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We discuss the problem of estimating a qubit mixed state. We give the optimal estimation that can be
inferred from any given set of measurements. For collective measurements and for a large Muihbapies,
we show that the error in the estimation varies a¢. or local measurements, we focus on the simpler case
of states lying on the equatorial plane of the Bloch sphere. We show that the error using plain tomography
varies as M4 while our approach leads to an error proportional 8%/
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I. INTRODUCTION Il. BURES METRIC

. . . The estimation procedure goes as follows. After we have
Knowing the state of a system is of paramount importanCg g req on th copies of the system, some result is ob-

in quantum information. Quantum measurements prOVidefained, which we symbolically denote by Note thatx
only a partial knowledge of a state. Such a state can only bgi,nqs for both a single outcome of a collective measurement
reasonably reconstructed if a large numbeof identically 5 4 Jist ofN outcomes(one for each individual measure-

prepared copies of the system is available. Since the seminﬁ:{enb in local schemes. Based anan estimate fop can be
work of Holevo[1], there has been a lot of research on thisguessedpg(x). The fidelity is defined afl1]

subject. Most of the quantitative analyses have mainly fo-

cused on pure states, for which the optimal strate[fles5| f=[tr Vo T2x) ppTAx) |2 0
have been identified. They give the ultimate limits that can g g '

ggllzg?li\/;de;g Srfrfe;?g?r?;:ricl;oon. ﬂovgfvgr:i;:]e?{'rl]nvf? gﬁlt determines the maximum distinguishability betwgeand
v u ' ugh very i Ing ¢(x) that can be achieved by any measurenfé. For

the theoret_icgl point_ of view, are very resource consumindgubits, Eq.(1) reads
and very difficult to implement in a laboratory.

In the real world pure states are very scarce and so mixed- s — —=—3
state estimation is not just an academic issue. For instance, it f(r,R(x))= 1RO+ VIZ VIR _
is important to estimate the purity of a state, since this pa- 2
rameter often determines its utility for performing quantum
information tasks. In quantum tomographygaorumof lo-  Herer=|r| and R=|R|, wherer and R(x) are the Bloch
cal observables is measured oflage number of copies of vectors of the statep and py(x), respectively[p=(1
a statep. From the relative frequencies of the outcomes, onetr. ,})/2; t;:(Ux,Uy ,0,) are the standard Pauli matrides
then obtains an approximation or gugsgsto the signal state The fidelity can be viewed as a “distance” between two
p. However, the statistical deviations often yield unphysicaldensity matrices. The corresponding metric is usually known

states, e.g., ;> 1. In this case, one can either discard theas Bures metric. From the infinitesimal “distancé{r,r

results or use a maximum likelihood data analygis Using ., g7y it is easy to obtain the volume elemenbrmalized to

this analysis one infers the physical state that provides thﬁnity: fdp=1)

closest theoretical probabilities to the observed frequencies.

Many variants of these techniques can be found in the litera- 2 .

ture[7,8], but there is a notorious lack of quantitative results dp= 4 redr dn dn:sm odod¢

(see though9,10)). m1-r2 " 4
The large numbers law ensures that with an infinite num-

ber of copies l—) and infinite measurements the statewheredn is the invariant measure in the two-sphere. Equa-

could be exactly reconstructed by any sensible method. Ifion (3) is the naturauniform probability distribution func-

practice, however, one has access only to limited resourcefon, or thea priori probability distribution for acompletely

and the crucial issue is to quantify the quality of the recon-unknownqubit statep. For our discussion below, we will

struction procedure. This is the question we address here. W@so needip when the density matrices are known to lie in a
focus on qubit states and use the fidelity as figure of meritgreat circle of the Bloch sphere. It reads

We obtain the best estimate for any given measurement and
compute the analytical expressions of the average fidelity for

. ; 1 rdr
both collective and localvon Neumanh measurements in dp=— de. (4)
the asymptotic limit(large N). 27 \J1—r

@)

()
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Although in Sec. IV we use Eq$3) and(4), our main results  finite N, the relevant issue is knowing the rate at which the
in the following section are independent of any particularperfect estimation limit is attained. For pure states, it is well

choice of thea priori distribution. known that the best collective strategy yielBs-1—1/N
[F=1-1/(4N) for states on the equator of the Bloch
Il. FIDELITY AND OPTIMAL GUESS spherg [2]. It has also been shown recently that this

o o ] asymptotic limit can be achieved with local measurements
The average fidelity, hereafter fidelity in short, is the meang]. For mixed states much less is known. Most of the pure
value of Eq.(1) over thea priori distribution and over all  gtate results cannot be extrapolated to the mixed case, and

possible outcomes, some others may look counterintuitive at first sight. Although
the space of mixed states seems to be larger, they are less
F=> f dpf(r,R(X)p(X|r), (5)  distinguishable than pure states. The fide(y has a mini-
X mum value (1-r)/2 which is never zero but for pure states

. (r=1). Thus the average fidelity could, in principle, be
wherep(x|r) is the conditional probability of obtaining out- larger than that of pure states alone. Note that any estimated
comex if the signal state has Bloch vector These prob- mixed statep, has some overlap with the signal stateTo
abilities are determined by the expectation values of positivéde more concrete, imagine one does random guessing, with-
operators O(x), such that ,0(x)=I, i.e., p(x|r) out performing any measurement at all, ije(x|r) is uni-
=t O(X)p]. Our aim is to maximize EqJ5). form. Then, using Bures volume eleme(®), the average

For a given measurement sched@(x)}, there always fidelity is F .= 1/2+ 8/(97), which is larger than the ran-
exists an optimal guess, as we now show. We first introducdom value £=1/2) for pure states.
the four-dimensional Euclidean vector

R IV. RESULTS
r=(J1-r2r). (6) :
A. Collective measurements

Note thatr-r'=\1—r2y1—r"2+r-r’ and|r|=\r-r=1. As a first application of the results of the previous section,

With this, the average fidelity reads let us obtain the asymptotic behavior of the fidelity with the
optimal collective measurement scheme. The main results

F=2 J dp 1+r-R(x) p(XIF) @) are contained if9], where an optimajand minima) gener-

X 2 ' alized measurement was obtained for qubit density matrices

and generic isotropic probability distributions. However, no
whereR(x) is defined in analogy to E@6). Equation(7) can  definite form for this distribution was assumed and no ex-
be cast as plicit results were obtained. The conditional probabilities
p(x|r), which can be read fronf9], carry two labelsx
> V(X)-R(x), (8)  =(k,m). The discrete indek refers to the representations of
x the symmetric space spanned{p?"} onto which the posi-
tive operators of the measurement project, whereas the unit

vector m labels a continuous set of outcomes in the two-

F=Z+

N
N| =

where

. sphere[13]. We have
V(x)= f dprp(x|r). ) o
- —r2\N2k( 147 .m)|?
Using the Schwarz inequality one obtains the upper bound p(k,m|r)=ck< 4 ) 2 ' (12
1 where
F=s|1+2X |V<x>|), (10
" [N (2k+1)?2 12
which is saturated with the choice = N/2+k/N/2+k+1" (13
V(x From Egs.(9) and(10) we obtain
Ri= YOO a ds.(9) and (10
V(X
11 S [ o
Since the gueséll) satisfie R(x)|=1 and its first compo- F= 272 X J' mV(k,m)]. (14

nent is non-negative, dlwaysgives a physical state. In fact,

for any set of measurements and anypriori distribution,  The sum in Eq.(14) runs fromk=0 (k=1/2) for N even

Eq. (11) is the best state that can be inferred and &Q) is (odd to k=N/2, which coincides with the results if9].

the maximum fidelity. Taking advantage of the rotational invariance, the integrals in
As the number of copies of the system becomes asymp=q. (14) can be evaluated exactly. The computation of the

totically large, any reasonable estimation scheme leads to asymptotic limit is rather lengthy and will not be reproduced

perfect reconstruction of the state, i€+ 1. For a large but here[14]. The final result is
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Note that this fidelity is only slightly worse than that of pure 085 + ¢ b

states: 3/4-4/(37)=1.17=1.

The expressiori1l5) also gives us important information
about the optimal fidelity when the priori probability dis-
tribution corresponds to states known to lie in the equator
plane of the Bloch spher@). Since in this situation we have
more information about the states, the fidelity cannot be
worse than Eq(15), i.e., the error, defined &=1—F, must 0551 T
satisfyE<¢/N, whereé is a constant. 05

08 T

Fidelity

0.75 1

0.7 T

0.65 1

Copies
B. Local measurements
. . FIG. 1. Average fidelities in terms of the number of copies. The
Let us now tackle the problem of reconstructing a qubitgiamonds(crosses correspond to the maximum likelihoopti-
statep from local von Neumann measurements. They are they) guess.

most interesting ones from the experimental point of view

and can be readily implemented in a laboratory. For simplict R~ 1 where® is the solution of the equation cost?

ity, we will consider only states that are known to lie on the:Rcos(erCI)). In the asymptotic limit one can expand this
equator plane of the Bloch sphef4). This is a nontrivial equation as a power series iNR{1), ®=y—(R
case that can be relevant for quantum opties., for polar- 1)cot2y+---. In fact only the first term i’s necessary for
ization states of photonsThe techniques we used are essen— .+ calculation. After some effort one gets
tially contained in[5,6]. Full details of the calculations will
be presented elsewher#&4]; here only our main results will 3
be sketched. Fogoom _rams
ConsiderN= 2\’ copies of the statg. Quantum state N34 v SMLT 55ig 2
tomography tells us that von Neumann measurements along
two fixed orthogonal directionz andy are sufficient to re-  Notice the significant increase in the rate at which the fidelity
construct the state. After the measurements, we obtain a sghproaches unity as compared to plain tomography.
of outcomes+1 and —1 with relative frequencies; and Finally, we have computed the fidelity for the optimal
1-aj, respectively (=x,y). This occurs with probability  guesq10). Here again, all available data are used to produce
N\ [ 1gr |\ Naif 1 p | ML-a) a reconstruction of the state. In Fig. 1 we compare the opti-
p(&m:l‘[ ( ( ') ( ') (16) mal guess and maximum likelihood methods for upNo
i\ Na 2 2 =20 copies of a state. It is clear that the optimal guess strat-
egy always performs better. We have also obtained the
In the Lnost plain quantum tomographic approach the guess igsymptotic limit. The fidelity reads in this case
given by

~0.2256. (19)

Rr(a)=({1-RZ Rcosy,Rsiny), F=1—N—+--~, £5=0.1708. (20)

Rcosy=2a,—1, Rsiny=2a,—1. (17)

The analytical expression @f, is rather involved and will be
In many instances, however, the statistical fluctuations progiven elsewherg14]. Notice that this fidelity approaches
duce an unphysical guegthe square root term becomes unity at a rate similar to the maximum likelihood oft9),
imaginary. If one discards these cases, the asymptotic bebut the coefficient of the first correction is lowekd
havior of the fidelity can be shown to ué=1_§T/N1/4 <é&wmu), as it should be. The most important parameter is the
+ ..., whereéy is a constant. Although plain tomography exponent of the N term in Eq.(20). It shows that there is a
yields a perfect reconstruction of the state in the asymptotigap in the quality of the reconstruction process between fixed
limit, it is much worse than the optimal collective schemelocal measurements and optimal collective schefnesall
[note the power 1/4 o as compared to the power 1 in Eq. Eq. (15]. One may argue that we have not exploited classi-
(15)]. One may suspect that the cause of this behavior is theal communication, i.e., we have not designed each indi-
number of copies discarded, but we now show that it is novidual measurement according to the outcomes of the previ-

entirely so. ous ones. We have also explored this possibility numerically

Within the maximum likelihood framework7] all avail-  and observed that the fidelity is almost identical to that ob-

able data are used. R<1, the guess is the tomographic tained from the optimal guess with measurements along two

one:Ry. =Rt [see Eq(17)], and fixed orthogonal directions. Therefore, we are led to conjec-
ture that an error rat&~1/N%* is the lowest that can be

Ry =(0,cog®),sinNd)) (18 achieved using any local scheme involving von Neumann
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measurements. It is unclear whether or not this conjectureontrast to pure state estimation, where local measurements
may apply to generalized measuremefitgal positive op- can perform optimally in the asymptotic regime. Although

erator valued measunes we have mainly focused on measurements along fixed or-
thogonal directions, we have also analyzed the most general
V. CONCLUSIONS local strategy, in which one is entitled to change these direc-

) . . tions after each individual measurement. Our results strongly

We have obtained the optimal reconstruction of a generadyggest that for mixed states the asymptotic behavior of the
qubit state for any given set of measurements and have illugsptimal collective schemes cannot be attained by any local
trated our results in some interesting cases. We have comyateqgy.
puted the asymptotic expression of the fidelity for the opti-
mal pollective S(;heme. Fo.r local measurements we have ACKNOWLEDGMENTS
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