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Resonance expansion versus the rotating-wave approximation

A. B. Klimov, I. Sainz, and S. M. Chumakov
Department of Physics, University of Guadalajara, Revolucion 1500, 4420 Guadalajara, Jalisco, Mexico

~Received 11 July 2003; published 11 December 2003!

We propose a general perturbative approach to quantum-optical models without the rotating-wave approxi-
mation. We show that a generic Hamiltonian describing interaction between two subsystems can be represented
as a series of operators corresponding to different transitions between bare energy levels of the whole system.
Under certain relations between frequencies of interacting subsystems one of these transitions becomes reso-
nant. The rotating-wave approximation leads to separation of the resonant transition and to appearance of the
integral of motion, which makes the problem exactly solvable in this approximation.~Different resonance
conditions lead to different integrals of motion.! All of the other terms in these expansion can be considered as
a perturbation. They result in dynamic Stark shifts and small corrections to the integrals of motion. All possible
resonances are classified, and approximate integrals of motion are found for each resonance. Examples of
field-field, field-atom, and atom-atom interactions are considered.
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I. INTRODUCTION

The rotating-wave approximation~RWA! is widely used
in quantum optics. This approximation is applied when
frequency associated with the free evolution of the system
essentially bigger than transition frequencies induced by
interaction between subsystems and/or some external so
The RWA basically consists in neglecting rapidly oscillati
~counterrotating! terms in such a way that in the rotatin
frame the system Hamiltonian becomes time independen
it depends slowly on time. In semiclassical models RWA
commonly used when a quantum oscillator and/or two-~or
multilevel! level atoms are excited by an external force@1#.
In the quantum domain application of the RWA usually lea
to the appearance of an additional integral of motion~and of
an Abelian invariance group of the Hamiltonian!. The repre-
sentation space of the whole system is then divided into
variant subspaces, which strongly simplifies the mathem
cal treatment of the problem and usually leads to
integrability of its classical counterpart.

The perturbative approach to the systems beyond
RWA leads to more complicated mathematical structur
Probably, one of the most studied problem in quantum op
is the famous Jaynes-Cummings model~JCM! without the
RWA @3–15#, which lately has acquired an additional intere
in connection to the problem of cold ions dynamics@16,17#.
The semiclassical analog of this problem has been exh
tively studied by Shirley@1#, and it was shown that apa
from the Bloch-Siegert shift@2# of the atomic frequency
some high-order resonances appear. That is, in the first
proximation the only effect of the antirotating terms is t
atomic frequency shift, and the Hamiltonian thus descri
only a single-resonance atomic transition. Nevertheless
the consecutive approximations high-frequency transiti
always appear. A similar situation takes place in the JC
with the quantum field. The perturbative expansion dev
oped in Ref.@3# shows that the analog of the Bloch-Siege
shift in the quantum domain is the intensity-depend
atomic frequency shift~‘‘dynamic Stark shift’’! and the high-
order resonances manifest themselves in such a way tha
1050-2947/2003/68~6!/063811~8!/$20.00 68 0638
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terms describing 2n11 photon transitions (n51,2, . . . ) ap-
pear in the effective Hamiltonian.

The main idea of this paper is to show that a gene
Hamiltonian governing interaction of two subsystems b
yond the RWA can be represented as a series in opera
describing all possible transitions in the system. When c
tain relations hold between frequencies of interacting s
systems, some of these transitions become resonant. T
fore, one can extend the meaning of the term ‘‘rotating-wa
approximation’’ in the following way: the RWA distinguishe
the principal~resonant! transition, while all of the other tran
sitions can be considered as a small perturbation. The ap
cation of the RWA depends on the relations between tra
tion frequencies of interacting subsystems.

II. THE EFFECTIVE HAMILTONIAN

Let us consider two interacting systemsX and Y whose
dynamics is governed by the following generic Hamiltonia

H5v1X01v2Y01g~X11X2!~Y11Y2!, ~1!

where X0 ,Y0 are free Hamiltonians of these systems a
without a loss of generality we suppose thatv1>v2. We
also impose the conditionv1 ,v2@g, which usually holds in
quantum-optical interactions. The rising-lowering operat
X6 ,Y6 describe transitions between energy levels of
systemsX andY correspondingly and consequently obey t
following commutation relations:

@X0 ,X6#56X6 , @Y0 ,Y6#56Y6 . ~2!

We do not impose any condition on the commutators
tween transition operators, which are generally some fu
tions of diagonal operators and some integrals of mot
@N1 ,X0#5@N2 ,Y0#50:

@X1 ,X2#5P1~X0!5“X0
f1~X0 ,N1!,

@Y1 ,Y2#5P2~Y0!5“Y0
f2~Y0 ,N2!, ~3!
©2003 The American Physical Society11-1
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wheref1(X0 ,N1)5X1X2 , f2(Y0 ,N2)5Y1Y2 ~from now
on we omit the dependence on integralsN1,2 in the argu-
ments!, and

“zf~z!5f~z!2f~z11!.

The objects (X0 ,X6) and (Y0 ,Y6) are known as polynomi-
ally deformed algebras slpd(2,R) @18–27#.

Now, following the method@28,29# ~see Appendix A! we
can adiabatically remove the counterrotating termX1Y1

1X2Y2 from the Hamiltonian~1! by applying some appro
priate Lie-type transformations~‘‘small rotations’’!. The
elimination of the above term leads to the appearance of
elements in the transformed Hamiltonian. All these n
terms can be divided into three groups. The first group c
tains terms of the formX1

n Y1
m1H.c., which can always be

eliminated under the conditionv2 ,v1@g by applying some
suitable transformations. The second group consists of te
that cannot be removed if certain relations betweenv1 and
v2 hold, since the transformation which eliminates a giv
term from the Hamiltonian becomes singular. This gro
contains nondiagonal terms of the formX1

n Y2
m1H.c., which

describe transitions between energy levels of the whole
tem. The third group includes the diagonal terms~functions
only of X0 ,Y0). Our strategy consists in keeping in th
Hamiltonian only diagonal terms and those that cannot
eliminated by nonsingular transformations~resonant terms!.
Besides, we conserve only the leading-order coefficient
these terms.

As a result~see Appendix B!, we obtain the following
effective Hamiltonian~which we call ‘‘the resonance expan
sion’’!:

He f f'v1X01v2Y01g«F~X0 ,Y0 ,«!

1g(
k51

`

(
l 50

`
~2d! l 1k21« l 12(k21)

~k21!! ~ l 1k21!!

3@X1
k Y2

2l 1k$Qkl~X0 ,Y0 ,«!1O~«2!%1H.c.#,

~4!

where

«5
g

v11v2
!1, d5

g

2v2
!1 ~5!

are small parameters; the termF(X0 ,Y0 ,«) represents the
dynamical Stark shift~or Bloch-Siegert shift! and can be
expanded in powers of the small parameter« as follows:

F~X0 ,Y0 ,«!5“X0 ,Y0
@f1~X0!f2~Y0!#1O~«2!, ~6!

where the generalized displacement operators are define

“mX0 ,nY0
f ~X0 ,Y0!5 f ~X0 ,Y0!2 f ~X01m,Y01n!,

where m and n are integers. The terms of the form
X1

k Y2
2l 1k1H.c. describe all the admissible resonances:

~2l 1k!v25kv1 . ~7!
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In particular, term withk51, l 50 represents the principa
resonance. The coefficientsQkl(X0 ,Y0 ,«) define~intensity-
dependent! coupling constant. The coefficient in the princip
term has the form

Q10~X0 ,Y0!51,

and

Qkl~X0 ,Y0!5 (
j 50

l 1[k/2]

Cl 1[k/2]
j @P1~X01k!# l 1[k/2]2 j

3@2P1~X0!# jRk~X0 ,Y022 j !, ~8!

Rk~X0 ,Y0!5 (
j 50

(k21)/2

C(k21)/2
j @P1~X01k!# [ ~k21)/2#2 j

3@2P1~X0!# j
“Y0

k21f2~Y022 j !

3 )
i 5122 j

k22( j 11)

f2~Y01 i !,

for l>1, where Ck
j are the binomial coefficients an

“z
0f (z)51. Note that the product in the last equation equ

to unity if the upper limit is less than the lower one.
In the case whenX6 and/orY6 are nilpotent operators o

qth order, all the powers beginning withq11 turn to zero,
which obviously puts a natural restriction on the series
possible resonances.

It is worth noting here that in the case of the princip
resonance it is convenient to proceed with further trans
mations and find the first-order correction to the interact
Hamiltonian, which effectively leads to the renormalizatio
of the interaction constant~making it intensity dependent!.
The width of the corresponding resonance in Eq.~4! is of
ordergd l 1k21« l 12(k21).

One may observe that among the resonances describe
Eq. ~7! only the sets (k,l ) of coprime numbers produce dif
ferent resonances. It is important to stress that for a gi
multiplicity of the resonance only the terms of the lowe
order in small parameters are kept in the expansion~4!; all
the higher-order terms that correspond to the same reson
are to be neglected.

Among resonances described by Eq.~7! there are two
‘‘entire’’ resonances.

~a! Odd resonances~including the principal resonance!,
corresponding tok51,l 50,1,2,3, . . . ,

v15~2l 11!v2 . ~9!

~b! Even resonances, corresponding tok52,l
51,3,5. . . , such that

v152mv2 , m51,2, . . . , ~10!

while all the other resonances are of a ‘‘fractional’’ type

v15~2l /k11!v2 . ~11!
1-2
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The effective Hamiltonian~4! is the main result of this
paper.

A. The first resonance,v1Év2

By keeping only terms;X1Y2 in Eq. ~4! we obtain~in
the rotating picture! the effective Hamiltonian describing th
principal resonance

He f f
(1)'D10X01g«F~X0 ,Y0!

1g$X1Y2@11«2C~X0 ,Y0!#1H.c.%, ~12!

whereD105v12v2 , F(X0 ,Y0) is defined in Eq.~6! and we
have included the first correction to the coupling const
@originally absent in Eq.~4!#

2C~X0 ,Y0!5“2X0 ,Y0
@f1~X0!P2~Y021!#

1“X0,2Y0
@P1~X0!f2~Y021!#.

The effectiveHamiltonian~12! obviously admits the inte-
gral of motion

Ne f f
(10)5X01Y0 .

Making an inverse transformation we find that the opera

N(1)5X01Y012d~X1Y11X2Y2!

22d2
“X0 ,Y0

@f1~X0!f2~Y0!#

12d2$@X1
2 1X2

2 #P2~Y0!1@Y1
2 1Y2

2 #P1~X0!%

1O~d3! ~13!

approximately commutes with the original Hamiltonian~1!
in the casev15v2 , @H,N(1)#5O(d2). We note here tha
the width of the first resonance is of orderg.

B. Effect of the higher resonances,kv1É„2l¿k…v2

Now, let us suppose that the resonance condition~7! is
satisfied for a given~coprime! k andl. This means that all the
other transitions are suppressed and the operators descr
those transitions can be eliminated from the Hamiltonian
applying a corresponding transformation. The effect
Hamiltonian~in the rotating frame! takes the form

He f f'DklX01g«F~X0 ,Y0 ,«!1geJ~X0 ,Y0 ,d!

1
g~2d! l 1k21« l 12(k21)

~k21!! ~ l 1k21!!

3@X1
k Y2

2l 1kQkl~X0 ,Y0!1H.c.#, ~14!

where

Dkl5kv12~2l 1k!v2 , ~15!

e5g/~v12v2!!1,

and the functionsF(X0 ,Y0 ,«),Qkl(X0 ,Y0) are defined in
Eqs.~6!–~8!. The third~diagonal! term in the above expres
06381
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sion has appeared as a result of elimination of all of
lowest-order transitions@note that«'kd/( l 1k) in the vicin-
ity of the resonance#,

J~X0 ,Y0 ,d!5“X0 ,2Y0
@f1~X0!f2~Y011!#1O~d!.

In the most important case of the third-order resonance,
effective Hamiltonian has the form

He f f'D11X01g«“X0 ,Y0
@f1~X0!f2~Y0!#

1ge“X0 ,2Y0
@f1~X0!f2~Y011!#

1g«d@X1Y2
3 ¹X0

2 f1~X0!1H.c.#,

whereD11 is defined in Eq.~15!. It is worth noting that the
coefficients of the diagonal terms in Eq.~14! are always
much bigger than those of the terms describing the hig
resonances. This means that the amplitudes of higher-o
transitions could be small due to the presence of the dyna
cal Stark shift and~diagonal! contributions from lowest reso
nances. Besides, in general, the functionsF(X0 ,Y0 ,«) and
J(X0 ,Y0 ,d) are nonlinear, which makes difficult a compe
sation of their effect by the frequency shift~15!. In practice,
the higher-order transitions are better observed for ini
states which belong to subspaces where the diagonal te
are minimized.

The original Hamiltonian~1! in the case~7! ~exact reso-
nance,Dkl50) admits the following approximate integral o
motion:

N(kl)5~2l 1k!X01kY012kd~X11X2!~Y11Y2!

2
2k2d2

l ~k1 l !
$~k1 l !“X0 ,2Y0

@f1~X0!f2~Y011!#

1 l“X0 ,Y0
@f1~X0!f2~Y0!#%, ~16!

such that@H,N(kl)#5O(d2). It is easy to see that the widt
of the corresponding resonance is of ordergd2l 13(k21).

III. APPLICATIONS

A. Linear systems

Let us consider a Hamiltonian describing interaction
two harmonic oscillators

H5v1na1v2nb1g~a†1a!~b†1b!, ~17!

wherena5a†a,nb5b†b. This system belongs to a class
so-called linear systems, in the sense that the Hamilton
can be recast as a linear function on generators of the s
and su(1,1) algebras. After making identifications

Y05nb , Y15b†, Y25b, X05na , X15a†,

X25a,

so that f1(X0)5X0 ,f2(Y0)5Y0, we obtain Q10(na ,nb)
51 and the coefficients of higher resonance terms as
1-3
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KLIMOV, SAINZ, AND CHUMAKOV PHYSICAL REVIEW A 68, 063811 ~2003!
pected are equal to zero:Qkl(na ,nb)50, k.1,l .0. The
effective Hamiltonian acquires the form

He f f'~v12g«!na1~v22g«!nb1g~112g«2!

3~a†b1ab†!.

This confirms a well-known result~see, e.g., Ref.@30#! that
the antirotating terms in linear systems~17! result only in
frequency shifts and renormalization of the interaction c
stant. The corresponding integral of motion takes the fo
~in the exact resonant case,v15v2) ~13!

N5na1nb12«~a†b†1ab!12«2

3~na1nb2a†22b†22a22b2!.

B. Harmonic-oscillator-spin interaction

The Hamiltonian governing the evolution of a spinS in-
teracting with a harmonic oscillator has the form

H5v1Sz1v2n1g~S11S2!~a†1a!, ~18!

where n5a†a and Sz,6 are generators of the
(2S11)-dimensional representation of the su(2) algebra
we suppose thatv1>v2.

The following identifications:

X05Sz , X65S6 , Y05n, Y15a†, Y25a,

so that f1(X0)5C22X0
21X0 ,f2(Y0)5Y0, lead to

Qkl(Sz ,n)50,k>3 and the effective Hamiltonian takes th
form

He f f'v1Sz1v2a†a1g«@Sz
21~2a†a11!Sz2C2#

1g@S1a$12«2~a†a14Sz12!%1H.c.#

1g(
l 51

`
~22d«! l

l !
@a2l 11S11H.c.#

2g« (
m51

`
~4d«!2m

~2m!!
@a4mS1

2 1H.c.#, ~19!

whereC25(S11)S. In particular, the effective Hamiltonian
describing the evolution in the first resonance case,v15v2
1D10, has the form@31,32# ~see also Ref.@33#!

He f f'D10Sz1g«@Sz
21~2a†a11!Sz2C2#

1g@S1a$12«2~a†a14Sz12!%1H.c.#,

in which we have taken into account the second-order c
rections~12!. The integral of motion corresponding to th
resonance is

N(1)5Sz1a†a12d~S1a†1S2a!22d2~Sz12a†a11!Sz

12d2~2Sz@a†21a2#2@S1
2 1S2

2 # !1O~d 3!.

The Hamiltonian describing the third-order resonance has
form
06381
-

d

r-

e

He f f'D11Sz1g@~«1e!Sz~2a†a11!1~e2«!~C22Sz
2!#

22gd«~a†3S21a3S1!,

where D11 is defined in Eq.~15!. Because the Stark shif
contains a term;Sz

2 , the amplitude of the third-order tran
sitions would be small for the spin systems withS>1. Nev-
ertheless, in the case ofS51/2 and the harmonic oscillato
initially prepared in highly excited coherent state, the diag
nal term can be approximately compensated by the detu
D11.

It is worth noting that the conditionQkl(Sz ,n)50,k>3
does not mean that there are no fractional~11! resonances,
but only that the terms describing the fractional resonan
are suppressed to the ordero(d2l 1113(k21)) for the given
indicesk and l.

The integrals of motion for the series of odd and ev
~exact! resonances are~16!

N(kl)5~2l 1k!Sz1ka†a12kd~S11S2!~a†1a!

2
2k2d2

l ~ l 1k!
@~2l 1k!Sz~2a†a11!2kSz

2#1O~d3!,

where l 52m11 in N(2l ), m50,1,2,3, . . . , andk51,2 for
even and odd resonances correspondingly.

Let us recall that the higher resonances appear in the
fective Hamiltonian~19! only under the conditionv1>v2.
In the opposite case,v1<v2, only the principal resonance
survives and in the approximation~4! the whole effect of the
counterrotating terms reduces to the dynamical Stark s
which has the same form@see~6!# as in the above case. I
happens becauseP1(X05n)521 and thus, only
Q10(n,Sz)Þ0 ~note that forv1<v2 we identify theX op-
erators with the oscillator andY operators with the spin sys
tem!. This does not imply that there are no higher res
nances, but rather that those are essentially suppre
~similar to the fractional resonances in the casev1>v2).

Note that the Hamiltonian~18! also describe interaction o
a single mode of quantized field with a collection ofA
52S two-level atoms initially prepared in a symmetric s
perposition~the so-called Dicke model!. In this case the op-
eratorsSz,6 are defined as the collective atomic operators

Sz5
1

2 (
j 51

A

sz
( j ) , S65(

j 51

A

s6
( j ) ,

wheresz,6
( j ) are the Pauli matrices describingj th two-level

atom.

C. Spin-spin interaction

The Hamiltonian describing spin-spin~dipole-dipole! in-
teraction has the following generic form

H5v1S1z1v2S2z1g~S111S12!~S211S22!,

where S1z,6 and S2z,6 are generators of (2S111)- and
(2S211)-dimensional representations of the su~2! algebra
correspondingly. The following identifications:
1-4
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X05S1z , X65S16 , Y05S2z , Y65S26 ,

so that f1(X0)5C2
(1)2X0

21X0 ,f2(Y0)5C2
(2)2Y0

21Y0 ,
lead toQkl(Sz1 ,S2z)50,k>4 and the effective Hamiltonian
takes the form

H5v1S1z1v2S2z12g«@S1z~C2
(2)2S2z

2 !1S2z~C2
(1)2S1z

2 !#

1g@S11S22$11«2~8S1zS2z23S1z13S2z1S1z
2 1S2z

2

2C2
(1)2C2

(2)!%1H.c.#1g(
l 51

S2 ~22d«! l

l !

3@S11S22
2l 111H.c.#12g« (

m51

S2/2
~4d«!2m

~2m!!

3@S11
2 S22

4m~S2z12mSz1!1H.c.#1g«2 (
l 51

S221
~2d«! l 12

~ l 12!!

3@S11
3 S22

2l 13Q3l~Sz1 ,S2z!1H.c.#, ~20!

where

Q3l~Sz1 ,S2z!58•6l@9S2z
2 14~ l 11!~ l 12!Sz1

2 112~ l 11!

3Sz1S2z26~ l 12!S1z118S2z29C2
(2)#,

C2
(1,2)5(S1,211)S1,2 are the corresponding Casimir oper

tors andlÞ3N, N51,2, . . . in thelast sum in Eq.~20 !. As
well as in the Dicke model case, not all of the resonances~7!
survive in this model. Nevertheless, in addition to the odd~9!
and even~10! resonances the first series of fractional re
nances ~11! appears with v15(2l /311)v2 ,lÞ3N, N
51,2, . . . .

In particular, the effective Hamiltonian describing th
third-order transitions has the form

He f f'D11S1z12g@~«1e!S1z~C2
(2)2S2z

2 !1~«2e!S2z

3~C2
(1)2S1z

2 !#22gd«~S11S22
3 1S12S21

3 !. ~21!

This transitions can be easily observed, for example, forS1
51, S253 and taking the initial stateum150,S151&um2
50,S253&, see Fig. 1. Note that the diagonal term is zero
the subspace generated by the application of the Hamilto
~21! to the stateu0,1&1u0,3&2.

The integral of motion corresponding to the first and hig
est ~exact! resonances are obtained from Eq.~16!:

N(1)5S1z1S2z12d~S11S211S12S22!

24d2@S1z~C2
(2)2S2z

2 !1S2z~C2
(1)2S1z

2 !#

14d2@~S11
2 1S12

2 !S2z1~S21
2 1S22

2 !S1z#1O~d3!,

and
06381
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N(kl)5~k12l !S1z1kS2z12kd~S111S12!~S211S22!

1
4~kd!2

l ~ l 1k!
@kS2z~C2

(1)2S1z
2 !2~2l 1k!S1z

3~C2
(2)2S2z

2 !#,

where k51,2,3 and when k51,l 51,2,3. . . ;k52,l
51,3,5, . . . ;k53,l 51,2,4,5,7,8, . . .

IV. CONCLUSIONS

We have found an effective Hamiltonian describing inte
action between two subsystems beyond the standard R
We have shown that this effective Hamiltonian has the fo
of a series of resonances. We have found and classified
the possible resonance transitions which can take place
system described by the Hamiltonian~1!.

If the system parameters~bare subsystem frequencie!
satisfy a resonant condition, Eq.~7!, with some specific val-
ues of (k,l ), only the corresponding resonant term in t
effective Hamiltonian~4! survives. It means that in the
course of evolution some specific finite-dimensional su
spaces in the Hilbert space of the whole system are appr
mately preserved. For each of these invariant subspaces
exists a corresponding integral of motion. The structure
the effective Hamiltonian~4! essentially depends on the a
gebraic structure of interacting subsystems@polynomials
f1(X0),f2(Y0)]. In particular, it is reflected in types o
resonances which are essential for a given system. In
case of linear systems, whenf2(Y0);Y0 and f1(X0)
;X0, no higher resonances appear and the entire effec
counterrotating terms reduces to a renormalization of
quencies and interaction constants. Nevertheless, for the
plest nonlinear system withf2(Y0);Y0 and f1(X0);aX0

2

1bX0, two ~entire! series of higher-order resonances appe
In a more complicated case, when bothf2(Y0) andf1(X0)
are the second-order polynomials of its arguments, a

FIG. 1. The third-order resonance in the spin-spin interact
v1530,g51. The temporal average transition probabilityW
5^u2^23,3u1^1,1uU(t)u0,1&1u0,3&2u2& t againstv2.
1-5
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from the series of the entire resonances, a series of fracti
resonances appears, although the higher-order resonanc
suppressed.

On the other hand, if our system is far from any res
nance, e5g/(v12v2)!1, the effective Hamiltonian be
comes diagonal,

He f f'v1X01v2Y01g«F~X0 ,Y0!

1eg“X0 ,2Y0
@f1~X0!f2~Y011!#,

whereF(X0 ,Y0) is defined in Eq.~6! and the last term in the
above expression results from the elimination of term
scribing the principal transition;X1Y21H.c. ~note that
both diagonal terms can be of the same order of magnitud
we are far from the principal resonance!. As expected, the
dynamics in this case consists in phase shifts and does
lead to high amplitude transitions. In the examples cons
ered in Sec. III, these ‘‘intensity-dependent’’ shifts have t
following forms:;anb1bna for linear systems~Sec. III A!;
a(2n11)Sz1bSz

2 for spin-oscillator interaction~Sec. III B!;
aSz1(C2

(2)2Sz2
2 )1bSz2(C2

(1)2Sz1
2 ) for spin-spin interaction

~Sec. III C!, wherea;g(«1e),b;g(«2e).
The resonance expansion~4! also could be useful to ex

plain the origin of chaos in the classical counterparts of s
tems describe by the Hamiltonian~1!. In particular, it might
be expected that overlapping of different resonances, wh
takes place with growing ratiog/v, leads to appearance o
unstable and chaotic behavior in the classical region~see,
e.g., Refs.@5,11# and for recent discussion see Ref.@34#!.

APPENDIX A

In this appendix we briefly describe the method of t
Lie-type transformations~which we call small rotations!.

The method of small rotations@28,29# provides aregular
procedure for obtaining approximate Hamiltonians desc
ing effective dynamics of nonlinear quantum systems. T
idea of this method is based on the observation that sev
quantum-optical Hamiltonians can be written in terms
polynomially deformed algebras slpd(2,R) @18–27#,

H int5D X01g~X11X2!, ~A1!

where the operatorsX6 and X0 are generators of the de
formed algebra and satisfy the following commutation re
tions:

@X0 ,X6#56X6 , @X1 ,X2#5P~X0!, ~A2!

whereP(X0) is a polynomial function of the diagonal oper
tor X0 with coefficients that may depend on some integrals
motion Nj . If P(X0) is a linear function ofX0, the usual
sl(2,R) or su~2! algebras are restored. If for some physic
reason~depending on the particular model under consid
ation! h5g/D!1 is a small parameter, the Hamiltonia
~A1! is almostdiagonal in the basis of the eigenstates ofX0
and can be approximately diagonalized by applying in a p
turbative manner the following unitary transformation~a
small nonlinear rotation!:
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U5exp@h~X12X2!#. ~A3!

Applying the transformation~A3! to the Hamiltonian~A1!
according to the standard expansion

ehABe2hA5 (
k51

`
hk

k!
adA

k ~B!,

where adA is the adjoint operator defined as adA(B)
5@A,B#, we obtain

Heff5UH intU
†5DX01g(

k51

`

hk
k

~k11!!
adT

k~X11X2!,

~A4!

whereT5X12X2 and we have taken into account that, d
to Eq. ~A2!,

adT~X0!5@T,X0#52~X11X2!.

The effective Hamiltonian acquires the following form:

Heff5D X01gh(
k50

`

8hk@X1
k f k~X0 ,h!1H.c.#,

where f k(X0 ,h) is a function of the diagonal operatorX0
and can be represented as a series onh:

f k~X0 ,h!5
2~k11!

~k12!!
“

k11f~X0!1O~h!,

and f(X0)5X1X2 is a structural function,“f(X0)
5f(X0)2f(X011)5P(X0); the prime in the above sum
means that the term withk50 is taken with the coefficien
1/2.

By keeping terms up to orderh we get

Heff5D X01hg“f~X0!, ~A5!

and in the first approximation the resulting effective Ham
tonian is diagonal on the basis of eigenstates ofX0.

The higher-order contributions always have the fo
X1

k f k(X0)1H.c.1g(X0). This makes the procedure of re
moving the off-diagonal terms somehow trivial at each st
in the sense that it is always obvious which transformat
should be applied. For example, to eliminate the terms of
form

h l@X1
k f k~X0!1 f k~X0!X2

k #,

it suffices to apply the transformation

expS h l 11

k
TkD , ~A6!

with Tk5X1
k f k(X0)2 f k(X0)X2

k , since the first commutato
of D X0 with Tk cancels the corresponding term in th
Hamiltonian.

Because the transformed Hamiltonian has a form of
expansion in the small parameterh, it is clear that its eigen-
1-6
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values coincide with those obtained using the standard
turbation theory. The advantage of this method lies in obta
ing effective Hamiltoniansin an operator form, which avoid
the necessity of calculating cumbersome series of matrix
ements.

This technique also provides corrections to the eigenst
of the Hamiltonian~A1!. Indeed, it is easy to see that th
eigenstates of the interaction Hamiltonian~A1! can be ap-
proximated as

uCm&5U†um&,

whereum& is an eigenstate of the diagonal operatorX0 andU
is the corresponding small rotation. Since the rotation ope
tors andum& are time independent, the operatorU can be
applied to um& in the form of an expansion inh. For ex-
ample, the eigenstateuCm& up to orderh2 takes the form

uCm&5um&2h~X12X2!um&1
h2

2
$~X1

2 1X2
2 !

2@f~X0!1f~X011!#%um&.

This representation is especially advantageous if we c
struct the space of states of the model as a represent
space of the deformed su~2! algebra using the raising opera
tor X1 @18–23#: um&}X1

mu0&, whereu0& is the lowest weight
vector fulfilling the standard conditionX2u0&50.

APPENDIX B

In this appendix we show how the method of small ro
tions can be applied to the systems which describe vir
processes~where the total number of excitations does n
conserve!.

The method of small rotations is useful when the inter
tion Hamiltonian contains some ‘‘big’’ parameters and jus
small rotation is needed to transform it into the form whi
explicitly reveals the existence of an approximate integra
motion. Since generic Hamiltonians describing interactio
without the RWA naturally contain a big parameter~the re-
lation between proper transition frequencies of the sys
and the Rabi frequency!, the method of small rotations ca
be directly applied to this kind of systems leading to ess
tial simplifications in their description. According to th
method and taking into account the commutation relati
~2! we can eliminate the counterrotating termX1Y1

1X2Y2 from the Hamiltonian~1! by applying the transfor-
mation

U15exp@«~X1Y12X2Y2!#,

where

«5
g

v11v2
!1 ~B1!

is a small parameter. The resulting Hamiltonian acquires
following form:

H15U1HU1
† , ~B2!
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H15v1X01v2Y01«g(
n50

`

8«n@~X1Y1!nFn~X0 ,Y0 ,«!

1H.c.#1g(
n50

`

«n@X1Y2$~X1Y1!nHn~X0 ,Y0 ,«!

1~X2Y2!nGn~X0 ,Y0 ,«!%1H.c.#,

whereFn(X0 ,Y0 ,«), Hn(X0 ,Y0 ,«), Gn(X0 ,Y0 ,«) are diag-
onal operators which can be represented as a series in a
parameter«:

Fn~X0 ,Y0 ,«!5
2~n11!

~n12!!
“X0 ,Y0

n F~X0 ,Y0!1O~«!,

F~X0 ,Y0!5f1~X0!f2~Y0!2f2~Y011!f1~X011!

1O~«!,

Hn~X0 ,Y0 ,«!5
1

n!

“Y0

n f2~Y0!

f2~Y01n!
1O~«!,

Gn~X0 ,Y0 ,«!5
1

n!

“X0

n f1~X02n11!

f1~X02n11!
1O~«!, ~B3!

and “X0 ,Y0
F(X0 ,Y0)5F(X0 ,Y0)2F(X011,Y011); the

prime in the first sum in Eq.~B2! means that the term with
n50 is taken with the coefficient 1/2.

The Hamiltonian~B2! still has quite complicated structur
and can be simplified under certain resonance condition
is easy to observe that all the terms of the form

an@~X1Y1!nFn~X0 ,Y0 ,«!1H.c.# ~B4!

can be eliminated~in a leading order on«) by applying
transformations

U115expFan

n
@~X1Y1!nFn~X0 ,Y0 ,«!2H.c.#G , n>1,

~B5!

wherean;«n11. In a similar way, the terms

X1Y2@~X1Y1!nHn~X0 ,Y0 ,«!1~X2Y2!nGn~X0 ,Y0 ,«!#

1H.c.

can be removed from Eq.~B2!. The elimination of the above
terms leads to the appearance of new elements in the tr
formed Hamiltonian. The new terms can be divided in
three groups: The first group contains terms that can alw
be eliminated under the conditionv2 ,v1@g by applying
some suitable transformations. The second group consis
terms that cannot be removed if certain relations betweenv1
andv2 hold, since the rotation which eliminates a given te
from the Hamiltonian becomes singular. This group conta
certain nondiagonal terms which describe transitions
tween energy levels of the whole system. For example,
term X1Y21H.c. cannot be eliminated from the Hami
tonian if v1→v2, because the corresponding transformati
having the form exp@g(X1Y22H.c.2)/(v12v2)#, becomes
1-7



on

Th
on

s

-

KLIMOV, SAINZ, AND CHUMAKOV PHYSICAL REVIEW A 68, 063811 ~2003!
singular. The third group includes the diagonal terms~func-
tions only ofX0 ,Y0). We will keep in the Hamiltonian only
diagonal terms and those that cannot be eliminated by n
ingular transformations~resonant terms!. Besides, we con-
serve only the leading-order coefficients in these terms.
resonant terms appear as a consequence of transformati
the termsX1Y2(X1Y1)kHk(X0 ,Y0 ,«)1H.c. with

U2n5expF2
g«n

~n21!v11~n11!v2

3@X1Y2~X2Y2!nGn~X0 ,Y0 ,«̇ !2H.c.#G . ~B6!
s.

ys

h.
.
s.

. A

.

ev

er

A

ei-

06381
s-

e
of

@which is applied to eliminate term
X1Y2(X2Y2)nGn(X0 ,Y0 ,«)1H.c.]. The leading-order
terms come from transformations~B6! with n51 and by
taking only leading terms in the expansions~B3!:

U215exp@2d«„Y2
2
“X0

f1~X0!2H.c.…#,

whered5g/2v2 . As a result, we obtain the following effec
tive Hamiltonian~4!.
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