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Addendum to ‘‘Electron structure of a dipole-bound anion confined in a spherical box’’:
The case of a finite dipole

S. Ronen*
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

~Received 10 August 2003; published 10 December 2003!

We investigate the problem of an electron placed in the potential of a finite dipole and confined by an
impenetrable prolate spheroidal box. The critical cage sizes at which successive bound states are ionized as the
box becomes smaller are found to be the roots of associated Legendre functions of complex order. We find the
asymptotic behavior for a large cage. The lowest few roots are computed numerically. Comparison is made
with the case of an electron bound by an ideal dipole plus short-range repulsion, confined in a spherical box.
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I. INTRODUCTION

The formation and structure of dipole-bound anions, i
the binding of electrons to highly polar molecules is pre
ently of considerable theoretical and experimental inte
~see, e.g.,@1–5#!. The wave functions describing these a
ions are much more diffuse than those of more tightly bou
conventional ‘‘valence’’ anion. Fermi and Teller@6# were the
first to predict, within the Born-Oppenheimer~bo! approxi-
mation, that a dipole should bind an electron only if t
dipole moment is larger than 1.625 D~Debye!. Higher dipole
moments are required for the existence of two or more dip
bound states with binding energy above 1 meV. Such hig
excited states were observed experimentally@2#.

In view of the very diffuse nature of dipole-bound state
it is evident that such an anion will be particularly sensiti
to environmental effects. The possibility of the existence
dipole-bound states on an impurity in a quantum dot is a
intriguing @7#. If the quantum dot is sufficiently smal
boundary effects due to confinement are expected to bec
important. In a previous paper@8#, we explored such effect
in a simple model of an electron in a potential of an ide
dipole plus inner repulsive core, confined by a spherical b
Here, we extend the study of such effects to the case o
electron bound by a finite dipole consisting of two oppos
charges and confined in a prolate spheroidal box.

The model of an atom or a molecule confined to a box
proved to be a useful model for simulating the effect
neighboring atoms in many physical situations. There
been considerable interest in the confined hydrogen a
@9–14#, with applications to pressure effects, quantum
impurities, and atoms caged in C60. Investigations have bee
also carried out for the hydrogen molecular anion inside h
and soft spherical and prolate spheroidal boxes@15–17#. Our
present study is closely related to the latter, correspondin
considering two opposite nuclear charges~a finite dipole!
instead of identical ones (H2 molecule!.

In confined systems, as one decreases the size of the
fining box, one expects the various bound states to ionize
by one until some minimum cage size is reached, be
which there are no bound states. It is particularly interest
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to compute the critical sizes at which ionization of thenth
bound state takes place. This has been done for the con
hydrogen atom@9–12# and the case of a spherically confine
electron in the field of an ideal dipole@8#. In these cases on
speaks of critical cage radii. From knowing these critic
radii/sizes it is immediate to obtain the number of bou
states for any given box size. Our aim is to compute
critical cage sizes for the model suggested here.

II. MODEL

As described above, we envisage an electron bound b
finite dipole created by two opposite charges1q and2q at
positionsR15(0, 0,a/2) andR25(0, 0,2a/2) separated by
a distancea. The dipole moment isD5qa. The whole sys-
tem is placed in a confining, impenetrable, prolate sphero
box. This geometry enables separation of variables and
lytical solution of the problem.

Within the Born-Oppenheimer approximation, the Sch¨-
dinger equation is

S 2
\2

2me
¹2

eq

ur2R1u
1

eq

ur2R2u
2EDC50. ~1!

The boundary condition due to confining, to be specifi
exactly below, involves the lengthb of the major axis of the
spheroidal box. Dimensional analysis shows that only t
independent dimensionless quantities can be construc
These may be chosen as

a5
2meeD

\2
52

D

ea0
or D5a31.271 D, ~2!

wherea0 is the Bohr radius and

R5
b

a
. ~3!

It is therefore sufficient to solve the problem fora5a0.
Then, for any othera ~and the same ratioR), the energy
eigenvalues scale as (a0 /a)2. This may be compared with
the hydrogen atom problem, for which a natural length sc
~the Bohr radius! exists, while here it is only the introductio
of the distance between the nuclei which brings a typi
length scale into the problem. It may also be compared w
©2003 The American Physical Society01-1
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the ideal dipole model considered in Ref.@8#. An ideal dipole
does not introduce a length scale, and it was necessa
introduce there an additional repulsive core potential with
own length scale. From now on we shall use atomic un
i.e., \5e5me51. We puta5a051.

Equation ~1! is separable in prolate spheroidal coord
nates. Letr 1 andr 2 be the distances of the electron from t
nuclei. The prolate spheroidal coordinates are (l,m,f) with
l5 (r 11r 2)/a and m5 (r 12r 2)/a, where we have 1<l
,` and 21<m,1. f is azimuthal coordinate. For larg
r 1,r 2 the coordinatesl,m behave, in spherical coordinate
like 2r /a ,cos(u), respectively. In this sensel is a ‘‘radial’’
coordinate andm an ‘‘angular’’ coordinate. The confining
box is defined by the surfacel5R, where the constantR
.1 is the spheroid’s major axis in units ofa.

We put

C~r ,u,f!5F~l!Q~m!eimf. ~4!

Transforming Eq.~1! into prolate spheroidal coordinates an
effecting the separation of variables, we obtain the follow
equations:

d

dl F ~l221!
dF

dl G1F1

2
El22Apm2

m2

l221
GF50, ~5!

and

d

dm F ~12m2!
dQ

dm G1F2
1

2
Em21am1Apm2

m2

12m2GQ50,

~6!

whereApm is the separation constant. The indexp specifies
the number of nodes of the angular functionQ. The radial
function F must be finite atl51. The boundary condition
due to the confining box isF(R)50.

III. CRITICAL CAGE SIZES

With no confinement, the solutions of the above equati
give both discrete, bound states, and continuum, unbo
states. Bound states exist only ifD.1.625 D. When we add
confinement all states become discrete. However, states
positive energy will be ionized as soon as the impenetra
wall potential is replaced with a more realistic finite potent
wall. We are interested here in finding the critical major a
length R at which bound states are ionized. For suchR we
haveE50.

We now note that Eq.~6! with E50 is exactly the same
as the angular equation appearing in the problem of an e
tron bound by an ideal dipole, see Eq.~7! of Ref. @8#. There-
fore, we can use the same method as there to findApm . For
m50, a graph of the separation constantA10 corresponding
to the angular function with no nodes appears in Fig. 1
Ref. @8#.

Now consider the radial Eq.~5!. For the unconfined prob
lem ~no box!, it is known ~as shown in Ref.@18#! that a
bound state solution of Eq.~5! with E,0 exists only for
Apm,2 1

4 . This condition then provides the value of th
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critical dipole for binding through the dependence of t
separation constant on the dipole moment. The same co
tion is therefore necessary~but not sufficient! for the exis-
tence of bound states with confinement~whose effect is al-
ways to raise the energy of any given state!.

With E50, Eq. ~5! reduces to the associated Legend
equation, but for 1<l<R instead of the more familiar seg
ment @21,1#. Just as for the latter, more familiar case, t
requirement thatF(1) is finite selects as solutions the ass
ciated Legendre functionsPlm , where Apm5 l ( l 11). Be-
cause we need only considerApm,2 1

4 , we can define a rea
parameter

s5A2S 1

4
1ApmD , ~7!

and then

l 52
1

2
1 is. ~8!

Using the well-known expression of the associated L
endre functions in terms of the hypergeometric functi
~e.g.,@19#, Chap. 5!, we have, forz>1

Plm~z!5

GS 1

2
1 is1mD ~z221!m/2

2mGS 1

2
1 is2mDG~m11!

3 2F1S m1
1

2
1 is,m1

1

2
2 is,m11,

12z

2 D .

~9!

For a solution which satisfies the boundary condition
the surface of the confining box, we havePlm(R)50. There-
fore, for a givenm and a dipole moment strength, the roo
of Plm(z) with z.1 define a series of critical size
R1 ,R2 ,R3 , . . . , corresponding to the ionization of the firs
second, third, . . . , bound states. For a major axis leng
smaller than the first rootR1, no bound states exist. ForR1
,R,R2 there is only one bound state, etc. The three fi
roots form50 and various dipole moments were comput
numerically@21#. They are depicted in Fig. 1.

FIG. 1. The first three critical cage major axis lengths as
function of the dipole moment strength, for the azimuthal quant
numberm50. They scale asa/a0 with the dipole lengtha.
1-2
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To examine the behavior for large cagesR@1 we use the
well-known asymptotic expression for the associated L
endre functions@19#. A simple calculation gives

Plm~z!;
2~z221!m/2z2m

A2pz
cos~slogz1Vs!, ~10!

where

Vs5argS G~ is!2is

GS 1

2
1 is2mD D . ~11!

The roots for large cage sizes are therefore equidistant
logarithmic scale

Rn5expS np2
p

2
2Vs

s
D , ~12!

with n an integer. It is verified numerically thatRn gives a
good approximation to the exactnth root of Plm . In prin-
ciple,n should be large, but in practice very good accurac
already achieved for smalln, as shown in Fig. 2. Form
50, R3 as given by Eq.~12! is accurate to 0.23% for a dipol
strength of 20 D, and better for smaller dipoles. We m
compare this result with the critical cage radii for the case
an electron bound by an ideal dipole and confined b
spherical box@8#. For an ideal dipole with a repulsive im
penetrable core of radiusa, the critical cage radii, in units o
a, were found to be exactly

Rn5expS np

s D . ~13!

In the present model, the dipole is of a finite length, and
cage is prolate spheroidal. For largeR the dipole length is
in

v.

.

B
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small compared with the cage size, the surfacel5R tends to
a sphere, and physically one expects similar results to tha
an ideal dipole. Comparing Eq.~12! with Eq. ~13!, it is seen
that the ratio between successive critical radii is the sam
the two cases, but the absolute cage size is different b

factor of exp(2 p
2 1Vs/s). As discussed above, the parame

s, which depends onm and the dipole strengthD, is the same
in the two models. The reason for the difference in the
ponential prefactor is traced to the difference in the sh
range potential, which is a repulsive impenetrable core in
ideal dipole case, and the short-range potential of a fin
dipole in the present case.

Finally, we may repeat the comparison made in Ref.@8#
between the results for the two confined dipole-bound m
els and the confined hydrogen problem. The critical ca
radii for the hydrogen states (n,l ) are given@10,11,20# in
terms of roots of the Bessel function of the first kind:

J2l 11~2A2Rnl!50. ~14!

It is seen that for the hydrogen problemRn}n2 for large
n, while for the dipole-bound case we haveRn}exp(n).

FIG. 2. Shown is the ratio of the exact first three critical ca
sizes, from Fig. 1, to the approximate expression Eq.~12! in the
text. The top line, forn51, shows the largest deviation. Very goo
approximation is achieved already forn53 ~bottom line!.
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