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Simple criteria for the implementation of projective measurements with linear optics
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We derive a set of criteria to decide whether a given projection measurement can be, in principle, exactly
implemented solely by means of linear optics. The derivation can be adapted to various detection methods,
including photon counting and homodyne detection. These criteria enable one to obtain no-go theorems easily
for the exact distinguishability of orthogonal quantum states with linear optics, including the use of auxiliary
photons and conditional dynamics.
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[. INTRODUCTION then expressible in terms of quantum mechanical states. By
considering exact distinguishability, this yields a hierarchy of
Joint orthogonaprojection measurementse an essential simple conditions for a complete projection measurement.
tool in quantum communication. The most prominent ex-We give a few examples where we employ these conditions
ample is the Bell measurement that is used, for instance, it order to make general statements and to derive no-go
quantum teleportatiofil]. The canonical way to perform theorems on linear-optics state discrimination. Moreover,
these measurements relies on signal interaction. An exampR¥ojection measurements based on detection schemes other
is the optical interaction of light pulses. The latter is particu-than photon counting can also be described within the frame-
larly relevant for practical applications, since light, traveling Work of our formalism. In this respect, we include a brief
at high speed through an optical fiber and allowing for andiscussion on homodyne-detection based quadrature mea-
efficient broadband information encoding, is the most convesurements. However, the essence of our work is the proposal
nient medium for the implementation of quantum communi-of & universal method. The unified perspective upon which
cation protocols. In discrete-variable implementations base@ur approach is based will open the path to additional results
on single photons, the required strong nonlinear optical inand applications, including more general measurements than
teractions are hard to obtain. Alternatively, it is a promisingProjective ones.
approach to replace interaction by interference, readily avail-

able vialinear optics and by feedback after detection. There Il. THE CRITERIA

are important cases, however, where linear optics is not suf- o . R
ficient to enable specific projective measurements exactly. Let us define the vectora=(a;,a,, ...,ay)" anda'
For instance, a complete measurement in the qubit poIanzai(éI,é;, ... a)) representing the annihilation and cre-

optics, including beam splitters, phase shifters, auxiliaryiespectively. A linear-optics circuit can be described via the
photons, and conditional dynamics utilizing photon counting,

: o - Sinput-output relationc=Ua or ¢'=a'U" with a unitary
[2,3]. However, using nontrivial entangled statesncduxil N N matrix U. Conversely, the mixing ol optical modes

iary photons and conditional dynamics, a perfect projection . . . ; -
measurement can be approached asymptotically with a fai?ue to any unltaryxl_x N matrix is reallzable_ with be_af" split

. . i . ers and phase shiftef]. This excludes linear mixing be-
ure rate scaling as i/[4] or, in a modified version of the

scheme of Ref4] based on similar resources and tools Withtween annihilation and creation operators, as it results from
R ; . ' squeezing transformations. Those require nonlinear optical
an intrinsic error rate scaling asnf/[5]. In any case, no-go

statements for exact implementations always indicate when.' teractions. On the Hamiltonian level, arbitrary stalgs

ever finite (and cheaperresources and less sophisticatedare unitarily transformed via linear optics such tfiak
tools, such as a fixed array of linear optics, are not sufficient e
for an arbitrarily good efficiency. |xn)=exp(—ia’Ha)|x), 1)

In this article, we propose a different approach to the
problem of projective measurements with linear optics andhereH is anNXN Hermitian matrix.
photon counting. Since orthogonal states remain orthogonal We consider projection measurements that operate on sub-
after linear-optical mode transformations, the inability to ex-spacesS of the Hilbert space defined over some signal
actly discriminate orthogonal states is due to the measurenodes. The orthogonal projection measurement is character-
ments in the Fock basis. In our approach, we replace thized by one-dimensional projectof$,=|s)(s,| such that
actual detections by a dephasing of thieearly transformefl  (s,|/s)=0 for k#1, and the completeness relation on the
signal states. In other words, the detection mechanism isubspaceS is satisfied asZ,Il,=1s. In this setting, the
mimicked by destroying the coherence of the signal stateproblem of implementing the projection measurement is
and turning them into mixtures diagonal in the Fock basisequivalent to the unambiguous discrimination of the orthogo-
With the resulting density operators, the distinguishability isnal stategs).
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The state discrimination may be aided by an auxiliarycondition, sincee'®' (°~)¢ is an analytic function of the rela-
state| .0 that is supporteg on auxiliary modes. The states; o phases;. Note that orthogonalitfx| x;) =0, ¥ k=1, is
to be distinguished then agg in=|xi){(xi| With [xi)=s)  the “zeroth-order condition.”
® | Prau - 1:he eptireAdiscrimination process now consists of By exploiting the fact that E(Te)n is of the form
two stePs,om—>pH—>pL|,where the first step is due to linear Enm:ldm(aT)mam with some coefficientsd,, and that
optics, py=|xu){xul- In the second step, the detection of

h o e Fock basis s mimicked th ¢/ .c;/]=0 for j#]j’, the higher-order conditions can be
the output modes In the Fock basis Is mimicked througfle,ritten in an equivalent normally ordered form, provided

dephasing, the lower-order conditions are satisfied. This leads to the
hierarchy of conditions
b= f dgle- ity gioa  (y)
(2m" (xdcfcilxy=0 Vv j,
with dpN=d¢,d¢,- - -d¢y and the diagonalN X N matrix Atata _ o,
D, (D)ij= & i . The distinguishability can then be analyzed (adejepeicylx)=0 v j.j’, ©6)
on the level of the density operato;ﬁ. Since exact dis- Agatataa o
crimination is considered, this leads to a huge simplification, (xdcjcj ciciciCinlx1)=0 ¥V j,j",j",
as we shall explain now.
In order to decide on the exact distinguishability of any 1 = iV k#I.

two Sta:[eé?)(ﬂk> = |Sk>® | ¢§u><> and|2(l> = |SI>® | waux>7 we may

use Trlpy yp( 1), Wherep ., andp/ , are the corresponding In this form, one can directly see that the hierarchy breaks

states after linear optics and dephasing. We obtain the co®ff for higher-order terms if the number of photons in the

dition for exact distinguishability: states{| i)} is bounded. Hence, for finite photon number,
we end up having a finite hierarchy of necessary and suffi-

L 1 ~ cient conditions for complete projective measurements. The
Tr(pynpi )= —Z'\J dpdM|(xid states of an orthogonal séfty,)} are, in principle, exactly
(2m) distinguishable via dixed array of linear opticsepresented
x gla'Hagia'(D-D)ag-ialHa |2 by c=Ua, if and only if these conditions hold for the com-

plete set of modes.
! The subset of conditions referring only to a particular

=0, 3 mode operatof;j representfiecessaryconditions for exact
N~ ~ ~ _ discrimination based oconditional dynamicsfter detecting
whered¢"=d¢,dé,- - -déy and D);; = dj¢; . Due to the  that mode. They are given by
positivity of the integrand, this is equivalent to
“tyn A yn _
2t iato-Dya. —iatua ict(b—D)e <Xk|(cj) (cp) x)=0 V n=1 V k#l. (7)
<Xk|ela Haela (D D)ae ia Ha|X|>=<Xk|elc (D D)C|XI>
=0 V & & 4 Already the failure to find some; satisfying Eq.(7) means
(vb] !d)J 1 ( ) ] .
that, as soon as one output mode is selected and measured,
C=elaHageiaHa or C=Ua. Let Us defineyquﬁj—}}j i Convters? y, one m_si/ aso. usg tte ]Eo(r; |t|AontT1 ot (Eb?[.mf.a
_ : R ict(D=D)c : constructive way. The recipe is to find ogg that satisfies
L,... N. Since the derivatives dfye Ix1) with Eq. (7), to calculate the corresponding conditional states of

respgct 0 any relatlye phasgsy; .y, - - must alsg Van- - ihe remaining modes, and to test them for their distinguish-
ish, in particular, ay=(y1.y>, ... .yn) =0, we .obtam the  apility. It is instructive to view this in terms of the partially
set of conditions for exact state discrimination: dephased states. After dephasing only one njode obtain
<Xk|6jTaj|X|>':0 v, . PO(mlk) . . . R
pidl =2 — i @)"0); el el olaT, ®)
~gn At ., :
(xdefeiclcplx)=0 v ij’, (5
o where PO)(m[k) is the probability of findingm photons in
(Xk|chcijT,cj,c;r,,cjnlx|>=0 Yo’ the measured modefor given input statéy,), and|c{),) is
the correspondingnormalized conditional state of the re-
= sV k=1, maining modes. Failure to satisfy E¢/) implies that the

conditional state$c(k{2n> form a nonorthogonal set ik for
These conditions ar@ecessaryfor a complete projection each fixed combination ofnf,j). For such sets, we know
measurement onto the bagjg,)}. However, if the entire set that a further exact discrimination is impossible. We will
of conditions is satisfied, this is in general alssudficient show now that the condition in Eq7) for n=1 suffices to
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reproduce easily all known no-go theorems for projective+ ,,a,+ 1,a,, by definingU;=w»;. We have six conditions
measurements with linear optics, including auxiliary ph0t0n5<xk|6T6|X,)=O for the pairs k1),

and conditional dynamics.
(V4 W), (@, @) | waf? = [wol 25 ]2 || =0,
Ill. EXAMPLES
) ) ) (W, ,@,),(V, , @ )ivivs +vav) Evivotviv,=0,
In this section, we present a few examples that illustrate
the simplicity and usefulness of the criteria derived in the(w &) (W_ & _):vqvk — vyvk =05 vy 7 vEv,=0. (10)
. . . 3¥4 1v2 172 374
preceding section. These examples include general state-
ments on the effect of extra resources on the exact distinfhese conditions imply
guishability of arbitrary quantum states and “back of the

envelope” derivations of no-go theoremisome knowh (U, W), (D, D )=|v|%=|v,|2 | vs%=]|va4l?,
Among them, the simplest and most remarkable example is

that for a pair of orthogonal two-photon states, because the (W, @,),(V,,® )=vv;=—vavy,
previously known no-go results apply to sets of at least four

orthogonal stateée.g., the Bell states (V_,®0,),(V_,® )=vv5=v3v}. 12

We start by investigating the use of auxiliary phot¢gs _ N o
Splitting the input modes into a set of signal and a set offt can be easily seen th.at these conditions have only trivial
auxiliary modes allows us to decompose the mode operatdgiolutions»;=0, V i, which proves the no-go theorem for

ej:Einiéi from Eq. (7) into two corresponding parts as ;[jt;enfniill:sstates including auxiliary photons and conditional
(we drop the indeX) C=bCs+DauCau, With real coeffi- A similér no-go theorem is knowf®] for an orthogonal

cientshg and by, SO thatCd0)® |au) = CanlSK)@|0)=0.  set of separable two-qutrit state0]:
Now we find

1.~ - 1. . -
(xlc'clx))=bZ(sdcicds) +bbaudsdcds) IS1.2= Ea{(a}ia@)m},ls&‘,}: Eag(agi 20)[0)
X< ‘//auxl G;U)J lﬂaux> + bsbaux< Sk| E:l|sl>
l"T"T At 1"T"T At
X (WaokGad Ve + Dl i) 0= IO so = a0,
X{au E:Zlu>£:au><l Yaux) - 9 |sg) = a;ay 0). (13

The last term always vanishes far4l, since the|s,) are  The entire set of 36 first-order conditions for one mpuéth
orthogonal. In any situation where either the signal states of_s ,, 3 now leads to
21

the auxiliary state have a fixed photon number, the two

middle terms vanish, and the first-order condition |v1]?=|vol?=|v3l?,  |val?=]|vs|?=]|ve|?
{xdc'clx;)=0 depends only on the signal states alone,

2/ |ATA _ i — ViV =V Vh = vl =vavk = v =vevE =0. (14
bs(scicds))=0, V k#I. The trivial caseb=0 can be 1V T V1V3 = Va3 = Vals5 = V4l = Vslg

omitted without loss of generality. It is straightforward to
extend this derivation to any order in E) by inserting a

mode operator decomposed into a signal and an auxiliar th | lies 1o the eiaht stat hen leavi
part. Hence for signal states with a fixed photon number, 0-go theorem aiso applies 1o the eight states when leaving

auxiliary systems never help, and for signal states with arPhUt st(;ltelsfg). Fg_rt_othel:r dsubcla}ssels:, this (j[.*xampkla |IIu_strate?
unfixed number, adding an auxiliary state may help, but onl)} € role o ﬁon ! '3?‘?‘ ynamics. or ||ns r;lmce, . eavullg ou
provided the auxiliary state has unfixed number too. state|sg), the conditions remain exactly those in Eg4)

Again, only trivial solutions exist. Going beyond REJ), we
an now easily investigate subclasses of the set. The full

The no-go theorem for the qubit Bell stafes3)] except-thaﬂ v1|2. dogs not occur in the first line. The qnly
nontrivial solution is now wherev;=1 and »;=0, Vi
=2,...,6. Theinterpretation is that, in order to enable dis-

|W+>:i(éTéTiéTéT)|o> crimination of the conditional states for the entire subset,
RN R R mode 1 must be detected first. This can be seen intuitively in

Eqg. (13) and in Fig. 1.
With the help of the hierarchy of conditions, one can now
|, )= i(éléétézéblw (10) easily find other no-go theorems. Consider the orthogonal set

J2 of four two-qubit states
. : : . —(hataty patat
is obtainable now in a very simple way. In order to check for 1) = (@a;a,+ Bazas)|0),
the existence of a modesatisfying Eq.(7) for n=1, let us . .
again drop the index and use the ansatz v, a;+ v-a, o) =(B*aja,— a*azaz)|0),
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0 |1 [2) PIn=1-7 3 max(P(i[K], (17

s N

whereP(i|k) is the conditional probability for obtaining the
i resulti (pattern of the photon detectiongiven the distribu-
tion k. Using the classical distributions of the resulis the
totally dephased states with the two-photon Bell states of Eq.
(10) as the input state@arametrized by an arbitrary unitary
4x 4 matrixU), we found numerically tha®ge= 1/4. This

. ) bound can be attained by using a 50:50 beam splitt&},

where
FIG. 1. The nine two-qutrit product states that are undistinguish-

able via linear optics when encoded into two-photon states. The . 1

three logical basis statd$0),|1),|2)} at each side are then repre- Py, BS™ E(|110(}<110Q+ |0011)(0011),
sented by a single photon in one of three modes, for instance, the

photonic state$s; ;) from Eq.(13) correspond to the logical states

0@ (0)£]1))/V2.

+

)
I+

. 1
Py BS= §(|1001><10011+ |0110(0110),
|s5)=(vajal+ 6ajal)|0),

- 1
|s,)=(5*alal— y*a5a))|0). (15) Po, BS™ Z(|200@<200q+|0200)(020q+|002()(002q
If all four states are entangletiy8|>0 and|y5|>0, only +10002(0003), (18
trivial solutions exist for the six first-order conditions E@)
with n=1. Hence, the full no-go statement applies, includ-corresponding to the optimal partial Bell measurement with-
ing auxiliary photons and conditional dynamics. For onlyout auxiliary photons and conditional dynam[ds3].

two entangled states, e.¢aB|>0 andy=0, one modef:j
always exists that satisfies E(). However, there are only IV. QUADRATURE MEASUREMENTS

trivial solutions to the second-order condition in E6) for .
some pairs of modes and&., (j#]'), if the two states are So far, the dephasing approach has been solely used to
P 5 i U#1 describe the decohering effect of photon detections, i.e.,

nonmaxmallygntangled._In fact, a fixed array of linear OP" measurements in the Fock basis. However, it is worth point-
tics is not sufficient in this case, but a conditional-dynamics

solution exists. If the two states araximallyentangled, any ing out that this method is applicable to other kinds of mea-

. . S . ) L surements too. We may also consider, for example, homo-
ordAer IntEqi(6)I 1S stat|sf|t¢d with a &?O..S()thbe?rlr; sphtte_r. f dyne detections, i.e., measurements in a continuous-variable
ortho%%rnlglusa:;%/eg eresting example 1S the Tollowlipgur o basis. In that case, the appropriate replacement in the dephas-

: ing formula of Eq.(2) is
1 - atn ~(6:
(20=1), (16) ea'i= e #ifai e 2 o ", (19)

described in the Fock basis. We find that the 1 andn  \here x!%=(a,e "i+ale*%)/2 are the quadratures of
=2 conditions of Eq.(7) can be simultaneously satisfied ) ' !
only trivially, »;=v,=0. Thus, there is no linear-optical dis-
crimination scheme for the two states of E6), not even
with the help of conditional dynamics and auxiliary photons,
since the two states have fixed photon number. In fact, thi
no-go statement applies to the whole family of pairs of or-
thogonal statesa|20)+ 8|11) and B*|20)—«a*|11) for

mode j. For example, forg;=0 and ¢;==/2, we obtain,

respectively, the positiofa and momentunﬁ) associated with
the mode’s harmonic oscillator. The derivation of a set of
pecessary and sufficient conditions for exact state discrimi-
nation, Eqs(3)—(5), also follows through with the replace-
ment in Eq.(19). The resulting conditions in that case be-
come(we drop the superscrig;)

|aB|>0.
What about quantitative statements beyond the no-go ~c _
theorems for exact state discrimination? A linear-optics net- <Xk|XJ x)=0 VI,
work with photon counting yields for each input state a clas-
sical probability distribution for the pattern of photon detec- <Xk|;(|c;(j':’|X|>:O Y i, (20)

tions in the output modes. This distribution can be used to
estimate the input state. A possible measure in the context of

sceice ¢ _ A
estimating an input state is the probability of minimum error (xulXj Xi’XJ"|X'>_0 VoL
[11]. For four equally probable output distributions, it can be
written as P= iV k#l,
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where ;(j::(eje*iej_f-aire*iej)/z denotes the quadratures of s!dered, this.hierarchy breaks o_ff ar)d_ yields a finite set of
simple conditions for states with finite photon numbers.

mode j after the linear-optics circuit withc=Ua. A Aoart from homodvie detect . | .
continuous-variable Bell measurement discriminates beZ Pt rom homodyne detection, our universal approach can

) . P also be used to include other “continuous-variable tools”
tween the two-mode eigenstates of relative posiQfXa  guch as displacements and squeezing. It also provides a

and total momentunp, + p,. This can be achieved with a promising method to treat more general scenarios, e.g., the
simple 50:50 beam splitter and subsequeandp measure- realization of general measuremefpsitive operator val-
ments at the two output porf44]. Conditional dynamics is ued measureSPOVM’s)] with linear optics [15]. Any

not needed. However, in order to satisfy the above condition®OVM can be described via Naimark extension as an or-
for all (that is twg modes, two conjugate quadratures mustthogonal von Neumann measurement in a larger Hilbert

be detected, for examplfz;: (61+6D/2: (X,—X,)/\2 and ~ Space. The ext_endeq sig_nal states may then be_ an_alyz_ed using
§<°=(f: —E:T)/2i :(A e )/\2. Here % andp. are the two the criteria derived in this paper. This generalization is par-
272 2 P17 P2 3 Xj anap; ticularly significant, because it would extend our approach
conjugate quadratures of the input modegs Hence, due 10  from qualitative statements on exact projection measure-
the or_thogonahty of the contlnuous—vgrlable Bell states, thements to quantitative statements on approximate projection
described scheme represents a solution to the above congfeasurements.
tions. In a very intuitive way, this explains why a fixed  Although progress is being made in enhancing the effec-
linear-optics scheme suffices to perform a continuoustjye strength of nonlinear optical interactions, it appears rea-
variable Bell measurement with arbitrarily high efficiency, in sonable to exploit the entire toolbox of linear optics first and
contrast to a qubit Bell measurement: the continuousexpiore it, in order to be aware of its capabilities, but also its
variable Bell states are eigenstates of the detected quadrgmitations. In the recent work of Ref4], the authors dem-
tures, whereas the qubit Bell states are no eigenstates of th@strate that the capabilities of linear optics are unexpectedly

detected photon numbers. broad; however, unfeasibly, many extra resources may be
needed for a good performance. We hope that the question of
V. SUMMARY AND OUTLOOK the trade-off between these extra resources and the perfor-

In summary, we have presented a different approach ggrance can be attacked utilizing our criteria.

describing the processing of quantum states via linear optics
including photon counting or other measurements such as
homodyne detection. The advantage of this approach is that
the detection mechanism is included in the transformation We are grateful to John Calsamiglia and Bill Munro for
from the input quantum states to the output quantum statesiseful comments. We also acknowledge the financial support
For the case of a complete projection measurement onto @ the DFG under the Emmy-Noether program, the EU FET
(joint) orthogonal basis, we obtained a hierarchy of necesnetwork RAMBOQ(Grant No. IST-2002-6.2)1and the net-
sary and sufficient conditions. When photon counting is conwork of competence QIP of the state of Bavaria.
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