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Bounds on the probability of success of postselected nonlinear sign shifts implemented
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The fundamental gates of linear optics quantum computation are realized by using single photons sources,
linear optics, and photon counters. Success of these gates is conditioned on the pattern of photons detected
without using feedback. Here it is shown that the maximum probability of success of these gates is typically
strictly less than 1. For the one-mode nonlinear sign shift, the probability of success is bounded by 1/2. For the
conditional sign shift of two modes, this probability is bounded by 3/4. These bounds are still substantially
larger than the highest probabilities shown to be achievable so far, which are 1/4 and 2/27, respectively.
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I. INTRODUCTION gates with LOP followed by PC? I¥] it was shown that
these probabilities cannot be exactly one. The main result of
It has recently been shown that it is possible, in principlethis Brief Report is to show thatP,(NS)<1/2 and
to scalably quantum compute with single photon sourcesP,{CS) =<3/4. To prove these bounds, the gates are used to
linear optics, and photon countdrs].! Key elements in the create special two-photon states. The next step is to obtain
scheme that makes this possible are optical gates that us@per bounds on the maximum overlaps of these states with
helper photons, linear optics, and postselection on specifistates that can be generated with LOP. Since high probability
photon counts to realize simple nonlinear operations on onef success for the gates implies high overlap with the state
or more modes. Two such gates are the one-mode nonlineabtained just before postselection, the desired bounds can be
sign shift obtained. The bounds on the overlaps are derived by consid-
ering photon statistics of LOP states. The techniques can be
NS a|0)+B[1)+vy[2)—al0)+B|1)—¥|2) (1)  applied to obtain bounds on the probability of success of

. ) . other postselected gates.
and the two-mode conditional sign shift P g

cs a|00)+ B|10) + y|01) + 5]11) Il. UPPER BOUNDS: Ns

_ To bound P,5(NS) from above, assume that we can
00)+ B|10)+ y|01) — 5| 11). 2 ma
—a|00)+ 5[10)+¥/01)= 4]11) @ implementns using LOP followed by PC with probability of

Herelj) is the state with photons in one mode anjk) is the ~ Succes. The following procedure creates the two photon
state withj photons in the first an# photons in the second State from single photon states with probability of sucqess
mode. How these gates act on states other than those explic- (1) Prepare the statfl1),,=a'@a’®|0) consisting of
itly given does not matter for current purposes. To efficientlyone photon in each of modesandb. Here|0) is the vacuum
use these gates, one would like to implement them with astate anca’® is the creation operator for mode

high a probability of success as possible. To do so one may (2) Seta=cos(@/8) andB=sin(w/8). Use the beam split-
use single helper photons in helper modes, apply a lineder that transform$10),,— a|10) 45+ B|01),, and [01) ;p—
optics transformatiorithat is, a series of beam splitters and — 8104+ @|01),,. Writing U for the unitary operator
phase shiftes and a combination of photon counting mea- implemented by this beam splittdy;s action can be derived
surements of the helper modes. In the remainder of this Brigirom how it transforms the annihilation and creation opera-
Report, a procedure using single helper photons and lineders for the modes. That ig)a'@U'=aa'@+ ga’® and
optics is called a LOP procedure. LOP states are those otda'®U’=—ga' @+ aa’®, wherea anda’® are the an-
tained by a LOP procedure from the vacuum. Postselectionihilation and creation operators for modierespectively.
based on measured photon counts is abbreviated as PC. Alhe following state is obtained after applying this beam
procedures considered here are assumed not to involve feesplitter:

back from PC, that is, they consist of LOP followed by PC. L at@ at(h)

Currently, the highest probabilities of success achieved forY|1Dap=Ua"®a’|0)

implementingNs and cs with LOP followed by PC are 1/4 —ua'@utua®utulo)
[1] and 2/27[4], respectively. What are the maximum prob-
abilities of succes® ,,,(NS) andP,(Cs) for realizing these =(aa"@+ ga'®)(— pa'@+ aa'®)|0)

=[~aBa’@’+ (a2~ p2)al@al®) + o gal®?]|0)

*Electronic address: knill@boulder.nist.gov _ 2 52
1See alsd2] for an alternative approach afd] for a significant B ‘/iaﬁ|20>ab+(a B )|11>ab+‘/§aﬁ|02>-

improvement. 3
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(3) Apply Ns to modea to obtain lll. UPPER BOUNDS: cs
2 2 The bound onP,,(C9) is obtained in the same way as
V2a|20)a+ (0= B%)| 1 e+ V2| 02)a that on P,.,(NS). Assume that we can implemens with

1 a2 - probability of succesp. The first step is to show that one can

=5 [sin(w/4)a (@°+2 cog m/4)a"@al® create a state with expected number of photons 4/3 in a mode
using one instance d.
+sin(w/4)a’®*]|0) (1) Prepare the statd10) gy -
) (2) Use a beam splitter on modésand ¢ to make the

1|11 state

= | @@ +a®) o) (4)

1 V2
‘/_3|110>abc+ 73|101>abc- (7)
with probability of success.

(4 By using a 50/50 beam splitter that maps (3) Use a beam splitter on modasandb that transforms
IV2(|10) o +]0D) ) — |10, the state M2a’ @0y  Ui/10)=cos@/8)|10)a,—sin(@/8)[01)s,  and  U4[01)

=120), is obtained. =sin(m/8)| 10) 4+ cos(/8)|01) . This gives

The effect of the above procedure is unchanged if PC isq o)

delayed until the end. Lgt be the final statédensity matrix —U4|110) gpc+ —[cog 7/8)|101) ypo— SiN( 77/8)|011) 4] -
on modea just before postconditioning. Because postcondi- V3

tioning on a measurement of modes other tlaato obtain (8)
|2)2(2| is possible and the probability of succespjp can (4) Apply csto modesb andc with probability of success

be expressed as a mixtugg2)a(2|+(1—p)p’ for some  pto obtain
statep’. To boundp from above requires the following re-

sult: V2 ;

— +— + .
Theorem 1Let ¢ be a LOP state. Theg's expected number 3 U310 aee V3 [coS(/8)|100) ape-+ Sin( 7/8)| 01D ]
of photons in any mode is at most 1. (9

The expected number of photons in madéor p is given _ _ _
by 2p+x, wherex=0. It follows thatp=<1/2, establishing (5 Apply the inverse of the beam splitter used in step 3.

the desired bound oR,,(NS). The state is now
Proof of Theorem 1Let the initial state before applying 1 N
the linear optics transformation be given by | )= ‘/—§|110)abc+ ‘73([005( 18)%— sin( 7/8)%]| 101) ape
lyy=a"®---a"¥]|0), (5) +2 cog m/8)sin( 7/8)|011) 4pc)
wherek is the number of single photons used. Let the linear :i
optics transformatiok) act on modes 1 through n=k. The V3 (1110 abe* [102) apot 01D ane)- (10

transformation is completely determined by it n unitary

matrix Qz(ujl) determined byUtat®u =Eju]-|a”j) [5].  The claim is that the logical mode associated with annihila-

Without loss of generality, consider the expected number ofion operatoral’ = 1#/3(a®+a® +a(?) has expected pho-

photons in the first mode aftét has been applied. Compute ton number 4/3. This logical mode can be transformed into
modea by a linear optics transformation. Using Theorem 1

(1\ — t41(1) 4(1) we can conclude, as before, that the maximum probability
(nH)=(piuTaaduly) with which this state can be obtained is 3/4. To prove the
=(y|uTa'Puutabu|y) claim compute
4 iy (pInV gy =(ypla""a"|y)
([ 3 w9 |[ 3 wa |1 )
! :§<¢|(a<a>+ a® +a®)(al @+ at® 4 ()| )
— T g
=2, Uqu a'Vq
; j1 I1<¢| |¢> :E i(abc<10q+abc<01q
k 3\v3
=2 Jupl*<1. (6
=1

2
+abc<001|)‘/_?_’(|100>abc+ |010>abc+ |001>abc
The second to last step follows becaligehas well-defined
photon numbers in each mode, with none in modes beyond
modek. The last step follows by unitarity dfi. |

4
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IV. DISCUSSION state can be obtained with at most probability 1/2 using LOP

The above results reduce the bounds on the probabilitiefsOIIOWed by PC. The density matrix for the first two modes is

of success ofis andcs using LOP followed by PC to values p=|00>_<00|+|11>(11|. IT we con5|de_r a statg. obtained

. . from single photons with linear optics, is it true that the
strictly below 1. However, the gap between the highest pmbf’naximum for which = pp+(1-p)e with @ a densit
ability of the known procedures and the bounds found is Sti"matrix is pp: 1/29 m=pp e @ y

large. An obvious reason that the bounds found here aré Because of their application to scalable linear optics quan-
probably not optimal is that they are insensitive to the type of PP ptcs g

measurement device used to implement the postselectioblg:;a?% rgsu;?é'obnéi:\hes‘il?;iglicgtehd 3)?“:?;2;; ﬁndag:jeltrheo-
That is, it does not matter whether a photon counter or any . 9 P y )
etically by many researchers. Experimental work preparing

arbitrarily more powerful measurement device is used, th?or the implementation of these gates has been reported in
bounds are still valid. Nevertheless, better bounds on tkg P 9 P

probabilities of success may be obtainable without usin g’_?]io]Regg:g gzﬁizr?nt(gcshcnr;e&ess fr;?vi?nb:ze;llérr:t\i/re]stlga;ergjn
properties of photon counters. For example, it may be po Yons s;uch as the above havccla been stud?etﬂ]n—lfﬂgRe?
sible to obtain better bounds by using tke and cs gates )

one or more times to obtain states that are further from LO[—!”"ted bounds, originally motivated by the problem of realiz-

states. Note that the two photon state can be obtained wi n% al complete Bell-basis measurement, can be found in
probability 1/2 with LOP followed by PC: Apply a 50/50 -18.
beam splitter to the stat&l) and postselect on measuring no

photons in the second mode. Here is an example of states

that can be investigated: It is not hard to see that with one Many thanks to Leonid Gurvits for stimulating discus-
application ofcsto a state obtained frofi1), one can make sions. This work was supported by the DQEontract No.
the entangled statg100 +|001Y). It is plausible that this W-7405-ENG-36 and the NSA.
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