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Multipartite entanglement in 2Ã2Ãn quantum systems
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We classify multipartite entangled states in the Hilbert spaceH5C2
^ C2

^ Cn (n>4), for example, the
four-qubit system distributed over three parties, under local filtering operations. We show that there exist nine
essentially different classes of states, giving rise to a five-graded partially ordered structure, including the
celebrated Greenberger-Horne-Zeilinger andW classes of three qubits. In particular, all 2323n states can be
deterministically prepared from one maximally entangled state, and some applications such as entanglement
swapping are discussed.
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I. INTRODUCTION

Entanglement is the key ingredient of all applications
the field of quantum information. Due to the nonlocal ch
acter of the correlations that entanglement induces, it is
pected that entanglement is especially valuable in the con
of many parties. Despite a lot of efforts however, it h
proven exceedingly hard to get insight into the structure
multipartite entanglement. Still, the motivation of our wo
is as follows. In the bipartite~pure! setting, the entanglemen
present in a Bell-Einstein-Podolsky-Rosen~Bell-EPR! state
is essentially unique; i.e., we can evaluate any bipartite
tangled state by the number of equivalent Bell pairs, in eit
a qubits or a qudits system, both in the single-copy a
multiple-copy case.

The situation is totally different in the multipartite settin
however, where interconvertibility under local operatio
and classical communication~LOCC! is not expected to hold
@1#. Multipartite entanglement exhibits a much richer stru
ture than bipartite entanglement. The first celebrated exam
thereof was the three-qubit GHZ state, called after Gre
berger, Horne, and Zeilinger@2#. This state was introduce
because it allows one to disprove the Einstein locality
quantum systems without invoking statistical arguments s
as those needed by Bell. Another interesting aspect of m
tipartite entanglement was discovered by Coffmanet al. @3#.
They showed that a quantum state has only a limited sh
ability for quantum correlations: more the bipartite corre
tions in a state, lesser the genuine multipartite entanglem
that can be present in the system. This led to the introduc
of the so-called three-qubitW state@4#, which was shown to
be essentially different from the GHZ state as they are
interconvertible under LOCC even probabilistically.

In this paper, we will generalize these results and pres
one of the very few exact and complete results about mu
partite quantum systems, by classifying multipartite e
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tanglement in the 2323n cases. Since this includes th
four-qubit system distributed overthree parties, which is the
case in, e.g., entanglement swapping, our results will cla
what kinds of essentially different multipartite entangleme
there exist in this situation, and give better understanding
multiparty LOCC protocols. More specifically, we will ad
dress the stochastic LOCC~SLOCC! classification of en-
tanglement@1,4–13#, which is acoarse-grainedclassifica-
tion under LOCC. Let us consider the single co
of a multipartite pure stateuC& on the Hilbert spaceH
5Ck1^ •••^ Ckl ~precisely, in abuse of the notation, w
would denote a ray on its complex projective spa
CPk13•••3kl21 by uC&),

uC&5 (
i 1 , . . . ,i l50

k121, . . . ,kl21

c i 1 . . . i l
u i 1& ^ •••^ u i l&, ~1!

where a set ofu i 1& ^ •••^ u i l& constitutes the standard com
putational basis and often it will be abbreviated
u i 1••• i l&. In LOCC, we recognize two statesuC& and uC8&
which are interconvertible deterministically, e.g., by loc
unitary operations, as equivalent entangled states. On
other hand in SLOCC, we identify two statesuC& and uC8&
as equivalent if they are interconvertible probabilistical
i.e., with a nonvanishing probability, since they are suppo
to be able to perform the same tasks in quantum informa
processing but with different success probabilities. Ma
ematically, uC& and uC8& belong to the same SLOCC en
tangled class if and only if they can be converted to ea
other byinvertible SLOCC operations,

uC8&5M1^ •••^ Ml uC&, ~2!

whereMi is any local operation having a nonzero determ
nant on thei th party@4#, i.e.,Mi is an element of the genera
linear group GL(ki ,C) @we do not care about the overa
normalization and phase so that we can take its determi
1, i.e.,MiPSL(ki ,C)#. It can be also said that an invertibl
SLOCC operation is a completely positive map followed
©2004 The American Physical Society01-1
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the postselection of one successful outcome. Mathematic
the SLOCC classification is equivalent to the classification
orbits generated by a direct product of special linear gro
SL(k1 ,C)3•••3SL(kl ,C). Note that in the bipartitel 52
case, the SLOCC classification means the classification
by the Schmidt rank@or equivalently, the rank of a coeffi
cient ‘‘matrix’’ c i 1i 2

in Eq. ~1!#. We will also address the
question ofnoninvertibleSLOCC operations@at least one of
the ranks ofMi in Eq. ~2! is not full#. The set of invertible
and noninvertible SLOCC operations are also called lo
filtering operations. Consider the bipartite case as an
ample: SLOCC entangled classes are found to be totally
dered in such a way that an entangled class of the la
Schmidt rank is more entangled than that of the smaller o
because the Schmidt rank is always decreasing under no
vertible local operations.

The paper is organized as follows. In Sec. II, we class
multipartite 2323n pure states under SLOCC, so as
show that nine entangled classes are hierarchized in a
graded partial order. We discuss the characteristics of m
partite entanglement in our situation in Sec. III, and exte
the classification of multipartite pure states to mixed state
Sec. IV. The conclusion is given in Sec. V.

II. CLASSIFICATION OF MULTIPARTITE
ENTANGLEMENT

In this section, we give the complete SLOCC classific
tion of multipartite entanglement in 2323n cases. More-
over, we present a convenient criterion to distinguish
equivalent entangled classes by SLOCC invariants.

A. Five-graded partial order of nine entangled classes

We show that there are nine entangled classes and
constitute five-graded partially ordered structure under n
invertible SLOCC operations.

Theorem 1.Consider pure states in the Hilbert spaceH
5C2

^ C2
^ Cn (n>4), they are divided into nine entangle

classes, seen in Fig. 1, under invertible SLOCC operatio
These nine entangled classes constitute the five-graded
tially ordered structure of Fig. 2, where noninvertib
SLOCC operations degrade higher entangled classes
lower entangled ones.

Some remarks are given before its proof. The theor
gives the complete classification of multipartite pure e
tangled states in 2323n (n>4) cases. It naturally contain
the classification for the 23232 ~three-qubit! case@4,5,8#
and the 23233 case@5#. We find that SLOCC orbits are
added outside the onionlike picture~Fig. 1! and the partially
ordered structure~Fig. 2! becomes higher, as the third par
Clare has her larger subsystem. Remarkably, for
2323n (n>4) cases, the generic class is one ‘‘maxima
entangled’’ class located on the top of the hierarchy. This
clear contrast with the situation of the 23232 and
23233 cases, where there are two different entang
classes on its top. This suggests that even in the multipa
situation, there is a unique entangled class which can s
as resource to create any entangled state, if Clare’s
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system is large enough. This will be proven in Sec. III.
We note that it is sufficient to consider the 23234 case

in the proof of the theorem, since Clare can only have s
port on a four-dimensional subspace. This is an analogy w
the bipartitek3k8 (k,k8) case whose SLOCC classifica
tion is equivalent to that of thek3k case, because th
SLOCC-invariant Schmidt local rank takes at mostk. In any
2323n (n>4) case, the partially ordered structure of mu
tipartite entanglement consists of nine finite classes. Our
sult not only describes the situation that only Clare has

FIG. 1. The onionlike classification of multipartite entangle
classes~SLOCC orbits! in the Hilbert spaceH5C2

^ C2
^ Cn (n

>4). There are nine classes divided by ‘‘onion skins’’~the orbit
closures!. The pictures for 2323n (n.4) cases are essentiall
same although the dimensions of SLOCC orbits are different. Th
classes merge into four classes, divided by the skins of the s
line, in the ‘‘bipartite’’ (AB)-C picture. Note that although nonin
vertible SLOCC operations generally cause the conversions in
the onion structure, an outer class cannot necessarily convert in
neighboring inner class~cf. Fig. 2!.

FIG. 2. The five-graded partially ordered structure of nine e
tangled classes in the 2323n (n>4) case. Every class is labele
by its representative, its set of local ranks, and its name. Noninv
ible SLOCC operations, indicated by dashed arrows, degrade hi
entangled classes into lower entangled ones.
1-2
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MULTIPARTITE ENTANGLEMENT IN 2323n QUANTUM SYSTEMS PHYSICAL REVIEW A69, 012101 ~2004!
abundant resources, but also would be useful in analyz
entanglement of two-qubit mixed states attached with an
vironment~the rest of the world!, which could, e.g., be use
to analyze the power of an eavesdropper in quantum c
tography.

Let us consider the situation where Alice and Bob a
considered as one party~or, one of Alice and Bob comes t
have two qubits! and call it the ‘‘bipartite’’ (AB)-C picture.
When two parties have two qubits for each, the onionl
structure of Fig. 1 becomes coarser. The nine entan
classes merge into four classes, and the structure coinc
with that of the bipartite 434 case. We see that we ca
perform LOCC operations more freely in the bipartite situ
tion. Likewise, in the bipartiteA-(BC) or B-(AC) pictures,
the onionlike structure coincides with that of the 238 ~i.e.,
232) case so that just two entangled classes, divided by
onion skin ofB1 or B2, respectively, remain.

On the other hand, it can be said that the SLOC
invariant onion structure of the 23234 case is a coarse
grained one of the 4-qubit (2323232) case~see also Refs
@9,11,14#!, i.e., the former is embedded into the latter in t
same way as the structure of the bipartite 434 case is em-
bedded into that of the 23234 case. So, if two four-qubi
states belong to different classes in the 23234 classifica-
tion, these states must be also different in the four-qubit c
sification. It would be interesting to note that the four-qu
entangled states are divided into infinitely many clas
@4,9,5#, in comparison with finitely many classes of th
23234 case. In other words, there are infinitely many
bits in the 4-qubit case between some onion skins, w
there exists one orbit in the 23234 case. This suggests th
a drastic change occurs in the structure of multipartite
tanglement even when a party comes to have two qubit
hands@15#.

Now, we give the proof of Theorem 1 in two differen
algebraic~in Sec. II A! and geometric~in Sec. II B!, ways.
Readers who are interested just in applying our results
skip to Sec. II C, where a convenient criterion for disti
guishing nine classes is given.

Proof. We first give an algebraic proof, utilizing the ma
trix analysis~cf. Refs.@6–9#!. Any state is parametrized by
three-index tensor c i 1i 2i 3

with i 1 ,i 2P$0,1% and i 3

P$0,1,2,3%. This tensor can be rewritten as a 434 matrix
C̃5(c ( i 1i 2) i 3

) by concatenating the indices (i 1 ,i 2). Next we
define the matrixR as

R5TC̃, ~3!

whereT is defined as

T5
1

A2 S 1 0 0 1

0 i i 0

0 21 1 0

i 0 0 2 i

D . ~4!

Let us observe that both 232 matricesM1 andM2 belong to
SL(2,C) if and only if O5T(M1^ M2)T†PSO(4,C) and
det(M1)5det(M2)51, because of a consequence of an
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cident in the Lie group theory: SL(2,C) ^ SL(2,C)
.SO(4,C) @cf. SU(2)̂ SU(2).SO(4)]. Accordingly, we
see that a SLOCC transformation of Eq.~2! results in a trans-
formation

R85ORM3
T . ~5!

Thus, our problem is equivalent to finding appropriate n
mal forms for the complex 434 matrix R under left multi-
plication with a complex orthogonal matrixOPSO(4,C) and
right multiplication with an arbitrary 434 matrix M3

T

PSL(4,C).
If the matrix R has full rank, it is enough to operateM3

chosen to beT†(R21)T. As a result, the stateC̃ is ~propor-
tional to! the identity matrix1, or

u000&1u011&1u102&1u113&, ~6!

the representative of the highest class in the hierarchy.
Suppose however that the rank ofR is three. As a first

step,R can always be left multiplied by a permutation matr
and right multiplied byM3

T so as to yield anR of the form

R5S 1 0 0 0

0 1 0 0

0 0 1 0

a b g 0

D . ~7!

SupposeaÞ6 i , then it can easily be checked that left mu
tiplication by the complex orthogonal matrix

O5S 1/Aa211 0 0 a/Aa211

0 1 0 0

0 0 1 0

2a/Aa211 0 0 1/Aa211

D ~8!

and right multiplication with

M3
T5S 1 2ab/~a211! 2ag/~a211! 0

0 1 0 0

0 0 1 0

0 0 0 1

D ~9!

yield a newR of the form

R5S 1 0 0 0

0 1 0 0

0 0 1 0

0 b8 g8 0

D . ~10!

Exactly the same can be done in the case whereb,gÞ6 i ,
and therefore we only have to consider the case wh
a,b,gP$0,i ,2 i %. It can however be checked that in the ca
that when 2 or 3 elementsa,b,g are not equal to zero, a new
1-3
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A. MIYAKE AND F. VERSTRAETE PHYSICAL REVIEW A 69, 012101 ~2004!
R can be made where alla,b,g become equal to zero: thi
can be done by first multiplyingR with orthogonal matrices
of the kind

O5S 1 0 0 0

0 1 0 0

0 0 1/A2 21/A2

0 0 1/A2 1/A2

D , ~11!

and repeating the procedure outlined above. There rem
the case where exactly one of the elements is equal to6 i .
Without loss of generality, we assume that (a,b,g)
5( i ,0,0) @this is possible because one can do permutati
~with signs! by appropriateOPSO(4) andM3]. This case is
fundamentally different from the one where alla,b,g are
equal to zero as the corresponding matrixRTR has rank 2 as
opposed to rank 3 ofR. There is no way in which this be
havior can be changed by left and right multiplyingR with
appropriate transformations, and we therefore have ident
a second class~which is clearly of measure zero: a gene
rank-3 stateR will also yield a rank-3RTR).

It is now straightforward to construct a representat
state of each class. As a representative of the major clas
the rank-3R, we choose the state

u000&1
1

A2
~ u011&1u101&)1u112&. ~12!

As a representative of the minor class in the rank-3R, we
choose the state

u000&1u011&1u112&, ~13!

as it makes clear that the states in this class can be tr
formed to have three terms in some product basis~as op-
posed to the states in the major class that can be transfo
to have four product terms!.

The case whereR has rank 2 can be solved in a com
pletely analogous way. Exactly the same reasoning lead
the following four possible normal forms forR:

S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D , S 1 0 0 0

0 1 0 0

0 0 0 0

i 0 0 0

D ,

S 1 0 0 0

0 1 0 0

0 i 0 0

i 0 0 0

D , S 1 0 0 0

0 1 0 0

0 2 i 0 0

i 0 0 0

D . ~14!

Note that the last two cases cannot be transformed into e
other due to the constraint thatO has determinant11. The
corresponding representative states are easily obtaine
choosing symmetric ones:

u000&1u111&, ~15!
01210
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u001&1u010&1u100&, ~16!

u000&1u011&, ~17!

u000&1u101&. ~18!

The first state is the celebrated Greenberger-Horne-Zeilin
~GHZ! state, the second one theWstate named in Ref.@4# for
the three-qubit case, and the remaining ones repre
biseparableBi( i 51,2) states with only bipartite entangle
ment between Bob and Clare, or Alice and Clare, resp
tively.

As a last class, we have to consider the one whereR has
rank equal to 1. This leads to the following two possib
normal forms forR:

S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D , S 1 0 0 0

0 0 0 0

0 0 0 0

i 0 0 0

D . ~19!

The corresponding states are given by

u000&1u110&, ~20!

u000&, ~21!

which are the biseparableB3 state and the completely sep
rableS state, respectively. This ends the complete classifi
tion.

It remains to be proven that any state that is higher in
hierarchy of Fig. 2 can be transformed to all the other on
that are strictly lower. The first step downwards is evide
from the fact that right multiplication of a rank-4R with a
rank deficientM3 can yield whateverR of rank-3. In going
from a rank 3R of the major class to a rank-2 one, the sta
u000&1(u011&1u101&)/A21u112& can be transformed into
the GHZ state by a projection of Clare on the subsp
$u0&,u2&% and into theW state by Clare implementing th
positive operator-valued measure~POVM! element

S 1 0 0 0

0 1 0 0

0 i 0 0

0 0 0 0

D . ~22!

From a rank-3R of the minor class, the GHZ state can eas
be constructed by a projection of Clare on her$u1&,u2&% sub-
space, while theW state is obtained by Clare projecting o
her $u0&,u1&1u2&% subspace. Finally, the conversion of th
GHZ andW states to the Bell state among two parties~the
biseparable state!, as well as that of the Bell state to th
completely separable state, is straightforward.

The proof not only gives a constructive transformations
representatives of nine entangled classes, but also sugge
very simple way of determining to which class a given st
belongs. One has to calculate the rankr (•) of the matricesR
1-4
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@see Eq.~3!#, of RTR, and of the reduced density matrixr1.
One gets the following classification:

Class r (R) r (RTR) r (r1)

u000&1u011&1u102&1u113& 4 4 2

u000&1
1

A2
~ u011&1u101&)1u112& 3 3 2

u000&1u011&1u112& 3 2 2
u000&1u111& 2 2 2
u001&1u010&1u100& 2 1 2
u000&1u101& 2 0 2
u000&1u011& 2 0 1
u000&1u110& 1 1 2
u000& 1 0 1

~23!

Note that the representative states in the GHZ-type cla
were chosen to be the ones withmaximalentanglement: fol-
lowing Ref. @6#, the states with maximal entanglement in
SLOCC class are the ones for which all local-density ope
tors are proportional to the maximally mixed state. This is
accordance with the intuition that the local disorder or e
tropy is proportional to the entanglement present in
~pure! state.

B. Geometry of nine entangled classes

We explore how the whole Hilbert space is geometrica
divided into different nine classes, drawn in the onionli
picture Fig. 1. This section can be seen as an alterna
proof of the theorem in Sec. II A by a geometric way.

We utilize a duality between the set of separable sta
and the set of entangled states in order to classify multip
tite entangled states under SLOCC@5#. The setS of com-
pletely separable states is the smallest closed subset, as
in Fig. 1. In many cases~such as thel-qubit cases! of interest
to quantum information, its dual set is the largest clos
subset which consists of all degenerate entangled states
is given by the zero hyperdeterminant DetC50. We readily
see that, in the bipartitek3k case, the setS is the smallest
subset of the Schmidt rank 1, while its dual set is the larg
subset where the Schmidt rank is not full~i.e., detC50).

However, the entangled states inH5C2
^ C2

^ Cn (n>4)
have a peculiar structure from a geometric viewpoint. It
not the case here that the largest subset is dual to the sm
subsetS. Indeed, the largest subset is dual to~the closure of!
the setB3 of the biseparable states, i.e., the second sma
closed subset of dimension 6 in Fig. 1. The dual set ofS is
the second largest subset of dimension 13. The reason w
explained later. Significantly, this suggests that for
2323n (n>4) cases, there are no hyperdeterminants in
Gelfand et al.’s sense; in other words, the onion structu
will not change anymore forn>4. This is intuitively be-
cause the subsystem of one party is too large, compared
01210
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the subsystems of the other parties. Remember that it is a
an analogy to the bipartitek3k8 case (k,k8), where there
is no determinant but its onion structure remains unchan
from that of thek3k case.

In general, the hyperdeterminants can be defined forH
5Ck1^ •••^ Ckl, if and only if

ki21<(
j Þ i

~kj21! ; i 51, . . . ,l ~24!

are satisfied@5,16#. Of course, in the bipartite cases, th
condition suggests that the determinants can be defined
for square (k15k2) matrices as usual. Instead, in th
23234 case, the zero locus of the ordinary determinant
degree 4 for the ‘‘flattened’’ matrixC̃,

Uc000 c001 c002 c003

c010 c011 c012 c013

c100 c101 c102 c103

c110 c111 c112 c113

U ~5detC̃!, ~25!

gives the equation of the largest closed subset. Note that
the SLOCC invariant for the bipartite 434 format as well as
the tripartite 23234 format. It means that the largest subs
is dual to the setB3 of the biseparable states, i.e., the set
the separable states in the ‘‘bipartite’’ (AB)-C picture. We
should stress that this duality itself is valid in an
2323n(n>4) case, regardless of the absence of the~hy-
per!determinant.

Next, let us show that the dual set ofS is the second
largest subset for the 23234 case. In order to decide th
dual set ofS, we seek the stateuC& included in the hyper-
plane ~the orthogonal one-codimensional subspace! tangent
at a completely separable stateux& ~see Ref.@5# in detail!.
Mathematically speaking, we should decide the condition
uC& such that a set of equations

F~C,x!5 (
i 1 ,i 2 ,i 350

1,1,3

c i 1i 2i 3
xi 1

(1)xi 2
(2)xi 3

(3)50,

~26!
]

]xi j

( j )
F~C,x!50 ; j ,i j

has at least a nontrivial solutionx5(x(1),x(2),x(3)) of every
x( j )Þ0. For simplicity, let us suppose that the point of ta
gency is the completely separable stateu000& ~i.e., x0

(1)

5x0
(2)5x0

(3)51, others50), the corresponding stateuC&
should satisfy

uC&P$c0005c1005c0105c0015c0025c00350%, ~27!

according to Eq.~26!. We find that the stateuC& should
belong to the class of dimension 13, because any state,

uC&5c011u011&1c012u012&1c013u013&1c101u101&

1c102u102&1c103u103&1c110u110&1c111u111&

1c112u112&1c113u113&, ~28!
1-5
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in Eq. ~27! can convert to its representativeu011&1u102&
1u113& under invertible SLOCC operations.

In brief, we find that the 14-dimensional largest subse
the dual set of the biseparable statesB3, and the 13-
dimensional second largest subset is the dual set of the c
pletely separable statesS. Moreover, we note that the insid
of the largest subset, given by zero locus of Eq.~25!, is
equivalent to the structure of the 23233 case~since the
local rank for Clare should be less than or equal to 3!, which
has already been clarified in Ref.@5#. That is how we obtain
the onionlike picture of Fig. 1. In general, we can take a
vantage of all kinds of the dual pairs for sets~typically, one
is a large set and the other is a small set!, in order to distin-
guish inequivalent entangled classes. This strategy will
explored elsewhere@17#.

C. Convenient criterion to distinguish nine entangled classes

We give a convenient criterion to distinguish nine e
tangled classes by a complete set of SLOCC invariants.
us denote local ranks of the reduced density matricesr1 , r2,
andr3 such as

r i5tr; j Þ i~ uC&^Cu!, i 51,2,3, ~29!

by the 3-tuples (r 1 ,r 2 ,r 3). These local ranks are always us
ful SLOCC invariants. In the bipartite setting, the 2-tupl
(r 1 ,r 2) are enough to distinguish entangled classes, for b
r 1 and r 2 are indeed nothing but the Schmidt rank. In t
multipartite setting, however, we need more SLOCC inva
ants in addition to the set of the local ranks.

The proof of Theorem 1 in Sec. II A has suggested tha
complete set of SLOCC invariants is the rank ofR in Eq. ~3!
~i.e., r 3), rank of RTR, and r 1 ~alternatively,r 2). Although
we have successfully found the rank ofRTR as an additional
SLOCC invariant, this is specific to the substructu
associated with 2 qubits, i.e., to a homomorphi
SL(2,C) ^ SL(2,C).SO(4,C).

In the following, we introduce another complete set
SLOCC invariants, since it also gives an insight about h
entanglement measures, distinguishing entangled classe
derived in general. The set consists of polynomial invaria
~hyperdeterminants@5,16#! adjusted to smaller formats, a
well as 3-tuples (r 1 ,r 2 ,r 3) of the local ranks. The criterion
reflects the onion structure drawn in Fig. 1, and suggests
we can utilize the results of the SLOCC classification
smaller formats recursively as if we were skinning the on
recursively.

Any pure state inH5C2
^ C2

^ Cn is written in the form

uC&5 (
i 1 ,i 2 ,i 350

1,1,n21

c i 1i 2i 3
u i 1& ^ u i 2& ^ u i 3&. ~30!

First we calculate a set (r 1 ,r 2 ,r 3) of the SLOCC-
invariant local ranks of the reduced density matrices.

~i! In the (2,2,4) case, we find that the stateuC& belongs
to the generic class of dimension 15~the dimension is indi-
cated for readers’ convenience, but it is the one for
23234 case.!.
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~ii ! In the (2,2,3) case, there are two possibilities. Cha
ing the local basis for Clare, we can always choose all n
c i 1i 2i 3

50(i 3>3). We evaluate the hyperdeterminant of d

gree 6 for the new, 23233 formattedc i 1i 2i 3
,

DetC232335Uc000 c001 c002

c010 c011 c012

c100 c101 c102
UUc010 c011 c012

c100 c101 c102

c110 c111 c112
U

2Uc000 c001 c002

c010 c011 c012

c110 c111 c112
UUc000 c001 c002

c100 c101 c102

c110 c111 c112
U .

~31!

If DetC23233Þ0, then uC& belongs to the major class o
dimension 14. Otherwise~i.e., DetC2323350), it belongs
to the minor class of dimension 13.

~iii ! In the (2,2,2) case, there are also two possibiliti
Changing the local basis for Clare, we can always choose
newc i 1i 2i 3

50(i 3>2). We evaluate the hyperdeterminant
degree 4~its absolute value is also known as the 3-tangle@3#!
for the 23232 formattedc i 1i 2i 3

,

DetC232325c000
2 c111

2 1c001
2 c110

2 1c010
2 c101

2 1c100
2 c011

2

22~c000c001c110c1111c000c010c101c111

1c000c100c011c1111c001c010c101c110

1c001c100c011c1101c010c100c011c101!

14~c000c011c101c1101c001c010c100c111!.

~32!

Likewise, if DetC23232Þ0, thenuC& belongs to the GHZ
class of dimension 11. Otherwise, it belongs to theW class of
dimension 10.

~iv! In the (1,2,2), (2,1,2), and (2,2,1) cases,uC& be-
longs to the biseparableB1 , B2, andB3 class of dimension
8, 8, and 6, respectively.

~v! In the (1,1,1) case,uC& belongs to the completely
separable classS of dimension 5.

In this manner, we can immediately check which clas
given stateuC& belongs to. We remark that the represen
tives of nine entangled classes in previous subsections h
been chosen with the help of hyperdeterminants; the ‘‘GH
like’’ representatives are chosen to maximize the abso
value of ~hyper!determinants in Eqs.~25!, ~31!, and ~32!,
which are entanglement monotones under general LO
@5,6# ~cf. Refs.@18,19#!.

III. CHARACTERISTICS OF MULTIPARTITE
ENTANGLEMENT

A. LOCC protocols as noninvertible flows

The recent trend of experimental quantum optics reac
the stage that we can manipulate two Bell states collectiv
1-6
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MULTIPARTITE ENTANGLEMENT IN 2323n QUANTUM SYSTEMS PHYSICAL REVIEW A69, 012101 ~2004!
LOCC protocols involving local collective operations ov
two Bell states are key procedures in, for example, entan
ment swapping@20,21# ~a building block of quantum com
munication protocols such as quantum teleportation@22# and
the quantum repeater@23#! and the creation of multipartite
GHZ andW states. Although there appear four particles~qu-
bits!, these can be seen as LOCC operations in three pa
(H5C2

^ C2
^ C4) because the third party Clare has initial

two particles, each of which is in a Bell state with anoth
particle on Alice’s or Bob’s side, respectively, and loca
performs collective operations on them.

Entanglement swapping is the LOCC protocol where
initial state is prepared as two Bell pairs shared among Al
Bob, and Clare in the manner described above. We note
two Bell pairs are equivalent to the representative of
generic entangled class of dimension 15,

u2Bell&5~ u00&1u11&)AC1
^ ~ u00&1u11&)BC2

5u00~00!&1u01~01!&1u10~10!&1u11~11!&ABC12
.

~33!

u2 Bell& is also equivalent to( i 50
3 uF i&AB^ uF i&C12

, where a

set of uF i& ( i 50,1,2,3) is the standard Bell basis. So, th
protocol can create the biseparableB3 state which contains
maximal entanglement~a Bell pair! between Alice and Bob

~ u00&1u11&)AB^ ~ u~00!&1u~11!&)C12
, ~34!

by Clare’s local collective Bell measurement@any uF i&AB
corresponding to the outcomei of her Bell measurement i
equivalent to (u00&1u11&)AB under LOCC#. Thus, entangle-
ment swapping can be seen as a protocol creating isol
~maximal! entanglement between Alice and Bob from g
neric entanglement. In other words, it is given by a dow
ward flow in Fig. 2 from the generic class to the bisepara
classB3. Now, we readily find that the entanglement swa
ping protocol is~probabilistically! successful even when w
initially prepare other four-qubit entangled states in the
neric class.

On the other hand, two Bell pairs can create two differ
kinds of genuine three-qubit entanglement, GHZ and W
Clare’s local collective operations. These LOCC protoc
are given by the downward flow, in Fig. 2, from the gene
classes to the GHZ andW class, respectively.

That is how we see that important LOCC protocols
quantum information are given as noninvertible~downward!
flows in the partially ordered structure, such as Fig. 2,
multipartite entangled classes. So, we expect that
SLOCC classification can give us an insight in looking f
LOCC protocols by means of several entangled states
multiparties.

B. Two Bell pairs create any state with certainty

We show that two Bell pairs are powerful enough to c
ate any statewith certainty in our 2323n cases. We find
that this is also the case when one of the multiparties has
of the total Hilbert space.
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Theorem 2.Consider pure states in the Hilbert spaceH
5C2

^ C2
^ Cn. Two Bell pairs, the representative of the g

neric class, can create any stateuC& with probability 1 by
means of a local POVM measurementMi on Clare followed
by local unitary operationsUA( i ) and UB( i ) on Alice and
Bob, respectively.

Proof. We prove that we can always choose a loc
POVM Mi on Clare, local unitary operationsUA( i ) and
UB( i ) on Alice and Bob~depending on the outcomei of the
POVM Mi), such that

uC&5UA~ i ! ^ UB~ i ! ^ Mi

3~ u000&1u011&1u102&1u113&) ; i , ~35!

where( iM i
†Mi51. In terms of the ‘‘flattened’’ matrix form

C̃ where the indices (i 1 ,i 2) are concatenated, Eq.~35! is
rewritten as

C̃5@UA~ i ! ^ UB~ i !#1Mi
T ; i . ~36!

By choosingMi
T5(Mi* )†5@UA( i ) ^ UB( i )#†C̃, it should be

satisfied that

15(
i

~Mi* !†Mi*

5(
i

@UA~ i ! ^ UB~ i !#†C̃C̃†@UA~ i ! ^ UB~ i !#. ~37!

Such a local POVMMi always exists, because we can d
polarize anyC̃C̃† to the identity1 by random local unitary
operationsUA( i ) ^ UB( i ) on Alice and Bob@24,25#. This
randomization can be alternatively achieved by applying
set of 16 local unitary operationssA

m
^ sB

n with equal prob-
abilities, wheresm andsn (m,n50,1,2,3) are the Pauli ma
trices. This completes the proof. j

Theorem 3. Consider l-partite pure states in the
Hilbert space H5Ck1^ Ck2^ •••^ Ckl 21^ Ck13k23•••3kl 21,
the maximally entangled state, which is the (k13•••

3kl 21)3(k13•••3kl 21) identity matrix1 in concatenating
the indices (i 1 , . . . ,i l 21), can create any state with prob
ability 1 by means of a local POVM on thel th party fol-
lowed by local unitary operations on the rest of the partie

Proof. The generalization of the proof in the 2323n
case is straightforward. j

These theorems suggest that when one of multipar
holds at least half of the total Hilbert space, the situation
somehow analogous to the bipartite cases. The maxim
entangled state, i.e., the representative of the generic c
can create any state with certainty.

IV. EXTENSION TO MIXED STATES

In this section, we extend the onionlike SLOCC class
cation of pure states in Sec. II to mixed states.

A multipartite mixed stater can be written as a conve
combination of projectors onto pure states~extremal points!,
1-7
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r5(
i

pi uC i~Oi !&^C i~Oi !u, pi.0, ~38!

where each pure stateuC i(Oi)& belongs to one of the
SLOCC entangled classes~i.e., an SLOCC orbitOi). Our
idea is to discuss, in Eq.~38!, how r needs at least an oute
entangled classOmax, among the set$Oi%, in the onion
structure of Fig. 1. That is, we are interested in the minim
of Omax for all possible decomposition ofr. Because the
onion picture is divided by every SLOCC-invariant clos
subset~i.e., every SLOCC orbit closure! of pure states, their
convex combination in Eq.~38! constitutes the SLOCC
invariant closed convex subsets of mixed states~see Fig. 3!.
Note that, in the onion picture of the multipartite pure cas
there can be ‘‘competitive’’ closed subsets which never c
tain nor are contained by each other. An example is the
sures of three biseparable classesBi in Fig. 1. So, in the
extension to mixed states, we should assemble all subse
mixed states which require at most these biseparable cla
Bi into one biseparable convex subset by their convex h
~The argument is similar to the classification of three-qu
mixed states in Ref.@26#.!

We find that these entangled classes constitute a to
ordered structure, seen in Fig. 3, where noninverti
SLOCC operations can never upgrade an inner class to
outer classes. For instance, we see that the closure ofW3
class of mixed states~labeled byu000&1u011&1u112&) is
included in the closure of GHZ3 class ~labeled by u000&
1(1/A2)(u011&1u101&)1u112&). This classification reflects
a diversity of multipartite pure entangled states a mixed s
r consists of: the outer the class ofr is, the more the kinds
of resources it contains. Needless to say, it is very difficul
give the criterion to distinguish convex subsets, even to
tinguish the separable convex subset~i.e., the separability
problem!, since we face trouble evaluating all possible d

FIG. 3. The SLOCC classification of multipartite mixed states
the 2323n (n>4) cases. Mixed states in the class, labeled
uC(Omax)&P$u000&1u011&1u102&1u113&, . . . ,S%, are convex
combinations of pure statesinsidethe ‘‘onion skin’’ of uC(Omax)& in
Fig. 1. So the outer the class is, the more the kinds of multipa
entangled pure states the mixed states contain. The edges o
‘‘fan’’ reflect the structure of extremal points~pure states!, and non-
invertible SLOCC operations can never upgrade an inner class t
outer classes.
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compositions in Eq.~38! for a givenr. Let us however prove
that the convex combination of nine classes of pure sta
gives rise to convex sets that are not of measure zero
contrast with the pure case~cf. Ref. @26#!. This can easily be
established with the help of the following lemma:

Lemma 1.Given two matricesA,B with corresponding
ordered singular values$s i

A,B%, denote the ordered singula
values of the matricesATA and BTB as $t i

A,B%. Then the
Hilbert-Schmidt norm

iA2Bi25Atr@~A2B!†~A2B!#

is lower bounded by

iA2Bi2>A(
i

~s i
A2s i

B!2,

iA2Bi2>
iAi2

2~11iAi2!
A(

i
~t i

A2t i
B!2,

where we assumed thatiAi2>iBi2.
Proof. The first inequality can readily be proven usin

standard results of linear algebra@27#. The second inequality
can be proven as follows. DefineX5A2B; then

iATA2BTBi5iXAT1AXT2XTXi<2iXiiAi1iXi2.
~39!

The left term of this inequality is bounded below by

iATA2BTBi>A(
i

~t i
A2t i

B!2. ~40!

The second inequality of the lemma can now be checked
making use of straightforward algebra. j

The fact that a structure of convex sets as depicted in
3 is obtained can now be proven by combining the previo
lemma with the results of the table in Eq.~23!: indeed, it can
easily be shown that whenever there exists a pure state in
class that is separated from all pure states in another c
with a finite nonzero Hilbert-Schmidt distance, then the c
responding class for mixed states is absolutely separ
from the other one. The previous lemma guarantees that
Hilbert-Schmidt norm will be nonzero for all states having
different rank for the matricesR or RTR @see the table in Eq
~23!#. More specifically, all theW classes are embedded
the respective GHZ classes, and the convex structure as
picted in Fig. 3 is obtained.

V. CONCLUSION

In this paper, we have the following.
~i! We give the complete classification of multipartite e

tangled states in the Hilbert spaceH5C2
^ C2

^ Cn under sto-
chastic local operations and classical communicat
~SLOCC!. Our study can be seen as the first example of
SLOCC classification of multipartite entanglement whe
one of multiparties has more than one qubits. We show

y

e
the

its
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nine classes constitute the five-graded partially ordered st
ture of Fig. 2. Remarkably, a unique maximally entang
class lies on its top, in contrast with thel-qubit (l>3) cases.
We also present a convenient criterion to distinguish th
classes by SLOCC-invariant entanglement measures.

~ii ! We illustrate that important LOCC protocols in qua
tum information processing are given as noninverti
~downward! flows between different entangled classes in
partially ordered structure of Fig. 2. In particular, we sho
that two Bell pairs are powerful enough to create any s
with certainty in our situation. Based on these observatio
we suggest that SLOCC classifications can be useful in lo
ing for new prototypes of LOCC protocols.
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