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Bounds on the probability of success of postselected nonlinear sign shifts implemented
with linear optics
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The fundamental gates of linear optics quantum computation are realized by using single photons sources,
linear optics, and photon counters. Success of these gates is conditioned on the pattern of photons detected
without using feedback. Here it is shown that the maximum probability of success of these gates is typically
strictly less than 1. For the one-mode nonlinear sign shift, the probability of success is bounded by 1/2. For the
conditional sign shift of two modes, this probability is bounded by 3/4. These bounds are still substantially
larger than the highest probabilities shown to be achievable so far, which are 1/4 and 2/27, respectively.
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I. INTRODUCTION

It has recently been shown that it is possible, in princip
to scalably quantum compute with single photon sourc
linear optics, and photon counters@1#.1 Key elements in the
scheme that makes this possible are optical gates that
helper photons, linear optics, and postselection on spe
photon counts to realize simple nonlinear operations on
or more modes. Two such gates are the one-mode nonli
sign shift

NS:au0&1bu1&1gu2&→au0&1bu1&2gu2& ~1!

and the two-mode conditional sign shift

CS:au00&1bu10&1gu01&1du11&

→au00&1bu10&1gu01&2du11&. ~2!

Hereuj& is the state withj photons in one mode andujk& is the
state withj photons in the first andk photons in the second
mode. How these gates act on states other than those ex
itly given does not matter for current purposes. To efficien
use these gates, one would like to implement them with
high a probability of success as possible. To do so one m
use single helper photons in helper modes, apply a lin
optics transformation~that is, a series of beam splitters an
phase shifters!, and a combination of photon counting me
surements of the helper modes. In the remainder of this B
Report, a procedure using single helper photons and lin
optics is called a LOP procedure. LOP states are those
tained by a LOP procedure from the vacuum. Postselec
based on measured photon counts is abbreviated as PC
procedures considered here are assumed not to involve
back from PC, that is, they consist of LOP followed by P
Currently, the highest probabilities of success achieved
implementingNS and CS with LOP followed by PC are 1/4
@1# and 2/27@4#, respectively. What are the maximum pro
abilities of successPmax(NS) andPmax(CS) for realizing these

*Electronic address: knill@boulder.nist.gov
1See also@2# for an alternative approach and@3# for a significant

improvement.
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gates with LOP followed by PC? In@4# it was shown that
these probabilities cannot be exactly one. The main resu
this Brief Report is to show thatPmax(NS)<1/2 and
Pmax(CS)<3/4. To prove these bounds, the gates are use
create special two-photon states. The next step is to ob
upper bounds on the maximum overlaps of these states
states that can be generated with LOP. Since high probab
of success for the gates implies high overlap with the s
obtained just before postselection, the desired bounds ca
obtained. The bounds on the overlaps are derived by con
ering photon statistics of LOP states. The techniques can
applied to obtain bounds on the probability of success
other postselected gates.

II. UPPER BOUNDS: NS

To bound Pmax(NS) from above, assume that we ca
implementNS using LOP followed by PC with probability o
successp. The following procedure creates the two phot
state from single photon states with probability of successp:

~1! Prepare the stateu11&ab5a†(a)a†(b)u0& consisting of
one photon in each of modesa andb. Hereu0& is the vacuum
state anda†(x) is the creation operator for modex.

~2! Seta5cos(p/8) andb5sin(p/8). Use the beam split-
ter that transformsu10&ab→au10&ab1bu01&ab and u01&ab→
2bu10&ab1au01&ab . Writing U for the unitary operator
implemented by this beam splitter,U’s action can be derived
from how it transforms the annihilation and creation ope
tors for the modes. That is,Ua†(a)U†5aa†(a)1ba†(b) and
Ua†(b)U†52ba†(a)1aa†(b), wherea( l) anda†(l) are the an-
nihilation and creation operators for model, respectively.
The following state is obtained after applying this bea
splitter:

Uu11&ab5Ua†~a!a†~b!u0&

5Ua†~a!U†Ua†~b!U†Uu0&

5~aa†~a!1ba†~b!!~2ba†~a!1aa†~b!!u0&

5@2aba†~a!2
1~a22b2!a†~a!a†~b!1aba†~b!2

#u0&

52&abu20&ab1~a22b2!u11&ab1&abu02&.

~3!
©2003 The American Physical Society03-1



ps

d

-

r

a

r o
e

on

s

n
ode

3.

ila-
-
nto
1

ility
the

BRIEF REPORTS PHYSICAL REVIEW A68, 064303 ~2003!
~3! Apply NS to modea to obtain

&abu20&ab1~a22b2!u11&ab1&abu02&ab

5
1

2
@sin~p/4!a†~a!2

12 cos~p/4!a†~a!a†~b!

1sin~p/4!a†~b!2
#u0&

5
1

&
F 1

&
~a†~a!1a†~b!!G 2

u0& ~4!

with probability of successp.
~4! By using a 50/50 beam splitter that ma

1/&(u10&ab1u01&ab)→u10&ab , the state 1/&a†(a)2
u0&

5u20&ab is obtained.
The effect of the above procedure is unchanged if PC
delayed until the end. Letr be the final state~density matrix!
on modea just before postconditioning. Because postcon
tioning on a measurement of modes other thana to obtain
u2&a

a^2u is possible and the probability of success isp, r can
be expressed as a mixturepu2&a

a^2u1(12p)r8 for some
stater8. To boundp from above requires the following re
sult:
Theorem 1.Let % be a LOP state. Then%’s expected numbe
of photons in any mode is at most 1.

The expected number of photons in modea for r is given
by 2p1x, wherex>0. It follows that p<1/2, establishing
the desired bound onPmax(NS).

Proof of Theorem 1. Let the initial state before applying
the linear optics transformation be given by

uc&5a†~1!
¯a†~k!u0&, ~5!

wherek is the number of single photons used. Let the line
optics transformationU act on modes 1 throughn, n>k. The
transformation is completely determined by itsn3n unitary
matrix Û5(ujl) determined by U†a†(l)U5( jujla

†(j) @5#.
Without loss of generality, consider the expected numbe
photons in the first mode afterU has been applied. Comput

^n~1!&5^cuU†a†~1!a~1!Uuc&

5^cuU†a†~1!UU†a~1!Uuc&

5^cuS (
j

uj1a†~ j!D S (
l

ūl1a~ l!D uc&

5(
jl

uj1ul1^cua†~ j!a~ l!uc&

5(
j51

k

uuj1u2<1. ~6!

The second to last step follows becauseuc& has well-defined
photon numbers in each mode, with none in modes bey
modek. The last step follows by unitarity ofÛ. j
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III. UPPER BOUNDS: CS

The bound onPmax(CS) is obtained in the same way a
that on Pmax(NS). Assume that we can implementCS with
probability of successp. The first step is to show that one ca
create a state with expected number of photons 4/3 in a m
using one instance ofC.

~1! Prepare the stateu110&abc .
~2! Use a beam splitter on modesb and c to make the

state

1

)
u110&abc1

&

)
u101&abc . ~7!

~3! Use a beam splitter on modesa andb that transforms
U1u10&5cos(p/8)u10&ab2sin(p/8)u01&ab and U1u01&
5sin(p/8)u10&ab1cos(p/8)u01&ab . This gives

1

)
U1u110&abc1

&

)
@cos~p/8!u101&abc2sin~p/8!u011&abc].

~8!

~4! Apply CS to modesb andc with probability of success
p to obtain

1

)
U1u110&abc1

&

)
@cos~p/8!u101&abc1sin~p/8!u011&abc].

~9!

~5! Apply the inverse of the beam splitter used in step
The state is now

uc&5
1

)
u110&abc1

&

)
~@cos~p/8!22sin~p/8!2#u101&abc

12 cos~p/8!sin~p/8!u011&abc)

5
1

)
~ u110&abc1u101&abc1u011&abc). ~10!

The claim is that the logical mode associated with annih
tion operatora( l)51/)(a(a)1a(b)1a(c)) has expected pho
ton number 4/3. This logical mode can be transformed i
modea by a linear optics transformation. Using Theorem
we can conclude, as before, that the maximum probab
with which this state can be obtained is 3/4. To prove
claim compute

^cun~ l!uc&5^cua†~ l!a~ l!uc&

5
1

3
^cu~a~a!1a~b!1a~c!!~a†~a!1a†~b!1a†~c!!uc&

5
1

3 S 2

)
(abc^100u1abc^010u

1abc^001u)
2

)
~ u100&abc1u010&abc1u001&abcD

5
4

3
. ~11!
3-2
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IV. DISCUSSION

The above results reduce the bounds on the probabil
of success ofNS andCS using LOP followed by PC to value
strictly below 1. However, the gap between the highest pr
ability of the known procedures and the bounds found is s
large. An obvious reason that the bounds found here
probably not optimal is that they are insensitive to the type
measurement device used to implement the postselec
That is, it does not matter whether a photon counter or
arbitrarily more powerful measurement device is used,
bounds are still valid. Nevertheless, better bounds on
probabilities of success may be obtainable without us
properties of photon counters. For example, it may be p
sible to obtain better bounds by using theNS and CS gates
one or more times to obtain states that are further from L
states. Note that the two photon state can be obtained
probability 1/2 with LOP followed by PC: Apply a 50/5
beam splitter to the stateu11& and postselect on measuring n
photons in the second mode. Here is an example of st
that can be investigated: It is not hard to see that with
application ofCS to a state obtained fromu11&, one can make
the entangled stateu1100&1u0011&. It is plausible that this
ys

e

v.

,
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state can be obtained with at most probability 1/2 using L
followed by PC. The density matrix for the first two modes
r5u00&^00u1u11&^11u. If we consider a statem obtained
from single photons with linear optics, is it true that th
maximump for which m5pr1(12p)% with % a density
matrix is p51/2?

Because of their application to scalable linear optics qu
tum computation, the postselected gatesNS andCS and their
variations are being studied both experimentally and th
retically by many researchers. Experimental work prepar
for the implementation of these gates has been reporte
@6,7#. Related gates and schemes have been investigate
@8–10#. Postselection techniques for implementing ope
tions such as the above have been studied in@11–13#. Re-
lated bounds, originally motivated by the problem of real
ing a complete Bell-basis measurement, can be found
@14–16#.
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