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Simple criteria for the implementation of projective measurements with linear optics
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We derive a set of criteria to decide whether a given projection measurement can be, in principle, exactly
implemented solely by means of linear optics. The derivation can be adapted to various detection methods,
including photon counting and homodyne detection. These criteria enable one to obtain no-go theorems easily
for the exact distinguishability of orthogonal quantum states with linear optics, including the use of auxiliary
photons and conditional dynamics.
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I. INTRODUCTION

Joint orthogonalprojection measurementsare an essentia
tool in quantum communication. The most prominent e
ample is the Bell measurement that is used, for instance
quantum teleportation@1#. The canonical way to perform
these measurements relies on signal interaction. An exam
is the optical interaction of light pulses. The latter is partic
larly relevant for practical applications, since light, traveli
at high speed through an optical fiber and allowing for
efficient broadband information encoding, is the most con
nient medium for the implementation of quantum commu
cation protocols. In discrete-variable implementations ba
on single photons, the required strong nonlinear optical
teractions are hard to obtain. Alternatively, it is a promisi
approach to replace interaction by interference, readily av
able vialinear optics, and by feedback after detection. The
are important cases, however, where linear optics is not
ficient to enable specific projective measurements exa
For instance, a complete measurement in the qubit polar
tion Bell basis is not possible within the framework of line
optics, including beam splitters, phase shifters, auxili
photons, and conditional dynamics utilizing photon count
@2,3#. However, using nontrivial entangled states ofn auxil-
iary photons and conditional dynamics, a perfect project
measurement can be approached asymptotically with a
ure rate scaling as 1/n @4# or, in a modified version of the
scheme of Ref.@4# based on similar resources and tools, w
an intrinsic error rate scaling as 1/n2 @5#. In any case, no-go
statements for exact implementations always indicate wh
ever finite ~and cheaper! resources and less sophisticat
tools, such as a fixed array of linear optics, are not suffic
for an arbitrarily good efficiency.

In this article, we propose a different approach to t
problem of projective measurements with linear optics a
photon counting. Since orthogonal states remain orthogo
after linear-optical mode transformations, the inability to e
actly discriminate orthogonal states is due to the meas
ments in the Fock basis. In our approach, we replace
actual detections by a dephasing of the~linearly transformed!
signal states. In other words, the detection mechanism
mimicked by destroying the coherence of the signal sta
and turning them into mixtures diagonal in the Fock bas
With the resulting density operators, the distinguishability
1050-2947/2004/69~1!/012302~5!/$22.50 69 0123
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then expressible in terms of quantum mechanical states
considering exact distinguishability, this yields a hierarchy
simple conditions for a complete projection measureme
We give a few examples where we employ these conditi
in order to make general statements and to derive no
theorems on linear-optics state discrimination. Moreov
projection measurements based on detection schemes
than photon counting can also be described within the fra
work of our formalism. In this respect, we include a bri
discussion on homodyne-detection based quadrature m
surements. However, the essence of our work is the prop
of a universal method. The unified perspective upon wh
our approach is based will open the path to additional res
and applications, including more general measurements
projective ones.

II. THE CRITERIA

Let us define the vectorsaW 5(â1 ,â2 , . . . ,âN)T and aW †

5(â1
† ,â2

† , . . . ,âN
† ) representing the annihilation and cr

ation operators of all the electromagnetic modes involv
respectively. A linear-optics circuit can be described via
input-output relationscW5UaW or cW†5aW †U† with a unitary
N3N matrix U. Conversely, the mixing ofN optical modes
due to any unitaryN3N matrix is realizable with beam split
ters and phase shifters@6#. This excludes linear mixing be
tween annihilation and creation operators, as it results fr
squeezing transformations. Those require nonlinear opt
interactions. On the Hamiltonian level, arbitrary statesux&
are unitarily transformed via linear optics such that@7#

uxH&5exp~2 iaW †HaW !ux&, ~1!

whereH is anN3N Hermitian matrix.
We consider projection measurements that operate on

spacesS of the Hilbert space defined over some sign
modes. The orthogonal projection measurement is chara
ized by one-dimensional projectorsPk5usk&^sku such that
^skusl&50 for kÞ l , and the completeness relation on t
subspaceS is satisfied as(kPk51S . In this setting, the
problem of implementing the projection measurement
equivalent to the unambiguous discrimination of the ortho
nal statesusk&.
©2004 The American Physical Society02-1
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The state discrimination may be aided by an auxilia
stateucaux& that is supported on auxiliary modes. The sta
to be distinguished then arer̂k, in5uxk&^xku with uxk&5usk&
^ ucaux&. The entire discrimination process now consists
two steps,r̂ in→ r̂H→ r̂H8 , where the first step is due to linea

optics, r̂H[uxH&^xHu. In the second step, the detection
the output modes in the Fock basis is mimicked throu
dephasing,

r̂H→ r̂H8 5
1

~2p!NE dfNe2 iaW †DaW r̂HeiaW †DaW , ~2!

with dfN[df1df2•••dfN and the diagonalN3N matrix
D, (D) i j 5d i j f i . The distinguishability can then be analyze
on the level of the density operatorsr̂H8 . Since exact dis-
crimination is considered, this leads to a huge simplificati
as we shall explain now.

In order to decide on the exact distinguishability of a
two statesuxk&5usk& ^ ucaux& andux l&5usl& ^ ucaux&, we may
use Tr(r̂k,H8 r̂ l ,H8 ), wherer̂k,H8 and r̂ l ,H8 are the corresponding
states after linear optics and dephasing. We obtain the
dition for exact distinguishability:

Tr~ r̂k,H8 r̂ l ,H8 !5
1

~2p!2NE dfNdf̃Nz^xku

3eiaW †HaWeiaW †(D2D̃)aWe2 iaW †HaW ux l& z2

5
!

0, ~3!

wheredf̃N[df̃1df̃2•••df̃N and (D̃) i j 5d i j f̃ i . Due to the
positivity of the integrand, this is equivalent to

^xkueiaW †HaWeiaW †(D2D̃)aWe2 iaW †HaW ux l&5^xkueicW†(D2D̃)cWux l&

50 ; f j ,f̃ j , ~4!

where the effect of linear optics is now put into the operat
cW5eiaW †HaWaW e2 iaW †HaW or cW5UaW . Let us defineyj[f j2f̃ j , j

51, . . . ,N. Since the derivatives of̂xkueicW†(D2D̃)cWux l& with
respect to any relative phasesyj ,yj 8 ,yj 9 , . . . must also van-
ish, in particular, atyW5(y1 ,y2 , . . . ,yN)50W , we obtain the
set of conditions for exact state discrimination:

^xkuĉ j
†ĉ j ux l&-50 ; j ,

^xkuĉ j
†ĉ j ĉ j 8

† ĉ j 8ux l&50 ; j , j 8, ~5!

^xkuĉ j
†ĉ j ĉ j 8

† ĉ j 8ĉ j 9
† ĉ j 9ux l&50 ; j , j 8, j 9,

A 5 A ; kÞ l .

These conditions arenecessaryfor a complete projection
measurement onto the basis$uxk&%. However, if the entire se
of conditions is satisfied, this is in general also asufficient
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condition, sinceeicW†(D2D̃)cW is an analytic function of the rela
tive phasesyW . Note that orthogonalitŷxkux l&50, ; kÞ l , is
the ‘‘zeroth-order condition.’’

By exploiting the fact that (ĉ†ĉ)n is of the form
(m51

n dm( ĉ†)mĉm with some coefficientsdm and that

@ ĉ j
† ,ĉ j 8#50 for j Þ j 8, the higher-order conditions can b

rewritten in an equivalent normally ordered form, provid
the lower-order conditions are satisfied. This leads to
hierarchy of conditions

^xkuĉ j
†ĉ j ux l&50 ; j ,

^xkuĉ j
†ĉ j 8

† ĉ j ĉ j 8ux l&50 ; j , j 8, ~6!

^xkuĉ j
†ĉ j 8

† ĉ j 9
† ĉ j ĉ j 8ĉ j 9ux l&50 ; j , j 8, j 9,

A 5 A ; kÞ l .

In this form, one can directly see that the hierarchy bre
off for higher-order terms if the number of photons in th
states$uxk&% is bounded. Hence, for finite photon numbe
we end up having a finite hierarchy of necessary and su
cient conditions for complete projective measurements. T
states of an orthogonal set$uxk&% are, in principle, exactly
distinguishable via afixed array of linear opticsrepresented
by cW5UaW , if and only if these conditions hold for the com
plete set of modes.

The subset of conditions referring only to a particu
mode operatorĉ j representsnecessaryconditions for exact
discrimination based onconditional dynamicsafter detecting
that modej. They are given by

^xku~ ĉ j
†!n~ ĉ j !

nux l&50 ; n>1, ; kÞ l . ~7!

Already the failure to find someĉ j satisfying Eq.~7! means
that, as soon as one output mode is selected and meas
this will make exact discrimination of the states impossib
Conversely, one may also use the conditions of Eq.~7! in a
constructive way. The recipe is to find oneĉ j that satisfies
Eq. ~7!, to calculate the corresponding conditional states
the remaining modes, and to test them for their distingui
ability. It is instructive to view this in terms of the partiall
dephased states. After dephasing only one modej, we obtain

r̂k,H8( j )5(
m

P( j )~muk!

m!
~ â j

†!mu0& j uck,m
( j ) &^ck,m

( j ) u j^0uâ j
m , ~8!

whereP( j )(muk) is the probability of findingm photons in
the measured modej for given input stateuxk&, anduck,m

( j ) & is
the corresponding~normalized! conditional state of the re
maining modes. Failure to satisfy Eq.~7! implies that the
conditional statesuck,m

( j ) & form a nonorthogonal set ink for
each fixed combination of (m, j ). For such sets, we know
that a further exact discrimination is impossible. We w
show now that the condition in Eq.~7! for n51 suffices to
2-2
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reproduce easily all known no-go theorems for project
measurements with linear optics, including auxiliary photo
and conditional dynamics.

III. EXAMPLES

In this section, we present a few examples that illustr
the simplicity and usefulness of the criteria derived in t
preceding section. These examples include general s
ments on the effect of extra resources on the exact dis
guishability of arbitrary quantum states and ‘‘back of t
envelope’’ derivations of no-go theorems~some known!.
Among them, the simplest and most remarkable exampl
that for a pair of orthogonal two-photon states, because
previously known no-go results apply to sets of at least f
orthogonal states~e.g., the Bell states!.

We start by investigating the use of auxiliary photons@8#.
Splitting the input modes into a set of signal and a set
auxiliary modes allows us to decompose the mode oper
ĉ j5( iU ji âi from Eq. ~7! into two corresponding parts a
~we drop the indexj ) ĉ5bsĉs1bauxĉaux, with real coeffi-
cientsbs and baux, so thatĉsu0& ^ ucaux&5 ĉauxusk& ^ u0&50.
Now we find

^xkuĉ†ĉux l&5bs
2^skuĉs

†ĉsusl&1bsbaux̂ skuĉsusl&

3^cauxuĉaux
† ucaux&1bsbaux̂ skuĉs

†usl&

3^cauxuĉauxucaux&1baux
2 ^skusl&

3^cauxuĉaux
† ĉauxucaux&. ~9!

The last term always vanishes forkÞ l , since theusk& are
orthogonal. In any situation where either the signal state
the auxiliary state have a fixed photon number, the t
middle terms vanish, and the first-order conditi

^xkuĉ†ĉux l&50 depends only on the signal states alo
bs

2^skuĉs
†ĉsusl&50, ; kÞ l . The trivial casebs50 can be

omitted without loss of generality. It is straightforward
extend this derivation to any order in Eq.~7! by inserting a
mode operator decomposed into a signal and an auxil
part. Hence for signal states with a fixed photon numb
auxiliary systems never help, and for signal states with
unfixed number, adding an auxiliary state may help, but o
provided the auxiliary state has unfixed number too.

The no-go theorem for the qubit Bell states@2,3#

uC6&5
1

A2
~ â1

†â4
†6â2

†â3
†!u0&,

uF6&5
1

A2
~ â1

†â3
†6â2

†â4
†!u0&, ~10!

is obtainable now in a very simple way. In order to check
the existence of a modej satisfying Eq.~7! for n51, let us
again drop the indexj and use the ansatzĉs}n1â11n2â2
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1n3â31n4â4, by definingU ji [n i . We have six conditions

^xkuĉ†ĉux l&50 for the pairs (k,l ),

~C1 ,C2!,~F1 ,F2!:un1u22un2u27un3u26un4u250,

~C1 ,F1!,~C1 ,F2!:n1n2* 1n3n4* 6n1* n26n3* n450,

~C2 ,F1!,~C2 ,F2!:n3n4* 2n1n2* 6n1* n27n3* n450. ~11!

These conditions imply

~C1 ,C2!,~F1 ,F2!⇒un1u25un2u2,un3u25un4u2,

~C1 ,F1!,~C1 ,F2!⇒n1n2* 52n3n4* ,

~C2 ,F1!,~C2 ,F2!⇒n1n2* 5n3n4* . ~12!

It can be easily seen that these conditions have only tri
solutionsn i50, ; i , which proves the no-go theorem fo
the Bell states including auxiliary photons and condition
dynamics.

A similar no-go theorem is known@9# for an orthogonal
set of separable two-qutrit states@10#:

us1,2&5
1

A2
â1

†~ â4
†6â5

†!u0&,us3,4&5
1

A2
â3

†~ â5
†6â6

†!u0&,

us5,6&5
1

A2
â4

†~ â2
†6â3

†!u0&,us7,8&5
1

A2
â6

†~ â1
†6â2

†!u0&,

us9&5â2
†â5

†u0&. ~13!

The entire set of 36 first-order conditions for one modej with
ĉ5( in i âi now leads to

un1u25un2u25un3u2, un4u25un5u25un6u2,

n1n2* 5n1n3* 5n2n3* 5n4n5* 5n4n6* 5n5n6* 50. ~14!

Again, only trivial solutions exist. Going beyond Ref.@9#, we
can now easily investigate subclasses of the set. The
no-go theorem also applies to the eight states when lea
out stateus9&. For other subclasses, this example illustra
the role of conditional dynamics. For instance, leaving o
state us8&, the conditions remain exactly those in Eq.~14!
except thatun1u2 does not occur in the first line. The onl
nontrivial solution is now wheren151 and n i50, ; i
52, . . . ,6. Theinterpretation is that, in order to enable di
crimination of the conditional states for the entire subs
mode 1 must be detected first. This can be seen intuitivel
Eq. ~13! and in Fig. 1.

With the help of the hierarchy of conditions, one can no
easily find other no-go theorems. Consider the orthogona
of four two-qubit states

us1&5~aâ1
†â4

†1bâ2
†â3

†!u0&,

us2&5~b* â1
†â4

†2a* â2
†â3

†!u0&,
2-3
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us3&5~gâ1
†â3

†1dâ2
†â4

†!u0&,

us4&5~d* â1
†â3

†2g* â2
†â4

†!u0&. ~15!

If all four states are entangled,uabu.0 and ugdu.0, only
trivial solutions exist for the six first-order conditions Eq.~7!
with n51. Hence, the full no-go statement applies, inclu
ing auxiliary photons and conditional dynamics. For on
two entangled states, e.g.,uabu.0 andg50, one modeĉ j
always exists that satisfies Eq.~7!. However, there are only
trivial solutions to the second-order condition in Eq.~6! for
some pairs of modesĉ j andĉ j 8 ( j Þ j 8), if the two states are
nonmaximallyentangled. In fact, a fixed array of linear o
tics is not sufficient in this case, but a conditional-dynam
solution exists. If the two states aremaximallyentangled, any
order in Eq.~6! is satisfied with a 50:50 beam splitter.

A particularly interesting example is the followingpair of
orthogonal states:

1

A2
~ u20&6u11&), ~16!

described in the Fock basis. We find that then51 and n
52 conditions of Eq.~7! can be simultaneously satisfie
only trivially, n15n250. Thus, there is no linear-optical dis
crimination scheme for the two states of Eq.~16!, not even
with the help of conditional dynamics and auxiliary photon
since the two states have fixed photon number. In fact,
no-go statement applies to the whole family of pairs of
thogonal statesau20&1bu11& and b* u20&2a* u11& for
uabu.0.

What about quantitative statements beyond the no
theorems for exact state discrimination? A linear-optics n
work with photon counting yields for each input state a cl
sical probability distribution for the pattern of photon dete
tions in the output modes. This distribution can be used
estimate the input state. A possible measure in the conte
estimating an input state is the probability of minimum er
@11#. For four equally probable output distributions, it can
written as

FIG. 1. The nine two-qutrit product states that are undistingu
able via linear optics when encoded into two-photon states.
three logical basis states$u0&,u1&,u2&% at each side are then repre
sented by a single photon in one of three modes, for instance
photonic statesus1,2& from Eq. ~13! correspond to the logical state
u0& ^ (u0&6u1&)/A2.
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min 512

1

4 (
i

maxk@P~ i uk!#, ~17!

whereP( i uk) is the conditional probability for obtaining th
result i ~pattern of the photon detections! given the distribu-
tion k. Using the classical distributions of the resultsi in the
totally dephased states with the two-photon Bell states of
~10! as the input states~parametrized by an arbitrary unitar
434 matrixU), we found numerically thatPerror

min >1/4. This
bound can be attained by using a 50:50 beam splitter@12#,
where

r̂C1 ,BS8 5
1

2
~ u1100&^1100u1u0011&^0011u!,

r̂C2 ,BS8 5
1

2
~ u1001&^1001u1u0110&^0110u!,

r̂F6 ,BS8 5
1

4
~ u2000&^2000u1u0200&^0200u1u0020&^0020u

1u0002&^0002u!, ~18!

corresponding to the optimal partial Bell measurement w
out auxiliary photons and conditional dynamics@13#.

IV. QUADRATURE MEASUREMENTS

So far, the dephasing approach has been solely use
describe the decohering effect of photon detections,
measurements in the Fock basis. However, it is worth po
ing out that this method is applicable to other kinds of me
surements too. We may also consider, for example, ho
dyne detections, i.e., measurements in a continuous-vari
basis. In that case, the appropriate replacement in the dep
ing formula of Eq.~2! is

eiaW †DaW5ei(
j

f j â j
†â j→ei(

j
f j x̂ j

(u j )

, ~19!

where x̂ j
(u j )5(â je

2 iu j1â j
†e1 iu j)/2 are the quadratures o

mode j. For example, foru j50 and u j5p/2, we obtain,
respectively, the positionx̂ and momentump̂ associated with
the mode’s harmonic oscillator. The derivation of a set
necessary and sufficient conditions for exact state discr
nation, Eqs.~3!–~5!, also follows through with the replace
ment in Eq.~19!. The resulting conditions in that case b
come~we drop the superscriptu j )

^xkux̂ j
cux l&50 ; j ,

^xkux̂ j
cx̂ j 8

c ux l&50 ; j , j 8, ~20!

^xkux̂ j
cx̂ j 8

c x̂j 9
c ux l&50 ; j , j 8, j 9,

A 5 A ; kÞ l ,
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e
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where x̂ j
c5( ĉ je

2 iu j1 ĉ j
†e1 iu j)/2 denotes the quadratures

mode j after the linear-optics circuit withcW5UaW . A
continuous-variable Bell measurement discriminates
tween the two-mode eigenstates of relative positionx̂12 x̂2

and total momentump̂11 p̂2. This can be achieved with
simple 50:50 beam splitter and subsequentx̂ andp̂ measure-
ments at the two output ports@14#. Conditional dynamics is
not needed. However, in order to satisfy the above conditi
for all ~that is two! modes, two conjugate quadratures mu
be detected, for example,x̂1

c5( ĉ11 ĉ1
†)/25( x̂12 x̂2)/A2 and

x̂2
c5( ĉ22 ĉ2

†)/2i 5( p̂11 p̂2)/A2. Here,x̂ j and p̂ j are the two

conjugate quadratures of the input modesâ j . Hence, due to
the orthogonality of the continuous-variable Bell states,
described scheme represents a solution to the above c
tions. In a very intuitive way, this explains why a fixe
linear-optics scheme suffices to perform a continuo
variable Bell measurement with arbitrarily high efficiency,
contrast to a qubit Bell measurement: the continuo
variable Bell states are eigenstates of the detected qua
tures, whereas the qubit Bell states are no eigenstates o
detected photon numbers.

V. SUMMARY AND OUTLOOK

In summary, we have presented a different approach
describing the processing of quantum states via linear op
including photon counting or other measurements such
homodyne detection. The advantage of this approach is
the detection mechanism is included in the transforma
from the input quantum states to the output quantum sta
For the case of a complete projection measurement on
~joint! orthogonal basis, we obtained a hierarchy of nec
sary and sufficient conditions. When photon counting is c
e
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sidered, this hierarchy breaks off and yields a finite set
simple conditions for states with finite photon numbe
Apart from homodyne detection, our universal approach
also be used to include other ‘‘continuous-variable too
such as displacements and squeezing. It also provide
promising method to treat more general scenarios, e.g.,
realization of general measurements@positive operator val-
ued measures~POVM’s!# with linear optics @15#. Any
POVM can be described via Naimark extension as an
thogonal von Neumann measurement in a larger Hilb
space. The extended signal states may then be analyzed
the criteria derived in this paper. This generalization is p
ticularly significant, because it would extend our approa
from qualitative statements on exact projection measu
ments to quantitative statements on approximate projec
measurements.

Although progress is being made in enhancing the eff
tive strength of nonlinear optical interactions, it appears r
sonable to exploit the entire toolbox of linear optics first a
explore it, in order to be aware of its capabilities, but also
limitations. In the recent work of Ref.@4#, the authors dem-
onstrate that the capabilities of linear optics are unexpecte
broad; however, unfeasibly, many extra resources may
needed for a good performance. We hope that the questio
the trade-off between these extra resources and the pe
mance can be attacked utilizing our criteria.
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