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We classify multipartite entangled states in the Hilbert space(?®C22C" (n=4), for example, the
four-qubit system distributed over three parties, under local filtering operations. We show that there exist nine
essentially different classes of states, giving rise to a five-graded partially ordered structure, including the
celebrated Greenberger-Horne-Zeilinger &idlasses of three qubits. In particular, alk2 X n states can be
deterministically prepared from one maximally entangled state, and some applications such as entanglement
swapping are discussed.
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[. INTRODUCTION tanglement in the X2Xn cases. Since this includes the
four-qubit system distributed ovénree parties which is the
Entanglement is the key ingredient of all applications incase in, e.g., entanglement swapping, our results will clarify
the field of quantum information. Due to the nonlocal char-what kinds of essentially different multipartite entanglement
acter of the correlations that entanglement induces, it is exthere exist in this situation, and give better understanding of
pected that entanglement is especially valuable in the contexgultiparty LOCC protocols. More specifically, we will ad-
of many parties. Despite a lot of efforts however, it hasdress the stochastic LOCGLOCQ classification of en-
proven exceedingly hard to get insight into the structure ofanglement1,4-13, which is acoarse-grainedclassifica-
multipartite entanglement. Still, the motivation of our work tion under LOCC. Let us consider the single copy
is as follows. In the bipartitépure setting, the entanglement of a multipartite pure stat¢¥) on the Hilbert space+
present in a Bell-Einstein-Podolsky-RostBell-EPR) state =C¥®---®C (precisely, in abuse of the notation, we
is essentially unique; i.e., we can evaluate any bipartite enwould denote a ray on its complex projective space
tangled state by the number of equivalent Bell pairs, in eithefP 1K~ by [W)),
a qubits or a qudits system, both in the single-copy and

multiple-copy case. ki=1,... k-1 . .
The situation is totally different in the multipartite setting W)= 2 S i, iline---eli), 1)
however, where interconvertibility under local operations .- h=

and classical communicatidhOCC) is not expected to hold . . .
[1]. Multipartite entanglement exhibits a much richer struc-Where a set ofi;}® - - @|i;) constitutes the standard com-
ture than bipartite entanglement. The first celebrated exampRUtational basis and often it will be abbrewate,d to
thereof was the three-qubit GHZ state, called after Greenll1** -i1). In LOCC, we recognize two staté¥) and| W)
berger, Home, and Zeilingd®]. This state was introduced wh_lch are mtgrconvertlble .determ|n|st|cally, e.g., by local
because it allows one to disprove the Einstein locality fordnitary operations, as equivalent entangled states. on the
quantum systems without invoking statistical arguments sucfRther hand in SLOCC, we identify two statek) and|¥")
as those needed by Bell. Another interesting aspect of mulS eq_uwalent if they_ are mter(_:pnve_rtlble probabilistically,
tipartite entanglement was discovered by Coffrearal. [3]. I.e., with a nonvanishing probability, since they are supposed
They showed that a quantum state has only a limited shard® P€ able to perform the same tasks in quantum information
ability for quantum correlations: more the bipartite correla-Processing but with d’n‘ferent success probabilities. Math-
tions in a state, lesser the genuine multipartite entanglemef@Matically,[¥) and|¥’) belong to the same SLOCC en-
that can be present in the system. This led to the introductiofngled class if and only if they can be converted to each
of the so-called three-qub/ state[4], which was shown to Other byinvertible SLOCC operations,
be essentially different from the GHZ state as they are not
interconvertible under LOCC even probabilistically. (T )=M1@--- @M |¥), (2
In this paper, we will generalize these results and present
one of the very few exact and complete results about multiwhere M; is any local operation having a nonzero determi-
partite quantum systems, by classifying multipartite en-nant on theth party[4], i.e., M, is an element of the general
linear group GLEk;,C) [we do not care about the overall
normalization and phase so that we can take its determinant
*Electronic address: miyake@monet.phys.s.u-tokyo.ac.jp 1, i.e.,,M;eSL(k;,C)]. It can be also said that an invertible
"Electronic address: frank.verstraete@mpg.mpg.de SLOCC operation is a completely positive map followed by
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the postselection of one successful outcome. Mathematically,
the SLOCC classification is equivalent to the classification of
orbits generated by a direct product of special linear groups
SL(kq,C) X - - - XSL(k;,C). Note that in the bipartité =2
case, the SLOCC classification means the classification just
by the Schmidt ranKor equivalently, the rank of a coeffi-
cient “matrix” ¢; ;, in Eq. (1)]. We will also address the

question ofnoninvertibleSLOCC operationgat least one of

the ranks ofM; in Eq. (2) is not full]. The set of invertible
and noninvertible SLOCC operations are also called local
filtering operations. Consider the bipartite case as an ex-
ample: SLOCC entangled classes are found to be totally or-
dered in such a way that an entangled class of the larger
Schmidt rank is more entangled than that of the smaller one,
because the Schmidt rank is always decreasing under nonin-
vertible local operations.

The paper is organized as follows. In Sec. Il, we classify FIG. 1. The onionlike classification of multipartite entangled
multipartite 2<2Xxn pure states under SLOCC, so as to o oniK ticatl ultipartite entang
. . - . .~ classes(SLOCC orbit3 in the Hilbert spaceH=C*®C®C" (n

show that nine entangled classes are hierarchized in a five-

- . _ =4). Th i I divided by “oni kirt#i bit
graded partial order. We discuss the characteristics of multi- )- There are nine classes divided by “onion skirféfle orbi

. | . . ion in S I d (glosure$. The pictures for X2Xn (n>4) cases are essentially
partite entanglement in our situation in Sec. lll, and exten ame although the dimensions of SLOCC orbits are different. These

the classification of multipartite pure states to mixed states iR|asses merge into four classes, divided by the skins of the solid
Sec. IV. The conclusion is given in Sec. V. line, in the “bipartite” (AB)-C picture. Note that although nonin-
vertible SLOCC operations generally cause the conversions inside
the onion structure, an outer class cannot necessarily convert into its
neighboring inner clasef. Fig. 2).

Il. CLASSIFICATION OF MULTIPARTITE
ENTANGLEMENT

In this section, we give the complete SLOCC classifica-,

. £ multioarti | insp? M system is large enough. This will be proven in Sec. lII.
tion of multipartite entang ement In>2zxn cases. More- We note that it is sufficient to consider thex2xX 4 case
over, we present a convenient criterion to distinguish in-

. . . in the proof of the theorem, since Clare can only have sup-
equivalent entangled classes by SLOCC invariants. port on a four-dimensional subspace. This is an analogy with
the bipartitek Xk’ (k<k’) case whose SLOCC classifica-
tion is equivalent to that of thé&Xxk case, because the

OCC-invariant Schmidt local rank takes at mksin any
2X2Xn (n=4) case, the partially ordered structure of mul-
tipartite entanglement consists of nine finite classes. Our re-
sult not only describes the situation that only Clare has the

A. Five-graded partial order of nine entangled classes

We show that there are nine entangled classes and th
constitute five-graded partially ordered structure under non
invertible SLOCC operations.

Theorem 1.Consider pure states in the Hilbert spade
=20 (20" (n=4), they are divided into nine entangled

classes, seen in Fig. 1, under invertible SLOCC operations.
These nine entangled classes constitute the five-graded par-
tially ordered structure of Fig. 2, where noninvertible
SLOCC operations degrade higher entangled classes into
lower entangled ones.

Some remarks are given before its proof. The theorem
gives the complete classification of multipartite pure en-
tangled states in’22Xn (n=4) cases. It naturally contains
the classification for the 22X 2 (three-qubit case[4,5,8|
and the 22X 3 case[5]. We find that SLOCC orbits are
added outside the onionlike pictu¢Eig. 1) and the partially

[000>+011>+102>+[113>
(2,24

|000>+7—%(|01 1>4101>)H112> | | |000>+H011>+[112>
(223) (2,2,3)

~ T1001>+]010>+]100>
222 W

<t

|000>+111> I
(2,2,2) GHZ

L

’ ag = e T & %
[001>+010> [001>-+100> { [010>+]100>

(122) B1 (2,12) B2 22,1) B3

ordered structuréFig. 2) becomes higher, as the third party ‘ B
Clare has her larger subsystem. Remarkably, for the B |060> il
2X2Xn (n=4) cases, the generic class is one “maximally (LL1) S
entangled” class located on the top of the hierarchy. This is a _—

clear contrast with the situation of thex2x2 and FIG. 2. The five-graded partially ordered structure of nine en-
2X2X3 cases, where there are two different entangledangled classes in thex22xn (n=4) case. Every class is labeled
classes on its top. This suggests that even in the multipartitgy its representative, its set of local ranks, and its name. Noninvert-
situation, there is a unique entangled class which can serniBle SLOCC operations, indicated by dashed arrows, degrade higher
as resource to create any entangled state, if Clare’s sulentangled classes into lower entangled ones.
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abundant resources, but also would be useful in analyzingident in the Lie group theory: SL(@®SL(2()

entanglement of two-qubit mixed states attached with an en~s0Q(4() [cf. SU(2)® SU(2)=S0(4)]. Accordingly, we

vironment(the rest of the worlg which could, e.g., be used see that a SLOCC transformation of ER) results in a trans-
to analyze the power of an eavesdropper in quantum crypformation

tography.

Let us consider the situation where Alice and Bob are R’=ORM£. (5
considered as one partgr, one of Alice and Bob comes to
have two qubitsand call it the “bipartite” (AB)-C picture.  Thus, our problem is equivalent to finding appropriate nor-
When two parties have two qubits for each, the onionlikemal forms for the complex % 4 matrix R under left multi-
structure of Fig. 1 becomes coarser. The nine entangledlication with a complex orthogonal matr® e SO(4() and
classes merge into four classes, and the structure coincidgght multiplication with an arbitrary %4 matrix M3
with that of the bipartite 44 case. We see that we can ¢ | (4().

perform LOCC operations more freely in the bipartite situa-  |f the matrix R has full rank, it is enough to operai,

tion. Likewise, in the bipartitth-(BC) or B-(AC) pictures, o\ c0y 1o baT(R™1)T. As a result, the stat® is (propor-
the onionlike structure coincides with that of th 8 (i.e., '[éonal to) the identity matrixl, or

2X2) case so that just two entangled classes, divided by th

onion skin ofB; or B,, respectively, remain. |000)+|011) +|102) +|113) (6)
On the other hand, it can be said that the SLOCC- ’

invariant onion structure of the’22x4 case is a coarse- he representative of the highest class in the hierarchy.
grained one of the 4-qubit (22X 2 2) case(see also Refs.  gyppose however that the rank Rfis three. As a first

[9,11,14), i.e., the former is embedded into the latter in thestep,R can always be left multiplied by a permutation matrix

same way as the structure of the bipartite 4 case is em- 54 right multiplied byMg so as to yield arR of the form
bedded into that of the22X 4 case. So, if two four-qubit

states belong to different classes in the 2x4 classifica- 1. 0 0 O

tion, these states must be also different in the four-qubit clas-

sification. It would be interesting to note that the four-qubit R— 0 100 @
entangled states are divided into infinitely many classes 0O 0 1 ol

[4,9,5, in comparison with finitely many classes of the @ By 0O

2X2X4 case. In other words, there are infinitely many or-
bits in the 4-qubit case between some onion skins, Wh"%upposey#ﬂ then it can easily be checked that left mul-
there exists one orbit in theX22 X 4 case. This suggests that tiplication by_th,e complex orthogonal matrix

a drastic change occurs in the structure of multipartite en-

L?ngclg[nig]nt even when a party comes to have two qubits in 1/\/m 0 0 a/\/m
Now, we give the proof of Theorem 1 in two different, 0 1 0 0
algebraic(in Sec. Il A) and geometridin Sec. Il B, ways. 0= 0 0 1 0 ®
Readers who are interested just in applying our results can
skip to Sec. Il C, where a convenient criterion for distin- —alJa*+1 0 O 1/\/017+1

guishing nine classes is given. ) o )
Proof. We first give an algebraic proof, utilizing the ma- and right multiplication with
trix analysis(cf. Refs.[6—9]). Any state is parametrized by a

three-index tensor ¥iiig with i4,i,e{0,} and ij 1 —apl(a®+1) —ayl(a®+1) O
€{0,1,2,3. This tensor can be rewritten as &4 matrix + |0 1 0 0
@=(¢(ili2)i3) by concatenating the indices, (i,). Next we Ms= 0 0 1 0 ©)
define the matriR as 0 0 0 1
R=TWV, 3 yield a newR of the form
whereT is defined as 1.0 0 O
1 0 0 1 0 1 0 O
1/0 i i o0 @ R=lo 0 1 o (19
T=— : 4
Y210 -1 1 0 0 B ¥y O
i 0 0 —i

Exactly the same can be done in the case witsre# =i,
Let us observe that both>22 matricesM, andM, belongto  and therefore we only have to consider the case where
SL(2() if and only if O=T(M;®M,)TTeSO(4() and  «,B,y={0,,—i}. It can however be checked that in the case
det(M,) =det(M,) =1, because of a consequence of an acthat when 2 or 3 elements, 8, y are not equal to zero, a new
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R can be made where alt, 3,y become equal to zero: this [001)+|010 +|100), (16)
can be done by first multiplyin® with orthogonal matrices
of the kind |000) +|011), a7
100 0 |000)+ | 101). (19)
01 O 0
o= - , (12) The first state is the celebrated Greenberger-Horne-Zeilinger
0 0 1n2 112 (GH2) state, the second one tiéstate named in Ref4] for
0 0 12 1N2 the three-qubit case, and the remaining ones represent

. _ _biseparableB;(i=1,2) states with only bipartite entangle-
and repeating the procedure outlined above. There remainient between Bob and Clare, or Alice and Clare, respec-
the case where exactly one of the elements is equalito tively.

Without loss of generality, we assume that,(,v) As a last class, we have to consider the one wiRehas

=(i,0,0) [this is possible because one can do permutationgank equal to 1. This leads to the following two possible
(with signg by appropriateD e SO(4) andM;]. This case is  normal forms forR:

fundamentally different from the one where allB,y are
equal to zero as the corresponding maRbR has rank 2 as
opposed to rank 3 oR. There is no way in which this be-
havior can be changed by left and right multiplyiRgwith
appropriate transformations, and we therefore have identified
a second claséwhich is clearly of measure zero: a generic
rank-3 stateR will also yield a rank-3R'R).

It is now straightforward to construct a representativeThe corresponding states are given by
state of each class. As a representative of the major class in
the rank-3R, we choose the state |000) +|110), (20

1
0
0 (19)

o O O -
o O O ©
o O O ©
o O O o
o ©o o o
© o o o
© o o o

1000 + iz(|011>+|101>)+|112>. (12) |000), (22)

V2 which are the biseparabl; state and the completely sepa-

As a representative of the minor class in the ranR:3ve rable S state, respectively. This ends the complete classifica-

choose the state tion. , L .
It remains to be proven that any state that is higher in the

|000) + 011 +|112), (13 hierarchy of Fig. 2 can be transformed to all the other ones
that are strictly lower. The first step downwards is evident
as it makes clear that the states in this class can be tranffom the fact that right multiplication of a rank-R with a
formed to have three terms in some product ba&as op-  rank deficientM 5 can yield whateveR of rank-3. In going
posed to the states in the major class that can be transformé@m a rank 3R of the major class to a rank-2 one, the state
to have four product terms _ |000)+ (|012) +|102))/\/2+|112 can be transformed into
The case wher® has rank 2 can be solved in a com- the GHZ state by a projection of Clare on the subspace
pletely analogous way. Exactly the same reasoning leads t90),|2)} and into theW state by Clare implementing the

the following four possible normal forms fax: positive operator-valued measuiROVM) element

1 0 0O 1 0 0O 1 0 0

01 00 01 00 01 0 0

0o0o0o0 (00O O 0 i 0 0 (22)

0O 0 0 O i 0 0 O 0O 0 0 O

1 0 0 O 1 0 0 O

010 0 0 1 0 0 From a rank-3R of the minor class, the GHZ state can easily
_ (14) be constructed by a projection of Clare on kidr),|2)} sub-

0 i 0 0} 0O —-i 0 O space, while th&V state is obtained by Clare projecting on

i 0 0 O i 0 0 0 her {|0),|1)+|2)} subspace. Finally, the conversion of the

GHZ andW states to the Bell state among two partigse
Note that the last two cases cannot be transformed into eadliseparable stateas well as that of the Bell state to the
other due to the constraint thé@ has determinant-1. The  completely separable state, is straightforward.
corresponding representative states are easily obtained by The proof not only gives a constructive transformations to

choosing symmetric ones: representatives of nine entangled classes, but also suggests a
very simple way of determining to which class a given state
|000) +]111), (15  belongs. One has to calculate the raufk) of the matriceRR
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[see Eq(3)], of R'R, and of the reduced density matgx. the subsystems of the other parties. Remember that it is again

One gets the following classification: an analogy to the bipartitexk’ case k<k'), where there
is no determinant but its onion structure remains unchanged
Class r(R) r(R'R) r(p;) from that of thekxk case.

In general, the hyperdeterminants can be definedHor

|000) +|011)+|102) +|113) 4 4 2 =(kg...@Ck, if and only if

! 3 3 2
000+ 7 (1014+10) +]113 k-1=> (k—1) Vi=1,...} (24)
1000)+|011) +[112) 3 2 2 I
|000) +|111) 2 2 2 are satisfied5,16]. Of course, in the bipartite cases, this
[001)+|010)+|100) 2 1 2 condition suggests that the determinants can be defined just
|000)+|101) 2 0 2 for square k;=k,) matrices as usua_l. Instead, @n the
|000) +|011) 2 0 1 2X2X4 case, the zero locus of tEe ordinary determinant of
|000) +|110) 1 1 2 degree 4 for the “flattened” matrix,
|000) 1 0 1

Yooo Yoor Yooz Poo3
Yoo Yo1ur Yoz Yo13
(23 Y100 Y101 Y102 Y103

Y110 Y11 Y2 Yaas
Note that the representative states in the GHZ-type classes . -
were chosen to be the ones witiaximalentanglement: fol-  9/V€S the equation of the largest closed subset. Note that it is

lowing Ref. [6], the states with maximal entanglement in athe S.LOC.C invariant for the bipartiteXd4 format as well as
SLOCC class are the ones for which all local-density operalh€ tripartite 2<2x4 format. It means that the largest subset
tors are proportional to the maximally mixed state. This is in!S dual to the seBj of the biseparable states, i.e., the set of
accordance with the intuition that the local disorder or enth€ separable states in the “bipartiteAB)-C picture. We

tropy is proportional to the entanglement present in theshould stress that this duality itself is valid in any
(pure state. 2X2Xn(n=4) case, regardless of the absence of (the

pendeterminant.
Next, let us show that the dual set 8fis the second
B. Geometry of nine entangled classes largest subset for the>22x 4 case. In order to decide the
We explore how the whole Hilbert space is geometricallydual set ofS, we seek the statel) included in the hyper-
divided into different nine classes, drawn in the onionlikePlane (the orthogonal one-codimensional subspaeagent
picture Fig. 1. This section can be seen as an alternatival @ completely separable stdte (see Ref[5] in detai).

(=det¥), (25)

proof of the theorem in Sec. Il A by a geometric way. Mathematically speaking, we should decide the condition for
We utilize a duality between the set of separable stateEY) such that a set of equations

and the set of entangled states in order to classify multipar- 11,3

tite entangled states under SLOCE]. The setS of com- F(W,x)= E b x(Myx(2)x(B) =

pletely separable states is the smallest closed subset, as seen Ui igTe=0 22T T2 Ty

in Fig. 1. In many caseuch as thé-qubit casesof interest (26)

to quantum information, its dual set is the largest closed d .

subset which consists of all degenerate entangled states and —F(¥.x)=0 V |

@
is given by the zero hyperdeterminant @et 0. We readily é’x'i
see that, in the bipartitexX k case, the se$ is the smallest has at least a nontrivial solution= (xM,x,x(®)) of every

subset of the Schmidt rank 1, while its dual set is the Iarges)t<(j)¢0 For simolicit. let us suppose that the point of tan-
subset where the Schmidt rank is not f(ile., detV"=0). ’ plicity, P P

However, the entangled statest= (2@ (2@ C" (n=4) gen(g;/ is(s;[he completely separable St@gq) (e, x5
have a peculiar structure from a geometric viewpoint. It is= X0 =Xo =1, others=0), the corresponding statel’)
not the case here that the largest subset is dual to the small&&ould satisfy
subsetS Indeed, the largest subset is dualtiee closure of ¥ _ _ _ _ _ —0v. (2
the setB; of the biseparable states, i.e., the second smallest 1) & {000 th100= 010 oor= oo™ thoos= 0} (27)
closed subset of dimension 6 in Fig. 1. The dual seB&f  according to Eq.(26). We find that the staté¥) should

the second largest subset of dimension 13. The reason will bgelong to the class of dimension 13, because any state,
explained later. Significantly, this suggests that for the

2x2xn (n=4) cases, there are no hyperdeterminants in the |¥)=%011011) + 4014 012) + 4914 013) + 101/ 101)

Gelfand et al's sense; in other words, the onion structure
. ' Do + 102+ 103 + 110 + 11
will not change anymore fon=4. This is intuitively be- ¥104102)+ 4104103+ 13110+ 19 110

cause the subsystem of one party is too large, compared with + 114112 + 14114113, (28
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in Eq. (27) can convert to its representatiy@1l) +|102 (ii) In the (2,2,3) case, there are two possibilities. Chang-

+|113) under invertible SLOCC operations. ing the local basis for Clare, we can always choose all new
In brief, we find that the 14-dimensional largest subset isﬂilizi3=0(i3> 3). We evaluate the hyperdeterminant of de-

the dual set of the biseparable statBg, and the 13- gree 6 for the new, 2 2x 3 formattedy; ; ; ,

dimensional second largest subset is the dual set of the com- ves

pletely separable stat&s Moreover, we note that the inside Yoo Yoor Yooal | Yoo Yorr Yorz

of the largest subset, given by zero locus of E2H), is

equivalent to the structure of thex2x3 case(since the DetV,y,x3= Yoo You Yorz| | hioo o1 Yo

local rank for Clare should be less than or equalonghich Y00 Y101 Y102l | Y110 Y111 Y12
has already been clarified in R¢&]. That is how we obtain

the onionlike picture of Fig. 1. In general, we can take ad- Yooo Yoor Yood | Yooo Yoor Yoo
vantage of all kinds of the dual pairs for sétgpically, one

is a large set and the other is a small) sit order to distin- —| Yo Y011 o1z | Y100 Y101 P02 .
guish inequivalent entangled classes. This strategy will be U110 Y111 Pi1ol | Y10 Y111 Yiie

explored elsewhergl7].
(31

C. Convenient criterion to distinguish nine entangled classes .
g 9 If DetW,,,,3#0, then|¥) belongs to the major class of

We give a convenient criterion to distinguish nine en-dimension 14. Otherwisé.e., Det,,,.5=0), it belongs
tangled classes by a complete set of SLOCC invariants. Lb the minor class of dimension 13.

us denote local ranks of the reduced density matiges, (i) In the (2,2,2) case, there are also two possibilities.
andps such as Changing the local basis for Clare, we can always choose all
Pi:ter¢i(|‘I’><‘1’|), =123, 29 new ¢ili2i3=0(|3>2). We evaluate the hyperdeterminant of

degree 4its absolute value is also known as the 3-tangle
for the 2x2X 2 formattedy;

by the 3-tuplesi(;,r,,r3). These local ranks are always use- PIEY
ful SLOCC invariants. In the bipartite setting, the 2-tuples

_ 12 2 2 2 2 2 2 2
(rq,r,) are enough to distinguish entangled classes, for both Detl 5 2x2= Yoo 111t Yoor 110t Yor0¥ 101t Pio0o11

r, andr, are indeed nothing but the Schmidt rank. In the _
multipartite setting, however, we need more SLOCC invari- 2(ood oot/ ofaait Yoooforof o
ants in addition to the set of the local ranks. + Yoootl 100011111+ Yoortborot 101110

The proof of Theorem 1 in Sec. Il A has suggested that a
complete set of SLOCC invariants is the rankRih Eq. (3) + Yoorbro0bor1b110 Poro 100011100
(i.e.,r3), rank of R'R, andr (alternatively,r,). Although + 4(Poooborrt o110+ Yoorborobioohiny)-
we have successfully found the rankRfR as an additional
SLOCC invariant, this is specific to the substructure (32

associated with 2 qubits, i.e., to a homomorphism

SL(2()@SL(2/)=SO(4L). class of dimension 11. Otherwise, it belongs to\tielass of
In the following, we introduce another complete set Ofdimension 10

SLOCC invariants, since it also gives an insight about how™ .
entanglement measures, distinguishing entangled classes, 5%('\;) t(ljntrtgebgsléz,:r)a{bl(az,lé), ::(?B(Zﬁé?s g??j?rﬁéniie(;n
derived in general. The set consists of polynomial invariant% 9 P =2 3

: . , 8, and 6, respectively.
(hyperdeterminant$5,16]) adjusted to smaller formats, as
well as 3-tuplesi(;,r,,r3) of the local ranks. The criterion (v) In the (1,1,1) case¥") belongs to the completely

reflects the onion structure drawn in Fig. 1, and suggests thgteparaple class of dlmenspn 5 . .
In this manner, we can immediately check which class a

we can utilize the results of the SLOCC classification for iven state/W) belongs to. We remark that the representa-
smaller formats recursively as if we were skinning the oniond gs fo. P

: tives of nine entangled classes in previous subsections have
recursively. . 2 2 . . . been chosen with the help of hyperdeterminants; the “GHZ-
Any pure state ifH=C*®C*®C" is written in the form S . I '
like” representatives are chosen to maximize the absolute

Likewise, if DetV,y,x»#0, then|¥) belongs to the GHZ

11n-1 value of (hypendeterminants in Eqs(25), (31), and (32),
W)= linelis@lia. 30 which are entanglement monotones under general LOCC
) il,i§3:0 Visiali iz lis) 30 [5,6] (cf. Refs.[18,19).
First we calculate a setr{,r,,r3) of the SLOCC- lIl. CHARACTERISTICS OF MULTIPARTITE
invariant local ranks of the reduced density matrices. ENTANGLEMENT

(i) In the (2,2,4) case, we find that the st@#e) belongs
to the generic class of dimension {the dimension is indi-
cated for readers’ convenience, but it is the one for the The recent trend of experimental quantum optics reaches
2X2X4 case. the stage that we can manipulate two Bell states collectively.

A. LOCC protocols as noninvertible flows
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LOCC protocols involving local collective operations over  Theorem 2.Consider pure states in the Hilbert spakde
two Bell states are key procedures in, for example, entangle= (2@ (2@ C". Two Bell pairs, the representative of the ge-
ment swappind 20,21 (a building block of quantum com- neric class, can create any st&fie) with probability 1 by
munication protocols such as quantum teleportat#j and  means of a local POVM measureméuit on Clare followed
the quantum repeat¢®3]) and the creation of multipartite by local unitary operations) (i) and Ug(i) on Alice and
GHZ andW states. Although there appear four partidlgs-  Bob, respectively.
bits), these can be seen as LOCC operations in three parties Proof. We prove that we can always choose a local
(H=C?®(%®C* because the third party Clare has initially POVM M; on Clare, local unitary operations (i) and
two particles, each of which is in a Bell state with anotherUg(i) on Alice and Bob(depending on the outconmeof the
particle on Alice’s or Bob's side, respectively, and locally POVM M;), such that
performs collective operations on them.

Entanglement swapping is the LOCC protocol where the |W)=U(i)®Ug(i)®M;
initial state is prepared as two Bell pairs shared among Alice, .
Bob, and Clare in the manner described above. We note that X (/000 +|01D+|109+[113) Vi, (39

two Bell pairs are equivalent to the representative of the T . y .
generic entangled class of dimension 15, whereX;M{M;=1. In terms of the “flattened” matrix form

¥ where the indicesi(,i,) are concatenated, E(5) is
|2Be||>=(|00>+|11))Acl®(|00)+|11>)BC2 rewritten as

=[00(00)) +[01(01)) +[10(10)) +11(11)) apc, T=[U()@Ug(DH]IMT  V i. (36)

(33 5
By choosingM [ =(M¥*)T=[U (i) ®Ug(i) 1", it should be
|2 Bell) is also equivalent té:?:0|<bi>AB®|¢>i)c12, where a  satisfied that
set of |®;) (i=0,1,2,3) is the standard Bell basis. So, this
protocol can create the biseparaBleg state which contains
maximal entanglemeria Bell paiy between Alice and Bob,

(100 +[11)ag@ (|(00) +[(1D))c,, (34

1= (MH)TM?

=2 [Ua)@Ue()]"TFUADH®Ue()]. (37
by Clare’s local collective Bell measuremef@ny |®;)ag
corresponding to the outcomeof her Bell measurement is gch a local POVMM; always exists, because we can de-

equivalent to (00)+|11)p under LOCG. Thus, en_tangle- é)oolarize any? ¥ to the identityl by random local unitary
ment swapping can be seen as a protocol creating isolat SherationsU (i) @Ug(i) on Alice and Bob[24,25. This

(maxima) entanglement between Alice and Bob from ge- o . . ;
. o randomization can be alternatively achieved by applying a
neric entanglement. In other words, it is given by a down-

ward flow in Fig. 2 from the generic class to the biseparableseF ,O.f 16 local uﬂnltary oneratlonsﬁ@ch with equal pf"b'
classB,. Now, we readily find that the entanglement swap-20ilities, wheres* ando” (x,»=0,1,2,3) are the Pauli ma-
ping protocol is(probabilistically successful even when we trices. This completes_ the proof._ _n
initially prepare other four-qubit entangled states in the ge- _Theorem 3. Cor:(&deL I-partlteWK pure K sxtkatxeg.xlg the
neric class. Hilbert space H=0"9(2® - --oC I—1_®C 1 -1
On the other hand, two Bell pairs can create two differenthne maximally entangle(_:l state, Wh,'Ch_ is thé X
kinds of genuine three-qubit entanglement, GHZ and W by Ki—1) X (ki X - -Xkj ) identity matrixl in concatenating
Clare’s local collective operations. These LOCC protocold!® indices {y, ... ij-4), can create any state with prob-
are given by the downward flow, in Fig. 2, from the generic@Pility 1 by means of a local POVM on thigh party fol-
classes to the GHZ ari class, respectively. lowed by local unltary_operatlons on the re_st of the parties.
That is how we see that important LOCC protocols in Proof. The generalization of the proof in thex2xn

quantum information are given as noninvertibiewnwarg ~ Case is straightforward. -
flows in the partially ordered structure, such as Fig. 2, of 'nhese theorems suggest that when one of multiparties

multipartite entangled classes. So, we expect that thBolds at least half of the total Hilbert space, the situation is
SLOCC classification can give us an insight in looking for SOmehow analogous to the bipartite cases. The maximally

LOCC protocols by means of several entangled states ovéntangled state, i.e., the repre;entative of the generic class,
multiparties. can create any state with certainty.

B. Two Bell pairs create any state with certainty IV. EXTENSION TO MIXED STATES

We show that two Bell pairs are powerful enough to cre- In this section, we extend the onionlike SLOCC classifi-
ate any statevith certaintyin our 2X2xn cases. We find cation of pure states in Sec. Il to mixed states.
that this is also the case when one of the multiparties has half A multipartite mixed statep can be written as a convex
of the total Hilbert space. combination of projectors onto pure stategtremal points
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compositions in Eq(38) for a givenp. Let us however prove
that the convex combination of nine classes of pure states
gives rise to convex sets that are not of measure zero, in
contrast with the pure cagef. Ref.[26]). This can easily be
established with the help of the following lemma:

Lemma 1.Given two matricesA,B with corresponding
ordered singular valuer®}, denote the ordered singular
values of the matriceA"A and B'B as {/*B}. Then the
Hilbert-Schmidt norm

[000>+H011>H102>+|113>

[006 +\,-1_5(|011>+|101>)+

000>+011>+112>

|A=B|,= Jtr[(A-B)T(A-B)]

is lower bounded by
FIG. 3. The SLOCC classification of multipartite mixed states in

the 2x2Xn (n=4) cases. Mixed states in the class, labeled by A B

|W (Opa)) €{/000 +]011) +[102 +]113), . . ., Sl, are convex IA-B]2= \ E, (o7 =0P)?,
combinations of pure statéssidethe “onion skin” of | W (Opa0) in

Fig. 1. So the outer the class is, the more the kinds of multipartite A

entangled pure states the mixed states contain. The edges of the |A—B|,= IAll2 /2 (7,_A_ 7__B)z
“fan” reflect the structure of extremal pointpure states and non- 2(1+|Alp) V& T
invertible SLOCC operations can never upgrade an inner class to its

outer classes. where we assumed thiph\[|,=||B|,.

Proof. The first inequality can readily be proven using
standard results of linear algedv]. The second inequality
p=2 plWI(O)N¥(O)], pi>0, (38 can be proven as follows. Definé=A—B; then
I

IATA—BTB||=[IXAT+AXT—XTX[<2| X[l Al +[IX].

where each pure statfl;(O;)) belongs to one of the (39
SLOCC entangled classése., an SLOCC orbit?;). Our
idea is to discuss, in E438), how p needs at least an outer The left term of this inequality is bounded below by
entangled clas®),,,,, among the se{O;}, in the onion
structure of Fig. 1. That is, we are interested in the minimum B
of Omax for all possible decomposition gf. Because the |ATA-B'B|= V EI (rf=m)2 (40
onion picture is divided by every SLOCC-invariant closed
subseti.e., every SLOCC orbit closuy®f pure states, their The second inequality of the lemma can now be checked by
convex combination in Eq(38) constitutes the SLOCC- making use of straightforward algebra. u
invariant closed convex subsets of mixed stase® Fig. 3 The fact that a structure of convex sets as depicted in Fig.
Note that, in the onion piCtUre of the mUItipartite pure casesg is obtained can now be proven by Combining the previous
there can be “Competitive” closed subsets which never C0n1emma with the results of the table in E@S) indeed, it can
tain nor are contained by each other. An example is the clogasily be shown that whenever there exists a pure state in one
sures of three biseparable clasdgsin Fig. 1. So, in the ¢lass that is separated from all pure states in another class
extension to mixed states, we should assemble all subsets @fth a finite nonzero Hilbert-Schmidt distance, then the cor-
mixed states which require at most these biseparable classgssponding class for mixed states is absolutely separated
B; into one biseparable convex subset by their convex hullfrom the other one. The previous lemma guarantees that the
(The argument is similar to the classification of three-qubitHjlbert-Schmidt norm will be nonzero for all states having a
mixed states in Ref26].) different rank for the matriceR or R'R [see the table in Eq.

We find that these entangled classes constitute a totally»3)]. More specifically, all theW classes are embedded in

ordered structure, seen in Fig. 3, where noninvertiblghe respective GHZ classes, and the convex structure as de-
SLOCC operations can never upgrade an inner class to it§icted in Fig. 3 is obtained.

outer classes. For instance, we see that the closui®/;of
class of mixed stateflabeled by|000)+|011)+|112) is
included in the closure of GHZclass (labeled by|000)
+(1/4/2)(|012) +]101)) +|112)). This classification reflects In this paper, we have the following.

a diversity of multipartite pure entangled states a mixed state (i) We give the complete classification of multipartite en-
p consists of: the outer the class @fis, the more the kinds tangled states in the Hilbert spake= (?® C?® C" under sto-

of resources it contains. Needless to say, it is very difficult tochastic local operations and classical communication
give the criterion to distinguish convex subsets, even to distSLOCQ. Our study can be seen as the first example of the
tinguish the separable convex subsge¢., the separability SLOCC classification of multipartite entanglement where
problem, since we face trouble evaluating all possible de-one of multiparties has more than one qubits. We show that

V. CONCLUSION
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