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Comment on ‘‘Mott scattering in strong laser fields’’
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The first Born differential cross section for Mott scattering of a Dirac-Volkov electron is reviewed. The
expression~26! derived by Szymanowskiet al. @Phys. Rev. A56, 3846~1997!# is corrected. In particular, we
disagree with the expression of (ds/dV) they obtained and we give the exact coefficients multiplying the
various Bessel functions appearing in the scattering differential cross section. Comparison of our numerical
calculations with those of Szymanowskiet al. shows qualitative and quantitative differences when the incom-
ing total electron energy and the electric-field strength are increased particularly in the direction of the laser
propagation.
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I. INTRODUCTION

In a pioneering paper, Szymanowskiet al. @1# have stud-
ied the Mott scattering process in a strong laser field. T
main purpose was to show that the modifications of the M
scattering differential cross section for the scattering of
electron by the Coulomb potential of a nucleus in the pr
ence of a strong laser field can yield interesting phys
insights concerning the importance and the signatures of
relativistic effects. Their spin dependent relativistic descr
tion of Mott scattering permits to distinguish between kin
matics and spin-orbit coupling effects. They have compa
the results of a calculation of the first Born differential cro
section for the Coulomb scattering of the Dirac-Volkov ele
trons dressed by a circularly polarized laser field to the fi
Born cross section for the Coulomb scattering of spinl
Klein-Gordon particles, and also to the nonrelativis
Schröodinger-Volkov treatment. The aim of this Comment
to provide the correct expression for the first-Born differe
tial cross sections corresponding to the Coulomb scatte
of the Dirac-Volkov electrons. On the one hand, we sh
that the terms proportional to sin(2f0) are missing in Ref.
@1#, wheref0 is the phase stemming from the expression
the circularly polarized electromagnetic field. The claim
Ref. @1# that they vanish is not true. These terms do n
depend on the chosen description of the circular polariza
in cartesian components. On the other hand we use ato
units (\5e5m51), wherem denotes the electron mas
DCS stands for the differential cross section.

The organization of this comment is as follows : in Se
II, we establish the expression of theS-matrix transition am-
plitude as well as the formal expression of scattering DC
We give an account on the various trace calculations
show that indeed there is a missing term proportional
sin(2f0) that is not equal to zero. This term as well as a te
proportional to cos(2f0) contribute tods/dV and multiply
the productJs11(z)Js21(z), where Js(z) is an ordinary
Bessel function of argumentz and indexs. The argumentz
5j appearing in the above mentioned product is defined
Ref. @1#. Then, we carry out the derivation of the corre
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expression of the scattering DCS associated to the exch
of a given number of laser photons. In Sec. III, we discu
the numerical significance of our corrections and we end
a brief conclusion.

II. THE S-MATRIX ELEMENT AND THE SCATTERING
DIFFERENTIAL CROSS SECTION

All the theoretical formalism needed here can be found
Ref. @1#. Therefore, we refer the reader to this work for t
notations and conventions. We calculate the transition am
tude. The interaction of the dressed electrons with cen
Coulomb field

Am5S 2
Z

uxu
,0,0,0D ~1!

is considered as a first-order perturbation. This is well ju
fied if Za!1, whereZ is the nuclear charge of the nucleu
considered anda is the fine-structure constant. We evalua
the transition matrix element for the transition (i→ f )

Sf i5
iZ

c E d4xc̄qf
~x!

g0

uxu
cqi

~x!. ~2!

After some algebraic manipulations, one gets

ū~pf ,sf !R̄~pf !g
0R~pi !u~pi ,si !

5ū~pf ,sf !@C01C1cos~f!1C2sin~f!#u~pi ,si !,

~3!

where R(p)5R(q)5111/2c(kp)@k”a” 1cos(f)1k”a”2sin(f)#
and the three coefficientsC0 , C1, andC2 are, respectively,
given by

C05g022k0a2k”c~pi !c~pf !,

C15c~pi !g
0k”a” 11c~pf !a” 1k”g0,

C25c~pi !g
0k”a” 21c~pf !a” 2k”g0, ~4!

with c(p)51/2c(kp) andk05k05v/c. Therefore, the tran-
sition matrix element becomes
©2003 The American Physical Society01-1
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Sf i5
iZ

c E d4x
1

A2QiV

1

A2QfV
ū~pf ,sf !@C01C1cos~f!

1C2sin~f!#u~pi ,si !exp@ i ~qf2qi !x2 iz sin~f2f0!#.

~5!

We now invoke the well-known identities involving ordinar
Bessel functionsJs(z)

H 1

cos~f!

sin~f!
J e2 izsin(f2f0)5 (

s52`

` H Bs

B1s

B2s

J e2 isf, ~6!

with

H Bs

B1s

B2s

J 5H Js~z!eisf0

@Js11~z!ei (s11)f01Js21~z!ei (s21)f0#/2

@Js11~z!ei (s11)f02Js21~z!ei (s21)f0#/2i
J .

~7!

The calculation is now reduced to the computation of tra
of g matrices. This is routinely done usingREDUCE @2#. We
consider the unpolarized DCS. Therefore, the various po
ization states have the same probability and the actually m
sured DCS is given by summing over the final polarizationsf
and averaging over the initial polarizationsi . The unpolar-
ized DCS is formally given by

ds̄

dV f
5 (

s52`

`
ds̄ (s)

dV f
U

Qf5Qi1sw

, ~8!

where

ds̄ (s)

dV f
UQf5Qi1sw5

Z2

c4

uqf u
uqi u

1

uqf2qi2sku4
1

2

3(
si

(
sf

uM f i
(s)u2U

Qf5Qi1sw

. ~9!

Since the controversy is very acute and precise about
results of the sum over the polarization, we shall analyze
detail the calculations of the various traces that interven
the formal expression of the unpolarized DCS given by E
~9!. We have to calculate

1

2 (
si

(
sf

uM f i
(s)u25

1

2 (
si

(
sf

uū~pf ,sf !L
(s)u~pi ,si !u2,

~10!

with

L (s)5@g022k0a2k”c~pi !c~pf !#Bs

1@c~pi !g
0k”a” 11c~pf !a” 1k”g0#B1s

1@c~pi !g
0k”a” 21c~pf !a” 2k”g0#B2s . ~11!

Using standard techniques of theg matrix algebra, one has
06740
s

r-
a-

he
in
in
.

1

2 (
si

(
sf

uM f i
(s)u25

1

2
Tr$~p” fc1c2!L (s)~p” ic1c2!L̄ (s)%,

~12!

with

L̄ (s)5g0L (s)†g05@g022k0a2k”c~pi !c~pf !#Bs*

1@c~pi !a” 1k”g01c~pf !g
0k”a” 1#B1s*

1@c~pi !a” 2k”g01c~pf !g
0k”a” 2#B2s* . ~13!

There are nine main traces to be calculated. We write th
explicitly

M15Tr$~p” fc1c2!C0~p” ic1c2!C̄0%uBsu2,

M25Tr$~p” fc1c2!C0~p” ic1c2!C̄1%BsB1s* ,

M35Tr$~p” fc1c2!C0~p” ic1c2!C̄2%BsB2s* ,

M45Tr$~p” fc1c2!C1~p” ic1c2!C̄0%Bs* B1s ,

M55Tr$~p” fc1c2!C1~p” ic1c2!C̄1%uB1su2, ~14!

M65Tr$~p” fc1c2!C1~p” ic1c2!C̄2%B1sB2s* ,

M75Tr$~p” fc1c2!C2~p” ic1c2!C̄0%B2sBs* ,

M85Tr$~p” fc1c2!C2~p” ic1c2!C̄1%B1s* B2s ,

M95Tr$~p” fc1c2!C2~p” ic1c2!C̄2%uB2su2.

To simplify the notations, we will drop the argument of th
various ordinary Bessel functions that appear. The diago
terms give rise toM1}uBsu2,M5}uB1su2, andM9}uB2su2.
So, taking into account the fact that the traces multiplyi
uBsu2, uB1su2, anduB2su2 are not zero, one expects that term
proportional toJs11Js21cos(2f0) will be present in the ex-
pression of the scattering DCS. The first controversy
tween our work and the result of Szymanowskiet al. @1#
concerns the tracesM6 andM8. Since M6}B1sB2s* and
M8}B1s* B2s and with little familiarity with the g matrix
algebra, one can see at once that if the corresponding tr
are not zero then the net contribution ofM61M8 will con-
tain a term proportional toJs11Js21sin(2f0). Explicitly, we
give the result forM6 andM8. One has

M65
w2

c2 H 2 sin~2f0!F ~a1pi !

~kpi !

~a2pf !

~kpf !
1

~a2pi !

~kpi !

~a1pf !

~kpf !
G

3Js11Js211 i @2$~a1pi !~a2pf !1~a1pf !~a2pi !%

3Js21
2 1$~a1pi !~a2pf !1~a1pf !~a2pi !%Js11

2 #J ,

~15!

while M8 is given by
1-2
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M85
w2

c2 H 2 sin~2f0!F ~a1pi !

~kpi !

~a2pf !

~kpf !
1

~a2pi !

~kpi !

~a1pf !

~kpf !
G

3Js11Js212 i @2$~a1pi !~a2pf !1~a1pf !~a2pi !%

3Js21
2 1$~a1pi !~a2pf !1~a1pf !~a2pi !%Js11

2 #J .

~16!

The fact that complex numbers appear in the expression
M6 andM8 is not surprising since the former is the com
plex conjugate of the latter and their real sum is such th

M61M85
4w2

c2
sin~2f0!F ~a1pi !

~kpi !

~a2pf !

~kpf !

1
~a2pi !

~kpi !

~a1pf !

~kpf !
GJs11Js21 . ~17!

So, the first controversy is settled and there is indee
term containing sin(2f0) in the expression of the scatterin
cross section. We have written aREDUCE program that cal-
culates analytically the traces in Eq.~12!. Before writing our
REDUCE program, we have extensively studied the textbo
by A. G. Grozin @3# which is full of worked examples in
various fields of physics particularly in QED. We give th
final result for the unpolarized DCS for the Mott scatteri
of a Dirac-Volkov electron

ds̄ (s)

dV f
5

Z2

c2

uqf u
uqi u

1

uqf2qi2sku4

2

c2
$Js

2A1~Js11
2 1Js21

2 !B

1~Js11Js21!C1Js~Js211Js11!D%, ~18!

where for notational simplicity we have dropped the arg
mentz in the various ordinary Bessel functions. The coe
cientsA, B, C, andD are, respectively given by

A5c42~qfqi !c
212QfQi2

a2

2 S ~kqf !

~kqi !
1

~kqi !

~kqf !
D

1
a2v2

c2~kqf !~kqi !
@~qfqi !2c2#1

~a2!2v2

c4~kqf !~kqi !

1
a2v

c2
~Qf2Qi !S 1

~kqi !
2

1

~kqf !
D , ~19!
06740
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B52
~a2!2v2

2c4~kqf !~kqi !
1

v2

2c2 S ~a1qf !

~kqf !

~a1qi !

~kqi !

1
~a2qf !

~k.qf !

~a2qi !

~kqi !
D2

a2

2
1

a2

4 S ~kqf !

~kqi !
1

~kqi !

~kqf !
D

2
a2v2

2c2~kqf !~kqi !
@~qfqi !2c2#1

a2v

2c2
~Qf2Qi !

3S 1

~kqf !
2

1

~kqi !
D , ~20!

C5
v2

c2~kqf !~kqi !
@cos~2f0!$~a1qf !~a1qi !2~a2qf !~a2qi !%

1sin~2f0!$~a1qf !~a2qi !1~a1qi !~a2qf !%#, ~21!

D5
c

2
@~Åqi !1~Åqf !#2

c

2 S ~kqf !

~kqi !
~Åqi !1

~kqi !

~kqf !
~Åqf ! D

1
v

c S Qi~Åqf !

~kqf !
1

Qf~Åqi !

~kqi !
D , ~22!

where Å5a1cos(f0)1a2sin(f0). The argument about the
missing term proportional to sin(2f0) having been given a
convincing explanation, we now turn to other remarks alo
the same lines since there are indeed other differences
tween our result and the result of Ref.@1#. We discuss now
the difference occurring in our expression of the coefficie
A and the corresponding one of Ref.@1#. In their expression
multiplying the product 2Jn

2(j), the single term
(a2)2w2/c6(kq)(kq8) should come with a coefficient 1/2
We have written a secondREDUCE program that allows the
comparison between the coefficientA of Ref. @1# and the
coefficient A of this work. There are so many difference
between our result and the result they found for the coe
cientB that we refer the reader to our mainREDUCEprogram
@5#. The coefficientC has already been discussed. As for t
coefficientD, we have found an expression that is linear
the electromagnetic potential. In a thirdREDUCE program, it
is shown explicitly that if we ignore the first term in th
coefficient multiplyingJs(Js211Js11) given in Ref.@1#, one
easily gets the result we have obtained. This term does
come from the passage from the variables (p,p̃) to the vari-
able (q,q̃). The introduction of such four-vectorq̃ is not
useful, makes the calculations rather lengthy and gives
to complicated expressions. As a supplementary consiste
check of our procedure used in writing the main Redu
program, we have reproduced the result of the DCS co
sponding to the Compton scattering in an intense elec
magnetic field given by Berestetzkii, Lifshitz, and Pitaevs
@4#.
1-3
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III. DISCUSSION

We would like to make general comments on the figu
obtained in Ref.@1# starting with Fig. 3. This figure does no
represent the envelope of the controversial generalized e
tion ~26! of that work. Indeed, we have checked that it re
resents the envelope of the nonrelativistic DCS given by
~34! in Ref. @1#. In Fig. 6 of Ref.@1#, there is a difference
between the Dirac-Volkov DCS~26! and the spinless particl
DCS ~30! though the overall behavior is smoothly oscill
tory. The results we have obtained show the same oscilla
behavior. The curves for the Dirac-Volkov DCS~26! of Ref.
@1# and the Dirac-Volkov DCS~18! of our work are almost
identical while the difference between the two relativis
DCSs and the spinless particle DCS given by Eq.~30! of
Ref. @1# is less important than in Fig. 6 of Ref.@1#. Figure 7
of Ref. @1# is the only figure we agree with. In Fig. 8 of Re
@1#, we disagree with the behavior of the Dirac-Volkov DC
~26! of Ref. @1# particularly for small angles aroundu f
50°. When programming Eq.~26! of Ref. @1#, we obtained a
value for the Dirac-Volkov DCS atu f50° of nearly 3.2
310214 a.u. instead of the 2.2310214 a.u. indicated in Fig.
8 of Ref. @1#. Moreover, the electric field strength« being a
key parameter~as well as the incoming electron total e
ergy!, we have compared our Dirac-Volkov DCS and t
Dirac-Volkov DCS~26! of Ref. @1# and we have come to th
es

06740
s

a-
-
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following important conclusions. First, for the nonrelativist
and low-intensity field strength regime (g51.0053,«
50.05 a.u) and for the relativistic regime and increas
field strength (g52.00,«51.00 a.u the differences betwee
our results and the results found in Ref.@1# are small but
approach 1%. Second, we have a different picture for
relativistic-high intensity regime (g52.00,«55.89 a.u)
where the missing terms in Ref.@1# lead to values of the
Dirac-Volkov DCS~26! of Ref. @1# that overestimate the cor
responding DCS~18! of our work. Even in the nonrelativistic
regime (g51.0053) but for increasing field strengths, th
difference between our results and the results of Ref.@1#
begins to appear clearly. To conclude, we derived the cor
expression of the first Born differential cross section for t
scattering of a Dirac-Volkov electron by a Coulomb potent
of a nucleus in the presence of a strong laser field. We h
given the correct relativistic generalization of the Bunkin a
Fedorov treatment@6# that is valid for an arbitrary geometry
Comparison of our numerical calculations with those of S
manowskiet al. @1# shows qualitative and quantitative diffe
ences when the incoming total electron energy and
electric-field strength are increased particularly in the dir
tion of the laser propagation. The difference between
results and those of Ref.@1# can only be traced back to th
mistakes and omitted term in Eq.~26! of Ref. @1#.
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