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Collective versus local measurements in a qubit mixed-state estimation
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We discuss the problem of estimating a qubit mixed state. We give the optimal estimation that can be
inferred from any given set of measurements. For collective measurements and for a large numberN of copies,
we show that the error in the estimation varies as 1/N. For local measurements, we focus on the simpler case
of states lying on the equatorial plane of the Bloch sphere. We show that the error using plain tomography
varies as 1/N1/4, while our approach leads to an error proportional to 1/N3/4.
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I. INTRODUCTION

Knowing the state of a system is of paramount importa
in quantum information. Quantum measurements prov
only a partial knowledge of a state. Such a state can only
reasonably reconstructed if a large numberN of identically
prepared copies of the system is available. Since the sem
work of Holevo @1#, there has been a lot of research on t
subject. Most of the quantitative analyses have mainly
cused on pure states, for which the optimal strategies@2–6#
have been identified. They give the ultimate limits that c
be achieved in state reconstruction. However, they invo
collective measurements that, although very interesting fr
the theoretical point of view, are very resource consum
and very difficult to implement in a laboratory.

In the real world pure states are very scarce and so mix
state estimation is not just an academic issue. For instanc
is important to estimate the purity of a state, since this
rameter often determines its utility for performing quantu
information tasks. In quantum tomography, aquorumof lo-
cal observables is measured on a~large! number of copies of
a stater. From the relative frequencies of the outcomes, o
then obtains an approximation or guessrg to the signal state
r. However, the statistical deviations often yield unphysi
states, e.g., trrg.1. In this case, one can either discard t
results or use a maximum likelihood data analysis@7#. Using
this analysis one infers the physical state that provides
closest theoretical probabilities to the observed frequenc
Many variants of these techniques can be found in the lite
ture @7,8#, but there is a notorious lack of quantitative resu
~see though@9,10#!.

The large numbers law ensures that with an infinite nu
ber of copies (N→`) and infinite measurements the sta
could be exactly reconstructed by any sensible method
practice, however, one has access only to limited resou
and the crucial issue is to quantify the quality of the reco
struction procedure. This is the question we address here
focus on qubit states and use the fidelity as figure of me
We obtain the best estimate for any given measurement
compute the analytical expressions of the average fidelity
both collective and local~von Neumann! measurements in
the asymptotic limit~largeN).
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II. BURES METRIC

The estimation procedure goes as follows. After we ha
measured on theN copies of the system, some result is o
tained, which we symbolically denote byx. Note that x
stands for both a single outcome of a collective measurem
and a list ofN outcomes~one for each individual measure
ment! in local schemes. Based onx, an estimate forr can be
guessed,rg(x). The fidelity is defined as@11#

f 5@ tr Arg
1/2~x!rrg

1/2~x!#2. ~1!

It determines the maximum distinguishability betweenr and
rg(x) that can be achieved by any measurement@12#. For
qubits, Eq.~1! reads

f „rW,RW ~x!…5
11rW•RW ~x!1A12r 2A12R~x!2

2
. ~2!

Here r 5urWu and R5uRW u, where rW and RW (x) are the Bloch
vectors of the statesr and rg(x), respectively @r5(1
1rW•sW )/2; sW 5(sx ,sy ,sz) are the standard Pauli matrices#.

The fidelity can be viewed as a ‘‘distance’’ between tw
density matrices. The corresponding metric is usually kno
as Bures metric. From the infinitesimal ‘‘distance’’f (rW,rW

1drW) it is easy to obtain the volume element~normalized to
unity: *dr51)

dr5
4

p

r 2dr

A12r 2
dn, dn5

sinududf

4p
, ~3!

wheredn is the invariant measure in the two-sphere. Equ
tion ~3! is the naturaluniform probability distribution func-
tion, or thea priori probability distribution for acompletely
unknownqubit stater. For our discussion below, we wil
also needdr when the density matrices are known to lie in
great circle of the Bloch sphere. It reads

dr5
1

2p

rdr

A12r 2
du. ~4!
©2004 The American Physical Society04-1
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Although in Sec. IV we use Eqs.~3! and~4!, our main results
in the following section are independent of any particu
choice of thea priori distribution.

III. FIDELITY AND OPTIMAL GUESS

The average fidelity, hereafter fidelity in short, is the me
value of Eq.~1! over thea priori distribution and over all
possible outcomesx,

F5(
x
E dr f „rW,RW ~x!…p~xurW !, ~5!

wherep(xurW) is the conditional probability of obtaining out
comex if the signal state has Bloch vectorrW. These prob-
abilities are determined by the expectation values of posi
operators O(x), such that (xO(x)5I, i.e., p(xurW)
5tr@O(x)r#. Our aim is to maximize Eq.~5!.

For a given measurement scheme$O(x)%, there always
exists an optimal guess, as we now show. We first introd
the four-dimensional Euclidean vector

r5~A12r 2,rW !. ~6!

Note that r•r 85A12r 2A12r 821rW•rW8 and ur u5Ar•r51.
With this, the average fidelity reads

F5(
x
E dr

11r•R~x!

2
p~xurW !, ~7!

whereR(x) is defined in analogy to Eq.~6!. Equation~7! can
be cast as

F5
1

2
1

1

2 (
x

V~x!•R~x!, ~8!

where

V~x!5E drrp~xurW !. ~9!

Using the Schwarz inequality one obtains the upper bou

F5
1

2 S 11(
x

uV~x!u D , ~10!

which is saturated with the choice

R~x!5
V~x!

uV~x!u
. ~11!

Since the guess~11! satisfiesuR(x)u51 and its first compo-
nent is non-negative, italwaysgives a physical state. In fac
for any set of measurements and anya priori distribution,
Eq. ~11! is the best state that can be inferred and Eq.~10! is
the maximum fidelity.

As the number of copies of the system becomes asy
totically large, any reasonable estimation scheme leads
perfect reconstruction of the state, i.e.,F→1. For a large but
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finite N, the relevant issue is knowing the rate at which t
perfect estimation limit is attained. For pure states, it is w
known that the best collective strategy yieldsF;121/N
@F5121/(4N) for states on the equator of the Bloc
sphere# @2#. It has also been shown recently that th
asymptotic limit can be achieved with local measureme
@6#. For mixed states much less is known. Most of the p
state results cannot be extrapolated to the mixed case,
some others may look counterintuitive at first sight. Althou
the space of mixed states seems to be larger, they are
distinguishable than pure states. The fidelity~2! has a mini-
mum value (12r )/2 which is never zero but for pure state
(r 51). Thus the average fidelity could, in principle, b
larger than that of pure states alone. Note that any estim
mixed staterg has some overlap with the signal stater. To
be more concrete, imagine one does random guessing, w
out performing any measurement at all, i.e.,p(xurW) is uni-
form. Then, using Bures volume element~3!, the average
fidelity is F rand51/218/(9p2), which is larger than the ran
dom value (F51/2) for pure states.

IV. RESULTS

A. Collective measurements

As a first application of the results of the previous sectio
let us obtain the asymptotic behavior of the fidelity with t
optimal collective measurement scheme. The main res
are contained in@9#, where an optimal~and minimal! gener-
alized measurement was obtained for qubit density matr
and generic isotropic probability distributions. However,
definite form for this distribution was assumed and no e
plicit results were obtained. The conditional probabiliti
p(xurW), which can be read from@9#, carry two labelsx

5(k,mW ). The discrete indexk refers to the representations o
the symmetric space spanned by$r ^ N% onto which the posi-
tive operators of the measurement project, whereas the
vector mW labels a continuous set of outcomes in the tw
sphere@13#. We have

p~k,mW urW !5ckS 12r 2

4 D N/22kS 11rW•mW

2
D 2k

, ~12!

where

ck5S N

N/21kD ~2k11!2

N/21k11
. ~13!

From Eqs.~9! and ~10! we obtain

F5
1

2
1

1

2 (
k
E dmuV~k,mW !u. ~14!

The sum in Eq.~14! runs from k50 (k51/2) for N even
~odd! to k5N/2, which coincides with the results in@9#.
Taking advantage of the rotational invariance, the integral
Eq. ~14! can be evaluated exactly. The computation of t
asymptotic limit is rather lengthy and will not be reproduc
here@14#. The final result is
4-2
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F512S 3

4
1

4

3p D 1

N
1•••. ~15!

Note that this fidelity is only slightly worse than that of pu
states: 3/414/(3p)51.17*1.

The expression~15! also gives us important informatio
about the optimal fidelity when thea priori probability dis-
tribution corresponds to states known to lie in the equa
plane of the Bloch sphere~4!. Since in this situation we hav
more information about the states, the fidelity cannot
worse than Eq.~15!, i.e., the error, defined asE512F, must
satisfyE<j/N, wherej is a constant.

B. Local measurements

Let us now tackle the problem of reconstructing a qu
stater from local von Neumann measurements. They are
most interesting ones from the experimental point of vi
and can be readily implemented in a laboratory. For simp
ity, we will consider only states that are known to lie on t
equator plane of the Bloch sphere~4!. This is a nontrivial
case that can be relevant for quantum optics~e.g., for polar-
ization states of photons!. The techniques we used are esse
tially contained in@5,6#. Full details of the calculations wil
be presented elsewhere@14#; here only our main results wil
be sketched.

ConsiderN52N copies of the stater. Quantum state
tomography tells us that von Neumann measurements a
two fixed orthogonal directionsx and y are sufficient to re-
construct the state. After the measurements, we obtain a
of outcomes11 and 21 with relative frequenciesa i and
12a i , respectively (i 5x,y). This occurs with probability

p~aW urW !5)
i

S N
Na i

D S 11r i

2 D Na iS 12r i

2 D N(12a i )

. ~16!

In the most plain quantum tomographic approach the gue
given by

RT~aW !5~A12R2,R cosg,R sing!,

R cosg52ax21, R sing52ay21. ~17!

In many instances, however, the statistical fluctuations p
duce an unphysical guess~the square root term become
imaginary!. If one discards these cases, the asymptotic
havior of the fidelity can be shown to beF512jT /N1/4

1•••, wherejT is a constant. Although plain tomograph
yields a perfect reconstruction of the state in the asympt
limit, it is much worse than the optimal collective schem
@note the power 1/4 ofN as compared to the power 1 in E
~15!#. One may suspect that the cause of this behavior is
number of copies discarded, but we now show that it is
entirely so.

Within the maximum likelihood framework@7# all avail-
able data are used. IfR<1, the guess is the tomograph
one:RML5RT @see Eq.~17!#, and

RML5~0,cos~F!,sin~F!! ~18!
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if R.1, whereF is the solution of the equation cos(2F)
5Rcos(g1F). In the asymptotic limit one can expand th
equation as a power series in (R21), F5g2(R
21)cot 2g1•••. In fact only the first term is necessary fo
our calculation. After some effort one gets

F512
jML

N3/4
1•••, jML5

G~1/4!3

25/49p2
.0.2256. ~19!

Notice the significant increase in the rate at which the fide
approaches unity as compared to plain tomography.

Finally, we have computed the fidelity for the optim
guess~10!. Here again, all available data are used to prod
a reconstruction of the state. In Fig. 1 we compare the o
mal guess and maximum likelihood methods for up toN
520 copies of a state. It is clear that the optimal guess st
egy always performs better. We have also obtained
asymptotic limit. The fidelity reads in this case

F512
jO

N3/4
1•••, jO.0.1708. ~20!

The analytical expression ofjO is rather involved and will be
given elsewhere@14#. Notice that this fidelity approache
unity at a rate similar to the maximum likelihood one~19!,
but the coefficient of the first correction is lower (jO
,jML), as it should be. The most important parameter is
exponent of the 1/N term in Eq.~20!. It shows that there is a
gap in the quality of the reconstruction process between fi
local measurements and optimal collective schemes@recall
Eq. ~15!#. One may argue that we have not exploited clas
cal communication, i.e., we have not designed each in
vidual measurement according to the outcomes of the pr
ous ones. We have also explored this possibility numeric
and observed that the fidelity is almost identical to that o
tained from the optimal guess with measurements along
fixed orthogonal directions. Therefore, we are led to conj
ture that an error rateE;1/N3/4 is the lowest that can be
achieved using any local scheme involving von Neuma

FIG. 1. Average fidelities in terms of the number of copies. T
diamonds~crosses! correspond to the maximum likelihood~opti-
mal! guess.
4-3
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measurements. It is unclear whether or not this conjec
may apply to generalized measurements~local positive op-
erator valued measures!.

V. CONCLUSIONS

We have obtained the optimal reconstruction of a gen
qubit state for any given set of measurements and have i
trated our results in some interesting cases. We have c
puted the asymptotic expression of the fidelity for the op
mal collective scheme. For local measurements we h
considered the simpler but important case of states lying
the equator plane of the Bloch sphere. We have shown
the performance of plain tomography is very poor, with
error that varies asE;1/N1/4 for large N. We have shown
that maximum likelihood does provide a much better estim
tion: E;1/N3/4. Using the same data, the optimal gue
analysis gives the best reconstruction of the signal state.
spite this improvement, the asymptotic behavior of the fid
ity does not saturate the optimal collective bound. This is
m
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contrast to pure state estimation, where local measurem
can perform optimally in the asymptotic regime. Althoug
we have mainly focused on measurements along fixed
thogonal directions, we have also analyzed the most gen
local strategy, in which one is entitled to change these dir
tions after each individual measurement. Our results stron
suggest that for mixed states the asymptotic behavior of
optimal collective schemes cannot be attained by any lo
strategy.
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