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Addendum to “Electron structure of a dipole-bound anion confined in a spherical box™:
The case of a finite dipole
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We investigate the problem of an electron placed in the potential of a finite dipole and confined by an
impenetrable prolate spheroidal box. The critical cage sizes at which successive bound states are ionized as the
box becomes smaller are found to be the roots of associated Legendre functions of complex order. We find the
asymptotic behavior for a large cage. The lowest few roots are computed numerically. Comparison is made
with the case of an electron bound by an ideal dipole plus short-range repulsion, confined in a spherical box.
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[. INTRODUCTION to compute the critical sizes at which ionization of timin
bound state takes place. This has been done for the confined

The formation and structure of dipole-bound anions, i.e.hydrogen atoni9—12] and the case of a spherically confined
the binding of electrons to highly polar molecules is pres-electron in the field of an ideal dipo[&]. In these cases one
ently of considerable theoretical and experimental interesgpeaks of critical cage radii. From knowing these critical
(See, eg[l_s]) The wave functions describing these an- radii/sizes it is |mmed|ate 1;0 obtain the !’lumber of bound
ions are much more diffuse than those of more tightly boundtates for any given box size. Our aim is to compute the
conventional “valence” anion. Fermi and Tellgg] were the ~ cfitical cage sizes for the model suggested here.
first to predict, within the Born-Oppenheimé@vo) approxi-
mation, that a dipole should bind an electron only if the Il. MODEL
dipole moment is Igrger than 1.625(Debye. Higher dipolg As described above, we envisage an electron bound by a
moments are reguwgd lfor the existence of two or more d!p°|?|nite dipole created by two opposite charges and —q at
bou_nd states with binding energy apove 1 meV. Such h'gheﬁositionst(O, 0,a/2) andR,= (0, 0—a/2) separated by
excited states were observed experimentgly a distancea. The dipole moment i®=qa. The whole sys-

In view of the very diffuse nature of dipole-bound states,tem is placed in a confining, impenetrable, prolate spheroidal
it is evident that such an anion will be particularly SenSitivebox_ This geometry enables Separation of variables and ana-
to environmental effects. The possibility of the existence ofiytical solution of the problem.
dipole-bound states on an impurity in a quantum dot is also Within the Born-Oppenheimer approximation, the Sehro
intriguing [7]. If the quantum dot is sufficiently small, dinger equation is
boundary effects due to confinement are expected to become 5
important. In a previous papg8], we explored such effects AT eq n eq
in a simple model of an electron in a potential of an ideal 2m, Ir=Ry [r—Ry
dipole plus inner repulsive core, confined by a spherical box. N o -
Here, we extend the study of such effects to the case of an The boundary condition due to confining, to be specified
electron bound by a finite dipole consisting of two opposite€Xactly below, involves the lengtof the major axis of the
charges and confined in a prolate spheroidal box. spheroidal box. Dimensional analysis shows that only two

The model of an atom or a molecule confined to a box haghdependent dimensionless quantities can be constructed.
proved to be a useful model for simulating the effect of These may be chosen as
neighboring atoms in many physical situations. There has
been considerable interest in the confined hydrogen atom _ 2meeD_23 D=ax1.271 D 5
[9-14), with applications to pressure effects, quantum dot YT T %eq, or b=axt. : e
impurities, and atoms caged i Investigations have been
also carried out for the hydrogen molecular anion inside haravherea, is the Bohr radius and
and soft spherical and prolate spheroidal bdx@és-17. Our
present study is closely related to the latter, corresponding to b
considering two opposite nuclear chargesfinite dipole Rza- )
instead of identical ones (Hmolecule.

In confined systems, as one decreases the size of the con- It is therefore sufficient to solve the problem fara,.
fining box, one expects the various bound states to ionize on€hen, for any othema (and the same rati®), the energy
by one until some minimum cage size is reached, beloveigenvalues scale as{/a)?. This may be compared with
which there are no bound states. It is particularly interestinghe hydrogen atom problem, for which a natural length scale

(the Bohr radiugsexists, while here it is only the introduction
of the distance between the nuclei which brings a typical
*Electronic address: sronen@post.tau.ac.il length scale into the problem. It may also be compared with

E|¥=0. (1)
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the ideal dipole model considered in REJ]. An ideal dipole
does not introduce a length scale, and it was necessary to
introduce there an additional repulsive core potential with its
own length scale. From now on we shall use atomic units,
e, i=e=my=1. We puta=ay=1.

Equation (1) is separable in prolate spheroidal coordi-
nates. Let, andr, be the distances of the electron from the
nuclei. The prolate spheroidal coordinates areu(, ¢) with 25
A= (rq+ry)/a and u= (r{—ry)/a, where we have £\ 0 i
<o and —1=su<1. ¢ is azimuthal coordinate. For large 0 Sipole Moment (Debyes 20
ri,r, the coordinatea., . behave, in spherical coordinates,
like 2r/a,cos@), respectively. In this sense is a “radial” FIG. 1. The first three critical cage major axis lengths as a
coordinate andu an “angular” coordinate. The confining function of the dipole moment strength, for the azimuthal quantum
box is defined by the surface=R, where the constarR ~ numberm=0. They scale aa/a, with the dipole lengtra.

>1 is the spheroid’s major axis in units af N ) o
We put critical dipole for binding through the dependence of the

separation constant on the dipole moment. The same condi-
W(r,0,¢)=F(\)O(u)em. (4)  tion is therefore necessafput not sufficient for the exis-

tence of bound states with confinemémnhose effect is al-
Transforming Eq(1) into prolate spheroidal coordinates and ways to raise the energy of any given sjate
effecting the separation of variables, we obtain the following With E=0, Eq. (5) reduces to the associated Legendre
equations: equation, but for £A<R instead of the more familiar seg-
ment[ —1,1]. Just as for the latter, more familiar case, the
requirement thak (1) is finite selects as solutions the asso-
ciated Legendre function®,,,, where A,,=I(I1+1). Be-
cause we need only considlg,<— #, we can define a real
and parameter

50

Radial distance (Bohr)

1 2
SEN*=Apn—

-
dx 2

d_)\ +

A—1

de 1 m? /(1 )
Il PR N _ T2 0 le= s=\/—|=+Apml, W)
dpj(l % )d,U« + 2E/.L +apt+Apm 1. 0=0, 4 pm
(6) and then
whereA,, is the separation constant. The indespecifies 1
the number of nodes of the angular functi®n The radial [=- §+is. (8)
function F must be finite alh =1. The boundary condition
due to the confining box i (R)=0. Using the well-known expression of the associated Leg-
endre functions in terms of the hypergeometric function
ll. CRITICAL CAGE SIZES (e.g.,[19], Chap. 5, we have, forz=1
With no confinement, the solutions of the above equations 1
give both discrete, bound states, and continuum, unbound F(§+is+m (22—1)™2

states. Bound states exist onlyDf>1.625 D. When we add Pim(z)=
confinement all states become discrete. However, states with omp
positive energy will be ionized as soon as the impenetrable

wall potential is replaced with a more realistic finite potential

1
§+is—m)l"(m+ 1)

wall. We are interested here in finding the critical major axis % F m+ E+is m—+ E—is m+1 1-z _
length R at which bound states are ionized. For sihve 21 2 2 ™Y T2
haveE=0. 9

We now note that Eq(6) with E=0 is exactly the same
as the angular equation appearing in the problem of an elec- For a solution which satisfies the boundary condition at
tron bound by an ideal dipole, see K@) of Ref.[8]. There-  the surface of the confining box, we haRg,(R)=0. There-
fore, we can use the same method as there toAing. For  fore, for a givenm and a dipole moment strength, the roots
m=0, a graph of the separation constéat corresponding of P,,(z) with z>1 define a series of critical sizes
to the angular function with no nodes appears in Fig. 1 ofR;,R,,R3, ..., corresponding to the ionization of the first,
Ref. [8]. second, third. .. , bound states. For a major axis length
Now consider the radial E¢5). For the unconfined prob- smaller than the first rodR;, no bound states exist. F&;
lem (no box, it is known (as shown in Ref[18]) that a <R<R, there is only one bound state, etc. The three first
bound state solution of Ed5) with E<O exists only for roots form=0 and various dipole moments were computed
Apm<—%. This condition then provides the value of the numerically[21]. They are depicted in Fig. 1.
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To examine the behavior for large cages 1 we use the
well-known asymptotic expression for the associated Leg- 1.2
endre functiong19]. A simple calculation gives
1.15
3
2(22_1)m/227m .'3
Pim(z)~ cogslogz+Qy), (10 @ 1.1
\N2mz
1.05
where
1 = R e -
) —arg T(iS)ZiS (11) 0 gipole Mon}eont (Debyel)5 20
=
=+ is—m) FIG. 2. Shown is the ratio of the exact first three critical cage
2 sizes, from Fig. 1, to the approximate expression @®) in the

. o text. The top line, fom=1, shows the largest deviation. Very good
The roots for large cage sizes are therefore equidistant on gproximation is achieved already for= 3 (bottom line.

logarithmic scale
small compared with the cage size, the surfaeer tends to

nar— ™ Q a sphere, and physically one expects similar results to that of
2 s an ideal dipole. Comparing E¢l12) with Eq. (13), it is seen
Rn=exp s , (120 that the ratio between successive critical radii is the same in

the two cases, but the absolute cage size is different by a

with n an integer. It is verified numerically th&, gives a  factor of expE 5 +Q4s). As discussed above, the parameter
good approximation to the exaath root of P,,. In prin- s which depends om and the dipole strength, is the same
ciple,n should be large, but in practice very good accuracy ign the two models. The reason for the difference in the ex-
already achieved for smati, as shown in Fig. 2. Fom  ponential prefactor is traced to the difference in the short
=0, Rz as given by Eq(12) is accurate to 0.23% for a dipole range potential, which is a repulsive impenetrable core in the
strength of 20 D, and better for smaller dipoles. We mayideal dipole case, and the short-range potential of a finite
compare this result with the critical cage radii for the case ofdipole in the present case.

an electron bound by an ideal dipole and confined by a Finally, we may repeat the comparison made in R&f.
spherical boX8]. For an ideal dipole with a repulsive im- between the results for the two confined dipole-bound mod-
penetrable core of radius the critical cage radii, in units of els and the confined hydrogen problem. The critical cage
a, were found to be exactly radii for the hydrogen states(l) are given[10,11,2Q in

terms of roots of the Bessel function of the first kind:
nw

Rn=exr{?). (13 Joi+1(2V2R,) =0. (14)

In the present model, the dipole is of a finite length, and the It is seen that for the hydrogen probleRy>n? for large
cage is prolate spheroidal. For larg&ethe dipole length is n, while for the dipole-bound case we haRgxexp(n).
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