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Quantum optics of dispersive dielectric media
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We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion.
In our model the medium is described by a Lorenz—type dielectric fune{iopw) appropriate, e.g., for ionic
crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function,
i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the
dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion
of the total field(transverse and longitudinain terms of the coupledpolariton) eigenmodes, and this ap-
proach incorporates all previous results derived for similar but restricted sysgeems without spatial or
frequency dependence of coupled modéfithin the same model, we also quantize the Hamiltonian of a
nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogo-
nality and closure relations, which are used in a discussion of the fundanieqtal-tim¢ commutation
relations between the conjugate field operators.
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[. INTRODUCTION electric function, and quantize it by applying the standard
procedureg[14,15. However, in this approach the dielectric
The quantization of electromagnetic field in a dispersivefunction is assumed to be frequency dependent only and
dielectric medium represents one of the most interestingherefore this is appropriate for the discussion of light prop-
problems in quantum optics because it gives a rigorous anelrties (dispersion, radiation, efcin the bulk. On the other
simply achievable test of our understanding of the interactiofiand, a theory has been developed for a dielectric function
of light with matter. Large number of articles that have dis-with an arbitrary space, but without a frequency dependence
cussed that problem in the past few decades can be roughl$6,17]. Such approach was successful in describing some
divided according to their microscopic or macroscopic pointinteresting propertiesatomic decay, local-field corrections,
of view. Starting from the fundamental equations of motion,etc) of a dielectric mediun{18]. In our paper we wish to
the microscopic theories give, as one of the key results, awive a theory which will, starting from the first principles,
eraged operatorfgl] and a dielectric functiore [2] that de- quantize the Hamiltonian by taking into account both the
scribe the macroscopic properties of a medium. Macroscopitrequency and theéarbitrary space dependence of a dielec-
theories take appropriate field operators, construct th&ic function. As limiting cases, this theory will then recover
Hamiltonian of the coupled system, and try to diagonalize itthe above-mentioned approaches.
In both cases different gauge requirements and different cou- In all the theories that apply quantum optics to a dielectric
plings of matter and light were discussed depending on th&edium one essential question arises: What are the funda-
problem involved, so there are also specific analyses that tripental equal-time commutation relatiortsetween the field
to connect various approaches5s, 4. operators and the conjugate momenta? The clear answer is
In the macroscopic theories that are concentrated mainlgbtained in a case wheeedoes not depend upon frequency.
on the basic interaction between the partigh@larization  The dynamics of the system is then described by the vector
field and the electromagnetic field, the part of Hamiltonianpotential A, and its conjugate momentum is proportional to
that would describe losses is often negledfiedprinciple it ~ the displacemenD=¢(r)E, whereE is the electric field.
can be added lat€i6,7]). In such approach the system is The corresponding commutation relations are proportional to
generally described by a real dielectric function of Lorentz-the & function, as expectefll6,17. The situation becomes
type [8]. It has a good experimental verification when ap-more complicated in the case wheredepends upon a fre-
plied to polar dielectricgionic crystals or metajsin a fre-  quencyw, because it also involves the nontrivial dynamics
guency region for which the wavelength of light is much of the system, described by a polarizatiBn That problem
greater than a lattice constant. cana priori be solved by expanding andP in terms of
Using that model, Hopfield9] was the first who has their own eigenmodes and then by adding the interaction
qguantized the interaction between the polarization and théerm to the Hamiltoniari9]. The commutation relations are
electromagnetic field in a homogeneous dielectric. In his apsatisfied from the beginning, but the Hamiltonian must be
proach he started from the equations of motion for the fieldsliagonalized in terms of new operators, which could be dif-
and derived the eigenfrequencies of the coupled modes-ficult [10]. If one starts with the semiclassical Hamiltonian
polaritons Based on this theory, the model was extended t413], the polarization is implicitly included in the form of
dielectric layers and quantum we[l$0,11] and to a medium e(w), so the system is described only by tnenormalized
with a number of different resonance frequend¢id). Alter-  vector potential. The Hamiltonian is diagonalized by using
natively, one can start with the classical Hamiltonjdr3] the imposed commutation relations between the creation and
appropriate for an arbitrary frequency dependence of a diannihilation operatorsA posteriori one can define the con-
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jugate momentum to be proportional =3  e(w)E(w) 10D(r,t) 4w,
[3]. The correct fundamental commutation relations were de-  V-B(,)=0, VXB(r,t) == ———=-—j(r,1).
rived for the infinite ionic crystal, while there were some (1)

difficulties in the metallic casgl5]. The difficulties are also

present in models that start with the classical density of elec- In these equations the electric fiel the displacement
tromagnetic field, using the arbitrafpne-dimensionaldi- D, and the magnetic fiel® are determined by the external
electric function[19,24. charge density and the current densify and by the polar-

In fact, all problems in deriving the required commutationization which describes, e.g., the dynamics of ions in ionic
relations for the conjugate variables of the electromagneticrystals or conducting electrons in meté8d. Usually, the
field can be avoided if the medium is described lyoaplex  total polarizationP,,, of the medium is divided in two parts:
dielectric function which satisfies Kramers-Kronig relations
and takes into account the absorpti21]. However, in Piot=P+ P,
that case there is no dispersion relation and, e.g., in a homo- i ) .
geneous dielectric, for each wave vectothere is a con- whereP descrlbe_s the d_y”?m'cs pbint |ons_anc_JI Pe repre-
tinuum of allowed frequencie®. Since one cannot deter- sents theelect_ron|ccontr|_but|on to the polf_anzatlon._ L
mine the eigenfrequencies of the system, the quantization, | '€ €quation of motion for the point-ion polarization is
scheme requires the integration over all frequencies and offVeNn by
viously it becomes more complicated. For instance, the clas-
sical constitutive equatiorD(r,w)=e(w)E(r,w) can be
consistently used in the quantum approach only if the losses
are neglectedi22].

In a model that neglects absorption, an interesting situawherew+(r) andwp(r) are transverse and plasma frequency
tion occurs when one starts from the equations of motion foef ions, respectively. One chooses;=0 for conducting
the fieldsA andP and tries to quantize the Hamiltonian from electrons in metals and+= wp=0, i.e.,P=0 for the inert
the beginning in terms of theoupledeigenmodes, i.e., po- dielectrics or for the empty space.
laritons. Such a model was developed, e.g., for a semi- Assuming a periodic solution in time with a frequensy
infinite medium[23] or a dielectric layef24], but the appro- we find the following for the point-ion susceptibility:
priate commutation relations were not discussed. In our

wh(r)
47

2
oy F;(t;’t) +w3(r)P(r,t)=

E(r,t), (2)

paper we shall use that approach and, as we have pointed P(r,w)=x(r,0)E(r,0), )
out, generalize it to include a dielectric function of the form 5

e(r,w). In particular, in our model the momentum conjugate wp(r) 1

to A can be chosen proportional B as well as toD [25]. X(rw)=— [02(N)—w?] )

This generalization will enable us to analyze the fundamental

commutation relations with more flexibility and explain At high frequencies ¢> wy) P(r,w)—0 and therefore
some of the present controversies in models with a real dithe electronic polarizatio®, becomes particularly impor-
electric function. tant. We shall denote its contribution to the total susceptibil-

The paper is organized as follows. In Sec. Il we start fromjty py  so we can define the total polarization of the sys-
the equations of motion for the photon field propagating intem as

the polar dielectric. We have derived appropriate Lagrangian

and Hamiltonian of the system in the generalized Coulomb Piot(r, @) =[ x(r)+ x(r,0)E(r,0).

gauge. The Hamiltonian is quantized in Sec. Il with the help

of the general orthonormality relation developed for theThe displacemerd which enters the Maxwell equation$)
eigenmodes of the coupled system. Some special cases aseelated to the total polarization, so for the periodical solu-
discussed in Sec. IV and the connection with the existingion we can write

theories is pointed out. In Sec. V we discuss the validity of

the equal-time commutation relations between the field op-  D(r, @) =E(r,@) +4mwPy(r, 0) = e(r,0) E(r, ),

erators and the conjugate momenta. The conclusion is given ) _

in Sec. VI. In the Appendix, we analyze the nonretarded limitvhere we have introduced the standard Lorentz-type dielec-

that turns out to be important in the discussion of the generdfi€ function for a polar dielectric
particle field. e(r,w)=e, (r)+4mx(r,o), 5)
Il. MODEL HAMILTONIAN (1) =1+ 4my.(1).

We investigate the behavior of an electromagnetic field in,\I

a polar medium. The electromagnetic field is described by ow we can write the displacemed(r,t) in the form

the following Maxwell equations: D(r,t)= e, (r)E(r,t)+47P(r,t) (6)
10B(r,b) which clearly distinguishes the electronie.) and ionic @)
V-D(r.)=4mp(r,t),  VXE(r,0)+ c =0 contribution of the total polarization.
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Let us quote two simple relations, which we shall use in

later calculations,

I we) wi(03+ 0?)  I(wle) wiw?
=€, , =€, t—F—7—.
Jo (02— w?)? dw? (02— w?)?

(@)

We introduce the vectoh(r,t) and the scala®(r,t) po-
tentials in the standard way,

1 9A(r,t)
B(r,)=VXA(rt), E(rtH)=-Vd(rt)--———,

)

which leads to the following equations of motion for the

potentials:
19
V~(6mV<I))+EEV-(GOCA)ZMT(V-P—p), 9

VXV XA 62A+1 VO Am ,+aP
22 e e U a)

(10

Here we have omitted denoting explicit dependence of po-
tentials on (,t), and we shall use this short notation when

such a dependence is obvious.

PHYSICAL REVIEW &8, 063815 (2003

(15

is generally determined by both potentidlg and ¢, but in
the absence of external charges, the figlansverse and lon-
gitudinal) is completely described bx,.

The equations of motion for the renormalized potentials
Aq, ¢, along with the Lorentz force equation for external
charges, can be derived from the Lagrangian

L:Lf+Le+Li1 (16)
where the electromagnetic and polarization fields are de-
scribed by

P
= rg

1 . :
—E(MP'AO_VP'AO)

27 .
+— (P?~ w?P?)
wp

1. \2
ex(EAO) —(VXAp)?

. (17)

External particles, with a mas®;, a chargee;, and at a
positionr;, are represented by

1 .
Le=> Z m;r?

and the interaction between the fields and the external par-

The potentialsA, ® are usually solved in the Coulomb a5 is given by

gauge,

V.- (e.A)=0, (11)

in which the vector potentiaA essentially describes the

transverse and the scalar potentlalthe longitudinal field.

This gauge is dominantly used when one discusses the radia-
tion (transversgfield where the scalar potential can be ne-

glected. In this paper we wish to discuss b@thnsverse and

longitudina) fields. Besides giving the complete theory of

1 2
g, (Vo)

+fdr

1v ! A,— 4P
+E¢'E€xo_77.

1
Li=Jdr(51-Ao—p¢

Let us point out the following.
(i) In the Coulomb gaugéll), even in the absence of
external charges, the polariton field is described by both

polaritons in dispersive dielectrics, this will enable us to(vector and scalampotentials, so that the second integral in

make a close connection with the nonretarded limit.
Let us perform the standard gauge transformation,

2N
A=Ag—CVA, P=¢+—-, (12

and choose the parameteso that a new vector potential
satisfies the following gauge requirement:

13

0 —_
pr 47TCP) =0.

IA
V~<ew—

In this gaugeA, satisfies Eq(10) with the obvious replace-

ment,A—A,, ®— ¢, while the scalar potentiap is deter-

mined by the external charges only:
V- (e.Vp)=—4mp. (14

The electromagnetic field,

L; should be the part df;, which would make the quanti-
zation of the field Hamiltonian more complicated.

(i) The field LagrangiarlL; contains two parameterg
andv. They are not quite arbitrary but must satisfy

ptv=1

so thatL¢ contains a tern@(P- Ag)/dt which does not influ-
ence the equations of motion or the Hamiltonian of the sys-
tem. The transformation fromu=1,r=0) to (u=0,v
=1) can be viewed as a gauge transforma{ibh) but our
approach enables us to treat both types of Lagrangian in the
same form, which we shall extensively use in Sec. V.

The momenta conjugate to the dynamical varial#gs
P, r; are derived from Eq(16):

1

Ao,  4mc

1
= T amc €=V &

(18)

1.
ego( — EAO) +udaP
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Am. 1 Here indices K,s) denote all linearly independent solutions
P, Mp=—P+ VEAO; (190  of the field eigenmodeb s, Pxs. Particularly, indexs(K)
wp denotes all degenerate eigenmodes that have the same eigen-
frequencywy .
-8 Now we can define the susceptibiligy (r)=x(r,wg) in
fis PI=Mii+ o Ao 20 the same way as in Eq3),

Usually, one takesg=1,»=0), which givesIl,~D, but g
the opposite choicey(=0,v=1), i.e.,II,~E, is sometimes Prs() =1 xk(NAks(r), (28
also preferred?2].

Now we are able to obtain the Hamiltonian of the system

) : . = ~ "and with the notationex(r)=¢€(r,wx) we can rewrite the
which can be factorized in the similar way as the Lagranglarbauge condition26) and the eigenequation for the vector

(16): potential(25) in the following transparent form:
H=H;+H.+H;. 21
e @ V- (ekAks) =0, (29
The field Hamiltonian
1
1 e, 27 .., VXV XAgs— = exogAgs=0. (30)
Hf=fdr —| A+ (VXAY? | +— (P*+ 0iP?) c

(22)  This is not a standard Hermitian problda®], but Eqs.(29)
and (30) would reduce to it if a dielectric functioa would
not depend upon the eigenfrequensy [16,17]. Otherwise
1 we may have different eigenfrequenciedor the same “ei-
Ho== >, [mir?+e¢] genvalue”ew? (see Sec. IV
25 Let us make a standard assumption that a dielectric func-

_ o ) tion ex does not depend upon the position within a given
besides the kinetic-energy operator also includes the selljiglectric. Therefore, e.g., in the volume of a dielecjrige
energy term. The interaction Hamiltonian describes a lineafq4 €{<V'AK =0, which gives the following

S ’ . .

coupling of the polarization with the external potential:

is determined by the field&,, P. The particle Hamiltonian

(i) Longitudinal modesel =0, V XAy =0.
All modesK =] are degenerate, with the longitudinal fre-
Hizf drP-V ¢. (23)  quency
B L
l1Il. QUANTIZATION OF THE FIELD HAMILTONIAN wfzw’fsw#%—j, (31)
Eoc
The HamiltonianH describes the energy of the polariton
field, i.e., the energy of electromagnetic and polarizationyng they all vanish outside the dielectjic Because the
fields coupled t_hrough the eq_uatl(_)ns of moti@nand(2). In _ modes satisf¥V X A,=0, they can also be determined by the
order to quantize that Hamiltonian, we shall expand fleldScalar potentiafb,, introduced a€= — (1/c)Ay,= — V®,,.

operatorsA, andP in terms of their eigenfunction&y and . j N
Pxs, respectively, defined so as to satisfy E@, (10), and . (i) Transverse mpdequﬁo’ V- Ags=0. The modes sat-
isfy the wave equation

(13) in the absence of the external charges:

S Ay A1)+ e ZE A =0 32
Pkst wTPKS_E _EAKS , (24 ks(l) €K? ks(r)= (32
1 . Aqr. and the eigenfrequenciesy depend upon the boundaries
VXV XAgst ?EwAKs:TPKsa (29 petween dielectrics.

Generally, we can expand the vector potential and the

: polarization over their eigenmodes,
V(EOCAKS):47TCV PKS' (26)

. : . . 1
In order to determine the corresponding eigenfrequencies Ag(r )= — E [st(t)AKs(f)+rLs(t)AES(f)], (33
of a coupled system, we assume V Ks

ﬁ

Ags=Axs(r)expl—iwgt),

1
P(rt)=— (V)Pys T(OPE(D], (34
Pea=Pica(r)eXpl — i wxt). 27) (10= 5 & P T rOPR(D, - (34
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whereV is the normalization volume antk(t), which en-  Using this expression one can easily calculate the time de-
ters into both expansions, is the polariton field operator, withrivatives of the fieldsA, and P and expand the conjugate
the following standard time dependence: momenta(18) and (19) in the way analogous to the expan-

ks(t) =risexpl—iwgt). (35) sions(33) and (34):

IIA(r t)=ii2 4 + w—'zj [Fes(D AN =L (DAE(N)] (39
ALl (47TC)2\/V e TWK| € Mw$_wi Ks Ks Ks Ks )
(=) 1 T -
IIp(r,t) = ol \/—v% 4wy M+Vw_ﬁ [rks(t)Pis(r) = rgs(t)Pis(r) ] (37

Now we shall proceed with the quantization of the Hamil- The functionZyy, will have an important role in further
tonianH; . In Eq.(22), we shall rewrite the magnetic term as considerations. Let us note that we can write it in a more
symmetric form,

J dr(VXA0)2=%f dr[(VXVXAp)-Ag 1
. - ZKKr(r>=(wz—wz[wiedr)—wﬁ,ew(r)]. (43)
+Ao- (VXVXA, 38 Kk~ @k

in order to obtain all terms in the Hamiltonian in the sym- From Eq.(43) we find a finite value of functio@ when both
metric form, which will enable us an appropriate factoriza-indices are equal:
tion. Inserting the expansiori83) and(34) into Eq.(22) and

using Eqs.(30) and (38) we find wp(Nwi(r)  d(wgex(r))
0 Eqs(30) and (33 Zu()= en(r) #—n D) _HekedD))
1 2 2 [03(r) — oi] dwy
H zf dr= [Xawra (DY (1)
f Vic go 0 KK The last relation is derived with the help of E@).
+ 4 In order to perform the integration in E¢39) we must
+ Xyskrs (10D Yy (D], (39 gerive a suitable relation for the eigenvectdigs. . We shall

, _ . start with the vector identity
where we have introduced the following abbreviations:

_ f ot s aw AS) . VXVXA —A;- VXV XA

XKSK’S':rKSrK’S’AKs'AK’s’+rKer’s' Ks'AKrsm

=V-[(VXA) XA —(VxAF))xA], (45

X+ //:r rT//A -A*,,+rTI’ /VA* A rgly

Kskrsr TSRS Tcrs KT ICSTTHs TS (40) where (*) means that the equation holds with or without the
complex conjugation. Equatio@5), applied to the eigenvec-

tors Axs, Ak that satisfy Eq(30), leads to the following

Ye=— (0T o) i(fwai € ) general form of the orthogonality relation for the vector po-
4c? Am tential eigenmodes:
41
7 (T ) e Xk | | ALl Anlekedn - o} e 10
Wp
(46)
Ionbstgirgng the relations4) for x and(5) for e we finally Note that the orthogonality relation is derived with the as-
sumption.
YEK,(r)z%(mKin,)ZZKK,(r), (42) Aks(r—>)=0. (47)
16mc
Such a behavior is typical for surface modes, and in Sec.
w3(r) wi(r) IV C we shall show that Eq46) also holds for plane waves.
Zyy (1) = €x(r)+— Pp— >—. (42 Using the definition of the functiody,, Eg. (43), we can
[0F(r) — ok [T (r) — o] rewrite Eq.(46) as
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, 1
f drZie (DAL (1) Ags(r) =0, K#K'. (48) P(rt)=——= > Z[aexp(—iwxt)Pya(F)
W &
For the degenerate modeK£K',s#s’), function Zy,, +af expliogt)PE(n)], (56)

Eq. (44), is finite, positive, and independent &fln the sub-

space determined by the degenerate eigenvectors we C@Rd the equivalent expansion of the electromagnetic field
choose eigenvectory as orthogonal, so we can write the gperatorsg, B, Egs.(15), or the interaction of polaritons
orthonormality relation in the form with external source&23), becomes obvious.

%f drZyi (NAR o T) - Axs(r) =Ny Sk k Fs.sr 5 (49) IV. SPECIAL CASES
In this section we shall apply our general results to some
whereN>0 is a suitably chosen normalization parameter,specific problems that have been already discussed in the
e.g.,Nx=1. Note that from the orthogonality relatio49) literature. It will enable us not only to compare the existing
we cannot derive a suitable closure relation because théesults with ours, but also to give more detailed explanation
eigenfunctiong30) are not solutions of a standard Hermitian Of some intriguing questions.
problem[19,25.
The quantization of the Hamiltoniakl; now becomes A. Planar symmetry

simple. The integration over in Eq. (39) includes A, Let us suppose that our system consists of thin dielectric
-Ags terms from the functlonS(}gsK,S, Eq. (40), andZxk, layers with plates parallel in thedirection. In that case.,
terms from the funcUoné/KK, , EQ.(41). From the orthogo- wp, wt are only functions ok so we can put

nality relation (48) it follows that only terms withK =K’

contribute to the HamiltoniafB9). But in that case we have k(1) =ex(2) = €x(2) +4mx(2).

wK @y, Which givesYy =0, so in Eq.(39) only terms The eigenfunctions of the vector potential can be factorized

X,@KS,YKK remain. With the orthonormality conditio®9),  4¢
we arrive at
Aks(r)=Aks(2)explik-p), (57)
He= 2 NK“’K[rKSrKS+rKSrKs] (50) wherek is a two-dimensional wave vector. The normaliza-

4 C Ks . X . . .
m tion volumeV is connected with the normalization lendth

asV=L[dp so, e.g., the orthonormality relatio@9) be-

Let us now introduce in the standard way the following cre-
comes

ation and annihilation operators:

ke ™ b s dz%[wq(z) W% (D) AL (D) Al
WK™ Oy

[aKSaaTKr I]:aK,K’as,s’- [aKSvaK’s’]ZO- (52
S :NK(SK’K!(SS’S! .

With the choice
The equivalent relation was derived by Santos and Loudon

_ 2 [19] who analyzed the electromagnetic field in a one-
£k \/hC Nk 53 dimensional dielectric with an arbitrary dielectric function
EK(Z).

we can write the Hamiltoniafg0) in the following second-
quantized form: B. Frequency independent dielectric function

Let us assume that the dielectric function is independent

(59 of a frequencywy, i.e., e=¢€(r). In that case we havgg

=0, i.e., we neglect the time-dependent influence of the
) . ionic polarizationP. It is correct at high frequenciesw(
The expansion of the fundamental field operatdgs Eq. ) where only electronic polarizability remains. In our
(33), andP, Eq. (34), in terms of the polariton creation and mgdel we can simply puP=0 or wp=0.
annihilation operatorsas,ays), Egs.(52), takes the form The vector potential eigenmodéscs now satisfy Egs.
(29) and (30) with the substitutionex(r)=e..(r). The mo-
mentumll,, Eq. (18), conjugate to the vector potential is

_ +
Hi= hok| akaykst

Ks

z .

1 .
Ag(r,t)= \/_V % {klaks exp(—iwgt)Ags(r)

1
HA:

. WA
+a) expiokt)AL(r)], (55 4mc2 O
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and the Hamiltonian of the electromagnetic field takes thegranted. To prove that it holds for plane waves, we first note
standard form that they satisfy the following orthogonality and closure re-

lations:
1
Hon= | org

In the wp=0 limit, Eq. (43) gives

(58

€ iA2+(V><A )2 1 e
“e2 0 Vf dref®= KD =g v,

% > el K= 5r—r7).
Zyk(r)=e(r) (59 K

The same holds for the polarization vectors:

eﬁ'eﬁ/zgp,p’v

so the orthonormality relatiot9) becomes

1
Vf dre.(r)Ag o (1) -Ags(r) =N Sk ' 8ssr - (60)

> eRrelf=6

. . . . K *K a,p-
It now contains the weighting factat,.(r) which does not p

depend upon the eigenmode ind€xso we can derive the

closure relation in the simple form In principle, we can denote the polarization vectefsaseg ,
and (for o1>0) choose, e.ggi’ ande’, as different vec-
1 1 tors. However, the polarization of two branches are not cor-

v & N—Kex(r)Aﬁs(r)Aﬁ’s‘(r’)= sy pr=r"), (61 r$llated and we can simply take the same polarization vector
g¢ for both (+,—) modes. Note that the polarization vec-

tors of different branches cannot be chosen as mutually or-

thogonal because there are four vectfe§,} in the same

The relations equivalent to Eqé0) and (61) were de- tWo-dimensional space. , , _

rived in Ref.[17], where the detailed explanation of the In order to derive orthogonality relation for different po-

properties of the transversé function (with the notation lariton branches we shall rewrite the fac@f, .« E.

81, 5= €65 ) is also given; it appears here because of the43), using the corresponding dispersion relations:

absence of the longitudinal modes. In fact, our results can be

where from now on we shall usex(3) to denote the Carte-
sian coordinates.

2 ’
directly connected to the results of R¢L7] because, with S 2 op T c 2(K2—K'?)
the assumptiorex=€,,, we are using the same gauge con- KnKn™ €= wg’ KnK'n’ ™ wﬁn_wi

!n!

dition (29): V[ e.(r)Aks(r)]=0.
These equations clearly show that =K', Z factor does
C. Spatially independent dielectric function not vanish only ifn=n’ so we can write the orthogonality

Let us assume that the whole space is homogeneous, i_églatlon in the form
occupied by the same dielectric with the spatially indepen- 1
dent dielectric functiore, . Then the vector potential eigen- 7, ., . _J’ drAf<*,) (1) Agp(r)=0, {Ko}#{K'o'},
modesA; satisfy Egs(31) and(32) with the obvious sub- v
stitution ejk: €k - The solutions for the eigenmodes are plane (64)

waves where we have introduced the index={p,n(p)} to shorten
. the notation. This relation is obviously equivalent to the re-
P (ry=cCP .
Akn(r) = Cinekexp(iK-T) (62 lation (48), so in agreement with Eq49) we can write the

determined by the three-dimensional wave vegtpindexp orthonormality relation as

which denotes one longitudinap&L) and two transverse 1

(p=T1,T2) polarizations with the unit vectoef , and in- ZK"K’”’VJ drA’;,U,(r)-AKG(r)zNKb‘KYK,(SU’U,.
dexn(p) which counts polariton branches for each polariza- (65)
tion p. CR, is a normalization constant. All the modes with

the longitudinal polarization have the same frequeney, Now we can put the Hamiltoniak; (22) in the second-

Eq. (31), while thetransversemodes have two branches (  quantized form(54) in the same way as in Sec. lIl, replacing
=+,—) for o1>0 and one branchn= +) for w;=0, de-  the general quantum numbess} with {Ko}.

termined by the well-known dispersion relation As we have pointed out in the Introduction, the Hamil-
tonian H¢ is often postulated in the alternative form, well
eanKn K?2c2. (63 known in classical electrodynamics. We shall here derive that

form by calculatingH; part by part. Using the relatior(§4)
Since the plane waves do not satisfy boundary conditiorand(65) we shall first calculate the term which contains only
(47) we cannot take the orthogonality relatigd8) for  the electric field,
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H —fd L e
EI— rg&‘OC

1

_87TC

2 2 Tt
2 % wKa'GOC|CK0'| (rKUrKg+rKnga)v

and then the term which includes only the polarization,

2m .
HPO,:f dr— (P?+ w$P?)

wp
2 2
_ 1 E ) c |2 5 (wg,t 0T
> DKol LKool WpT 2.0
8mce Ko Wy~ OF)
X (Mo kot TRl Ko)-
By adding these two terms we find, with the help of EQ,
He=Hg +Hpq

_ 1 E 2 a(wKUGKJ)
8’7TC2 Ko Ko &wKu’
2 T T
X |CK0'| (rK(TrKo'+rK(TrKO')!
which has the same form &, if we replace

WK€Ky
e, N Oxoeko) 66)
(?(,UKO.

The magnetic term ofi; also takes a simple form

1

8mc?

1
HBZJ dl’ngZ % w§06K0|CK0’|2

X(rKUrTI%o'Jrr&O'rKO')!
so we can write formally the whole Hamiltonian as
Hi=Hg+H j dr >
= = r_
f E B 87

Ko

a(wKO'GKO') 2 2
EK0'+ BKU’ '

(67)

where only the diagonal parts Bf andB? contribute toH; .
Let us note that parts of the Hamiltoniaf ¢, ,Hpo,Hg)

awKzr

PHYSICAL REVIEW A 68, 063815 (2003

P _wKO' _awKO'

Uko K ' Uke™ IK

These velocities can be easily connected to the weighting
factor Zx .k, EQ. (44):

2 2
c _&(wK(TéKo’) _
g - 2 — &~KoKo s
UkoUKo awK(r
Uko Ko

= . (69

If we choose the phase &k, to be (—i), e.g., for the
electric field(15), we find

hwy vR .
2\ —Zak, expiK-r)ec,+H.c.
Ko UEU

as derived in Ref[14].

1
E=v%

V. DISCUSSION: CONSISTENCY OF THE MODEL

In our approach to the problem of electromagnetic field in
the polar medium, we have expanded the Hamiltonian of the
systemH;, Eq.(22), in terms ofAxs(r) EqQ.(25), which are
the common eigenmodes of the vector potendigland the
polarizationP and therefore they represent the solution of the
coupled system. The quantization of the Hamiltonian is then
performed by factorizing the expansion coefficient(t),
Eq.(51), into the operatoay(t) which satisfies the standard
commutation relation$52), and the parametef, Eq. (53),
which is chosen to bring the Hamiltonian of the whole sys-
tem into the diagonal forn{54). A posteriori we wish to
check the validity of the fundamental equal-time commuta-
tion relations (ETCR) between the Cartesian components
(a,B) of the fieldF and the conjugate momentubi,

[F(r,t) IIE(r' ) ]=iA 6, go(r—r"), (70)

for the two fieldsF={A,,P} involved in our system.
As pointed out in the Introduction, although the present

contain off-diagonal terms which are all canceled when thanodel is well established and based on the standard equa-

total HamiltonianH; is derived, in agreement with E¢b4).

tions of motion, these equations lead to a real dielectric func-

The Hamiltonian(67) was obtained by Landau and Lif- tion which obviously violates the Kramers-Kronig relations.
shitz [13], with polariton operators,, asc numbers. In a However, the Lorentz-type dielectric functia(r,»), Eq.

standard way it can be quantizedposteriori by the intro-
duction of the creation and annihilation operat@g) and

(5), can be viewed as a limiting case of a correct dielectric
function[25] so we expect that the present model is consis-

(52). To derive closer relation with the workers which use tent with ETCR.

that approaciil4,15 we shall first calculate, from Eq§62)
and (64), the normalization consta@,, :
Nk

Ckol?=
|K| ZK

(68)

oKo

The ETCR(70) for the fieldsA, andP can be calculated
from Eqgs.(33), (34) and(36), (37) respectively:

1 1
[Ag(r,t),nﬁ(r',t)]=iﬁRel'v % N—K[ew(r’)

For the transverse modes, which are usually analyzed, the

simple dispersion relatio63) enables us to introduce the
phasev® and the group? velocity of the polaritons in a

standard way:

+ pAmx (1) 1AZ(NDARE(r')

(71)
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. 5 _ 1 (4mc)?2 1 (retardedl HamiltonianH¢ Eq. (22), of the interacting sys-
[P(r,t),Hp(r", )] =1Re & ; N 7 tem, with the simple redefinition of the vector potentia®).
s K wp(r’) It means that the interaction between the fiefds and P
W2(r' enters into the Hamiltoniakl; implicitly through the equa-
X| p+v T 5 «(DPEX(r) . tions of motion(1) and(2), and this interaction changes the
Wy eigenfrequencies of the whole system. In our approach we

(72) have expressed the basic fieldg andP through the coupled
(polariton) eigenmodes, and in principle one should find a
Note that the eigenmodeSy., Py are coupled through New generalized field and conjugate moment&ed polari-
the constitutive equatiof28), so it could be a problem to tonswhich would satisfy ETCR. It can be easily done in
satisfy both commutation relationg1) and (72) simulta- SOme special cases. _ o _ .
neously. To clarify that problem we shall first analyze the (& Longitudinal modesin a dielectricj, as discussed in
special cases that include only one field. Sec. llI, the longitudinal polarization is described as a solu-
(i) The electromagnetic fieldhe equations of motion of tion of ek =0, which gives the same frequeney , Eq.(31),
the electromagnetic field in the absence of the polarizatiofior all longitudinal modes in that dielectric. The vector po-
field follow from Eq. (1), with P=0. That case was dis- tential can be expressed in terms of polarization as
cussed in detail in Sec. IV B, where we have given the ap-
propriate HamiltonianH.,, Eq. (58). The corresponding

. 47C
commutation relationgobviously, with u=0) follow from Ao(rt)= j P(r.1).

0

Eq. (71):
N 81 With this replacement and withu=1,»=0), the Lagrang-
[Ag(r,t),IIx(r",t)] ian (17) in the dielectricj takes a simple form
1 1
—i - _ ’ « B* ’ 2 . .
'hRe[V 2 N HARNA () - L= [ Bl
] wp

(73

) ) while the momentun{18) conjugate toA, vanishes,
Now we can apply the closure relatiodl) to the right-hand
side of Eq.(73) and it immediately leads to the correct A
ETCR (70) for the (bare electromagnetic field. Ip=—3P,
(ii) The (nonretarded) polarization fieldf we neglect the wp
influence of the electromagnetic field, we obtain ttere- L .
tardedlimit, discussed in the Appendix. The particle field is ~ ETCR for the polarlfatlon field can be derived by calcu-
expressed in terms of polarization eigenmot&s3), so we  ating the factor(42): Zgy = (eL.wl/wk)?. It is now a con-

can easily derive the commutation relations betwBeand ~ Stant, so from Eq(49) we can derive the closure relation

1,=0. (76)

I Eq. (A4): valid in a dielectricj:
[P(r,t),1IE(r" 1] 1o @mo? 1 e 4,
V4 NI w{jzpl (r)PI (r )_5a,3(r r )a (77)

1 1
i - o Bx (1
_|ﬁRe|V;S —wé(r') a(NPEX(r')}.

(74

where index| denotes all longitudinal polarization eigen-
modes andﬁzﬁ(r—r’) is the longitudinals function [17].
The comparison with E¢.72) then shows that the polariza-

The closure relatiofA12) then obviously leads to the cor- tion satisfies ETCR70).
rect ETCR(70) for the (nonretardeglpolarization field. Note that Eq.(77) takes the nonretarded for(A12) for

Note that we can obtain the commutai@®) from Eq. N =(47c)?, Eq.(75). In fact, the longitudinal polarization
(72) valid for the retardedfield, if we put (w=1,v=0) and is not affected by the photon_ field so one expects that ETCR
take the same value for the retarded and nonretarded expafi€"ived for the nonretardet limi74), remain preserved.

sion parameterg Eq. (53, and », Eq. (A15), respectively, (b) Metallic modes The modes with the transverse fre-
whicr?gives § Ea. (53 7. Bq. (ALS) P ¥ quencyw are the eigenmodes of the free polarization field.

Let us assume that all the dielectrics are metalsinert
Ny = (4mc)2. (75)  dielectrics with wr=0. Then the polarization has no restor-
ing force and the dynamics of the system is determined by
We can now take the Hamiltonian of th&ee) electro- the photon field. In that case the polarization can be ex-
magnetic fieldH.,, Eq. (58), and the Hamiltonian of the Ppressed in terms of the vector potential as
(nonretardegpolarization fieldH,,, Eq.(A5), and put them 5
together. The resulting Hamiltonid#,,+H,, of suchnon- wp(r)
interactingsystem can be put exactly in the same form as the vi¥ o

P(rt)=— Ao(r,t),
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so with (v=1,u=0), for the Lagrangian we find, v, vl
+—=1, (80)

p p
Uk + Uk -

111 .
Li= | dre—1{ =[e.A3— wdA3]— (VX Ag)?t,
t f r8w[c2[6 0~ @pAd]—( o) which transforms Eq(79) into the following desired form:

Ta TB/pr —i | !
while the momentun{19) conjugate toP vanishes, [A“(r,t) IL"(r" ) =145, g(r—r"). (81
Here
1 ! A, TIp=0
= —5eAo, 1p=0. 1 .
A 47c? 0 P 6§B(r—r’)=—2 Z gir=r ).Keﬁaeiﬁ
' VX T

The factorZgk:, EqQ. (42), becomes the same as in the
caseP=0, i.e.,Zxx'=€.,(r) Eq. (59), so we can derive the
closure relation in the forni61),

represents the transvergdunction 51’B(r—r’), Eq.(61), in
the case of plane wavg&7].

In the casewt=0 there is only one branch so the sum-
rule (80) as well as the commutation relatid81) do not
hold. One can restore those equations by introducing an in-
finitesimally small transverse frequen¢%5] which would
formally give again two transverse branches.

where 8(r—r'") is a completes function, i.e., it includes However, for thewr=0 case it is more appropriate to

both the transverse and the longitudinal field. The closurd@e the =0,r=1) choice becausgas we have shown in
relation (78) is the consequence of the hermiticity of the S€C- VB this immediately leads to the correct ETCR for

eigenvalue problem, because far;=0, the eigenvalue both the transverse and th_e Io_ngitudinal field.
6Kw§ in Eq. (30) takes a simple forme(wwﬁ—w,%) deter- Let us analyze the longitudinal modes fox>0. In the

mined by only one eigenfrequenay, . Combining this re- w1>0 case we hav_e obtain_ed correct ETCR for thg trans-
sult with Eq.(71) we can easily derive ETCR for the vector YErse vector potential81) using the f=1,»=0) choice,
potential. but it gives the zero momentu(i@6) of the longitudinal vec-

(c) Homogeneous mediurfihere are a lot of articles that tor potential. Therefore we are left to calculate ETCR for the

. . B . . L .
discuss the problem of the fundamental commutation relal-(?ngItUdInaI polarizationfield P. Following the results de-

tions in the simple case of the homogeneous medium. In thayed in S?C' VA we can take Eq&r2) and(77) and imme-

standard approach the vector potential and the polarizatio lately write

are expanded in terms of their free eigenmodpkne La LB/pr +\7—i 7 o -

waves. The expansion coefficients are then chosen so that [PE(r O IR, D=7, (=17,

the corresponding fields satisfy ETGR0). Since the eigen- \yhere

frequencies of the free fields are not a solution of the coupled

equations of motior{l) and(2), the Hamiltonian should be | 1 KL

written in the form where the interaction between the fields 5a,3(r—f')=v EK: elr=r) eKaeKB

A andP is given as an additional term. Then one introduces

new operators that oscillate with the eigenfrequencies of thg; the plane-wave representation of the longitudifidlinc-

coupled system and from that requirement tries to determing,, st (r=r'), Eq.(77).

the polariton eigenfrequencies. B ’
In our approach we have briefly analyzed the homoge

1 1
V 2 Ny (DARMAR ()= 8,50(r=1"), (78)

Although in the casevt>0 we were not able to express
. L . coupled fields by a single operator, we can describe the trans-
neous dielectric in Sec. Il C and expandgglandP in terms ¢ <o fie|q by the vector potentidl and the longitudinal
of plane waves that oscillate with the polariton frequencyfield by the polarizatiorP" so that both fields satisfy ETCR

@K - . . (70).
Let us first analyze the transverse modes. With the (

=1,r=0) choice and with the help of E§69), we find the

following for the commutation relatiofi71): VI. CONCLUSION

In this paper we have developed a quantum-mechanical

[AS(r,t), ILA(r" )] description of the electromagnetic field propagating in the
) polar dielectric. We have started with the macroscopic equa-
1 I v tions of motion for the photon and the matter field, deter-
i - —-r')-K Ta T8 “Kn ) ) e
—|ﬁRe{V ; A 2 €k €k ; op | mined by the vector potentiagh, and the polarizatiorP,
n

respectively, together with their coupling. These equations
(79  lead to the real dielectric functioa(r,), with quite arbi-
trary space dependence, while the frequency dependence in-
In the casewt>0, one can derive the sum rule for the volves one pole with the well-defined transvefs€r, wt)
two transverse polariton branchig?25|, —oo] and longitudinal e(r,w,)—0] frequencies. In quan-
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tum optics the longitudinal modes were usually neglectedThe equations of motiofA2) and(A3) can be derived from
but we have needed them in order to make our retardethe following nonretarded Lagrangian:
theory complete and easily comparable with the nonretarded

limit. 1 , 2T ., L,
All relevant operators are expanded from the beginning in Lnr:f dr gew(V@O) +E(P —wiP)—P- Vg
terms of coupled(polariton eigenmodes whose eigenfre- P

quencies include the interaction between fields. By requiring; gives for the generalized momenta,

the standard commutation relations between the creation and

annihilation operators for the polaritons, the Hamiltonian of 4.
the system is diagonalized regardless of the specific shape of IIp=—P, 1g=0, (A4)
polar dielectrics. This was possible due to the derivation of wp

the orthonormality relation in a general form. However, the
corresponding closure relation could not be obtained. Front
the physical point of view, it becomes important when one
tries to derive the equal-time commutation relations between Hp = f dr
fields (Ao, P) and corresponding conjugate momenta. They

are obviously satisfied for the free fields, while in the
coupled system one should in principle define a generalized
polariton coordinate and the conjugate momentum, which
would satisfy the required commutation relations. It could be
easily done in some specific cases where one field can &om now on, we shall use the electric fi¢hil) rather than

obtained as a time derivative of the other. In our approach Wene scalar potential, so we shall put the Hamilton{&®)
made use of the unambiguity in the momentum definitionjnto the following familiar form:

e.g., the momentum conjugateAg could be chosen propor-
tional toD as well as proportional t&. In that way we were
H., = f dr

o the corresponding Hamiltonian is

1 27 .
_ 2 2, 22
SWGW(VCDO) +w2p(P + wiP?)

+P-Vd,}. (A5)

2T o app L
—(P+oiP)—SP-El.  (A6)
wp

able to resolve some difficulties which were present in theo-
ries thata posteriorianalyze the validity of the fundamental

commutations relations for the coupled fields. . The nonretarded Hamiltoniad,,, has been quantized, e.g.,
In fact we were able to reproduce all present results i

uantum ontics of polar medium that were based on the rer} r thin dielectric filmg[26], and here we wish to perform the
q ptics of po . a(.’ruantization for dielectrics of any shape, just as we have
macroscopic dielectric functiog(r,w). Moreover, we gave

) . : .~ —. done in the retarded case. Following the same procedure, we
a simple expressions for the vector potential and polarization

) S . ._shall first define the polarization eigenmod@g; so as to
in the system consisting of any number of polar dielectrics. atisfy Eqs.(A2) and (A3):
That approach can be efficiently used in the calculation of qs '
the quantum optics phenomena in polar media as well as in V- (€.Exs+ 47Pys) =0, (A7)
the interaction of such system with external charges.

Exs= Xk 'Pxs- (A8)

APPENDIX: NONRETARDED LIMIT
Obviously, the indicesK,s) and the susceptibilityyx are
"Yefined as in Sec. 1.
In order to derive orthogonality relation, we now start

with the transformation

In many cases it is enough to determine the polarizatio
eigenmodes in the nonretarded limit, eaptical phononsn
ionic crystals orplasmonsin metals. Formally, one can de-
rive that limit by lettingc— o in the retarded Maxwell equa-
tions (1). We introduce thenonretardefiscalar potentiaib V.[(e,Exet 47TPKS)(DE<*f)S/_(ewEK'S’+47TPK’S’)(*)(DKS]
in a standard way:

— (%) (%)

=47m(P., . Exs— Pks Ex %), A9
E(r,t)=—V&(r,t). (A1) (P - Exs ™ Pis Biors) (A9)
which is valid with and without the complex conjugation
(*). The integration of Eq(A9) overr, with the help of Eq.
(A8), gives

The gauge, analogous to E@.3), that will divide the total
potential® into the part¢ determined by the external charge
densityp, Eq. (14), and the partb, determined by the po-
larization P, reads as

drlxi (1) = Xy (NPEL (1) - Pes(r) =0
V- [—e(n)Vdo(r,) +47P(r,)]=0.  (A2) f D =00 (D1Fc (0Pl

In the absence of external charges we fing d,, sowe can  Which, using the definition fox , Eq.(4), leads to the gen-

write the constitutive equatiof®) as eral orthogonality relation
FP(r 1) ) a),zg(r) f 1 %)
- - _ dr P L (r)-Pes(r)=0, K’'#K. (A10)
pe +0(r)P(r, )= ——[~Vdo(r,1)]. (A3) w2(1) ks (1) Prs(r) (
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If we choose the degenerate polarization modés K') as  where we have introduced the following abbreviations:
orthogonal, we can write the orthonormality requirement as

P*

- _ t AT *
XKsKrsr_QquK’s’PKs'PK’s'+qquKf5r Ks Tkrs

1 1
\/ —— Pk : rg! = ’ .
Vf drwlza(r) Ks(r) PK S (r) 5K,K 53,5 (All)

+ _ T * t *
XKstsr - QquK/SfPKs' PKIS' *+ OOk s’ PKs' PK's’ )

The closure relation becomes

2
1

T wp -1
Yo =F oo+ 02— = —(xx T+ xur).
- KK’ KWK T Xk T Xk
V & 2 4

%P?s(r)Pﬁi(f')Z5&,35(r—r')- (A12)
wp(r)

In a common case in which thdielectric j is homoge-  After inserting the expressions for the susceptibijty, Eq.
neous Egs.(A7) and(A8) lead to the longitudinal and trans- (4) we find thatY ., does not depend upan
verse modes inside this dielectric, simply determined by the

dielectric functionel , Eq. (5). The longitudinal modese
=0) have the same frequeneay = w{ just as in the retarded
case, Eq.(31). The transverse modes|(#0) are divided
into the surface mode¥(- Exs=0), whose frequencies gen-
erally depend upon the boundaries among dielectrics, and thEherefore the integration overin Eq. (A14) includes only
modes with the frequencyy=w!, which vanish outside X,y terms with the weighting factoi,?. From the or-
the dielectricj. The modes with the frequeney}; have zero thogonality relation(A10) we immediately find that only
electric field E"'=0) and they are obviously the eigen- K’'=K terms contribute to the Hamiltonian. Sin¥g =0,
modes of the free polarization. Note that they were not thehe orthonormality relatiofA11) leads us to

proper eigenmodes in the retarded case because of the cou-

YEK,:E((,()KI CUK/)2.

pling of transverse polarization with photons.
In order to quantize the HamiltoniafA6) we shall ex-
pandP andE in terms of their eigenmodes:

1

P(r,t)= Y

KES [aks(t)Pks(r) + aks(HPESNT,
(A13)

Ql

_ i t *
E(r,t)= ~ % [gks(D)Eks(F) +aks(D Ef(r)],

Oks(t) =0ks X —iwkt).

When inserting these expansions into the Hamiltoriks®),
we shall first write the interaction term in the symmetric
form, P-E=(P-E+E-P)/2, and then use EqA8) to re-
placeEys by Pxs. This gives

— dr_

1 2
Y, 2

Hpr= > Y Keerre (HD Y (1)
wp Ks K's'

+X;sK’s’(r’t)Y|sz(r)]l (A14)

Hy = ;s 47Twﬁ(Qqu&s+ qaqus)-

As a final step, we introduce the following annihilatieps
and the creatiom operators:

+

— T _ %
Oks™ 7kaks, Oks™ Mk ks

which obey the standard boson commutation relati@as.

With the choice
h
Vo

we arrive at the following nonretarded Hamiltoniéh6) in
the second-quantized form:

1

"= (A15)

5/ (A16)

_ T
Hn = ; hiwg agsAkst
s

[1] S.T. Ho and P. Kumar, J. Opt. Soc. Am.1®, 1620(1993.

[2] B. Huttner, J.J. Baumberg, and S.M. Barnett, Europhys. Lett.

16, 177(199)); B. Huttner and S.M. Barnett, Phys. Rev4#,
4306(1992.

[3] M. Babiker, N.C. Constantinou, and B.K. Ridley, Phys. Rev. B
48, 2236(1993.

[4] E.A. Power and T. Thirunamachandran, Phys. Re25A2473
(1982.

[5] M. Babiker and R. Loudon, Proc. R. Soc. London, Seg85,
439(1983.

[6] R. Matloob, R. Loudon, S.M. Barnett, and J. Jeffers, Phys.

Rev. A52, 4823(1995; R. Matloob and R. Loudoribid. 53,
4567(1996; R. Matloob,ibid. 60, 50 (1999.
[7] M.S. Yeung and T.K. Gustafson, Phys. Re\b4 5227(1996);
C. Viviescas and G. Hackenbroicibjd. 67, 013805(2003.
[8] H. Born and K. HuangDynamical Theory of Crystal€xford

063815-12



QUANTUM OPTICS OF DISPERSIVE DIELECTRIC MEDIA PHYSICAL REVIEW &8, 063815 (2003

University, New York, 195% U. Fano, Phys. Revl03 1202 (1987.
(1956; K.L. Kliewer and R. Fuchs, Adv. Chem. Phy&?7, 355 [17] R.J. Glauber and M. Lewenstein, Phys. Revi3\467(1991).
(1974. [18] B.J. Dalton, E.S. Guerra, and P.L. Knight, Phys. Re\64
[9] J.J. Hopfield, Phys. Rel12 1555(1958. 2292(1996; B.J. Dalton and M. Babikeibid. 56, 905(1997);
[10] S. Jorda, Phys. Rev. B0, 2283(1994. L.M. Duan and G.C. Guabid. 56, 925 (1997.
[11] V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann[19] D.J. Santos and R. Loudon, Phys. Re\62 1538(1995.
Phys. Rev. B49, 8774(1994. [20] J. Li and M. Agu, Jpn. J. Appl. Phys., Part39, 5019(2000.
[12] P.D. Drummond, Phys. Rev. A2, 6845(1990; P.D. Drum-  [21] H.T. Dung, L. Kndl, and D.-G. Welsch, Phys. Rev. 3V, 3931
mond and M. Hillery,ibid. 59, 691 (1999. (1998; S. Scheel, L. Knth, and D.-G. Welschjbid. 58, 700
[13] L.M. Landau and E.M. LifshitzElectrodynamics of Continu- (1998.
ous Media 2nd ed.(Oxford University/New York, Pergamon/ [22] T. Gruner and D.-G. Welsch, Phys. RevbA 3246(1995; 53,
New York, 1984, p. 275. 1818(1996. 5
[14] N.C. Constantinou, O. Al-Dossary, and M. Babiker, J. Phys.:[23] M.S. Tomasand M. Sunjic, Phys. Rev. B12, 5363(1975.
Condens. Matteb, 5581(1993. [24] Z. Lenac and M.S. Tomas. Phys. Cl16, 4273(1983.
[15] O. Al-Dossary, M. Babiker, and N. Enfati, Phys. Rev.54, [25] M. Wubs and L.G. Suttorp, Phys. Rev.68, 043809(2001).
2419(1996. [26] A.A. Lucas, E. Kartheuser, and R.G. Badro, Phys. Re®, B
[16] L. Knall, W. Vogel, and D.-G. Welsch, Phys. Rev.3, 3803 2488(1970.

063815-13



