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Comment on “Mott scattering in strong laser fields”
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The first Born differential cross section for Mott scattering of a Dirac-Volkov electron is reviewed. The
expressior(26) derived by Szymanowslét al.[Phys. Rev. A66, 3846(1997)] is corrected. In particular, we
disagree with the expression od¢/d{}) they obtained and we give the exact coefficients multiplying the
various Bessel functions appearing in the scattering differential cross section. Comparison of our numerical
calculations with those of Szymanowsi al. shows qualitative and quantitative differences when the incom-
ing total electron energy and the electric-field strength are increased particularly in the direction of the laser

propagation.
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[. INTRODUCTION expression of the scattering DCS associated to the exchange

of a given number of laser photons. In Sec. Ill, we discuss

In a pioneering paper, Szymanowskial.[1] have stud- the numerical significance of our corrections and we end by
ied the Mott scattering process in a strong laser field. The brief conclusion.
main purpose was to show that the modifications of the Mott
scattering differential cross section for the scattering of an |I. THE S-MATRIX ELEMENT AND THE SCATTERING
electron by the Coulomb potential of a nucleus in the pres- DIFFERENTIAL CROSS SECTION
ence of a strong laser field can yield interesting physical ) . )
insights concerning the importance and the signatures of the All the theoretical formalism needed here can be found in
relativistic effects. Their spin dependent relativistic descrip-Ref-[1]. Therefore, we refer the reader to this work for the
tion of Mott scattering permits to distinguish between kine-notations a.nd conyentlons. We calculate the tranS|t.|on ampli-
matics and spin-orbit coupling effects. They have compareé”de- The interaction of the dressed electrons with central
the results of a calculation of the first Born differential crossCoulomb field
section for the Coulomb scattering of the Dirac-Volkov elec- 7
trons dressed by a circularly polarized laser field to the first At=|— =
Born cross section for the Coulomb scattering of spinless ||
Klein-Gordon particles, and also to the nonrelativistic. . ) . L I
Schrmdinger-Volkov treatment. The aim of this Comment is 'S considered as a first-order perturbation. This is well justi-
to provide the correct expression for the first-Born dif'feren-fled '_f Za<l, wh_ereZ 1S the nuclear charge of the nucleus
tial cross sections corresponding to the Coulomb scatteri\?ﬁ_‘ons'de“_a(,j ane IS the fine-structure CO”SF‘?‘W- We evaluate
of the Dirac-Volkov electrons. On the one hand, we showfN€ transition matrix element for the transition-¢f)
that the terms proportional to sinfg) are missing in Ref. iz . 50
[1], wheredg, is the phase stemming from the expression of Sfi=—f d*X g, (X) 77 g, (X). (2
the circularly polarized electromagnetic field. The claim of ¢ x|
Ref. [1] that they vanish is _nqt true. Thgse terms d_o n.OtAfter some algebraic manipulations, one gets
depend on the chosen description of the circular polarization
in cartesian components. On the other hand we use atomic
units (k=e=m=1), wherem denotes the electron mass.

,0,0,0) (1)

u(ps,sp)R(Pr) Y’R(pHU(P; ,S)

DCS stands f_or t_he d|ffer_ent|al Cross _sectlon. . =U(pf ,S)[Co+C1c0d )+ C,sin( ¢) Ju(pi ,S)),
The organization of this comment is as follows : in Sec.
II, we establish the expression of tBamatrix transition am- 3

plitude as well as the formal expression of scattering DCS. _ _ .
We give an account on the various trace calculations andhere  R(p)=R(q) =1+ 1/2c(kp)[Kd,cos(@) +kézsin(¢)]

show that indeed there is a missing term proportional toa!qd the three coefficientS,, Cy, andC, are, respectively,

sin(2¢,) that is not equal to zero. This term as well as a termo'Ven by

proportional to cos(@,) contribute toda/dQ and mu[tiply Co=7°— 2koa2kc(p;)c(py),

the productJg, 1(2)Js_1(2), where J4(z) is an ordinary

Bessel function of argumentand indexs. The argumenz Cy=c(p;) Yk, +c(p;)a.ky®,

= ¢ appearing in the above mentioned product is defined in

Ref. [1]. Then, we carry out the derivation of the correct C,=c(p;) y’ké,+c(ps)aky°, (4

with ¢(p) = 1/2c(kp) andk,=k°= w/c. Therefore, the tran-
*Email address: attaourti@ucam.ac.ma sition matrix element becomes
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iZJ' 1 1 — 1 ()12 1 2\ A (3) 2yA (s)
=— | d* ———u(p;,$)[Co+Cyc0 52 2 IMPP=5Tr{(bre+c) A (pic+e?) ALY,
Sf| c \/m \/m (pf f)[ 0 1 S(ﬁ) 2 s 5 | 2 I (12)
+Casin(¢) Ju(p; ,sp)exdi(gs—gi)X—izsin(¢— ¢o) ]. with
©)
A= AOA (T 0.0 2 _ *
We now invoke the well-known identities involving ordinary AP =y APy =y~ 2koake(pi)c(pr) IBs
Bessel functionsdy(z) +[c(p))dky®+c(ps) 1k, 1BY,
! » | Bs +[e(p)dky*+c(pr) yké, 1B, (13
co efizsin(¢>f¢o): B efis‘.(/), 6
,Sw) S:Zoo 1 © There are nine main traces to be calculated. We write them
sin(¢) Bas explicitly
with —=
‘ My =Tr{(psc+c?)Co(pic+c?) Co}|Bs|?,
Bs Jo(z)€'s%0 _
Bist = [Js+l(z)ei(5+1)¢o+ Js_l(z)ei(s—l)¢0]/2 . M2:Tr{(pfc+CZ)CO(piC_i_CZ)Cl}BSB’{s,
i(s+t1)dg_ i(s=1)¢07/2i -
Bas) | [Jss2(2)€57 %03 1 (2)€5%0)12 @ Ma=Tr{(prc+c?)Co(pic+c?)Cy} BB,
The calculation is now reduced to the computation of traces My=Tr{(psc+c?)Cy(pic+c?)Co}B* By,
of v matrices. This is routinely done usimgEDUCE [2]. We o
consider the unpolarized DCS. Therefore, the various polar- Ms=Tr{(psc+c?)Cy(pic+c?)C1}Brg? (14
ization states have the same probability and the actually mea-
sured DCS is given by summing over the final polarizatipn Me=Tr{(psc+c?)Cy(pic+c?)C,}B B,
and averaging over the initial polarizatien. The unpolar-
ized DCS is formally given by M7=Tr{(|bfc+cz)Cz(pichcz)Eo}BzSB;‘ ,
do <& do® —
= - , (8) Meg=Tr{(prc+c?)Cy(pic+c?)Cy}BIBys,
dQ; . dOQg | _
Q=Q;+sw -
where Mg=Tr{(psc+c?)Cy(pic+c?)Cp}|Byg?.
—9 ) To simplify the notations, we will drop the argument of the
do _Z ol 1 1 various ordinary Bessel functions that appear. The diagonal
dQy |TAT o4 g g, — g — skt 2 terms give rise toM;|Bg|?, Mgx|By¢|2, and Mg |Bog/2.

So, taking into account the fact that the traces multiplying
|B4|2, |B1¢% and|B,g|? are not zero, one expects that terms
©) proportional toJg, 1Js—1€C0S(2bg) Will be present in the ex-
Qf=Q;tsw pression of the scattering DCS. The first controversy be-

] ) ] tween our work and the result of Szymanowskial. [1]

Since the controversy is very acute and precise about theycerns the tracests andMg. Since MgxB;B%, and
. . . . S S

results of the sum over the polarization, we shall analyze |_n/\/18(x B*B,. and with little familiarity with the y matrix

detail the calculations of the various traces that intervene "?;\Igebra one can see at once that if the corresponding traces

the formal expression of the unpolarized DCS given by Eq. oo .
(9). We have to calculate are not zero then the net contribution.®tg+ Mg will con

tain a term proportional tdg, 1Js_1Sin(2¢y). Explicitly, we
give the result forMg and Mg. One has

<3 S M

1 1 —
32 2 IMPIP=5 2 X Ju(pr.snAPu(pis)?
i f

Si St 2

W
(10 Mfg[ 2 sin(2¢y)

(a1pi) (azpy) N (azpi) (alpf)}
(kpi) (kpp) — (kp) (kpr)

X Js+1ds—1Hi[ —{(a1pi)(@azps) + (asps)(azpi)}

with
A =[°—2kea%ke(p;)c(p)]Bs
+[c(p;) Yk, +c(ps)é ky°]B1e x 32_;+{(a1pi)(azpy) + (alpf)(aZpi)}‘]ngl]] ;
+[c(pi) YKo+ c(pg) é2ky°1Bas. (1D (15

Using standard techniques of thematrix algebra, one has while Mg is given by
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(azpi) (a1ps)
(kpi) (kpy)

(aip;i) (azps)
(kpi) (kpy)

|

il —{(aipi)(@azps) +(asps)(azpi)}

w2 _
M8=? 2siN(2¢y)
XJs+1ds—1—

X321+ {(arpi)(azps) + (alpf)(azpi)}‘-]§+1]] :

(16)

The fact that complex numbers appear in the expressions
Mg and Mg is not surprising since the former is the com-
plex conjugate of the latter and their real sum is such that

(aipi) (azpf)

Mg+ M e
oM 2 (kpi)  (kpy)

SIN(2¢g)| —

(azp;) (a1ps)
(kpi) (kpy)

7

S+ l‘JS*l .

So, the first controversy is settled and there is indeed
term containing sin(@,) in the expression of the scattering
cross section. We have writtenrREDUCE program that cal-
culates analytically the traces in Ed2). Before writing our
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(a2)2w2

2c*(kay) (ko)

(ax0s) (axq;)
(k.gg) (kay)

o (a10¢) (a;10;)
(kage) (kay)

2 [ (kqr)
2\ kap ©

aZ

(k)
> +

(kar)

|

Qi)

a2w2
2c?(kay) (ka;)

<

2
[(ara) — 2]+ —2(Q—
2¢c?

|

1
(k)

(20

of (kgr)

c2(kay) (kay)
+5sin(2¢o){(a105) (ax0;) + (a;0;)(aq¢) }H,

[cog2¢p){(a10¢)(a0i) — (ax0¢)(axqi)}

(21

(kar)
2\ (kay)

|

(kay)
(kay)

[(Aq )+ (Adp) - ( (Ag)+ ——(Aay)

“’(

c

a

Q:(Ag)
(kqgy)

Qi(Aqy)
(kar)

(22

REDUCE program, we have extensively studied the textbookyhere A=a;cos(h,)+assin(¢). The argument about the

by A. G. Grozin[3] which is full of worked examples in
various fields of physics particularly in QED. We give the

missing term proportional to sing®) having been given a
convincing explanation, we now turn to other remarks along

final result for the unpolarized DCS for the Mott scatteringthe same lines since there are indeed other differences be-

of a Dirac-Volkov electron

do®
do;

1

__Sk|4 2

2 af
C2 |ql| |qf

{J2A+(Js+l+Js 1B

+(Js+1‘]5—1)C+Js(‘]s—1+Js+1)D}- (18)

where for notational simplicity we have dropped the argu
mentz in the various ordinary Bessel functions. The coeffi-
cientsA, B, C, andD are, respectively given by

_ a®((kgy) (kg
A=c*=(qs0;)c’+2Q;Q;— 7<W+

(kar)

|

+i[( )—Cﬂﬂ—ﬂ
2(kap (kq) T c4(kap)(kap)

+a2w ( ! ) 19
(¥ ka) ” tkap)’ 49

tween our result and the result of Rgt]. We discuss now
the difference occurring in our expression of the coefficient
A and the corresponding one of REL]. In their expression
multiplying the product zﬁ(g), the single term
(a?)?w?/c®(kq)(kq') should come with a coefficient 1/2.
We have written a seconREDUCE program that allows the
comparison between the coefficieAtof Ref. [1] and the
coefficient A of this work. There are so many differences
between our result and the result they found for the coeffi-
cientB that we refer the reader to our maBEDUCE program

[5]. The coefficientC has already been discussed. As for the

coefficientD, we have found an expression that is linear in
the electromagnetic potential. In a thirRéDUCE program, it

is shown explicitly that if we ignore the first term in the
coefficient multiplyingd¢(Js_1+Js. 1) given in Ref[1], one
easily gets the result we have obtained. This term does not
come from the passage from the variablpsp) to the vari-

able (g,q). The introduction of such four-vectay is not
useful, makes the calculations rather lengthy and gives rise
to complicated expressions. As a supplementary consistency
check of our procedure used in writing the main Reduce
program, we have reproduced the result of the DCS corre-
sponding to the Compton scattering in an intense electro-
magnetic field given by Berestetzkii, Lifshitz, and Pitaevskii
[4].
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Ill. DISCUSSION

We would like to make general comments on the figures
obtained in Ref[1] starting with Fig. 3. This figure does not " 2
represent the envelope of the controversial generalized equfi€ld strength ¢/=2.00,e =
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following important conclusions. First, for the nonrelativistic
and low-intensity field strength regime y€1.0053¢

=0.05 a.u) and for the relativistic regime and increasing
1.00 a.u the differences between

tion (26) of that work. Indeed, we have checked that it rep-OUr results and the resuits found in Rgt] are small but
resents the envelope of the nonrelativistic DCS given by Eg@PProach 1%. Second, we have a different picture for the

(34) in Ref.[1]. In Fig. 6 of Ref.[1], there is a difference

relativistic-high intensity regime «=2.00,e=5.89 a.u)

between the Dirac-Volkov DCE6) and the spinless particle Where the missing terms in Reffl] lead to values of the
DCS (30) though the overall behavior is smoothly oscilla- Dirac-Volkov DCS(26) of Ref.[1] that overestimate the cor-
tory. The results we have obtained show the same oscillatoriesponding DC$18) of our work. Even in the nonrelativistic

behavior. The curves for the Dirac-Volkov DG26) of Ref.
[1] and the Dirac-Volkov DCS18) of our work are almost

regime (y=1.0053) but for increasing field strengths, the
difference between our results and the results of REf.

identical while the difference between the two relativistic begins to appear clearly. To conclude, we derived the correct

DCSs and the spinless particle DCS given by Ef) of
Ref.[1] is less important than in Fig. 6 of Rdfl]. Figure 7

expression of the first Born differential cross section for the
scattering of a Dirac-Volkov electron by a Coulomb potential

of Ref.[1] is the only figure we agree with. In Fig. 8 of Ref. of a nucleus in the presence of a strong laser field. We have
[1], we disagree with the behavior of the Dirac-Volkov DCS given the correct relativistic generalization of the Bunkin and

(26) of Ref. [1] particularly for small angles around;

=0°. When programming E(6) of Ref.[1], we obtained a
value for the Dirac-Volkov DCS a¥;=0° of nearly 3.2
X 10 * a.u. instead of the 2:210 * a.u. indicated in Fig.
8 of Ref.[1]. Moreover, the electric field strengthbeing a

Fedorov treatmeri6] that is valid for an arbitrary geometry.
Comparison of our numerical calculations with those of Szy-
manowskiet al.[1] shows qualitative and quantitative differ-
ences when the incoming total electron energy and the
electric-field strength are increased particularly in the direc-

key parametefas well as the incoming electron total en- tion of the laser propagation. The difference between our
ergy), we have compared our Dirac-Volkov DCS and theresults and those of Refl] can only be traced back to the
Dirac-Volkov DCS(26) of Ref.[1] and we have come to the mistakes and omitted term in E(26) of Ref. [1].
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