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Coherent states for exactly solvable potentials
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A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials,
e.g., Morse and Po¨schl-Teller, is given. The method,a priori, is potential independent and connects with earlier
developed ones, including the oscillator-based approaches for coherent states and their generalizations. This
approach can be straightforwardly extended to construct more general coherent states for the quantum-
mechanical potential problems, such as the nonlinear coherent states for the oscillators. The time evolution
properties of some of these coherent states show revival and fractional revival, as manifested in the autocor-
relation functions, as well as, in the quantum carpet structures.
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I. INTRODUCTION

Coherent states~CS! and their generalizations, in the con
text of harmonic oscillators, are well studied in the literatu
@1–4#. Algebraic approaches have been particularly use
for providing a unified treatment of these states and th
interrelationships. For example, in Ref.@5#, not only a gen-
eral procedure for constructing a large class of oscilla
based CS has been provided, but it has also been shown
some of these states are dual to each other in a well-defi
manner. The algebraic approaches straightforwardly lea
the construction of squeezed and other states showing i
esting nonclassical features. These elegant and powerfu
gebraic procedures of construction owe their origin, partly
the simplicity of the Heisenberg-Weyl algebra;@a,a†#51,
characterizing the harmonic oscillator. Based on the sym
tries and keeping in mind the desired requirements, vari
procedures have been developed for constructing CS
Morse @6–9#, hydrogen atom@10#, Pöschl-Teller @11–14#,
and other potentials@15#. The role of Morse potential in mo
lecular physics is well known@16#. The study of CS for
hydrogenic atoms has assumed increasing importanc
light of its relevance to Rydberg states@17#, which may find
potential application for quantum information processi
@18#.

It is known that all the criteria desired of a coherent st
and found in the oscillator-based CS, e.g., minimum unc
tainty product, eigenstate of the annihilation operator~AO!,
and displacement operator states are not simultaneo
achievable in other potential based CS. Hence, a numbe
CS, diluting one or more of the above criteria, have be
constructed in the literature.

In the context of algebraic approaches, supersymme
~SUSY! quantum mechanics@19# based raising and lowerin
operators have found significant application. In particu
eigenstates of the lowering operator for Morse@6# and
Pöschl-Teller@14# potentials have been found and their pro
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erties studied. Recently Antoineet al. @13# have constructed
Klauder type CS for the Po¨schl-Teller potential, using a ma
trix realization of ladder operators, their motivation being t
temporal stability of the CS. It is well known that the SUS
ladder operators act on the Hilbert space of different Ham
tonians except for the case of the harmonic oscillator. Es
lishing a precise connection between the complete se
states, describing the above CS, and the symmetries of t
potential problems has faced difficulties@8,20#. To be spe-
cific, in case of the Barut-Girardello CS for the Morse p
tential, the ladder operators are taken to be functions
quantum numbers, which has led to problems in definin
proper algebraic structure. To resolve the same, some au
@8# have resorted to the introduction of additional angu
coordinates@21#.

In this work, we provide an algebraic construction of t
CS for a wide class of potentials, belonging to the conflu
hypergeometric~CHG! and hypergeometric~HG! classes.
The procedure is based on a simple method of solving lin
differential equations~DEs! @22#, which enables one to ex
press the solutions in terms of monomials. In the space
monomials, it is straightforward to identify various types
ladder operators, their underlying algebraic structures@23#,
and construct lowering operator eigenstate in a transpa
manner. The fact that the monomials and the quantu
mechanical eigenfunctions are connected through simila
transformations, enables one to preserve these algeb
structures at the level of the wave functions and simu
neously obtain the desired CS. Thus the coherent stat
initially potential independent. The information about a sp
cific potential is then incorporated by fixing the paramet
of the series and also the ground-state wave function of
potential under study. The known results for CS are obtai
in specific limits. In addition, our procedure demonstrates
construction of more general CS, similar to the nonlinear
@24# in the oscillator example. The origin of confusion
identifying the algebraic structure in SUSY based approac
is then pointed out and subsequently resolved in a nat
manner. It is shown that the recently found CS for vario
potentials are related to the two different realizations
su~1,1! algebra.

The paper is organized as follows. Keeping in mind t
©2004 The American Physical Society02-1
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connection of the wave functions of the exactly solvable
tentials, to be considered here, and the solutions of the C
and HG DEs, we first briefly outline the relationship betwe
the solutions of the above equations and the space of m
mials. This connection is then made use of, to identify
ladder operators and the symmetry algebras in the spac
monomials. AOCS are constructed through a recently p
posed procedure for solving linear DEs. This method yie
the precise connection between the present and the ea
oscillator-based approaches for constructing CS. In Sec.
the potential independent CS, thus constructed, are
nected with Morse and Po¨schl-Teller potentials, as example
The advantage of constructing the ladder operators in
space of monomials is then pointed out by resolving
difficulties in identifying the symmetry generators in th
SUSY based approach. Various earlier known CS are t
derived as special cases. Time evolution properties of s
of these CS are then studied. Autocorrelation functions
the underlying quantum carpet structures@25# of these CS
clearly reveal the phenomena of revival and fractional
vival @26,27#. We conclude in Sec. IV after pointing out
number of open interesting problems, where the present
cedure can be profitably employed. Keeping in mind the r
symmetry structure of the hydrogen-atom problem and
various procedures employed for constructing the co
sponding CS, we desist from the analysis of these CS h
this will be taken up in a future project.

II. ALGEBRAIC CONSTRUCTION
OF COHERENT STATES

This section is devoted to the construction of CS in
manner which is potential independent. We make esse
use of the fact that the exactly solvable potentials, to
studied here, belong to the CHG and the HG classes, wh
solutions can be connected to the space of monom
through similarity transformations. In the space of monom
als, the identification of symmetry algebras and their lad
operators become easy. The AO eigenstates in the spa
monomials are first found through the above-mentioned p
cedure of solving DEs and then connected to those at
level of the polynomials, through similarity transformatio
Connection with earlier oscillator-based approaches is
exhibited.

A single variable linear DE, of arbitrary order, can be c
in the form @F(D)1P(x,d/dx)#y(x)50; whereF(D) is a
function of the Euler operatorD5xd/dx and P(x,d/dx)
contains rest of the operators. A formal series solution of
above DE is given by@22,23#

y~x!5Ca (
n50

`

~21!nF 1

F~D !
P~x,d/dx!Gn

xa, ~1!

provided the conditionF(D)xa50 is satisfied. This condi-
tion fixes the value ofa. HereCa is the normalization con-
stant. The proof is straightforward and follows by direct su
stitution. In the CHG and the HG cases,a5n ~integer!
corresponds to polynomial solutions and foraÞn series so-
lutions are obtained.
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Following an earlier work@23#, the simplest set of opera
tors, at the level of monomials, which give rise to a su~1,1!
algebra can be written as@28#

K15x,K25Fx
d2

dx2
1b

d

dxG and K35Fx
d

dx
1

b

2G .
~2!

Hereb is deliberately taken same as the CHGDE parame
so that the algebra is well defined at the level of the wa
functions. It should be noted that these symmetry algeb
are not unique, and the interesting consequences arising
this fact will be pointed out later. The AOCS correspondi
to K2 satisfies

K2w~x,b!52bw~x,b!. ~3!

Left multiplying by x,

S x2
d2

dx2
1bx

d

dx
1bxD w~x,b!50, ~4!

one can identifyF(D)5(D1b21)D andP(x,d/dx)5bx.
The conditionF(D)xa50 givesa50,12b. For a50 one
obtains

w~x,b!5N~b!21(
n50

`

~21!nF b

~D1b21!D
xGn

x0,

5N~b!21(
n50

`
~21!n

n!

~bx!n

~b!n

5N~b!21expF2
b

~D1b21!
xG . ~5!

N(b)21 is the normalization constant. The commutation
lation @D,xd#5dxd and the definition of the Pochhammer
symbol, (b1n21)•••b5G(b1n)/G(b)5(b)n , have been
used in the above derivation. We can make immediate c
tact with the oscillator-based approach of Ref.@5#. Denoting

K̃1[
1

~D1b21!
x, ~6!

it is found that they obey the Heisengerg-Weyl algeb

@K2 ,K̃1#51. Such conjugate operators were explicitly co
structed in Ref.@5# and used to obtain a large class of mul
photon coherent states.

Knowing that the solution of the CHGDE can be writte
in the form @22#

F~2n;b;x!5~21!n
G~b!

G~b1n!
e2K2xn, ~7!

one can obtain the coherent state at the level of the poly
mial and later on at the level of the wave functions throu
appropriate similarity transformations, as illustrated belo
Denoting S[exp(2K2), one obtains SK2S21Sw(x,b)
2-2
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COHERENT STATES FOR EXACTLY SOLVABLE POTENTIALS PHYSICAL REVIEW A69, 012102 ~2004!
5bSw(x,b)5bw̃(x,b), wherew̃(x,b) is the coherent state a
the level of the polynomial:

w̃~x,b!5N~b!21(
n50

`
bn

n!
F~2n;b;x!. ~8!

It will be seen explicitly in the subsequent section that int
ducing appropriate measures through similarity transform
tions one would obtain CS for various quantum-mechan
systems. It is worth emphasizing that the algebraic structu
are transparently preserved in this approach.

Analogously for HG case, taking the lowering operator
be @23#

K̂25
1

~D1b! S x
d2

dx2
1c

d

dxD , ~9!

the coherent state at the level of polynomials is given by

x̃~x,g!5N~g!21(
n50

`
gn

n! 2F1~2n,b;c;x!, ~10!

since

2F1~2n,b;c;x!5~21!n
G~b1n!G~c!

G~c1n!G~b!
e2K̂2xn. ~11!

We can connect to the oscillator-based approach in this
also; calling

K̄1[
~D1b21!

~D1c21!
x, ~12!

it satisfies the oscillator algebra:@K̂2 ,K̄1#51. It should be
noted that the states obtained using the lowering operatorK̂2

are nonlinear CS@24#. They are defined to be eigenstates
the AO of the typef (N)T2 , f (N) being a function of the
number operator in the oscillator case and the Euler oper
in the present one;T2 is an arbitrary lowering operator. I
was recently shown@29# that the AOCS and the Perelomo
CS are unified in the framework of nonlinear CS.

Equations~8! and~10! reveal that these CS are quite ge
eral; since the eigenfunctions of the exactly solvable pot
tials to be considered here arise as special cases of CHG
HG series, their corresponding CS will also follow from th
above two general expressions. In fact, starting from the l
ering operator

T̃25
~D1b1!•••~D1bp!

~D1a1!•••~D1ap!

d

dx
, ~13!

more general nonlinear CS can be found,

j~x,a!5 (
n50

`
an

n! p11Fp~a1 , . . . ,ap ,2n;b1 , . . . ,bp ;x!.

~14!
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Here p11Fp is the generalized HG series. For the sake
completeness it should be pointed out that the above sum
tion yields @30#

j~x,a!5pFp~a1 , . . . ,ap ;b1 , . . . ,bp ;2xa!ea. ~15!

It is worth noting that the weight factors associated with t
above CS play an important role in the study of photon nu
ber statistics in quantum optics, where similar types of sta
also appear@31#.

III. CONNECTION WITH POTENTIALS

We now proceed to specific potentials for the purpose
illustration and establishing connections with the various
obtained so far. We use the Morse potential@6–9# as an
example, for the CHG class of potentials, and the Po¨schl-
Teller ~PT! potential@11–14# for the HG class.

The one-dimensional Morse potential is given by

VM5d@12exp~2ay!#2, ~16!

a and d ~depth of the potential! being constant parameter
Introducing dimensionless parameterm5A2md/a\, dimen-
sionless coordinateq5ay, and using the transformatio
rule: x52mexp(2q); the Schro¨dinger equation yields the
eigenfunction

cn
M~x!}e2x/2xl/2Ln

l~x!, ~17!

where we have setl52m22n21 for the sake of conve-
nience. Multiplying Eq.~8! from the left by the ground state
of the Morse eigenstate,c0

M(x)[exp(2x/2)xl/2, and noting
that, forb5l11 the CHG series can be expressed in ter
of the Laguerre polynomials@32#,

F~2n;l11;x!5
n!

~l11!n
Ln

l~x!; ~18!

the coherent state for the Morse potential can be written fr
the results of the previous section,

w̃M~x,b!5N~b!21G~l11!c0
M(

n50

` bnLn
l~x!

G~l1n11!
. ~19!

After normalization one finds

w̃M~x,b!5
ubul/2

AI l~2uxu!
(
n50

`
bn

G~l1n11!
cn

M~x!

5
ubul/2

AI l~2uxu!
~b!2l/2ebe2x/2Jl~2Axb!. ~20!

Here,I l is the modified Bessel function of the first kind an
Jl is the Bessel function of the first kind. The same expr
sion was obtained in Ref.@20# using the SUSY based ladde
operators.

In order to see the difficulties associated with prope
defining an algebraic structure using SUSY based ladder
erators@20#
2-3
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SHREECHARAN, PANIGRAHI, AND BANERJI PHYSICAL REVIEW A69, 012102 ~2004!
A6cn
M~x!5Fx

d

dx
6

1

2
~2n1l112x!G , ~21!

as alluded to earlier, we explicitly write down the actio
of the same on the wave functions:A1cn

M(x)
5A(n11)(n1l11)cn11

M (x) and A2cn
M(x)5

2An(n1l)cn
M(x). In earlier works without explicitly giv-

ing the diagonal operator, its action was inferred fro
@A1,A2#cn

M(x). However, as was noticed in Ref.@8#, this
approach faces problem in constructing the Barut-Girard
CS. To better appreciate the difficulties and their resoluti
we first identify the corresponding ladder operators at
level of monomials through similarity transformation
which keeps the algebraic structure intact. These opera
act as

~K11D2n!xn5xn11 ~K21D2n!xn5n~n1l!xn21.
~22!

It can be noticed that as compared to our ladder operator
the level of monomials, the above ones contain an additio
operatorD2n, which yields zero when acting on monomi
xn. It can be straightforwardly seen that the SUSY basen
dependent operators do not lead to a proper algebra, a
culty noticed in Ref.@8#. However, then independent opera
tors lead to the diagonal operatorK35xd/dx1b/2; together
these form a closed su~1,1! algebra. Hence, for the constru
tion of AOCS with a well-defined algebraic structure, it
imperative to usen independent operators. It can be seen t
for the ground state, from which the AOCS are construct
the aboven dependent operator is absent. Hence the exp
sion for the CS derived earlier@20# and the one obtained
here, based on the su~1,1! algebra, are identical.

As mentioned earlier, the su~1,1! generators written abov
are not unique, e.g., the following three generators also f
a su~1,1! algebra@3#:

L15x2
d

dx
12~l11!x, L25

d

dx
,

L35x
d

dx
1

~l11!

2
. ~23!

The eigenstate ofL2 is given by exp(bx). The corresponding
AOCS, at the level of the wave function for the Morse p
tential, can be obtained by making use of the following ide
tities:

expF2x
d2

dx2
2~l12!

d

dxG d

dx

5
d

dx
expF2x

d2

dx2
2~l11!

d

dxG ~24!

and
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expF2x
d2

dx2
2~l11!

d

dxGexp~bx!5 (
n50

`

bnLn
l~x!.

~25!

The resulting coherent state turns out to be the Perelom
coherent state for this potential@6#,

w̃M
PER~x,b!5

~12ubu2!(l11)/2

AG~l11!
xl/2expS 2

x

2

11b

12b D .

~26!

Hence, the above su~1,1! algebra gives the operator, whos
eigenstate is the Perelomov coherent state; recourse has
taken earlier to more complicated nonlinear algebras for
purpose@29#.

We now derive the CS for the PT class of potentials a
concentrate primarily on the symmetric PT~SPT! and PT
potentials. Plots of the weight factors associated with the
of the above-mentioned potentials will be given along w
the quantum carpet structure and the autocorrelation figu
The quantum carpet and the autocorrelation plots trans
ently bring out the phenomenon of revival and fraction
revival.

The SPT potential is

VSPT~y!5
\2a2

2m

r~r21!

cos2ay
~27!

and the corresponding eigenvalues and eigenfunctions, in
variablex5sinay, are

En
SPT5

\2a2

2m
~n1r!2, n50,1,2, . . . ,

cn
SPT~x!5Fa~n! !~n1r!G~r!G~2r!

ApG~r11/2!G~n12r!
G 1/2

~12x2!r/2Cn
r~x!.

~28!

The Gegenbauer polynomials are related to the HG series
the relation@32#

2F1~2n,n12r;r11/2;z!5
n!

~2r!n
Cn

r~122z!. ~29!

Multiplying (12x2)r/2 from the left in Eq.~10! and using
Eqs.~28! and~29!, the coherent state for the SPT potential
found to be

x̃SPT~x,g!5N~g!21(
n50

` F G~2r!G~r11/2!Ap

a~n! !~n1r!G~r!G~2r1n!
G1/2

3gncn
SPT~x!. ~30!

The normalization constantN(g)21 is

N~g!215F aG~r!

G~r11/2!G~2r!ApS~ ugu!
G 1/2

,

2-4
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where

S~ ugu!5 (
n50

` ugu2n

n! ~n1r!G~2r1n!
5

1

ugu2rE0

2ugu
dxI2r21~x!.

~31!

It is worth pointing out that the CS for the SPT potential c
be expressed in terms of the Bessel functions by usin
generating function of the Gegenbauer polynomials@32#:

x̃MPT~x,g!5N~g!21G~r11/2!egxS g

2D 1/22r

3Jr21/2~gA12x2!. ~32!

Similarly we can construct the CS for the PT potential. T
PT potential is

VPT~x!5
\2a2

2m Fk~k21!

sin2ax
1

r~r21!

cos2ax
G , k,r.1, ~33!

whose energy eigenvalues and the eigenfunctions are

En
PT5

\2a2

2m
~k1r12n!2, n50,1,2, . . . ,

FIG. 1. The density plot ofuw̃(x,t)u2 for the symmetric Po¨schl-
Teller potential, withg510 and the maximum value ofn being 20.
Darkness displays a low and brightness a high functional value
01210
a

e

cn
PT~x!5Cn~cosax!l~sinax!kPn

(k21/2,r21/2)~122sin2ax!.
~34!

HereCn is the normalization constant and given by@33#

Cn5F2a~k1r12n!G~n11!G~k1r1n!

G~k1n11/2!G~r1n11/2! G1/2

. ~35!

Using Eq.~34! and Eq.~35! in Eq. ~10! the AOCS for the
Pöschl-Teller potential can be written in the form

x̃PT~x,g!

5N~g!21(
n50

`

gn

3F G~k11/2!~l11/2!n

2a~k11/2!n~k1r12n!G~n11!G~k1r1n!G
1/2

3cn
PT~x!. ~36!

FIG. 2. Plot of the squared modulusuSPT̂ x,g,tÞ0ux,g,t
50&SPTu2 of the autocorrelation as a function of time, forg510,
r52, andn having the maximum value 20. The peaks show t
revivals, whereas the intermediate ones depict fractional reviva
FIG. 3. Squared modulus
uPT̂ x,g,tÞ0ux,g,t50&PTu2 of the
autocorrelation vs time, forg
510, k52, r56, andn having
the maximum value 20, for the PT
potential.
2-5
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In the above equation, relation between Jacobi polynom
and HG series has been used@32#. As has been done for th
Morse potential, one can also construct Perelomov type
herent state here.

The quadratic nature of the eigenspectra of PT and S
leads to the possibility of revival and fractional revival
this quantum system. It is worth noting that the rich reviv
structure of problems with eigenenergies quadratic in
quantum numbern have been studied by Bluhm, Kosteleck
and Porter@27#. Keeping this in mind, we now proceed t
study the time evolution property of the above CS. As e
pected, these states show a very rich structure involving
vival and fractional revivals. We give in Fig. 1 quantum ca
pet representing the time evolution of the above state.
plots for the autocorrelation are provided in Figs. 2 and
which clearly bring out the above features. Interesting
there have been some recent proposals to use the fract
revival for the purpose of factorization of numbers@35#. In
the above quantum carpet the ridges and the valleys follo
curved path, unlike the square-well case where these
straight lines@25#. We also notice richer structure arising du
to interference. The origin of these structures in the squ
well case has been understood, the present scenario ne
thorough understanding.

As is well known, the weight factors associated with t
CS carry physical significance, e.g., these factors for the
cillator CS give rise to a Poisson distribution. The weig
factors associated with the HG class of CS, derived abo
are related to the HG distribution in probability theory@34#,
as is clear from the plot of the weighting distribution
Fig. 4.

IV. CONCLUSIONS

In conclusion, we have developed a general algebraic
cedure for finding the annihilation operator coherent sta
for a wide class of quantum-mechanical potentials. Inter
ingly, the Perelomov type CS also emerged, as AOCS, fr
different realizations of relevant symmetry algebras. Cruc
use was made of a simple method for solving linear D
which gives a precise connection between the solution sp
and the space of monomials. Ladder operators correspon
to various symmetry algebras can be identified straight
wardly. The method is potential independent and enables
.
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to find the AOCS and connect them with earlier oscillato
based approaches. It is applicable to quantum problems
ing infinite number of bound states as well as the ones p
sessing finite numbers. Generalizations to analogs of
nonlinear CS for oscillators is also made transparent.

Under time evolution, these CS showed revival and fr
tional revivals. This manifests in the quantum carpet str
ture as well as the autocorrelation functions. Interesting
these phenomena in the context of square well@25# have led
to a proposal for factorizing numbers@35#. The intricate
structure of quantum carpet needs careful analysis in ligh
recent proposals to use CS for quantum information stor
@36#. The weighting distributions associated with these
also need to be studied more elaborately, in the comp
parameter range, for manifestation of nonclassical behav

Also as a continuation of the present work, it would
interesting to study the features of Wigner quasiprobabi
distributions for these CS, in light of the interesting resu
obtained recently in this area@37#. It is worth noting that
recently the Wigner distributions for the Morse eigensta
have been studied@38#. Since the method used here al
applies to many-body interacting systems it is worth co
structing and studying the corresponding CS@39#. A number
of these questions are currently under study and will be
ported elsewhere.

FIG. 4. Plot of the weighting distributionucnu2 in Eq. ~30!, with
respect ton. This plot captures the HG statistical nature of t
coherent state. Hereg510, r52, and the maximum value ofn
is 20.
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