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Many-body entanglement in decoherence processes

Helen McAneney, Jinhyoung Lee, and M. S. Kim
School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

~Received 7 July 2003; published 15 December 2003!

A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode
system is embedded in a thermal environment, however, each mode may not be entangled with its environment
by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total
system, which is composed of an entangled two-mode system and a thermal environment. The Markovian
interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown
that many-body entanglement of the system and the environment may play a crucial role in the process of
disentangling the system.
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I. INTRODUCTION

Decoherence has been studied in the context of quan
classical correspondence, providing a quantum-to-class
transition of a system@1#. A single-mode pure state becom
mixed and loses its quantum nature by decoherence in
environment. Although the dynamics of the system has b
studied extensively, there has not been a thorough inves
tion on the quantum correlation between the system and
environment, which is behind the dynamics of the syste
The decoherence process can be understood as a proc
entanglement between the system and its environment w
is composed of a many~normally, infinite! number of inde-
pendent modes. The increase of the system entropy ma
due to the system-environment entanglement@2,3#.

Most of the studies on decoherence have focused o
single-mode or single-particle system@4#. This is because if a
many-body pure system is initially separable, its decoh
ence process is a straightforward extension of a single-b
system. However, if there is entanglement in the initial p
system, the decoherence mechanism can be of a diffe
nature. For an entangled two-mode pure system, each m
is generically in a mixed state and its passive linear inter
tion with an environment, which is normally in a mixe
state, does not seem to bring about entanglement betwee
environment and its interacting mode. What kind of corre
tion then causes the loss of entanglement initially in the s
tem? In this paper, we answer this question by studying
quantum correlation of a two-mode entangled continuo
variable system with an environment in thermal equilibriu

A continuous-variable state is defined in an infinit
dimensional Hilbert space and it is convenient to study s
a state using its quasiprobability Wigner function@5# W( x̃)
in phase space. For anN-mode field, the coordinates o
phase space are composed of quadrature variablex̃
5$q1 ,p1 , . . . ,qN ,pN%. Throughout the paper a vector is d
noted in bold face and an operator by a hat. A fiber or a f
space, through which a light field propagates, is norma
considered a thermal environment. The dynamics of the fi
mode coupled to the thermal environment is, in the Bo
Markov approximation, governed by the Fokker-Plan
equation@5#
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] x̃i
2D W~ x̃!, ~1!

whereg is the energy decay rate of the system andñ52n̄
11 with n̄5@exp(\v/kBT)21#21 is the average numbe
of thermal photons at temperatureT. kB is the Boltzmann
constant.

It was shown by one of us that a single-mode Gauss
field interacting with a thermal environment can be mode
by the field passing through an array of infinite beam sp
ters @6#. A beam splitter is a simple passive linear devi
which keeps the Gaussian nature of an input field. E
beam splitter has two input ports. As the signal field is
jected into one input port, it allows a degree of freedom
the other port where noise is injected. The collection of su
degrees of freedom forms the environment. We assum
homogeneous thermal environment of temperatureT with all
noise modes having the same physical properties. In Ref.@6#,
the Fokker-Planck equation~1! for a single-mode field was
derived using the beam splitter. The model was used to st
the dynamics of entanglement between a single-mode fi
and its environment@7#.

Using the Fokker-Planck equation~1!, one may study the
dynamics of the system. However, it is hard to know t
quantum correlation between the system and the envi
ment as Eq.~1! is obtained by tracing over all environment
variables. In this paper, instead of tracing over all the en
ronmental modes, we keep them to study the dynamics
entanglement between the system and the environmen
two-mode squeezed state, which may be generated by a
degenerated optical parametric amplifier, is the most
nowned and experimentally relevant entangled state for c
tinuous variables@8#. Its degree of entanglement increases
the degree of squeezings increases@9# and it becomes a
regularized Einstein-Podolsky-Rosen state whens→` @10#.
In order to simplify the problem, we assume that only t
modea2 of the system modes interacts with the environme
while the other modea1 is isolated from it.

II. INTERACTION BETWEEN SYSTEM
AND ENVIRONMENT

We consider an exactly solvable model of a two-mo
system interacting with a homogeneous thermal envir
©2003 The American Physical Society14-1
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ment, which results in the Fokker-Planck equation~1!. For
the Born-Markov approximation, we employ a tim
dependent coupling constant in the model. Let us start wi
finite numberN of environmental modes interacting with th
system. The interaction Hamiltonian, in the interaction p
ture, is

ĤI~ t !5 (
m50

N21

ilN~ t !~ â2b̂m
† 2â2

†b̂m!, ~2!

where b̂m is the bosonic annihilation operator for enviro
mental modebm and the coupling constantlN(t) is deter-
mined so as to reproduce the Fokker-Planck equation~1!.

It is convenient to introduce collective modescn which
are conjugate tobm under the Fourier transformation suc
that

ĉn[A2

N (
m50

N21

cosS 2p

N
nmD b̂m , ~3!

where ĉn is an annihilation operator for a collective mod
cn . The collective modes are related with the entangl
nature of the modesbm , for example, the quantum thatĉn

†

creates from a vacuum is in an entangled state ofbm modes.
The collective modes satisfy the boson commutation re

tion @ ĉn ,ĉn8
†

#5dnn8 and carry physical properties as boson

modes. Using the collective mode, a stater̂ is described by
the characteristic function

xc~X!5Tr r̂ exp@ iX•X̂T#, ~4!

where X̂5(Q̂0 ,P̂0 ,Q̂1 ,P̂1 , . . . ,Q̂N21 ,P̂N21) with Q̂n

5( ĉn1 ĉn
†)/A2 and P̂n5 i ( ĉn

†2 ĉn)/A2 and X5(P0 ,
2Q0 ,P1 ,2Q1 , . . . ,PN21 ,2QN21). It is straightforward
to show that, for a given density operatorr̂, xc is the same
as the usual characteristic function,xb , which is obtained in
terms of modesbm : xc(X)5xb(x), wherex is conjugate to
X by Fourier transformation~3!. The collective modescn
provide a different perspective from the modesbm , preserv-
ing all physical properties for a given state.

The time-evolution operatorÛI(t) for the interaction
Hamiltonian ~2! is equivalent to a beam-splitter operat
with the system modea2 and a collective modec0 as its
input ports. That is,

ÛI~t!5exp@u~t!~ â2ĉ0
†2â2

†ĉ0!#, ~5!

where u(t)5AN/2*0
tlN(t)dt determines the transmittivity

t2(t)5cos2u(t). We take the limit,N→`, keeping the trans-
mitted energy finite,t2(t)5exp(2gt), in accordance with
the Fokker-Planck equation. We find an important fact t
the interaction of the system with the infinite modesbm of
the environment can be reduced into the interaction with
single collective modec0. The properties of collective mod
c0 changes due to the interaction but each environme
modebm hardly changes which is reflected in no change
other collective modescn .
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III. CORRELATION MATRIX

A Gaussian field has the characteristic function in t
form of x(x)5exp(2xVxT/4), whereV is the correlation
matrix whose elements determine the mean quadrature
ues of the field:Vi j 5^( x̂i x̂ j1 x̂ j x̂i)&. Note that we neglected
linear displacement terms in the Gaussian character
function as they do not play a crucial role in determining t
entanglement. The entanglement nature of a Gaussian fie
thus uniquely represented by its correlation matrixV. For a
two-mode squeezed state, the correlation matrixVs is simply
@9#

Vs5S cosh~2s!1 sinh~2s!sz

sinh~2s!sz cosh~2s!1 D , ~6!

where1 is the 232 unit matrix andsz is the Pauli matrix.
As the system interacts only with the collective modec0

in the homogeneous thermal environment, it suffices to c
sider the correlation matrix of the two system modesa1 and
a2 and the collective modec0. The collective modec0 is
initially in a thermal state with the average numbern̄ of the
collective bosons. Thus, the correlation matrix ofa1 , a2, and
c0 before the interaction is given byV05Vs% ñ1. The evo-
lution operatorÛI(t) is now described by the matrix

UI5S 1 0 0

0 t1 2r 1

0 r 1 t1
D , ~7!

wherer 2512t2. Then the correlation matrix for the syste
and environment after the interaction is obtained asVc

5UIV0UI
T .

A separability condition was derived by Simon@11# that a
two-mode Gaussian state is separable if and only if the p
tially momentum-reversed correlation matrix~or equiva-
lently the partially transposed density operator! satisfies the
uncertainty principle. The condition was extended to
biseparability condition between a single mode and a gr
of N modes by Werner and Wolf@12#, which reads that a
Gaussian field of 13N modes is biseparable if and only if

LVL2
1

2
sy

% (N11)>0, ~8!

where L is a partial momentum-reversal matrix,V is the
correlation matrix of 13N modes, andsy is the Pauli ma-
trix. Here,sy

% (N11)[sy% sy% •••% sy .
We start with a short discussion on the dynamics of

entanglement for the system. In order to consider quan
statistical properties of the field of modesa1 and a2, we
trace the total density operator over all environmental mod
which is equivalent to considering the correlation matrixVc
only for the modesa1 anda2,

Vc~a1 ,a2!5S cosh~2s!1 t sinh~2s!sz

t sinh~2s!sz „t2 cosh~2s!1r 2ñ…1
D . ~9!
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It has to be emphasized that this correlation matrix is exa
the same as the solution of the Fokker-Planck equation~1!.
Using Simon’s criterion in Eq.~8! @9,11#, the field of modes
a1 and a2 is separable when the transmittivity of the bea
splitter is

t2<
n̄

11n̄
[ta1a2

2 ~10!

for the squeezing parametersÞ0. Note that the separability
condition does not depend on the initial entanglement of
system as far as there is any entanglement at the initia
stance. The separability of the two-mode squeezed state
pends only on the temperature of the environment and
overall transmittivity of the beam splitters.

IV. ENTANGLEMENT OF SYSTEM AND ENVIRONMENT

We now study the entanglement of the system and
environment. Here, instead of the entanglement of the
tem with an individual modebm of the environment, we are
interested in the biseparability of a system mode and
collection of the environmental modes. Let us first consi
the entanglement of the modesa1 and c0. The correlation
matrix Vc(a1 ,c0) is equivalent toVc(a1 ,a2) in Eq. ~9! if r
andt are interchanged. The separability condition is found
be

t2>
1

11n̄
[ta1c0

2 , ~11!

which is again independent from the initial entanglement
the system as far assÞ0.

The separability of modesa2 and c0 is easily discussed
using a quasiprobabilityP function @5#, the existence of
which is a sufficient condition for separability@13#. Tracing
over modea1 of the two-mode squeezed state, the oth
modea2 is in a thermal state with the effective number
thermal photonsn̄s5(cosh 2s21)/2. A product of thermal
states has a positive definiteP function and the action of the
beam splitter only transforms the coordinates of the inpuP

function, Pa2
( x̃1)Pb( x̃2)→

bs
Pa2

(t x̃12rx̃2)Pb(t x̃21rx̃1).
This proves that the environment never entangles with
interacting mode by a passive linear interaction.

Figure 1 presents the entanglement structure for a t
mode squeezed state interacting with a thermal environm
where t25exp(2gt) is the transmittivity of the collective
beam splitter relating to the interaction timet. The solid
lines are the boundaries of entanglement of the system m
a1 and the collective mode of the environmentc0 and of the
two system modesa1 anda2. These lines are obtained by th
separability condition~8! in the present exactly solvabl
model. For the comparison, we considerN5100 beam split-
ters modeling the interaction with the thermal environm
and calculate the biseparability of the 13100-mode field us-
ing computational analysis of Giedkeet al. @14#. The com-
putational results of entanglement are denoted by circles
06381
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dots. We find that the results are also independent of
squeezing parameter. Figure 1 shows that the two meth
are exactly consistent.

The three modesa1 , a2, andc0 compose a tripartite sys
tem. Many-body entanglement for pure continuous-variab
has been studied extensively using beam splitters and sin
mode squeezed states@15#. Giedkeet al. classified types of
entanglement for a three-mode Gaussian field in terms of
biseparability@14#. A three-mode field is biseparable whe
any grouping of three modes into two are separable. Whe
three-mode field is not biseparable, it is called fully e
tangled. A fully-entangled tripartite system may be furth
classified in terms of pairwise entanglement; for qubits, t
kinds have been discussed@16,17#, one of which is
Greenberg-Horne-Zeilinger~GHZ! entanglement@18# and
the other is W entanglement. A GHZ-entangled state
comes separable when any one particle is traced out, wh
W-entangled state is pairwise entangled for any pair of
three particles. On the other hand, there is another kind
entanglement, two-way entanglement, for a fully-entang
tripartite d-dimensional system@19#. One example for three
particles labeled asa, b, andc is pairwise entanglement ofa
andb and ofb andc but the particlesa andc are separable

It is found both computationally, and analytically usin
the biseparability condition in Eq.~8! that the tripartite sys-
tem of a1 , a2, andc0 is fully entangled if 0,t2,1 ands
Þ0. This fact is independent of the temperature of the en
ronment so that the tripartite system is fully entangled o
the whole region in Fig. 1. The tripartite system is two-w
entangled, i.e.,a1-a2 and a1-c0 modes are entangled ifn̄
,1 and ta1a2

2 ,t2,ta1c0

2 . There are two regions where on

FIG. 1. Nature of entanglement for a two-mode squeezed s
interacting with a thermal environment of the average photon nu

ber n̄. t25exp(2gt) is the transmittivity of the collective beam
splitter. The solid lines are the boundaries of entanglement ofa1

and c0 and of a1 and a2, which are obtained by the separabilit
condition. The circles and dots are found by acomputational analy-
siswith N5100 beam splitters. The circles indicate that the syst
modea1 and the group of environmental modesbm are entangled
and the dots indicate that the system modesa1 and a2 are en-
tangled.
4-3
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pair of the three-mode field is entangled. In the region on̄
.1 and ta1c0

2 <t2<ta1a2

2 , the three modes are GHZ en
tangled. Here, we note that GHZ entanglement of an
tangled system with an environment is an important sou
to its loss of the initial pairwise entanglement. This is clea
seen forn̄.1 in Fig. 1. The two modes of the system a
initially entangled, but as they come to the region of GH
entanglement, they lose their initial entanglement. Fina
the entanglement is transferred to between the system m
a1 and the effective environmental mode. Forn̄,1 the de-
coherence process is different with initiallya1-a2 modes be-
ing entangled, then two-way entanglement and finallya1-c0
being entangled.

V. REMARKS

In this paper, we have studied the decoherence me
nism by highlighting the entanglement of the continuou
variable system with its environment. We showed that
homogeneous thermal environment can be summarized
single collective mode with respect to the interaction w
the system for the study of entanglement. Our decohere
model is composed of a two-mode squeezed state, one m
of which interacts with a thermal environment. We fou
two entanglement mechanisms between the system an
environment which accompany the decoherence proc
When the temperature of the environment is low (n̄,1),
there is the two-way entanglement. Otherwise, GHZ
tanglement causes the system to lose its entanglement
the two different entanglement mechanism result in any m
surable differences to the system? To find it out we cons
the mixedness of the system.

When Trr̂251 the system is pure. For a Gaussian st
with correlation matrixV, we found that Trr̂251/AdetV.
We thus define the mixedness of the Gaussian state by

M5AdetV21, ~12!

which is 0 when the state is pure and grows as the syste
mixed. This measure is relevant to experiment as all the
ements of the correlation matrix are measurable using ho
dyne detectors@9#. We examine the mixedness of the syste
at the time when it loses its entanglement, i.e.,t25n̄/(1
1n̄):

Me52F S 22
1

n̄11
D cosh2s21G . ~13!

We see that the mixednessMe of the system at the momen
of disentangling grows withn̄ and reaches its half pointM1

when n̄51. This result holds particularly for a two-mod
squeezed state but may indeed suggest that the mixedne
the system is a strong indicator of the mechanism of syst
environment entanglement. Thus, forMe,M1, decoherence
into two-way entanglement occurs, while forMe.M1 GHZ
entanglement occurs.

We have analyzed the correlation between a system
its environment under the Born-Markov approximation. O
may go beyond the Markov approximation and extend
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present approach to incorporateN modes$b̂ j% of the envi-
ronment with natural frequenciesv j that influence the sys
tem with arbitrary coupling constantsl j . The total Hamil-
tonian (\51) under the rotating-wave approximation
given as

Ĥ52(
i 51

2

v0L̂ai
12 (

j 50

N21

v j L̂bj
12 (

j 50

N21

l j M̂ a2bj
, ~14!

where the Hermitian operatorsL̂u5(2û†û11)/4 and M̂uv

5(û†v̂1ûv̂†)/2 with u,v5a1 ,a2 and bj . Here, the first
~second! term is the free Hamiltonian of the two modes
system~the environment modes! and the third term is the
interaction Hamiltonian between the second mode of the s
tem and the environment modes. Introducing new Hermit
operatorsNuv52 i (û†v̂2ûv̂†)/2 and lettingL̂uv

6 5L̂u6L̂v ,
the setA5$Luv

6 ,Muv ,Nuv% forms a Lie algebra@20# with the
commutation relations

@Âi ,Âj #5Ci jkÂk , ~15!

whereÂiPA andCi jk is a structure constant. The evolutio
operatorÛ5exp(2iĤt) can now be represented by the el
ments~generators! of the Lie algebraA as

Û5expS i(
i

gi~t!Âi D 5)
i

exp„igi8~t!Âi…, ~16!

wheregi(t) andgi8(t) are real coefficients depending on th

time t. Note that the evolution operatorÛ consists of the
rotators generated byL̂uv

6 and the beam splitters generated

M̂uv or N̂uv . We know that any combination of rotators an
beamsplitters does not bring about entanglement in the
put fields when the input fields are classical@21# so, even in
this case, there is no entanglement betweena2 and environ-
ment modes. The separability conditions, Eq.~10! and Eq.
~11! within the Non-Markovian environment interaction wi
be discussed elsewhere.

We investigated the process of disentangling the tw
mode squeezed state and found that there are the two dis
routes to disentangling process: two-way and GHZ entan
ment. After some algebraic manipulation, we can eas
prove that, at the instance of disentanglement, the mu
information between the two modesa1 and a2 is higher
when it is disentangled through two-way entanglement w
the environment than GHZ entanglement. This means
more information ona1 is gained by the ‘‘measurement’’ o
modea2 @22#.
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