P Y entanglement in several previous experimggts11].

ria, and the photon number diagram. It can be shown from . : .

Eqgs.(4), (5), and(25) that for entanglement generated from a Itis relazltj\iely eza}s_y to SZhAOXV thazltﬂf?r pure input squeezed
pair of uncorrelated squeezed beams as detailed in Sec. ftates {A X542, A Ksgz, 1A Ksq A Xsq, 2=1) and equal
and with equal optical loss for beamsandy, Z can be optical loss for beamg andy, the dependence &f on de-

expressed as a function of the overall detection efficiepcy €ction efficiency is given by

=min((8X; —g* 8X;)?), (30)
gt

as
T=nA%X] & (1—7) (26) E=4| 1—n+ 271 2
7 e e ” W(Azf(;qz, aveh 1/A2>A(:qz,ave_2)+2
where we define the average of the input beam squeezing as (32)
AZX S e (AP S, - AZX S, )12, We see that so long as

the average squeezing of the two beams used to generate tNetice that whenp=0.5, £=1, independent of the level of
entanglement is below oneAE)A(;qZ, ws<1), thenZ<1. So squeezing. This_ de'fine_s a bpgndary such thag>#0.5 the'
beamsx andy are entangled for any level of input squeezing. EPR paradox criterion is satisfied for any level of squeezing,
Notice that even as; approaches zero, for any level of and if 7<<0.5 it can never be satisfied. This is a striking
squeezingZ remains below unity. We see that the entangle-contrast to the inseparability criterion which, as we showed
ment is robust against losses at least in the sense that lo§&lier, is satisfied for any level of squeezing and any detec-

alone cannot transform an inseparable state to a separatji@n efficiency. The reason for this difference is that the in-
one. separability criterion is independent of the purity of the en-

tanglement (i.e., independent of A2XJ,, A?X,,, and

C. The EPR paradox criterion AZX S, A*X o, 2, a property that the EPR paradox criterion

The concept of entanglement was first introduced by Eins> VY sensitive to. Optical loss changes the purity of the

stein, Podolsky, and Rosen in 1988, They demonstrated entanglement and therefore affects the EPR paradox and in-

than an apparent violation of the Heisenberg uncertaint eparability criteria d|fferently. However, r.f7:.1 the mea- .
principle could be achieved between the position and mo_ured _entangl_ed state |_s pure, anAd+both c_rltena are monotoni-
mentum observables of a pair of partic[@g]. This apparent caIIyAlncreasmg functions OfAZngz, ave iN the range 0O
violation has since been termed tB®R paradoxDemon- ~ <A?X(, o<1, with E=T=1 atA®?XJ,, ,,& 1. Therefore,
stration of the EPR paradox relies on quantum correlationé the limit of pure measured entanglement, the inseparabil-
between a pair of non-commuting observables, so that meaty and EPR paradox criteria become qualitatively equiva-
surement of either observable in sub-systemallows the lent.
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D. The photon number diagram lier, some fraction ofﬁom is required to maintain the

Applications have been proposed for quadrature entanglestrength of the entanglement. A contribution is also made by
ment in the field of quantum informatid23,24]. For almost  the impurity of the squeezed beams used to generate the
all of these applications, a pure entangled state is desireghtanglement; and by the decoherence experienced by the
[25]. Due to the unavoidable losses in any real system howstate after production. Of course, the photons in a quadrature
ever, a perfectly pure entangled state is unachievable. It igntangled state are indistinguishable from one another so that
therefore essential to characterize the effect of impurity ory gefinite separation of photons into distinct categories is not
the outcome of any application of entanglement. We have,ossiple. This separation is possible however, when only the
seen already that impurity has different effects on the degreeaf\,emge number of photons within a quadrature entangled
of inseparability and EPR paradox. It may not be such &40 ner bandwidth per time is considered. The strength of

surprise therefore, that the effect of impurity varies fromy, . oianglements) dictates a minimum average number of
application to application. To illustrate the point we consider

two well-known potential applications related to quantumPhotonsnm, per bandwidth per time that are required to
information, unity gain quantum teleportatijn6,26—2¢, ~ Maintain the entanglement. The remaining photons (can

and dense coding5,29. We analyze the performance of average be separated into photons that are present due to
these applications as a function of the purity of the entanglebias between the amplitude and phase quadratures of the en-

ment, and its strength inferred from the inseparability critetangled beams,,;,s, and excess photons that are the result of

rion. the impurity of the entanglement, ess

tA mlce fea:ure of some dlhscrete—var'llable measures of an £ entanglement that is symmetric between bersd
entanglement resource, such as von Neumann enfrifiy y such as is analyzed in this paper, the average number of

lati is that th ionall —
and relative entropy30J, is that they vary proportionally _excess photons per bandwidth per timg..sscan be found

with the size of the resource, that is, if the number of en e .
tangled photon pairs doubles the value of the measur y considering the lossless interference of the two entangled
eams in phase on a 50-50 beam splitter. In this case the

doubles. This is not the case for the inseparability criterion. . .
P y tput beamg¢labeled with the subscripts “outl” and “out2”

In fact, as the strength of the entanglement increases, t Id exhibi i ith d d
inseparability criterion approaches zero. Alternatively, in a'e'® would exhibit squeezing with squeezed gquadrature

manner analogous to discrete-variable entanglement me¥ariances —of AXJ, o, =A%, and  AZXgy, o
sures, we can examine the average number of photons pefAzf(;iy, respectively. From Eq(25 we see that the
bandwidth per time required to generate the entanglemenitrength of our entanglemefitdepends only on the squeez-
resourcg 18]. The average number of photons per bandwidthing of these output beams. Any impurity in the entanglement
per time in the sideband of an optical beam is given by  causes the output beams to be nonminimum uncertainty
({Azxg—qz, outAZXs_qz, outl*AzX;qz, outéxzxs_qz, out}>1)' To de-

—
n(w)=(a'(w)a(w)) termine the average number of photons in the entangled state

=L((XT=iX7)(XT+iX)) due to impurity,Neycess WE Can simply compare the mean
L s oo oo number of photons in the entangled stajg, to the number
=1 [{((XT))H{(XD)) XX =X"XT)] that would be in the state if it was perfectly purgy,
=|a"|?+|a” [P+ AKX+ AKX - 2). (32 _ _
Nexcess™ Miotal™ Npure (35

We see that with only vacuum in the sideband X *

A2 — + _ - —

=A X =1 anda~ =0, so no phgtons are present. If the =Nt Ny Noure. (36)
state is squeezed, however, theAX" +A%X~>2 always,

and therefore1>0. As the squeezing improves the average, can be thought of as the average number of photons per
number of photons in the state increases. Since entanglemefingwidth per time required to generate two pure squeezed
may be generated by interfering a pair of squeezed beams Vaams with the same level of squeezing as the two output
can see that to maintain an entangled resource of a giVefeams. WhenZ=1 no entanglement is present between
strength(or a givenZ) will also require some nonzero aver- peamsx andy, and no squeezing is required. We therefore
age number of_pho_tor?s. The mean number of phptons N A 1 =0 aNd M= Neycesst Nuime. FOT the remainder of
entangled stat@yq IS just the sum of the number in beams this paper we only consider the more interesting situation
x andy, when entanglement is present, restricting ourselve< to

<1. In this case since the two output beams have squeezed

quadrature variances @f’Xy., and A’X;.,, respectively,

= H(AZKT +AZX +AZKT + AKX~ 1, (34 Npuelis given by

FtotaI:FX—i_Fy (33

where since the coherent amplitudes and a; have no

relevance to the correlation matrix characterizing our en- - zl AZXE 4 1 +A2XT o+ _

. pure 4 Xty 23+ Xty 2&—
tanglement, and are easily accounted for, we have neglected Xy Xy
contributions from them setting, =, =0. As stated ear- (37)
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NexcessCan then be directly obtained from EG6).

Fpu,e can be separated into a component due to bias in the
entanglemenﬁbiaS and a component required to maintain the
entanglement i,

Npure™ Nmint Npias- (39

Nmin IS directly dependent on the strength of the entangle-
mentZ, and is therefore independent of local reversible op-
erations performed individually on beamsndy. The pho-
tons resulting from bias between the amplitude and phase g, 1. An entangled state can be represented on a three-
quadratures of the entangled state, however, may be comdimensional photon number diagram.

pletely eliminated by performing equal local squeezing op-

erations on beams andy [18]. After performing these op-

separation explicitly here, since the exact distribution of ex-

erationsnp, becomes cess photons is of much less significance than that for the

AZKC ) photons necessary to generate. the entanglement. Ir)cluding

o1 g2AZK, + 1 Xty 9 1 this extra parameter, and assuming the entanglement is of the
pure 4 xxy g2AZX !, g2 AKX, '’ same form as is discussed earlier, the correlation matrix of
- i (39 Sec. Il A can be fully characterized by these photon humber

parameters.
whereg is the gain of th_e squeezing operations. It is rela- ap analogy can be made between _th}ﬁn_ﬁexcessplane
tively easy to show thany,. is minimized, and therefore of the photon number diagram and the tangle-linear entropy
Npias IS €eliminated, wheng?= Azf(;iy/Azkxly, and we analysis often performed for discrete-variable entanglement

find that [31]. In both cases the entanglement is represented on a
plane with one axis representing the strength of the entangle-
1 1 ment (W, for continuous variables, and the tangle for dis-
Nin== \/Azf(:tyAzf(;iy+ -1 crete variables and the other axis representing the purity of
2 VAZ)”(;in)A(X—iy the state fq,cessfOr cONtinuous variables and the linear en-
tropy for discrete variablgs Unlike the discrete-variable
:E I+E 1 (40) case where the region of the tangle-linear entropy plane oc-
2 7 ' cupied by physical states is bounded, the set of continuous-

o variable entangled states spans the emtjfg—nq,cessplane.
where n,i, is the minimum mean number of photons perThe difference occurs because the discrete quantum states
bandwidth per time required to generate entanglement of analyzed on the tangle-linear entropy plane involve a finite
given Strength[_ We see thaFmin is Comp|ete|y determined and fixed number of phOtonS. This restriction limits both the
by 7 and is monotonically increasing &-0. The average Strength of the entangleme(the tangl¢ and the purity(the
number of photons present in the entanglement per bandinear _en_tropy Continuous-variable entangled states have no
width per time as a result of bias can then also be determinegtich limitation. -
aSHbias:Fpure_Fmin- It is interesting to consider whether,,, is a good mea-

We can now Separate the average photon number pélure of entanglement. Forma”y, a gOOd measure of the en-
bandwidth per time in a quadrature entangled state into threi@nglement of the state, E(p), must satisfy the following
categories; photons required to maintain the entanglemesfiteria[19,20: o
N, photons produced by bias between the amplitude and (&) E(p)=0 if and only if p is separable.

hase quadratures... and excess photons resulting from (2) E(p) is left invariant under local unitary operations.
P qua Fhias, P 9 (3) E(p) is nonincreasing under local general measure-

impurity Nexcess All three average photon numbers can bements and classical communication.

calculated from measurements af2X,, A%X,, and (4) Given two separate entangled staggsand p, such
A2X.,. An entangled state can then be conveniently andhatp=p1®pz, E(p)=E(p1) +E(p).

intuitively analyzed on a three-dimensional diagram as Duanetal.demonstrated that=1 if and only if the state
shown in Fig. 1, Witty,, Npias: aNdNeycesfOrming each of — Under interrogation is separable. It is clear then that=0
the axes. Note that, in a manner analogous to that performdfiand only if the state under interrogation is separable, and
for Hpure above, Ne,cessMay be broken into two parts: the therefore_crit_erion(l) is true for Nyin - Furthermor_e, since_
average number of photons required to produce the impuritgharacterization of requires that the state correlation matrix
of the entanglement, and the average number of photons gebe taken into a standard form, bathandn,;, are invariant
erated by bias between the amplitude and phase quadraturesder local unitary operations so that criteri@ is true. As
caused by the impurity of the state. We do not perform thisyet we have no conclusion about the validity of criteri@n
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for nin. It seems likely that it is valid since an increase in It is interesting to note that in the extrema mf,cess—0

Nmin iS €quivalent to an increase in the quantum correlatiorRNdNeycess 2, the degree of EPR paradox becomes a func-
between fields andy, which should not be possible through tion of only n,,;,, and can be written in terms of the degree
local general measurements and classical communication. Fof inseparability as

nally, given two separate entangled states the minimum av-

erage number of photons per bandwidth per time required to 4772

generate both states is simply the sum of the minimum av- Encecs 0= m (45
erage number of photons per bandwidth per time required to

generate each stat@in="Nmin, 1+ Nimin,2, SO that criterion(4) & =472 (46)

excess

is valid. We see therefore that,;, satisfies three of the four

criteria for a good entanglemenF measure, and aIthqugh W@/ see again that for pure entaﬂglemeﬁéxéess: 0) 7<1

have not shown so here, we believe it is likely to satisfy th‘?mplies £<1. In contrast, for extremely impure entangle-
remaining criterionnmi_n is a pqrticul_arly _elegant measure of ant (n_excess—>°°), we see that to observe the EPR paradox
entanglement due to its physical significance. requiresZ<0.5. This result has the consequence that if the
squeezed beams used to generate the entanglement have

squeezed variancdd?X,, ,A?XJ, <0.5, then no matter

We can represent the inseparability and EPR paradox Crigy |arge the antisqueezed variances, the EPR paradox can
teria on the photon number diagram. As can be seen from Eqye gemonstrated.

(40), for entanglement symmetric between beamasdy the
deg_ree of inseparability can be expressed solely as a function 2. Quantum teleportation and the photon number diagram
of Npin s

1. Entanglement criteria and the photon number diagram

Quantum information protocols are also representable on
the photon number diagram. In this paper we consider two

T~ - 2
I=nmint 1= V(Npin+1)°— 1. (4D \ell-known examples, quantum teleportation and dense cod-

The same is not true for the EPR paradox criterion. Thiéng_'l_h taint inciole of ¢ hanics fund
result is unsurprising; we have already found that the EPR € uncertainty principle of guantum mechanics funda-

paradox is sensitive to the impurity of the entangled staténenta”y limits bOth. the ability to measure gnd to reconstruct
which can be expressed in terms@‘ The degree of quantum states. Since teleportation requires both measure-
XCess

; ; ment of the original state, and then reconstruction at a distant
EPR paradox can be obtained from the amplitude and phasg ayion, it was therefore thought that teleportation was also
guadrature conditional variances between beamsdy [see

: fundamentally limited by the uncertainty principle. In 1993,
Eq.(27)]. We see from Eq(28) that the amplitude and phase |, yever, Bennetet al. [3] discovered that by using en-

quadrature conditional variances are defined ®3X; ,  tangled photon pairs in the measurement and reconstruction
A25<yi, and|{8X; 5xyi>|. For simplicity here we assume the processes perfect teleportation could be facilitated. Their
entanglement is symmetric between amplitude and phageroposal has been generalized to the continuous-variable re-
quadratures. This assumption is true for the entanglemergime [26,28, and a schematic of the continuous-variable
analyzed in this paper at sideband frequencies above arous¢heme is shown in Fig. 2. A number of methods exist to
5 MHz, and has the consequence that there are no photons¢haracterize the success of continuous-variable teleportation

the entangled state due to biag.=0. We then find that  (for @ summary see Reff33]); in this paper we consider the
most well-known measure, the fidelity of teleportation. Fi-

A2X = AZ)A(; — Azg(; — Az)‘(; — Azg; :Htotal+ 1, (42 delity measuresAthe state overlap between the teleporter input
| iy and outputp,,, states, and is given by
and can expres 6X, 8X; )| in terms ofNyi, andNgycessas A
f:<¢in|PoutJ ¢in>- (47)

SX5 8X )| = Neycess V(Nimin)2— 1. 43
(X, %y )| =Nexcess V(N “3 F=1 implies perfect overlap between the input and output

The degree of EPR paradox can then also be written in term¥ates and therefore perfect teleportation, without entangle-
of N andn. ment the fidelity is limited taF<0.5, andF=0 if the input
min excess

and output states are orthogonal. Again assuming that the

Zﬁtexcesgﬁmin+1_ /(FminJr 1)2-1]+1 2 en_tanglement is unbiasedTb(as_=O), Fhe fidelity of unity
E= — — . (49 gain coherent-state teleportation using quadrature entangle-
Nexcess Mmint 1 ment[26,28 may be expressed as
Since we have assumed thagiaszo, the degee o_f EPR 1
paradox can be represented as contours omghe-Ngycess F= 1+7° (48)

plane of the photon number diagram. This representation is
shown in Fig. 1%a); the curvature of the contours demon- We see that the success of the teleportation protocol depends
strates again the sensitivity of the EPR paradox to impurityonly on the degree of inseparability. This results in vertical
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Quadmture
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|

FIG. 3. Schematic of a dense-coding experiment. BS, beam
splitter; AM, amplitude modulator; PM, phase modulator.

beam encoded with informatiome,coging N both the

FIG. 2. Schematic of a quantum teleportation experiment; deSqueezed state and entangled state based dense-coding
tectors labeled with the symbots and — are amplitude and phase schemes some of these photons must be used to generate the
detectors, respectively. BS, beam splitte_r; AM, amplitude mOdU|aquantum state, and the remaining photons can be used to
tor; PM, phase modulator; LO, local oscillator. encode signals. For the squeezed state scheme the number of

) ) photons in the squeezed state is given by
efficacy contours for teleportation when represented on the

photon number diagram, as can be seen in Figb)13he 1
shading in Fig. 16) indicates the area of the photon number nSqZ:Z
diagram for which the more stringenb cloningteleporta-

tion limit is not satisfied 32]. Note that, if the teleportation oo .
protocol was operated at nonunity gain, the protocol wouldVhereA“Xqq,is the variance of the squeezed quadrature. The
become sensitive to impurity and the teleportation efficacyemainingnencoding~ Nsqz PhOtoNs are used to encode signals
contours would be curved. Although the nonunity gain re-on the squeezed quadrature of the beam. This results in a
gime i_s significant for quantum in_formation protocols suchchannel with signal variance given by2ésqzz4(anmdmg

as optimum entanglement swappif®8], we will not con- ~Nyy), and noise variance given byzﬂqu:Aszqz_ The

sider it here. squeezed state channel capacity is then

I —2) , (50
A“Xsqz

3. Dense coding and the photon number diagram 4(F i —n. )
encoding sq

Dense coding was first proposed by Benmetal. [34] in Csqz=10gz| 1+ A2 (51)
1992, when they showed that by utilizing shared entangle- sqz
ment between the sendiri@lice) and receiving(Bob) sta-  optimizing the ratio of the mean number of photons per
tions, a single communication channel can achieve a high&fandwidth per time used to generate squeezing and the mean
information tran_sfer rate than is physically possible using the,umber of photons per bandwidth per time used to encode
same resources.e., the same number of photorisut with-  he signal we arrive at the optimum squeezed state channel

out entanglement. capacity[5]
An upper bound to the information transfer rate of a band-

width limited Gaussian information channel is given by the _ "
Shannon capacity? [35], quz, opt— |092(1+2nencod|na- (52)

Let us now consider the dense-coding scheme. Again, we
make the assumption that the entanglement is symmetric be-
tween the amplitude and phase quadratures. In this case we
can use the amplitude and phase quadratures as independent
channels, and find that the noise variance of each channel is

C= |092(+R), (49)

whereR=A2S/A%N is the signal-to-noise ratio of the chan- “' o o o _
nel, with A28 and A2N being the variance of the signal and 9'V&" by A. Nepr=T= A Xy = Aoy - Moot 3S defmed_
noise, respectively. Dense coding in the continuous-variabIQreV'.OUSIY is the average number of photons Per bandwujth
regime was first proposed by Braunstein and Kimble in 2000 time in the entangled state before encoding of any sig-
[29], and a detailed discussion may be found in R&f. A Nals.- These photons are split evenly between the two en-
schematic diagram of the proposal of Braunstein and Kimbldéangled beams, therefore on averaggcoding~ Ntota/2 Pho-
is given in Fig. 3. tons per bandwidth per time are available for encoding. The
In this paper we restrict ourselves to the comparison ofMmplitude and phase quadrature signal variances are both
the channel capacities achievable using a squeezed state ahén given byA?Sgpr= Nencoding™ Ntotaf2, Which is attenuated
using a dense-coding protocol based on quadrature entangley a factor of 4 when compared to the squeezed state signal
ment. To obtain a fair comparison of the two schemes wevariance. This attenuation is the result of two effects, a factor
define the total average number of photons allowed in thef 2 arises because the signal photons must be shared be-
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tween the amplitude and phase quadratures of the entanglq ng.yag |« 70308Bs n H p DS,
beam, and another factor of 2 is due to the 50-50 bean| Laser - S o RS
splitter required before measurement. We then obtain the en q MC e
tangled state channel capacity v
Opump N2
AZ“SEPR 70/30\ V o I] /50/50135
CEPR: |092 1+ I (53) BS - -
/homodyney \
r]encoding_ (nmin+ nexcesgl2
=log,| 1+ (54)

Hmin+ 1-v (Hmin-" 1)2_ 1

When the average number of photons available to the

dense-coding protocol is largend,coging— ), the dense-
coding channel capacity becomes independent of the numbe
of photons present due to impurity in the entanglement. This
is shown in Fig. 1&) which plots contours of the ratio

Cepr/Csq, for large Nencoding We see that in this limit the
dense-coding channel capacity exceeds the optimum achiev-

able squeezed state channel capacityrigf>0.25. When
the average number of photons available to the dense—codi;g
protocol is small however, the dense-coding channel capaci
can be extremely sensitive to impurity. This is perhaps not a
surprise, since every photon that exists in the entangled stadgO:LiNbO; crystal and an output coupler. One end of the
is one less that may be used to encode signals. Clearly, in tHdgO:LiNbO; crystal had a 10 mm radius of curvature and
limit that Nencoding= (Nmin+ Nexces/2, NO photons remain to  Was coated for high reflection at 1064 and 532 nm. The other
encode signals, and therefdBgpg="0. The ratioCepr/Csq, end was flat and antireflection coated at both 1064 and 532
— — nm. The output coupler had a radius of curvature of 25 mm,
it was antireflection coated for 532 nR{;,~7%), and had
92% reflection of 1064 nm; 23 mm separated the
MgO:LiNbO; crystal and the output coupler, this created a
IV. EXPERIMENT cavity mode for the resonant 1064-nm light with a 2

The preceding section described methods presently avaiv@ist at the center of the MgO:LiNk(rystal. A 29.7-MHz
able to characterize continuous-variable entangled states. f|€ctro-optic modulation was applied to the MgO:LINDO
particular we discussed the correlation matrix which can b&rystal, detecting and demodulating the transmitted light in-
used to fully characterize Gaussian entanglement, the inseptgnSity at 29.7 MHz provided a Pound-Drever-H@iDH)-
rability and EPR paradox criteria, and a representation ofyP€ error signa[36] which was then used to control the
entanglement in terms of sideband photon numbers. In thi§€ngth of the SHG resonator. The SHG provided 370 mW of
section we describe the methods used in our experiment t®32-nM light with 50% conversion efficiency.
generate a pair of entangled beams. We then present experi- 1 N€ remaining 1064-nm beam was transmitted through a

mental results for each entanglement characterization techigh finesse ring cavity to reduce its spectral noise. This
nique over the frequency range from 2.5 to 10 MHz. wecavity was based on a LIGO advanced gravitational wave

examine the effect of loss on the inseparability and EPRNOdE cleaner desigi87]. It consisted of two closely spaced
paradox criteria demonstrating qualitative differences, andl@t 45° angled input/output coupling mirrors, ca 1 m

use the photon number diagram to predict the efficacy of Oupadiu_s (_)f curvature mirror coated fo_r high reflection at nor-
entanglement in the quantum information protocols intro-Mal incidence, and had a total cavity length of roughly 50
duced earlier. cm. All three mirrors were coated by Research-Electro-

Optics with part-per-million tolerances. Since the reflectivity
of the angled input/output couplers depended on the polar-
ization of the input field, the mode cleaner had two modes of
The laser source for our experiment was a 1.5-W monoeperation, high finesse and low finesse, which had approxi-
lithic nonplanar ring Nd:YAGyttrium aluminum garnétla-  mate finesses of 2000 and 170, and corresponding linewidths
ser at 1064 nm. Its output was split into two beams as showbof 300 kHz and 3 MHz, respectively. Above these linewidths
in Fig. 4; one of these beams was mode matched into apectral noise from the laser is significantly attenuated on
second-harmonic generat@®HG) to produce 532-nm light transmission. In our experiment we utilized the low finesse
to pump a pair of OPAs, and the other was used to seed thmode to maximize the power transmitted through the cavity,
OPAs and for homodyne detection of our entangled beamsand found that the output was quantum noise limited at 6
The SHG consisted of a 7.5-mm-long hemilithic MHz. The laser frequency was locked to the mode cleaner

v ,50/50 BS

FIG. 4. Experimental schematig.andy, respectively, label the
tangled beams. B®BS), 50-50(polarizing beam splitterj/2,
If-wave platei and 6, phase shift.

for small?encodmgis shown as a function af ,;; andNgycesdN
Fig. 15¢), and indeed the contours are strongly curved.

A. Generation of quadrature squeezing
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using tilt locking[38], a phase-sensitive spatial mode inter- 2 | “\h ‘ ' ' ' ' ' ]
ference technique analogous to PDH locking. Unlike PDH @ 0 Lt Quantum noise limit
locking this technique introduces no modulation sidebands, 5_il
an advantage in our case since modulation sidebands cané 2t
transfer power into the squeezing spectrum produced by our g-3r
OPAs. 2-4r

. . é . . .

7
Frequency (MHz)

The mode cleaner output beam was split to provide seeds 4
for our two OPAs, as well as homodyne local oscillators for
interrogation of the two entangled beams. The OPAs were F|G. 5. Squeezing spectra observed from the two OPAs, normal-
identical in design to the SHG, except that the output couized to the quantum noise limit.
pling mirrors were 96% reflective at 1064 nm. They were

each seeded through the high reflective surface of thﬁhase was controlled at/2 by actively balancing the power
MgO:LIiNbO; crystal. A 30.5-MHz electro-optic modulation jn the two entangled beams. Each entangled beam was inter-
was applied to each crystal which allowed the length of bothtogated in a balanced homodyne detector that could be
OPA resonators to be actively controlled. The 532-nm lightiocked to detect either its phase or amplitude quadrature. The
was split into two parts and used to pump the OPAs. Thisfficiency of the detection process was86%, with loss
results in either amplification or deamplification of the seedcontributed equally by the homodyne visibility and the pho-
depending on the relative phase between the pump and seeddetector efficiency. Measured spectra of the amplitude and
The 29.7-MHz modulation on the SHG crystal produced aphase quadrature variances of the two entangled beams are
29.7-MHz phase modulation on both 532-nm pump beamsshown in Fig. 6. Both spectra are greater that the quantum
This caused a modulation of the amplification of the OPAsnoise limit over the entire range of measurement, a necessary
that could be used to control the relative phase between thererequisite for entanglement. Due to the symmetric arrange-
pump and seed. By detecting the reflected light from eaclment of our experiment the spectra are identical, so that the
OPA, and demodulating at 29.7 MHz we generated erromassumption of symmetry made in Secs. IlID 1, llID 2, and
signals to lock each OPA to either amplification or deampli-Ill D 3 seems reasonable.

fication. When locked to amplification, the 1064-nm output We analyzed the correlations between beanasmdy by
exhibited phase squeezing, and when locked to deamplificaneasuring the amplitude and phase quadrature sum and dif-

tion it exhibited amplitude SqueeZing. PICkup across the Copference VarianceAz)A(ery . The gain between the two homo-
per plates used to electro-optically modulate our OPAgjyne detectors was verified to be unity by encoding large
couples noise directly into the phase quadrat.ure of the outpWorrelated phase modulations on beatendy, throughout
beams. We therefore chose to lock to amplitude squeezingne experiment these modulations were suppressed on sub-

We balanced the power in the squeezed beams by adjusti ; v
the OPA seed powers and analyzed the squeezing using hri!o%1Ct|0n by greater than 30 dB. Spectram?rXXiy were then

modyne detection with roughly 84% efficiency. The homo_obtained by taking the minimum of the sum and difference
dyne detector could be locked to detect either the amp”tudvarlances between homodyneandy with both homodynes

or phase quadrature of the input beam. Throughout this p focked to either the amplitude or phase quadratures. These

. . spectra were normalized to the vacuum noise scaled by the
per, locking to the amplitude quadrature was enabled througcombined power of the two homodyne local oscillators and

a phase modulation on the input beam, and locking to th?he two entangled beams, and are shown in Fig. 7. At fre-

Eiihin the detactor was balanced. Allof the Spaetia presentofENcies above 5 MHz both the amplitude and phase quadra-
: P p ure sum and difference variances are identical and well be-

in this paper were obtained from homodyne detector outpu ;

photocurrents analyzed in a Hewlett-Packard E4405B specl,gw the level expected between a pair of coherent states of
trum analyzer with 300-kHz resolution bandwidth and
300-Hz video bandwidth over the frequency range from 2.5
to 10 MHz. Each spectrum was at least 4.5 dB above the
detection dark noise which was taken into account. Typical «
amplitude squeezing spectra for each of our OPAs are showr+@
in Fig. 5. The OPAs produced near identical spectra with an < ¢f
optimum of 3.7 dB of squeezing at 6.5 MHz. Both spectra +p;5‘
are degraded at low frequencies due to the resonant relax-&& 4
ation oscillation of our laser, and at high frequencies due to a3r

the bandwidth of the OPAs. 2 umntumriose Himit

10
9
8

-
T

B. Generation and measurement of entanglement 3 4 5 6 7
Frequency (MHz)

We generated quadrature entanglement by combining our
two amplitude squeezed beams with relative phase/afon FIG. 6. Frequency spectra of the average amplitusiX(") and
a 50-50 beam splitter as discussed in Sec. II. A visibility ofphase A2X~) quadrature variances of the individual entangled
(98.7+0.3)% was observed for the process, and the relativéeams normalized to the quantum noise limit.
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FIG. 7. Frequency spectra of the amplitude and phase quadra-
ture sum and difference variances between beanady. (a)

AKX, and(b) AZX ., .

N S

5 6 7 10
Frequency (MHz)

the same power. At lower frequencies however, the symme-

try between the amp“tude and phase quadratures |S broken FIG. 8. Frequency Spectra of the Same'quadrature correlation
This effect is due to the relaxation oscillation of the lasermatrix elements between beamsndy. (@) Cyy" . (b) Cyy .

which is common mode, and therefore correlated, between | | )

the entangled beams. As shown in Sec. Il the amplitud&0 Cxy can be obtained from our measurements of the av-
quadratures of our entangled beams were anticorrelated, agfiage amplitude and phase quadrature variances, and the am-

the phase quadratures were correlate?k.". . was therefore plitude and phase quadrature sum and difference variances,
. . X XLy T+ 29t A%+ i i
obtained by summing the amplitude quadrature photocurCxy = FAXxyFA X++- Figure 8 shows the resulting
rents from homodynes andy, and the contribution from the Spectra. We see th&l,,~ andC,,  are negative and posi-
relaxation oscillation was therefore also summte%ﬁ(;w on live, respectively, throughout the range of the measurement.

the other hand was obtained by subtracting the phase quadr-glbis is a characterization of the correlation and anticorrela-
ture photocurrents from the homodynes, and so the contrib lon of the phase and amplitude quadratures, respectively,

tions from the relaxation oscillation canceled. We see the?€tWeen beam)_s andy. .
h ih d ing f 2%+ g d ikl For every sideband frequency, assuming that entangled
that with decreasing frequency“X,.., degrades quickly, phoamsy andy are interchangeable and that there are no

whereasA®X, ..., remains roughly constant. The slight deg- cross-quadrature correlations, a correlation matrix describing
radation ofAzf(;ty at frequencies below 4 MHz can be at- our entanglement can be constructed from the curves in Figs.
tributed to small differences in the response of the two ho6 and 8. Here we take two examples, the correlation matrices
modyne detectors so that the relaxation oscillation was noef the sidebands at 3.5 and 6.5 MHz. Extracting the data
quite perfectly canceled. directly from the figures we obtain the correlation matrices

C. Characterization of the correlation matrix 6.2 (0) 53 (0
) . . . . (0) 6.1 (0) 5.7
As discussed in Sec. Il A, the correlation matrix provides M 35 MHz_ (59)
. . . . C
a complete characterization of Gaussian entanglement. Given 53 (0) 6.2 (0)
the assumptions that entangled beaxandy are inter- (0) 57 (0) 6.1
changeable and that there are no cross-quadrature correla-
tions the correlation matrix is completely specified throughand
measurements ofC,," =A2X* and C,,"=3(8X, 6K,
e v 3.3 (0) 29 (0)
+ 06X, 6Xy ). Measurements o€~ for our entanglement
are presented in Fig. 6. To obtaBy,” we expandA?X,. V65 MHz_ (0) 33 (0) 29 60
. s c 29 (0) 33 (0)]"
. SX, + 68X,
Azxiiy:M 55 (0) 29 (0) 3.3
where all experimentally determined values have an associ-
AZ)“<;+A2)A(; o ated statistical error of=0.05. The bracketed values are
=fi<5x; oX, ) (56)  fixed as a result of the symmetry assumptions made in Sec.

Il A and are therefore not experimentally determined. We

AZKE £ 58K 0K + 06X, 05 ) (57)

Ciiicii

XX Xy -

(58)

can now examine whether the inseparability criterion origi-
nally proposed by Duamt al. [Eq. (17)], and the product
inseparability criterion of Eq(24) can be used to directly
analyze the strength of our entanglement. The correlation
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FIG. 9. Frequency spectrum of the degree of inseparatility 0.7;‘;

between the amplitude and phase quadratures of our entangled stats

> Freque?lcy (Mﬁz)
matrix given here is of the form required for both criteria

[see Eq.(14)]. It remains, solely, to determine whether the  FIG. 10. Conditional variance of the amplitut® and phaséb)
restrictions imposed by each criterion are satisfied. For th@uadratures of beam given a measurement on beamof that
original criterion to be valid Eqg15) and(16) must be true. —duadrature.

Since our entangled beams and y are interchangeable

Cxx =C,y , so that Eq(15) is always true. Equatiofil6)  given knowledge of another variablX{ say. We charac-

on the other hand, is true at 6.5 MHz, but not at the lowetterize it here in a similar manner to that used to characterize
frequency of 3.5 MHz. The original inseparability criterion the sum and difference variances. This time, however, rather
can therefore be used to characterize the strength of our eghan being fixed to unity, the gain between the two homo-
tanglement at 6.5 MHz, but not at 3.5 MHz. For the productdyne photocurrents was optimized to minimize the measured
criterion to be valid, Eq(24) must be satisfied. Sindg,,~  variances; and the normalization was performed with respect
=iji , for our entanglement at all frequencies, we see thato vacuum fluctuations scaled by only one homodyne local
indeed the product criterion is valid for all sideband frequen-oscillator and entangled beam. The resulting amplitude and
cies. Of course, once the correlation matrix describing theohase quadrature conditional variance spectra are shown in

entanglement is fully characterized, it can be transformegtig. 10. We see that bomz)‘(fly are below unity for the

into the standard form of Duaet al., and subsequently either majority of our measurement range. This implies that a mea-
inseparability criterion can be used. This, however, involvessyrement performed on beaynwill prepare beanx in a
many more measurements on the entangled state than agueezed state, and therefore that nonclassical correlations

required to simply determine the product form of the crite-gxist between the two beams. At 6.5 MHz we obtained the
rion. Therefore, if a characterization of the inseparability Ofconditional variances A2X" =0.77+0.01 and A2X
the entanglement is all that is required, the product form is:0 76+0.01. Notice that a);gain .th; émplitude quaé‘r)é\ture

preferable. spectrum is strongly degraded at low frequencies due to the
relaxation oscillation of our laser, whereas the phase quadra-
D. Characterization of the inseparability ture is unaffected by it.

and EPR paradox criteria Taking the product of the amplitude and phase quadrature

A spectrum for the inseparability criterion of EQS5) was conditional variances yielgjs the degree of EPR paradox. Fig-
obtained from the amplitude and phase quadrature sum arf€ 11 presents the resulting frequency spectrum. We observe
difference variance spectra in Fig. 7. This spectrum is showA" Optimum ofé=0.58+0.02<1, which is well within the
in Fig. 9. We see that beams and y were entangled at '€gime for observation of the EPR paradox.
frequencies within our measurement range higher than 2.8 We know from the discussion in Sec. lll that the degree of
MHz. As with the other spectra presented in this paper, th&PR paradoxis highly sensitive to entanglement impurity,
strength of the entanglement is degraded at low frequencies
as a result of the relaxation oscillation of our laser, and at 12— T
high frequencies due to the bandwidth of the OPA cavities. |
The optimum degree of inseparability was achieved at 6.5

MHz, where we observed X, =0.44x0.01 for both the £
amplitude and phase quadratures. This resulted in a degree o< 0.9¢

1 i

) - <
inseparability ofZ=0.44+0.01. +Sosl
Characterization of the EPR paradox criterion requires 2<

measurements of the amplitude and phase quadrature condi< -7

tional variances between beamandy. As can be seen from 0.6-
Eq. (29), these variances can be inferred from the correlation
. ++ ++ . 0.5 L L L L L L
matrix elementsC,,~ andC,,~ . However, since these con- 3 4 5 6 7 9 10
Frequency (MHz)

ditional variances were easily measurable from our experi-
mental setup, we measured them directly. The conditional g 11. Frequency spectrum of the degree of EPR paradox

variance measures the uncertainty of one variaﬁLé gay) between the amplitude and phase quadratures of our entangled state.
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FIG. 12. Comparison ofa) EPR and(b) inseparability criteria g al
with varied detection efficiency. The symbois, A, andO label
three separate experimental runs. Fera systematic error was 2r
introduced by the detection dark noise when optimizing the EPR 0 3 4 5 3 ] 3 ) 10
paradox criterion gain. The solid fit ifa) includes this, the dashed Frequency (MHz)
fit is the result expected if the error was eliminated, and agrees well
with runs A and O. The solid line in(b) is a theoretical fit, the FIG. 13. Frequency spectra of the axes of the photon number

dashed line is the result predicted by the fit@ There were four  plot. (a) Ny, (B) Npias, @Nd(C) Neycess

sources of unavoidable loss in our system: |, Detection loss; Il,

Homodyne loss; lil, optical loss; IV, OPA escape loss. tons required increases, peaking rat,=0.35 around 6.5
MHz, before dropping off as the frequency moves above the
bandwidth of our OPAs. From Fig. I3 we see that over the

We interrogate this qualitative difference by introducing Malority of the measured spectrum on average very few pho-

equal loss to the two entangled beams. Each entangled bedff's are present in the entanglement as a result of bias be-
was passed through a wave plate and polarizing beam splitté‘?’een the. amplitude and phas?. guadratures. Ph_otons result-
before detection as shown in Fig. 4. Rotating the wave plat g from _b'aS or!Iy be(_:ome significant at frequenmes_ _b_elow >
allowed us to vary the amount of loss introduced. We char! Hz. This b|asA|s a direct consequence of the sensitivity and
acterized both the degree of EPR paradox and the degree pmunity of A>X,. andA®X,., respectively, to our lasers
inseparability at 6.5 MHz for a number of loss settifiggve  relaxation oscillation. Figure 18) shows that throughout the
plate settings For each measurement the spectrum analyze$Pectrum of our measurement the majority of the photons
was set to zero span and averaged over ten consecutiesent in our entanglement are there as a result of impurity.
traces. Figure 12 summarizes these measurements. We déefact from the fit to the degree of EPR paradox in Fig. 12
that the experimental dependences on loss for BatndZ ~ We see that at 6.5 MHz the most significant contribution to
agree very well with the theoretical curves obtained fromthe impurity of our entangled state is optical loss. Therefore
Eqgs.(26) and(31). As discussed in Ref13], no matter what €ven relatively small levels of logsuch as 33%facilitate a
the loss, the inseparability criterion always holds. We findsignificant transfer of mean photons per bandwidth per time
however that the EPR paradox criterion fails for loss greatefrom n,, t0 Ne,ess If additional sources of phase noise,
than 0.48. In fact as observed earlier, it is impossible for thesuch as guided-acoustic-wave Brillouin scattering for fibre
EPR paradox criterion to hold for loss greater than or equasqueezing41,40, are present in the process used to generate
to 0.5. The error bars on the plots can be attributed to uncesqueezing, the average number of photons present due to
tainty in the loss introduced, small fluctuations in the localimpurity can become extremely large. The spectrangf,,
osmllatpr powers and, for the EI_DR pgradox criterion, error |rh—excess andeiaS obtained for our entanglement are mapped
the optimization of the electronic gain. onto the photon number diagram in Fig. 14.

The photon number diagram can be used to analyze the
efficacy of an entangled state in quantum information proto-

The photon number diagram introduced in Sec. lll D andcols. As discussed in Sec. Il D, Fig. 15 shows efficacy con-
Ref. [7] provides a physically intuitive representation of tours of the degree of EPR paradox, quantum teleportation,
continuous-variable entanglement. The measured spectra fand high and low photon number dense coding, onnthe
A2X* andA2X,.., shown in Figs. 6 and 7 may be translated —ng,.csplane of the photon number diagram assuming that
into the three axes of this diagramyfy,, Nexcess @NdNpiad  Npias= 0. Sinceny,,e~0 for our entangled state over most of
using Eqgs.(36)—(38) and (40). The resulting spectra are the measured spectrum, we project the curve shown on Fig.
shown in Fig. 13. At low frequencies there is no entangle-14 onto then,;,=0 plane and display it in Fig. 15. We can
ment, and from Fig. 1@ we see that correspondingly no then obtain estimates of the optimum efficacy that could be
photons are required to maintain the entanglement,( achieved with our entangled state in various quantum infor-
=0), with increasing frequency the average number of phomation protocols, and estimates of the frequencies at which

whereas the degree of inseparabilifyis independent of it.

E. Representation of results on the photon number diagram
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FIG. 14. Representation of the entangled state on the photon
number diagram.

the optima occur. From Fig. 1& we find that the optimum
expected degree of EPR paradox for our entanglement is
roughly £=0.68 and occurs around 6.6 MHz. In Sec. IV D
we experimentally obtained a value &% 0.58+0.02 which

is significantly lower. This difference is evident because the 5t/
experiment was operating more effectively when the mea- ’
surements of the degree of EPR paradox were made. Indeed 0
this can be seen in Fig. 12, where the degree of inseparability (d)
predicted from our degree of EPR paradox results is some- a0l |
what better than the result we obtained directly. Due to sen-
sitivity of the degree of EPR paradox to loss and impurity,
this difference completely explains the discrepancy. From
Fig. 15b) we see that the optimum teleportation fidelity
achievable with our entanglement is approximatefy
=0.695 and would be observed near 6.2 MHz. The en-
tangled state analyzed here was recently used to perform
guantum teleportation; due to nonideal effects such as optical
loss and detector dark noise an optimum fidelity Bf
=0.64+0.02 was observefi39]. The low photon number
efficacy contours for dense coding shown in Fig(clhave FIG. 15. Two-dimensional slice of the photon number diagram
an extremely strong dependence on the average number %frﬁ- _0. The contours on the plots afe) the degree of EPR
excess photons carried by the entanglement; accordingly the, b2 T P ) 9 _

. : ) radox,(b) the fidelity of quantum teleportatiori¢) and (d) ratio
optlmqm ratio of dense coding to squeezed state Chann.%fdense-coding channel capacity to optimum squeezed channel ca-
capacities would occur at 10 MHz where our entanglementis _ . — B — B .
most pure, in our case this never exceeds unity. However, Ity fOr Nencoging=3-375 ANhencocing=125, respectively.

discussed in Sec. Il D 3, increasing the total average number _ o _
of photons allowed in the Sideband;eécodina causes the State characterized in this paper could yield a channel capac-

. . ity marginally better than that achievable with optimal
dense-coding protocol to become independemntQf.ss We squeezed state encoding.

find that when a large number of pho_tons per_bandwidth per
time are available to encode signalSe{coding> Nexcesy the

optimum achievable ratio of channel capacities is
Cepr/Csq7~1.02 and occurs near 6.3 MHz, so that in the In conclusion, we have generated a strongly quadrature

large photon number limit dense coding using the entangleéntangled state from amplitude squeezed beams produced in

—
W
T

Nexcess

—
(=]
T

W
T

V. CONCLUSION
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two independent OPAs. The correlation matrix of the statament, the bias between the amplitude and phase quadratures
was characterized. We gauged the strength of the entanglef the state, and the states impurity. We calculated efficacy
ment in the spirit of the Schainger picture by measuring contours for the degree of EPR paradox, quantum teleporta-
the degree of inseparability, and in the spirit of the Heisention, and dense-coding protocols on the photon number dia-
berg picture by measuring the degree of EPR paradox, witgram, and used them to predict the level of success achiev-
optimum results 0ofZ=0.44+0.01 and£=0.58+0.02, re- able for each protocol using our entanglement.

spectively. Through the introduction of controlled loss to

each entangled beam, qualitative differences between the be-

havior of the degree of inseparability and the degree of EPR ACKNOWLEDGMENTS
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