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Quantum optics of dispersive dielectric media

Z. Lenac
Department of Physics, University of Rijeka, 51000 Rijeka, Croatia

~Received 24 June 2003; published 15 December 2003!

We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion.
In our model the medium is described by a Lorenz–type dielectric functione(r ,v) appropriate, e.g., for ionic
crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function,
i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the
dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion
of the total field~transverse and longitudinal! in terms of the coupled~polariton! eigenmodes, and this ap-
proach incorporates all previous results derived for similar but restricted systems~e.g., without spatial or
frequency dependence of coupled modes!. Within the same model, we also quantize the Hamiltonian of a
nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogo-
nality and closure relations, which are used in a discussion of the fundamental~equal-time! commutation
relations between the conjugate field operators.

DOI: 10.1103/PhysRevA.68.063815 PACS number~s!: 42.50.Nn, 42.50.Ct
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I. INTRODUCTION

The quantization of electromagnetic field in a dispers
dielectric medium represents one of the most interes
problems in quantum optics because it gives a rigorous
simply achievable test of our understanding of the interac
of light with matter. Large number of articles that have d
cussed that problem in the past few decades can be rou
divided according to their microscopic or macroscopic po
of view. Starting from the fundamental equations of motio
the microscopic theories give, as one of the key results,
eraged operators@1# and a dielectric functione @2# that de-
scribe the macroscopic properties of a medium. Macrosco
theories take appropriate field operators, construct
Hamiltonian of the coupled system, and try to diagonalize
In both cases different gauge requirements and different c
plings of matter and light were discussed depending on
problem involved, so there are also specific analyses tha
to connect various approaches@3,5,4#.

In the macroscopic theories that are concentrated ma
on the basic interaction between the particle~polarization!
field and the electromagnetic field, the part of Hamiltoni
that would describe losses is often neglected~in principle it
can be added later@6,7#!. In such approach the system
generally described by a real dielectric function of Loren
type @8#. It has a good experimental verification when a
plied to polar dielectrics~ionic crystals or metals! in a fre-
quency region for which the wavelength of light is mu
greater than a lattice constant.

Using that model, Hopfield@9# was the first who has
quantized the interaction between the polarization and
electromagnetic field in a homogeneous dielectric. In his
proach he started from the equations of motion for the fie
and derived the eigenfrequencies of the coupled mode
polaritons. Based on this theory, the model was extended
dielectric layers and quantum wells@10,11# and to a medium
with a number of different resonance frequencies@12#. Alter-
natively, one can start with the classical Hamiltonian@13#
appropriate for an arbitrary frequency dependence of a
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electric function, and quantize it by applying the standa
procedure@14,15#. However, in this approach the dielectr
function is assumed to be frequency dependent only
therefore this is appropriate for the discussion of light pro
erties ~dispersion, radiation, etc.! in the bulk. On the other
hand, a theory has been developed for a dielectric func
with an arbitrary space, but without a frequency depende
@16,17#. Such approach was successful in describing so
interesting properties~atomic decay, local-field corrections
etc.! of a dielectric medium@18#. In our paper we wish to
give a theory which will, starting from the first principles
quantize the Hamiltonian by taking into account both t
frequency and the~arbitrary! space dependence of a diele
tric function. As limiting cases, this theory will then recov
the above-mentioned approaches.

In all the theories that apply quantum optics to a dielec
medium one essential question arises: What are the fu
mental equal-time commutation relationsbetween the field
operators and the conjugate momenta? The clear answ
obtained in a case wheree does not depend upon frequenc
The dynamics of the system is then described by the ve
potentialA, and its conjugate momentum is proportional
the displacementD5e(r )E, where E is the electric field.
The corresponding commutation relations are proportiona
the d function, as expected@16,17#. The situation becomes
more complicated in the case wheree depends upon a fre
quencyv, because it also involves the nontrivial dynami
of the system, described by a polarizationP. That problem
can a priori be solved by expandingA and P in terms of
their own eigenmodes and then by adding the interac
term to the Hamiltonian@9#. The commutation relations ar
satisfied from the beginning, but the Hamiltonian must
diagonalized in terms of new operators, which could be d
ficult @10#. If one starts with the semiclassical Hamiltonia
@13#, the polarization is implicitly included in the form o
e(v), so the system is described only by the~renormalized!
vector potential. The Hamiltonian is diagonalized by usi
the imposed commutation relations between the creation
annihilation operators.A posteriori, one can define the con
©2003 The American Physical Society15-1
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jugate momentum to be proportional toD5(ve(v)E(v)
@3#. The correct fundamental commutation relations were
rived for the infinite ionic crystal, while there were som
difficulties in the metallic case@15#. The difficulties are also
present in models that start with the classical density of e
tromagnetic field, using the arbitrary~one-dimensional! di-
electric function@19,20#.

In fact, all problems in deriving the required commutati
relations for the conjugate variables of the electromagn
field can be avoided if the medium is described by acomplex
dielectric function which satisfies Kramers-Kronig relatio
and takes into account the absorption@2,21#. However, in
that case there is no dispersion relation and, e.g., in a ho
geneous dielectric, for each wave vectork there is a con-
tinuum of allowed frequenciesv. Since one cannot dete
mine the eigenfrequencies of the system, the quantiza
scheme requires the integration over all frequencies and
viously it becomes more complicated. For instance, the c
sical constitutive equationD(r ,v)5e(v)E(r ,v) can be
consistently used in the quantum approach only if the los
are neglected@22#.

In a model that neglects absorption, an interesting sit
tion occurs when one starts from the equations of motion
the fieldsA andP and tries to quantize the Hamiltonian fro
the beginning in terms of thecoupledeigenmodes, i.e., po
laritons. Such a model was developed, e.g., for a se
infinite medium@23# or a dielectric layer@24#, but the appro-
priate commutation relations were not discussed. In
paper we shall use that approach and, as we have po
out, generalize it to include a dielectric function of the for
e(r ,v). In particular, in our model the momentum conjuga
to A can be chosen proportional toE as well as toD @25#.
This generalization will enable us to analyze the fundame
commutation relations with more flexibility and expla
some of the present controversies in models with a real
electric function.

The paper is organized as follows. In Sec. II we start fr
the equations of motion for the photon field propagating
the polar dielectric. We have derived appropriate Lagrang
and Hamiltonian of the system in the generalized Coulo
gauge. The Hamiltonian is quantized in Sec. III with the h
of the general orthonormality relation developed for t
eigenmodes of the coupled system. Some special case
discussed in Sec. IV and the connection with the exist
theories is pointed out. In Sec. V we discuss the validity
the equal-time commutation relations between the field
erators and the conjugate momenta. The conclusion is g
in Sec. VI. In the Appendix, we analyze the nonretarded lim
that turns out to be important in the discussion of the gen
particle field.

II. MODEL HAMILTONIAN

We investigate the behavior of an electromagnetic field
a polar medium. The electromagnetic field is described
the following Maxwell equations:

“•D~r ,t !54pr~r ,t !, “3E~r ,t !1
1

c

]B~r ,t !

]t
50,
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“•B~r ,t !50, “3B~r ,t !2
1

c

]D~r ,t !

]t
5

4p

c
j ~r ,t !.

~1!

In these equations the electric fieldE, the displacement
D, and the magnetic fieldB are determined by the externa
charge densityr and the current densityj , and by the polar-
ization which describes, e.g., the dynamics of ions in io
crystals or conducting electrons in metals@8#. Usually, the
total polarizationPtot of the medium is divided in two parts

Ptot5P1Pe ,

whereP describes the dynamics ofpoint ionsandPe repre-
sents theelectroniccontribution to the polarization.

The equation of motion for the point-ion polarization
given by

]2P~r ,t !

]t2
1vT

2~r !P~r ,t !5
vP

2 ~r !

4p
E~r ,t !, ~2!

wherevT(r ) andvP(r ) are transverse and plasma frequen
of ions, respectively. One choosesvT50 for conducting
electrons in metals andvT5vP50, i.e.,P50 for the inert
dielectrics or for the empty space.

Assuming a periodic solution in time with a frequencyv,
we find the following for the point-ion susceptibilityx:

P~r ,v!5x~r ,v!E~r ,v!, ~3!

x~r ,v!5
vP

2 ~r !

4p

1

@vT
2~r !2v2#

. ~4!

At high frequencies (v@vT) P(r ,v)→0 and therefore
the electronic polarizationPe becomes particularly impor
tant. We shall denote its contribution to the total suscepti
ity by x` so we can define the total polarization of the sy
tem as

Ptot~r ,v!5@x`~r !1x~r ,v!#E~r ,v!.

The displacementD which enters the Maxwell equations~1!
is related to the total polarization, so for the periodical so
tion we can write

D~r ,v!5E~r ,v!14pPtot~r ,v!5e~r ,v!E~r ,v!,

where we have introduced the standard Lorentz-type die
tric function for a polar dielectric

e~r ,v!5e`~r !14px~r ,v!, ~5!

e`~r !5114px`~r !.

Now we can write the displacementD(r ,t) in the form

D~r ,t !5e`~r !E~r ,t !14pP~r ,t ! ~6!

which clearly distinguishes the electronic (e`) and ionic (P)
contribution of the total polarization.
5-2
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Let us quote two simple relations, which we shall use
later calculations,

]~ve!

]v
5e`1

vP
2 ~vT

21v2!

~vT
22v2!2

,
]~v2e!

]v2
5e`1

vP
2vT

2

~vT
22v2!2

.

~7!

We introduce the vectorA(r ,t) and the scalarF(r ,t) po-
tentials in the standard way,

B~r ,t !5“3A~r ,t !, E~r ,t !52“F~r ,t !2
1

c

]A~r ,t !

]t
,

~8!

which leads to the following equations of motion for th
potentials:

“•~e`“F!1
1

c

]

]t
“•~e`A!54p~“•P2r!, ~9!

“3“3A1
1

c2
e`

]2A

]t2
1

1

c
e`

]“F

]t
5

4p

c S j1
]P

]t D .

~10!

Here we have omitted denoting explicit dependence of
tentials on (r ,t), and we shall use this short notation wh
such a dependence is obvious.

The potentialsA, F are usually solved in the Coulom
gauge,

“•~e`A!50, ~11!

in which the vector potentialA essentially describes th
transverse and the scalar potentialF the longitudinal field.
This gauge is dominantly used when one discusses the ra
tion ~transverse! field where the scalar potential can be n
glected. In this paper we wish to discuss both~transverse and
longitudinal! fields. Besides giving the complete theory
polaritons in dispersive dielectrics, this will enable us
make a close connection with the nonretarded limit.

Let us perform the standard gauge transformation,

A5A02c“l, F5f1
]l

]t
, ~12!

and choose the parameterl so that a new vector potentialA0
satisfies the following gauge requirement:

“•S e`

]A0

]t
24pcPD50. ~13!

In this gauge,A0 satisfies Eq.~10! with the obvious replace
ment,A→A0 , F→f, while the scalar potentialf is deter-
mined by the external charges only:

“•~e`“f!524pr. ~14!

The electromagnetic field,
06381
-

ia-
-

E52
1

c

]A0

]t
2“f, B5“3A0 , ~15!

is generally determined by both potentialsA0 andf, but in
the absence of external charges, the field~transverse and lon
gitudinal! is completely described byA0.

The equations of motion for the renormalized potenti
A0 , f, along with the Lorentz force equation for extern
charges, can be derived from the Lagrangian

L5L f1Le1Li , ~16!

where the electromagnetic and polarization fields are
scribed by

L f5E dr H 1

8p Fe`S 1

c
Ȧ0D 2

2~“3A0!2G1
2p

vP
2 ~Ṗ22vT

2P2!

2
1

c
~mP•Ȧ02nṖ•A0!J . ~17!

External particles, with a massmi , a chargeei , and at a
position r i , are represented by

Le5
1

2 (
i

mi ṙ i
2

and the interaction between the fields and the external
ticles is given by

Li5E dr S 1

c
j•A02rf D1E dr F 1

8p
e`~“f!2

1
1

4p
“f•S 1

c
e`Ȧ024pPD G .

Let us point out the following.
~i! In the Coulomb gauge~11!, even in the absence o

external charges, the polariton field is described by b
~vector and scalar! potentials, so that the second integral
Li should be the part ofL f , which would make the quanti
zation of the field Hamiltonian more complicated.

~ii ! The field LagrangianL f contains two parametersm
andn. They are not quite arbitrary but must satisfy

m1n51

so thatL f contains a term](P•A0)/]t which does not influ-
ence the equations of motion or the Hamiltonian of the s
tem. The transformation from (m51,n50) to (m50,n
51) can be viewed as a gauge transformation@5#, but our
approach enables us to treat both types of Lagrangian in
same form, which we shall extensively use in Sec. V.

The momenta conjugate to the dynamical variablesA0 ,
P, r i are derived from Eq.~16!:

A0 , PA52
1

4pc Fe`S 2
1

c
Ȧ0D1m4pPG1

1

4pc
e`“f;

~18!
5-3
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P, PP5
4p

vP
2
Ṗ1n

1

c
A0 ; ~19!

r i , pi5mi ṙ i1
ei

c
A0i . ~20!

Usually, one takes (m51,n50), which givesPA;D, but
the opposite choice (m50,n51), i.e.,PA;E, is sometimes
also preferred@2#.

Now we are able to obtain the Hamiltonian of the syst
which can be factorized in the similar way as the Lagrang
~16!:

H5H f1He1Hi . ~21!

The field Hamiltonian

H f5E dr H 1

8p F e`

c2
Ȧ0

21~“3A0!2G1
2p

vP
2 ~Ṗ21vT

2P2!J
~22!

is determined by the fieldsA0 , P. The particle Hamiltonian

He5
1

2 (
i

@mi ṙ i
21eif i #

besides the kinetic-energy operator also includes the s
energy term. The interaction Hamiltonian describes a lin
coupling of the polarization with the external potential:

Hi5E drP•“f. ~23!

III. QUANTIZATION OF THE FIELD HAMILTONIAN

The HamiltonianH f describes the energy of the polarito
field, i.e., the energy of electromagnetic and polarizat
fields coupled through the equations of motion~1! and~2!. In
order to quantize that Hamiltonian, we shall expand fi
operatorsA0 andP in terms of their eigenfunctionsAKs and
PKs , respectively, defined so as to satisfy Eqs.~2!, ~10!, and
~13! in the absence of the external charges:

P̈Ks1vT
2PKs5

vP
2

4p S 2
1

c
ȦKsD , ~24!

“3“3AKs1
1

c2
e`ÄKs5

4p

c
ṖKs , ~25!

“•~e`ȦKs!54pc“•PKs . ~26!

In order to determine the corresponding eigenfrequen
of a coupled system, we assume

AKs5AKs~r !exp~2 ivKt !,

PKs5PKs~r !exp~2 ivKt !. ~27!
06381
n

lf-
r

n
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Here indices (K,s) denote all linearly independent solution
of the field eigenmodesAKs , PKs . Particularly, indexs(K)
denotes all degenerate eigenmodes that have the same e
frequencyvK .

Now we can define the susceptibilityxK(r )[x(r ,vK) in
the same way as in Eq.~3!,

PKs~r !5 i
vK

c
xK~r !AKs~r !, ~28!

and with the notationeK(r )[e(r ,vK) we can rewrite the
gauge condition~26! and the eigenequation for the vect
potential~25! in the following transparent form:

“•~eKAKs!50, ~29!

“3“3AKs2
1

c2
eKvK

2 AKs50. ~30!

This is not a standard Hermitian problem@19#, but Eqs.~29!
and ~30! would reduce to it if a dielectric functione would
not depend upon the eigenfrequencyvK @16,17#. Otherwise
we may have different eigenfrequenciesv for the same ‘‘ei-
genvalue’’ev2 ~see Sec. IV C!.

Let us make a standard assumption that a dielectric fu
tion eK does not depend upon the position within a giv
dielectric. Therefore, e.g., in the volume of a dielectricj we
find eK

j
“•AKs50, which gives the following.

~i! Longitudinal modes. eK
j 50, “3AKs50.

All modesK5 j are degenerate, with the longitudinal fre
quency

v j
25vL

j 2[vT
j 21

vP
j 2

e`
j

, ~31!

and they all vanish outside the dielectricj. Because the
modes satisfy“3A050, they can also be determined by th
scalar potentialF0, introduced asE52(1/c)Ȧ052“F0.

~ii ! Transverse modes. eK
j Þ0, “•AKs50. The modes sat-

isfy the wave equation

DAKs~r !1eK
j

vK
2

c2
AKs~r !50 ~32!

and the eigenfrequenciesvK depend upon the boundarie
between dielectrics.

Generally, we can expand the vector potential and
polarization over their eigenmodes,

A0~r ,t !5
1

AV
(
Ks

@r Ks~ t !AKs~r !1r Ks
† ~ t !AKs* ~r !#, ~33!

P~r ,t !5
1

AV
(
Ks

@r Ks~ t !PKs~r !1r Ks
† ~ t !PKs* ~r !#, ~34!
5-4
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whereV is the normalization volume andr Ks(t), which en-
ters into both expansions, is the polariton field operator, w
the following standard time dependence:

r Ks~ t !5r Ks exp~2 ivKt !. ~35!
il-
s

-
a

06381
h
Using this expression one can easily calculate the time
rivatives of the fieldsA0 and P and expand the conjugat
momenta~18! and ~19! in the way analogous to the expan
sions~33! and ~34!:
PA~r ,t !5
~2 i !

~4pc!2

1

AV
(
Ks

4pvKS e`1m
vP

2

vT
22vK

2 D @r Ks~ t !AKs~r !2r Ks
† ~ t !AKs* ~r !#, ~36!

PP~r ,t !5
~2 i !

vP
2

1

AV
(
Ks

4pvKS m1n
vT

2

vK
2 D @r Ks~ t !PKs~r !2r Ks

† ~ t !PKs* ~r !#. ~37!
re

he
-

o-

s-

ec.
.

Now we shall proceed with the quantization of the Ham
tonianH f . In Eq.~22!, we shall rewrite the magnetic term a

E dr ~“3A0!25
1

2E dr @~“3“3A0!•A0

1A0•~“3“3A0!# ~38!

in order to obtain all terms in the Hamiltonian in the sym
metric form, which will enable us an appropriate factoriz
tion. Inserting the expansions~33! and~34! into Eq.~22! and
using Eqs.~30! and ~38! we find

H f5E dr
1

V (
Ks

(
K8s8

@XKsK8s8
2

~r ,t !YKK8
2

~r !

1XKsK8s8
1

~r ,t !YKK8
1

~r !#, ~39!

where we have introduced the following abbreviations:

XKsK8s8
2

5r Ksr K8s8AKs•AK8s81r Ks
† r K8s8

† AKs* •AK8s8
* ,

XKsK8s8
1

5r Ksr K8s8
† AKs•AK8s8

* 1r Ks
† r K8s8AKs* •AK8s8 ,

~40!

YKK8
7

5
1

4c2
~vK7vK8!F 1

4p
~eKvK7eK8vK8!

7
4p

vP
2 ~vK7vK8!vKxKvK8xK8G .

Inserting the relations~4! for xK and ~5! for eK we finally
obtain

YKK8
7

~r !5
1

16pc2
~vK7vK8!

2ZKK8~r !, ~41!

ZKK8~r !5e`~r !1
vP

2 ~r !vT
2~r !

@vT
2~r !2vK

2 #@vT
2~r !2vK8

2
#
. ~42!
-

The function ZKK8 will have an important role in further
considerations. Let us note that we can write it in a mo
symmetric form,

ZKK8~r !5
1

~vK
2 2vK8

2
!
@vK

2 eK~r !2vK8
2 eK8~r !#. ~43!

From Eq.~43! we find a finite value of functionZ when both
indices are equal:

ZKK~r !5e`~r !1
vP

2 ~r !vT
2~r !

@vT
2~r !2vK

2 #2
5

]„vK
2 eK~r !…

]vK
2

. ~44!

The last relation is derived with the help of Eq.~7!.
In order to perform the integration in Eq.~39! we must

derive a suitable relation for the eigenvectorsAKs . We shall
start with the vector identity

A2
(* )

•“3“3A12A1•“3“3A2
(* )

5“•@~“3A1!3A2
(* )2~“3A2

(* )!3A1#, ~45!

where (*) means that the equation holds with or without t
complex conjugation. Equation~45!, applied to the eigenvec
tors AKs , AK8s8 that satisfy Eq.~30!, leads to the following
general form of the orthogonality relation for the vector p
tential eigenmodes:

E drA K8s8
(* )

~r !•AKs~r !@vK
2 eK~r !2vK8

2 eK8~r !#50.

~46!

Note that the orthogonality relation is derived with the a
sumption.

AKs~r→`!50. ~47!

Such a behavior is typical for surface modes, and in S
IV C we shall show that Eq.~46! also holds for plane waves
Using the definition of the functionZKK8 , Eq. ~43!, we can
rewrite Eq.~46! as
5-5
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E drZKK8~r !AK8s8
(* )

~r !•AKs~r !50, KÞK8. ~48!

For the degenerate modes (K5K8,sÞs8), function ZKK ,
Eq. ~44!, is finite, positive, and independent ofs. In the sub-
space determined by the degenerate eigenvectors we
choose eigenvectorsAKs as orthogonal, so we can write th
orthonormality relation in the form

1

VE drZKK8~r !AK8s8
* r )•AKs~r !5NKdK,K8ds,s8 , ~49!

whereNK.0 is a suitably chosen normalization paramet
e.g.,NK51. Note that from the orthogonality relations~49!
we cannot derive a suitable closure relation because
eigenfunctions~30! are not solutions of a standard Hermitia
problem@19,25#.

The quantization of the HamiltonianH f now becomes
simple. The integration overr in Eq. ~39! includesAK8s8

(* )

•AKs terms from the functionsXKsK8s8
6 Eq. ~40!, and ZKK8

terms from the functionsYKK8
6 , Eq. ~41!. From the orthogo-

nality relation ~48! it follows that only terms withK5K8
contribute to the Hamiltonian~39!. But in that case we have
vK5vK8 , which givesYKK

2 50, so in Eq.~39! only terms
XKsKs8

1 YKK
1 remain. With the orthonormality condition~49!,

we arrive at

H f5
1

4pc2 (
Ks

NKvK
2 @r Ksr Ks

† 1r Ks
† r Ks#. ~50!

Let us now introduce in the standard way the following c
ation and annihilation operators:

r Ks5zKaKs , ~51!

@aKs ,aK8s8
†

#5dK,K8ds,s8 , @aKs ,aK8s8#50. ~52!

With the choice

zK5Ahc2vKNK ~53!

we can write the Hamiltonian~50! in the following second-
quantized form:

H f5(
Ks

\vKS aKs
† aKs1

1

2D . ~54!

The expansion of the fundamental field operatorsA0, Eq.
~33!, andP, Eq. ~34!, in terms of the polariton creation an
annihilation operators (aKs ,aKs

† ), Eqs.~52!, takes the form

A0~r ,t !5
1

AV
(
Ks

zK@aKs exp~2 ivKt !AKs~r !

1aKs
† exp~ ivKt !AKs* ~r !#, ~55!
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P~r ,t !5
1

AV
(
Ks

zK@aKsexp~2 ivKt !PKs~r !

1aKs
† exp~ ivKt !PKs* ~r !#, ~56!

and the equivalent expansion of the electromagnetic fi
operatorsE, B, Eqs. ~15!, or the interaction of polaritons
with external sources~23!, becomes obvious.

IV. SPECIAL CASES

In this section we shall apply our general results to so
specific problems that have been already discussed in
literature. It will enable us not only to compare the existi
results with ours, but also to give more detailed explanat
of some intriguing questions.

A. Planar symmetry

Let us suppose that our system consists of thin dielec
layers with plates parallel in ther direction. In that casee` ,
vP , vT are only functions ofz so we can put

eK~r !5eK~z!5e`~z!14pxK~z!.

The eigenfunctions of the vector potential can be factoriz
as

AKs~r !5AKs~z!exp~ ik•r!, ~57!

wherek is a two-dimensional wave vector. The normaliz
tion volumeV is connected with the normalization lengthL
as V5L*dr so, e.g., the orthonormality relation~49! be-
comes

1

LE dz
1

~vK
2 2vK8

2
!
@vK

2 eK~z!2vK8
2 eK8~z!#AK8s8

* ~z!•AKs~z!

5NKdK,K8ds,s8 .

The equivalent relation was derived by Santos and Lou
@19# who analyzed the electromagnetic field in a on
dimensional dielectric with an arbitrary dielectric functio
eK(z).

B. Frequency independent dielectric function

Let us assume that the dielectric function is independ
of a frequencyvK , i.e., e5e(r ). In that case we havexK
50, i.e., we neglect the time-dependent influence of
ionic polarizationP. It is correct at high frequencies (vK
@vP) where only electronic polarizability remains. In ou
model we can simply putP50 or vP50.

The vector potential eigenmodesAKs now satisfy Eqs.
~29! and ~30! with the substitutioneK(r )5e`(r ). The mo-
mentumPA , Eq. ~18!, conjugate to the vector potential is

PA5
1

4pc2
e`Ȧ0
5-6
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and the Hamiltonian of the electromagnetic field takes
standard form

Hem5E dr
1

8p F e`

1

c2
Ȧ0

21~“3A0!2G . ~58!

In the vP50 limit, Eq. ~43! gives

ZKK8~r !5e`~r ! ~59!

so the orthonormality relation~49! becomes

1

VE dre`~r !AK8s8
* ~r !•AKs~r !5NKdK,K8ds,s8 . ~60!

It now contains the weighting factore`(r ) which does not
depend upon the eigenmode indexK so we can derive the
closure relation in the simple form

1

V (
Ks

1

NK
e`~r !AKs

a ~r !AKs
b* ~r 8!5da,b

T ~r2r 8!, ~61!

where from now on we shall use (a,b) to denote the Carte
sian coordinates.

The relations equivalent to Eqs.~60! and ~61! were de-
rived in Ref. @17#, where the detailed explanation of th
properties of the transversed function ~with the notation
da,b

T 5eda,b
e ) is also given; it appears here because of

absence of the longitudinal modes. In fact, our results can
directly connected to the results of Ref.@17# because, with
the assumptioneK5e` , we are using the same gauge co
dition ~29!: “•@e`(r )AKs(r )#50.

C. Spatially independent dielectric function

Let us assume that the whole space is homogeneous
occupied by the same dielectric with the spatially indep
dent dielectric functioneK . Then the vector potential eigen
modesAKs satisfy Eqs.~31! and ~32! with the obvious sub-
stitutioneK

j 5eK . The solutions for the eigenmodes are pla
waves

AKn
p ~r !5CKn

p eK
p exp~ iK•r ! ~62!

determined by the three-dimensional wave vectorK , indexp
which denotes one longitudinal (p5L) and two transverse
(p5T1,T2) polarizations with the unit vectorseK

p , and in-
dexn(p) which counts polariton branches for each polariz
tion p. CKn

p is a normalization constant. All the modes wi
the longitudinal polarization have the same frequencyvL ,
Eq. ~31!, while the transversemodes have two branches (n
51,2) for vT.0 and one branch (n51) for vT50, de-
termined by the well-known dispersion relation

eKnvKn
2 5K2c2. ~63!

Since the plane waves do not satisfy boundary condi
~47! we cannot take the orthogonality relation~48! for
06381
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granted. To prove that it holds for plane waves, we first n
that they satisfy the following orthogonality and closure r
lations:

1

VE drei (K2K8)•r5dK ,K8 ,

1

V (
K

ei (r2r8)•K5d~r2r 8!.

The same holds for the polarization vectors:

eK
p
•eK

p85dp,p8 ,

(
p

eK
paeK

pb5da,b .

In principle, we can denote the polarization vectorseK
p aseKn

p

and~for vT.0) choose, e.g.,eK2
T1 andeK1

T1 as different vec-
tors. However, the polarization of two branches are not c
related and we can simply take the same polarization ve
eK

T1 for both (1,2) modes. Note that the polarization ve
tors of different branches cannot be chosen as mutually
thogonal because there are four vectors$eKn

T % in the same
two-dimensional space.

In order to derive orthogonality relation for different po
lariton branches we shall rewrite the factorZKnK8n8

p , Eq.
~43!, using the corresponding dispersion relations:

ZKnKn
L 5e`

2
vL

2

vP
2

, ZKnK8n8
T

5
c2~K22K82!

vKn
2 2vK8n8

2 .

These equations clearly show that forK5K8, Z factor does
not vanish only ifn5n8 so we can write the orthogonalit
relation in the form

ZKsK8s8

1

VE drA K8s8
(* )

~r !•AKs~r !50, $Ks%Þ$K 8s8%,

~64!

where we have introduced the indexs5$p,n(p)% to shorten
the notation. This relation is obviously equivalent to the
lation ~48!, so in agreement with Eq.~49! we can write the
orthonormality relation as

ZKsK8s8

1

VE drA K8s8
* ~r !•AKs~r !5NKdK ,K8ds,s8 .

~65!

Now we can put the HamiltonianH f ~22! in the second-
quantized form~54! in the same way as in Sec. III, replacin
the general quantum numbers$Ks% with $Ks%.

As we have pointed out in the Introduction, the Ham
tonian H f is often postulated in the alternative form, we
known in classical electrodynamics. We shall here derive t
form by calculatingH f part by part. Using the relations~64!
and~65! we shall first calculate the term which contains on
the electric field,
5-7
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HEl5E dr
1

8p
e`E2

5
1

8pc2 (
Ks

vKs
2 e`uCKsu2~r Ksr Ks

† 1r Ks
† r Ks!,

and then the term which includes only the polarization,

HPol5E dr
2p

vP
2 ~Ṗ21vT

2P2!

5
1

8pc2 (
Ks

vKs
2 uCKsu2vP

2
~vKs

2 1vT
2!

~vKs
2 2vT

2!2

3~r Ksr Ks
† 1r Ks

† r Ks!.

By adding these two terms we find, with the help of Eq.~7!,

HE5HEl1HPol

5
1

8pc2 (
Ks

vKs
2 ]~vKseKs!

]vKs

3uCKsu2~r Ksr Ks
† 1r Ks

† r Ks!,

which has the same form asHEl if we replace

e`→ ]~vKseKs!

]vKs
. ~66!

The magnetic term ofH f also takes a simple form

HB5E dr
1

8p
B25

1

8pc2 (
Ks

vKs
2 eKsuCKsu2

3~r Ksr Ks
† 1r Ks

† r Ks!,

so we can write formally the whole Hamiltonian as

H f5HE1HB5E dr
1

8p (
Ks

F]~vKseKs!

]vKs
EKs

2 1BKs
2 G ,

~67!

where only the diagonal parts ofE2 andB2 contribute toH f .
Let us note that parts of the Hamiltonian (HEl ,HPol ,HB)
contain off-diagonal terms which are all canceled when
total HamiltonianH f is derived, in agreement with Eq.~54!.

The Hamiltonian~67! was obtained by Landau and Lif
shitz @13#, with polariton operatorsr Ks as c numbers. In a
standard way it can be quantizeda posteriori by the intro-
duction of the creation and annihilation operators~51! and
~52!. To derive closer relation with the workers which u
that approach@14,15# we shall first calculate, from Eqs.~62!
and ~64!, the normalization constantCKs :

uCKsu25
NK

ZKsKs
. ~68!

For the transverse modes, which are usually analyzed
simple dispersion relation~63! enables us to introduce th
phasevp and the groupvg velocity of the polaritons in a
standard way:
06381
e

he

vKs
p 5

vKs

K
, vKs

g 5
]vKs

]K
.

These velocities can be easily connected to the weigh
factor ZKsKs , Eq. ~44!:

c2

vKs
p vKs

g
5

]~vKs
2 eKs!

]vKs
2

5ZKsKs ,

vKs
g

vKs
p

5
eKs

ZKsKs
. ~69!

If we choose the phase ofCKs to be (2 i ), e.g., for the
electric field~15!, we find

E5
1

V (
Ks

FAhvKs

eKs
AvKs

g

vKs
p

aKs exp~ iK•r !eKs1H.c.G
as derived in Ref.@14#.

V. DISCUSSION: CONSISTENCY OF THE MODEL

In our approach to the problem of electromagnetic field
the polar medium, we have expanded the Hamiltonian of
system,H f , Eq. ~22!, in terms ofAKs(r ) Eq. ~25!, which are
the common eigenmodes of the vector potentialA0 and the
polarizationP and therefore they represent the solution of t
coupled system. The quantization of the Hamiltonian is th
performed by factorizing the expansion coefficientr Ks(t),
Eq. ~51!, into the operatoraKs(t) which satisfies the standar
commutation relations~52!, and the parameterz, Eq. ~53!,
which is chosen to bring the Hamiltonian of the whole sy
tem into the diagonal form~54!. A posteriori we wish to
check the validity of the fundamental equal-time commu
tion relations ~ETCR! between the Cartesian componen
(a,b) of the fieldF and the conjugate momentumPF ,

@Fa~r ,t !,PF
b~r 8,t !#5 i\da,bd~r2r 8!, ~70!

for the two fieldsF5$A0 ,P% involved in our system.
As pointed out in the Introduction, although the prese

model is well established and based on the standard e
tions of motion, these equations lead to a real dielectric fu
tion which obviously violates the Kramers-Kronig relation
However, the Lorentz-type dielectric functione(r ,v), Eq.
~5!, can be viewed as a limiting case of a correct dielec
function @25# so we expect that the present model is cons
tent with ETCR.

The ETCR~70! for the fieldsA0 andP can be calculated
from Eqs.~33!, ~34! and ~36!, ~37! respectively:

@A0
a~r ,t !,PA

b~r 8,t !#5 i\ReH 1

V (
Ks

1

NK
@e`~r 8!

1m4pxK~r 8!#AKs
a ~r !AKs

b* ~r 8!J ,

~71!
5-8
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@Pa~r ,t !,PP
b~r 8,t !#5 i\ReH 1

V (
Ks

~4pc!2

NK

1

vP
2 ~r 8!

3Fm1n
vT

2~r 8!

vK
2 GPKs

a ~r !PKs
b* ~r 8!J .

~72!

Note that the eigenmodesAKs , PKs are coupled through
the constitutive equation~28!, so it could be a problem to
satisfy both commutation relations~71! and ~72! simulta-
neously. To clarify that problem we shall first analyze t
special cases that include only one field.

~i! The electromagnetic field. The equations of motion o
the electromagnetic field in the absence of the polariza
field follow from Eq. ~1!, with P50. That case was dis
cussed in detail in Sec. IV B, where we have given the
propriate HamiltonianHem, Eq. ~58!. The corresponding
commutation relations~obviously, with m50) follow from
Eq. ~71!:

@A0
a~r ,t !,PA

b~r 8,t !#

5 i\ReH 1

V (
Ks

1

NK
e`~r 8!AKs

a ~r !AKs
b* ~r 8!J .

~73!

Now we can apply the closure relation~61! to the right-hand
side of Eq. ~73! and it immediately leads to the corre
ETCR ~70! for the ~bare! electromagnetic field.

~ii ! The (nonretarded) polarization field. If we neglect the
influence of the electromagnetic field, we obtain thenonre-
tarded limit, discussed in the Appendix. The particle field
expressed in terms of polarization eigenmodes~A13!, so we
can easily derive the commutation relations betweenP and
PP Eq. ~A4!:

@Pa~r ,t !,PP
b~r 8,t !#

5 i\ReH 1

V (
Ks

1

vP
2 ~r 8!

PKs
a ~r !PKs

b* ~r 8!J .

~74!

The closure relation~A12! then obviously leads to the cor
rect ETCR~70! for the ~nonretarded! polarization field.

Note that we can obtain the commutator~74! from Eq.
~72! valid for theretardedfield, if we put (m51,n50) and
take the same value for the retarded and nonretarded ex
sion parametersz Eq. ~53!, andh, Eq. ~A15!, respectively,
which gives

NK5~4pc!2. ~75!

We can now take the Hamiltonian of the~free! electro-
magnetic fieldHem, Eq. ~58!, and the Hamiltonian of the
~nonretarded! polarization fieldHnr , Eq. ~A5!, and put them
together. The resulting HamiltonianHem1Hnr of suchnon-
interactingsystem can be put exactly in the same form as
06381
n
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~retarded! HamiltonianH f Eq. ~22!, of the interacting sys-
tem, with the simple redefinition of the vector potential~12!.
It means that the interaction between the fieldsA0 and P
enters into the HamiltonianH f implicitly through the equa-
tions of motion~1! and ~2!, and this interaction changes th
eigenfrequencies of the whole system. In our approach
have expressed the basic fieldsA0 andP through the coupled
~polariton! eigenmodes, and in principle one should find
new generalized field and conjugate momenta offree polari-
tons which would satisfy ETCR. It can be easily done
some special cases.

~a! Longitudinal modes. In a dielectricj, as discussed in
Sec. III, the longitudinal polarization is described as a so
tion of eK

j 50, which gives the same frequencyvL
j , Eq.~31!,

for all longitudinal modes in that dielectric. The vector p
tential can be expressed in terms of polarization as

Ȧ0~r ,t !5
4pc

e`
j

P~r ,t !.

With this replacement and with (m51,n50), the Lagrang-
ian ~17! in the dielectricj takes a simple form

Ll5E
j
dr

2p

vP
j 2 ~Ṗ22vL

j 2P2!,

while the momentum~18! conjugate toA0 vanishes,

PP5
4p

vP
j 2

Ṗ, PA50. ~76!

ETCR for the polarization field can be derived by calc
lating the factor~42!: ZKK

L 5(e`
j vL

j /vT
j )2. It is now a con-

stant, so from Eq.~49! we can derive the closure relatio
valid in a dielectricj:

1

V (
l

~4pc!2

Nl

1

vP
j 2

Pl
a~r !Pl

b* ~r 8!5da,b
L ~r2r 8!, ~77!

where indexl denotes all longitudinal polarization eigen
modes andda,b

L (r2r 8) is the longitudinald function @17#.
The comparison with Eq.~72! then shows that the polariza
tion satisfies ETCR~70!.

Note that Eq.~77! takes the nonretarded form~A12! for
Nl5(4pc)2, Eq. ~75!. In fact, the longitudinal polarization
is not affected by the photon field so one expects that ET
derived for the nonretardet limit~74!, remain preserved.

~b! Metallic modes. The modes with the transverse fre
quencyvT are the eigenmodes of the free polarization fie
Let us assume that all the dielectrics are metals~or inert
dielectrics! with vT50. Then the polarization has no resto
ing force and the dynamics of the system is determined
the photon field. In that case the polarization can be
pressed in terms of the vector potential as

Ṗ~r ,t !52
vP

2 ~r !

4pc
A0~r ,t !,
5-9
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so with (n51,m50), for the Lagrangian we find,

Lt5E dr
1

8p H 1

c2
@e`Ȧ0

22vP
2A0

2#2~“3A0!2J ,

while the momentum~19! conjugate toP vanishes,

PA5
1

4pc2
e`Ȧ0 , PP50.

The factorZKK8 , Eq. ~42!, becomes the same as in th
caseP50, i.e., ZKK85e`(r ) Eq. ~59!, so we can derive the
closure relation in the form~61!,

1

V (
Ks

1

NK
e`~r !AKs

a ~r !AKs
b* ~r 8!5da,bd~r2r 8!, ~78!

where d(r2r 8) is a completed function, i.e., it includes
both the transverse and the longitudinal field. The clos
relation ~78! is the consequence of the hermiticity of th
eigenvalue problem, because forvT50, the eigenvalue
eKvK

2 in Eq. ~30! takes a simple form (e`vK
2 2vP

2 ) deter-
mined by only one eigenfrequencyvK . Combining this re-
sult with Eq.~71! we can easily derive ETCR for the vecto
potential.

~c! Homogeneous medium. There are a lot of articles tha
discuss the problem of the fundamental commutation r
tions in the simple case of the homogeneous medium. In
standard approach the vector potential and the polariza
are expanded in terms of their free eigenmodes~plane
waves!. The expansion coefficients are then chosen so
the corresponding fields satisfy ETCR~70!. Since the eigen-
frequencies of the free fields are not a solution of the coup
equations of motion~1! and ~2!, the Hamiltonian should be
written in the form where the interaction between the fie
A andP is given as an additional term. Then one introduc
new operators that oscillate with the eigenfrequencies of
coupled system and from that requirement tries to determ
the polariton eigenfrequencies.

In our approach we have briefly analyzed the homo
neous dielectric in Sec. III C and expandedA0 andP in terms
of plane waves that oscillate with the polariton frequen
vK .

Let us first analyze the transverse modes. With them
51,n50) choice and with the help of Eq.~69!, we find the
following for the commutation relation~71!:

@A0
Ta~r ,t !,PA

Tb~r 8,t !#

5 i\ReH 1

V (
K

ei (r2r8)•K(
T

eK
TaeK

Tb(
n

vKn
g

vKn
p J .

~79!

In the casevT.0, one can derive the sum rule for th
two transverse polariton branches@2,25#,
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vK1
g

vK1
p

1
vK2

g

vK2
p

51, ~80!

which transforms Eq.~79! into the following desired form:

@A0
Ta~r ,t !,PA

Tb~r 8,t !#5 i\da,b
' ~r2r 8!. ~81!

Here

da,b
' ~r2r 8!5

1

V (
K

(
T

ei (r2r8)•KeK
TaeK

Tb

represents the transversed functionda,b
T (r2r 8), Eq. ~61!, in

the case of plane waves@17#.
In the casevT50 there is only one branch so the sum

rule ~80! as well as the commutation relation~81! do not
hold. One can restore those equations by introducing an
finitesimally small transverse frequency@15# which would
formally give again two transverse branches.

However, for thevT50 case it is more appropriate t
take the (m50,n51) choice because~as we have shown in
Sec. V B! this immediately leads to the correct ETCR f
both the transverse and the longitudinal field.

Let us analyze the longitudinal modes forvT.0. In the
vT.0 case we have obtained correct ETCR for the tra
verse vector potential~81! using the (m51,n50) choice,
but it gives the zero momentum~76! of the longitudinal vec-
tor potential. Therefore we are left to calculate ETCR for t
longitudinalpolarizationfield PL. Following the results de-
rived in Sec. V A we can take Eqs.~72! and~77! and imme-
diately write

@PLa~r ,t !,PP
Lb~r 8,t !#5 i\da,b

i ~r2r 8!,

where

da,b
i ~r2r 8!5

1

V (
K

ei (r2r8)•KeK
LaeK

Lb

is the plane-wave representation of the longitudinald func-
tion da,b

L (r2r 8), Eq. ~77!.
Although in the casevT.0 we were not able to expres

coupled fields by a single operator, we can describe the tr
verse field by the vector potentialA0

T and the longitudinal
field by the polarizationPL so that both fields satisfy ETCR
~70!.

VI. CONCLUSION

In this paper we have developed a quantum-mechan
description of the electromagnetic field propagating in
polar dielectric. We have started with the macroscopic eq
tions of motion for the photon and the matter field, det
mined by the vector potentialA0 and the polarizationP,
respectively, together with their coupling. These equatio
lead to the real dielectric functione(r ,v), with quite arbi-
trary space dependence, while the frequency dependenc
volves one pole with the well-defined transverse@e(r ,vT)
→`# and longitudinal@e(r ,vL)→0# frequencies. In quan-
5-10
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tum optics the longitudinal modes were usually neglect
but we have needed them in order to make our retar
theory complete and easily comparable with the nonretar
limit.

All relevant operators are expanded from the beginning
terms of coupled~polariton! eigenmodes whose eigenfre
quencies include the interaction between fields. By requir
the standard commutation relations between the creation
annihilation operators for the polaritons, the Hamiltonian
the system is diagonalized regardless of the specific shap
polar dielectrics. This was possible due to the derivation
the orthonormality relation in a general form. However, t
corresponding closure relation could not be obtained. Fr
the physical point of view, it becomes important when o
tries to derive the equal-time commutation relations betw
fields (A0 , P) and corresponding conjugate momenta. Th
are obviously satisfied for the free fields, while in th
coupled system one should in principle define a general
polariton coordinate and the conjugate momentum, wh
would satisfy the required commutation relations. It could
easily done in some specific cases where one field can
obtained as a time derivative of the other. In our approach
made use of the unambiguity in the momentum definiti
e.g., the momentum conjugate toA0 could be chosen propor
tional toD as well as proportional toE. In that way we were
able to resolve some difficulties which were present in th
ries thata posteriorianalyze the validity of the fundamenta
commutations relations for the coupled fields.

In fact we were able to reproduce all present results
quantum optics of polar medium that were based on the
macroscopic dielectric functione(r ,v). Moreover, we gave
a simple expressions for the vector potential and polariza
in the system consisting of any number of polar dielectri
That approach can be efficiently used in the calculation
the quantum optics phenomena in polar media as well a
the interaction of such system with external charges.

APPENDIX: NONRETARDED LIMIT

In many cases it is enough to determine the polariza
eigenmodes in the nonretarded limit, e.g.,optical phononsin
ionic crystals orplasmonsin metals. Formally, one can de
rive that limit by lettingc→` in the retarded Maxwell equa
tions ~1!. We introduce the~nonretarded! scalar potentialF
in a standard way:

E~r ,t !52“F~r ,t !. ~A1!

The gauge, analogous to Eq.~13!, that will divide the total
potentialF into the partf determined by the external charg
densityr, Eq. ~14!, and the partF0 determined by the po
larizationP, reads as

“•@2e`~r !“F0~r ,t !14pP~r ,t !#50. ~A2!

In the absence of external charges we findF5F0, so we can
write the constitutive equation~2! as

]2P~r ,t !

]t2
1vT

2~r !P~r ,t !5
vP

2 ~r !

4p
@2“F0~r ,t !#. ~A3!
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The equations of motion~A2! and~A3! can be derived from
the following nonretarded Lagrangian:

Lnr5E dr H 1

8p
e`~“F0!21

2p

vP
2 ~Ṗ22vT

2P2!2P•“F0J .

It gives for the generalized momenta,

PP5
4p

vP
2
Ṗ, PF50, ~A4!

so the corresponding Hamiltonian is

Hnr5E dr H 2
1

8p
e`~“F0!21

2p

vP
2 ~Ṗ21vT

2P2!

1P•“F0J . ~A5!

From now on, we shall use the electric field~A1! rather than
the scalar potential, so we shall put the Hamiltonian~A5!
into the following familiar form:

Hnr5E dr H 2p

vP
2 ~Ṗ21vT

2P2!2
1

2
P•EJ . ~A6!

The nonretarded HamiltonianHnr has been quantized, e.g
for thin dielectric films@26#, and here we wish to perform th
quantization for dielectrics of any shape, just as we ha
done in the retarded case. Following the same procedure
shall first define the polarization eigenmodesPKs so as to
satisfy Eqs.~A2! and ~A3!:

“•~e`EKs14pPKs!50, ~A7!

EKs5xK
21PKs . ~A8!

Obviously, the indices (K,s) and the susceptibilityxK are
defined as in Sec. II.

In order to derive orthogonality relation, we now sta
with the transformation

“•@~e`EKs14pPKs!FK8s8
(* )

2~e`EK8s814pPK8s8!
(* )FKs#

54p~PK8s8
(* )

•EKs2PKs•EK8s8
(* )

!, ~A9!

which is valid with and without the complex conjugatio
(*). The integration of Eq.~A9! over r , with the help of Eq.
~A8!, gives

E dr @xK
21~r !2xK8

21
~r !#PK8s8

(* )
~r !•PKs~r !50

which, using the definition forxK , Eq. ~4!, leads to the gen-
eral orthogonality relation

E dr
1

vP
2 ~r !

PK8s8
(* )

~r !•PKs~r !50, K8ÞK. ~A10!
5-11
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If we choose the degenerate polarization modes (K5K8) as
orthogonal, we can write the orthonormality requirement

1

VE dr
1

vP
2 ~r !

PKs* ~r !•PK8s8~r !5dK,K8ds,s8 . ~A11!

The closure relation becomes

1

V (
Ks

1

vP
2 ~r !

PKs
a ~r !PKs

b* ~r 8!5da,bd~r2r 8!. ~A12!

In a common case in which thedielectric j is homoge-
neous, Eqs.~A7! and~A8! lead to the longitudinal and trans
verse modes inside this dielectric, simply determined by
dielectric functioneK

j , Eq. ~5!. The longitudinal modes (eK
j

50) have the same frequencyvK5vL
j just as in the retarded

case, Eq.~31!. The transverse modes (eK
j Þ0) are divided

into the surface modes (“•EKs50), whose frequencies gen
erally depend upon the boundaries among dielectrics, and
modes with the frequencyvK5vT

j , which vanish outside
the dielectricj. The modes with the frequencyvT

j have zero
electric field (ET j50) and they are obviously the eigen
modes of the free polarization. Note that they were not
proper eigenmodes in the retarded case because of the
pling of transverse polarization with photons.

In order to quantize the Hamiltonian~A6! we shall ex-
pandP andE in terms of their eigenmodes:

P~r ,t !5
1

AV
(
Ks

@qKs~ t !PKs~r !1qKs
† ~ t !PKs* ~r !#,

~A13!

E~r ,t !5
1

AV
(
Ks

@gKs~ t !EKs~r !1qKs
† ~ t !EKs* ~r !#,

qKs~ t !5qKs exp~2 ivKt !.

When inserting these expansions into the Hamiltonian~A6!,
we shall first write the interaction term in the symmet
form, P•E5(P•E1E•P)/2, and then use Eq.~A8! to re-
placeEKs by PKs . This gives

Hnr5
1

VE dr
2p

vP
2 (

Ks
(
K8s8

@XKsK8s8
2

~r ,t !YKK8
2

~r !

1XKsK8s8
1

~r ,t !YKK8
1

~r !#, ~A14!
et

. B
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where we have introduced the following abbreviations:

XKsK8s8
2

5qKsqK8s8PKs•PK8s81qKs
† qK8s8

† PKs* •PK8s8
* ,

XKsK8s8
1

5qKsqK8s8
† PKs•PK8s8

* 1qKs
† qK8s8PKs* •PK8s8 ,

YKK8
7

57vKvK81vT
22

1

2

vP
2

4p
~xK

211xK8
21

!.

After inserting the expressions for the susceptibilityxK , Eq.
~4!, we find thatYKK8

7 does not depend uponr :

YKK8
7

5
1

2
~vK7vK8!

2.

Therefore the integration overr in Eq. ~A14! includes only
XKsK8s8 terms with the weighting factorvP

22 . From the or-
thogonality relation~A10! we immediately find that only
K85K terms contribute to the Hamiltonian. SinceYKK

2 50,
the orthonormality relation~A11! leads us to

Hnr5(
Ks

4pvK
2 ~qKsqKs

† 1qKs
† qKs!.

As a final step, we introduce the following annihilationaKs

and the creationaKs
† operators:

qKs5hKaKs , qKs
† 5hK* aKs

† ,

which obey the standard boson commutation relations~52!.
With the choice

hK5
1

4p
A h

vK
~A15!

we arrive at the following nonretarded Hamiltonian~A6! in
the second-quantized form:

Hnr5(
Ks

\vKS aKs
† aKs1

1

2D . ~A16!
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