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Resonance expansion versus the rotating-wave approximation
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We propose a general perturbative approach to quantum-optical models without the rotating-wave approxi-
mation. We show that a generic Hamiltonian describing interaction between two subsystems can be represented
as a series of operators corresponding to different transitions between bare energy levels of the whole system.
Under certain relations between frequencies of interacting subsystems one of these transitions becomes reso-
nant. The rotating-wave approximation leads to separation of the resonant transition and to appearance of the
integral of motion, which makes the problem exactly solvable in this approximatiifferent resonance
conditions lead to different integrals of motipall of the other terms in these expansion can be considered as
a perturbation. They result in dynamic Stark shifts and small corrections to the integrals of motion. All possible
resonances are classified, and approximate integrals of motion are found for each resonance. Examples of
field-field, field-atom, and atom-atom interactions are considered.
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[. INTRODUCTION terms describing 2+ 1 photon transitionsn(=1,2, .. .) ap-
pear in the effective Hamiltonian.
The rotating-wave approximatiofRWA) is widely used The main idea of this paper is to show that a generic

in quantum optics. This approximation is applied when theHamiltonian governing interaction of two subsystems be-
frequency associated with the free evolution of the system i¥ond the RWA can be represented as a series in operators
essentially bigger than transition frequencies induced by théescribing all possible transitions in the system. When cer-
interaction between subsystems and/or some external sourd@in relations hold between frequencies of interacting sub-
The RWA basica"y consists in neg]ecting rap|d|y osci”ating SyStemS, some of these transitions become resonant. There-
(counterrotating terms in such a way that in the rotating fore, one can extend the meaning of the term “rotating-wave
frame the system Hamiltonian becomes time independent giPproximation”in the following way: the RWA distinguishes

it depends slowly on time. In semiclassical models RWA isthe principal(resonanttransition, while all of the other tran-
Commomy used when a quantum oscillator and/or t\(m_ sitions can be considered as a small perturbation. The appll-
multilevel) level atoms are excited by an external fofda cation of the RWA depends on the relations between transi-
In the quantum domain application of the RWA usually leadstion frequencies of interacting subsystems.

to the appearance of an additional integral of mofiand of

an Abelian invariance group of the Hamiltonjaithe repre- [l. THE EFFECTIVE HAMILTONIAN

sentation space of the whole system is then divided into in- . . .
variant subspaces, which strongly simplifies the mathemati- Let us _conS|der two interacting _syster)(sa_nd Y whose_
cal treatment of the problem and usually leads to thedynamms is governed by the following generic Hamiltonian:
integrability of its classical counterpart.

The perturbative approach to the systems beyond the
RWA leads to more complicated mathematical structure
Probably, one of the most studied problem in quantum opti
is the famous Jaynes-Cummings mod&CM) without the
RWA [3-15], which lately has acquired an additional interest
in connection to the problem of cold ions dynamjié$,17].
The semiclassical analog of this problem has been exhau
tively studied by Shirley{1], and it was shown that apart
from the Bloch-Siegert shiff2] of the atomic frequency
some high-order resonances appear. .That_is, in the first ap- [Xo.Xo]= X0, [Yo,Ya]=£Y.. )
proximation the only effect of the antirotating terms is the
atomic frequency shift, and the Hamiltonian thus describesye o not impose any condition on the commutators be-

only a single-resonance atomic transition. Nevertheless, ifyeen transition operators, which are generally some func-
the consecutive approximations high-frequency transitiongions of diagonal operators and some integrals of motion
always appear. A similar situation takes place in the JCI\/tN1 Xo]=[Nj,Yo]=0:

with the quantum field. The perturbative expansion devel-

oped in Ref[3] shows that the analog of the Bloch-Siegert [X, ,X_]1=P1(Xo) = Vx d1(Xo,Ny),

shift in the quantum domain is the intensity-dependent 0

atomic frequency shift‘dynamic Stark shift”) and the high- _ _

order resonances manifest themselves in such a way that the [Y+ Y-1=Pa(Yo) = Vy #2(Y0.No), )

H=w;Xo+ Yo+ g(X. + X )(Y.+Y), ()

Swhere Xo,Yo are free Hamiltonians of these systems and
CWithout a loss of generality we suppose thai=w,. We
also impose the conditio®n ,w,>g, which usually holds in
guantum-optical interactions. The rising-lowering operators
X.,Y. describe transitions between energy levels of the
§§/stems>( andY correspondingly and consequently obey the
following commutation relations:
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where¢1(Xo,N) =X, X_, ¢2(Yq,No)=Y_, Y_ (from now
on we omit the dependence on integralsg, in the argu-
ments, and

V.:4(2)=¢(2) — p(z+1).

The objects Xy,X~) and (Yq,Y-) are known as polynomi-
ally deformed algebras g((2,R) [18—-27.

Now, following the method 28,29 (see Appendix Awe
can adiabatically remove the counterrotating texmY ,
+X_Y_ from the Hamiltonian1) by applying some appro-
priate Lie-type transformationg“small rotations”). The

elimination of the above term leads to the appearance of new
elements in the transformed Hamiltonian. All these new
terms can be divided into three groups. The first group con-

tains terms of the fornX'} Y+ H.c., which can always be
eliminated under the conditio®n,,®w,>g by applying some

suitable transformations. The second group consists of terms

that cannot be removed if certain relations betwegnand

w-, hold, since the transformation which eliminates a given
term from the Hamiltonian becomes singular. This group

contains nondiagonal terms of the fodf] Y™+ H.c., which
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In particular, term withk=1, I=0 represents the principal
resonance. The coefficien®,(Xy,Yq,e) define(intensity-
dependentcoupling constant. The coefficient in the principal
term has the form

019(Xo,Y0)=1,

and
1+ k2]
01(Xo,Yo) = 120 Cl gl P1(Xo+ k)] kA

X[=P1(Xo) ' Ru(Xo,Yo—2j), )

(k—1)/2
Rk(XO lYO) = ]_20 CJ(k_l)/z[ Pl(XO+ k)][(k_l)lz]_J
X[- Pl(xo)]jvl\((;lgﬁz(Yo— 2j)

k—2(j+1)

X [T ~ a(Yoti),
i=1-2]j

describe transitions between energy levels of the whole sys-

tem. The third group includes the diagonal terthsctions

for 1=1, where C, are the binomial coefficients and

only of Xq,Yo). Our strategy consists in keeping in the yv%(z)=1. Note that the product in the last equation equals
Hamiltonian only diagonal terms and those that cannot bgg ynity if the upper limit is less than the lower one.

eliminated by nonsingular transformatiofresonant terms

In the case whelX.. and/orY .. are nilpotent operators of

Besides, we conserve only the leading-order coefficients igyth order, all the powers beginning with+ 1 turn to zero,

these terms.

As a result(see Appendix B we obtain the following
effective Hamiltonian(which we call “the resonance expan-
sion”):

Heff% (1)1X0+ 0)2Y0+ gSCD(Xo,Yo,S)
+9>
k=1
X[XK Y2 O (X0, Yg,8)+0O(e)} +H.cl,
4

*© (_5)I+kflsl+2(k71)

2 (k=) (1+k—1)!

=0

where

9 <1, o= d

©)

g= ——
(1)1+ o

are small parameters; the tern(X,,Yq,e) represents the
dynamical Stark shiffor Bloch-Siegert shijt and can be
expanded in powers of the small parameteas follows:

®(Xo,Yo,8) =V, v [ 1(Xo) $2(Yo)+O(c?),  (6)

where the generalized displacement operators are defined

Vinxg.nvof (X0, Yo) =f(Xo,Yo) = f(Xo+m,Yo+n),

where m and n are integers. The terms of the form

XX y2 ki H.c. describe all the admissible resonances:

2l+K)wy=kw;. (7)

which obviously puts a natural restriction on the series of
possible resonances.

It is worth noting here that in the case of the principal
resonance it is convenient to proceed with further transfor-
mations and find the first-order correction to the interaction
Hamiltonian, which effectively leads to the renormalization
of the interaction constar{tmaking it intensity dependent
The width of the corresponding resonance in E.is of
ordergs' tk-1gl+2k-1)

One may observe that among the resonances described by
Eq. (7) only the setsk,l) of coprime numbers produce dif-
ferent resonances. It is important to stress that for a given
multiplicity of the resonance only the terms of the lowest
order in small parameters are kept in the expangbnall
the higher-order terms that correspond to the same resonance
are to be neglected.

Among resonances described by E@) there are two
“entire” resonances.

() Odd resonanceéncluding the principal resonange
corresponding t&k=1,1=0,1,2,3.. .,

w1=21+1)w,. 9
as(b) Even resonances, corresponding t&=2|
=1,3,5..., such that

w1=2mw2, m:1,2, ey (10)

while all the other resonances are of a “fractional” type

w1=2lk+1)w,. (11
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The effective Hamiltoniar(4) is the main result of this sion has appeared as a result of elimination of all of the
paper. lowest-order transitiongote thate ~k /(1 +k) in the vicin-
ity of the resonancg

A. The first resonance,w ;= w, _
E(X0,Y0,6)=Vyx v [#1(Xo) h2o(Yo+1)]+0O(5).

By keeping only terms- X, Y _ in Eq. (4) we obtain(in
the rotating picturgthe effective Hamiltonian describing the

orincipal resonance In the most important case of the third-order resonance, the

effective Hamiltonian has the form
Herr=A11X0+ 98V v [ #1(Xo) $2(Yo)]

+9€Vy, —v [h1(Xo)da(Yo+1)]

H(e:%)f%Aleo‘}_ gSCD(Xo,Yo)
+g{X,Y_[1+&2¥(X,,Yo) ]+ H.C), (12

whereA o= w;— w,, ®(Xq,Y) is defined in Eq(6) and we
have included the first correction to the coupling constant +985[X+Y31V>2<0¢1(Xo)+H-C-],
[originally absent in Eq(4)]
whereA ; is defined in Eq(15). It is worth noting that the

2W(X0,Y0) = Vox, v [ #1(Xo)Pa(Yo—1)] coefficients of the diagonal terms in E(l4) are always
much bigger than those of the terms describing the higher
+Vixg2v [ P1(Xo) ¢2(Yo— D). resonances. This means that the amplitudes of higher-order

transitions could be small due to the presence of the dynami-

cal Stark shift anddiagonal contributions from lowest reso-

nances. Besides, in general, the functidnsXy,Y,,e) and

NAD—x 4. E(Xg,Yp,6) are nonlinear, which makes difficult a compen-
eff 00 sation of their effect by the frequency shift5). In practice,

Making an inverse transformation we find that the operatorthe higher-order transitions are better observed for initial
states which belong to subspaces where the diagonal terms

The effectiveHamiltonian(12) obviously admits the inte-
gral of motion

NO =X+ Yo+28(X, Y, +X_Y_) are minimized.
The original Hamiltonian1) in the casg7) (exact reso-
_ 2
207V x, vol #1(Xo) 2(Yo) ] nanceA,,;=0) admits the following approximate integral of
+262[X2 + X2 TP5(Yo) +[Y2 + Y2 1P4(X)} motion:
+0(8% (13) NKD= (21 + k)Xo + kYot 2KS(X 4 + X ) (Y, +Y_)
, . . — k252
approximately commutes with the original Hamiltoniét) — T (k+DV. _ X Yo+1
in the casew;=w,, [H,NM)]=0(5%). We note here that |(k+|){( IV vl $1(X0) $2(Yo+ 1)]

the width of the first resonance is of ordgr +IVXO,YO[¢1(XO)¢2(YO)]}, (16

B. Bffect of the higher resonancesk = (2l +k) w, such thafH,N®)]=0(4?). It is easy to see that the width
Now, let us suppose that the resonance conditibnis  of the corresponding resonance is of orgéf' +3k—1).,
satisfied for a givericoprime k andl. This means that all the

other transi_tipns are suppr¢s§ed and the operators de_scribing IIl. APPLICATIONS
those transitions can be eliminated from the Hamiltonian by .
applying a corresponding transformation. The effective A. Linear systems
Hamiltonian(in the rotating framgtakes the form Let us consider a Hamiltonian describing interaction of
— two harmonic oscillators
Hetr~AxXo+geP(Xo,Yo,8) +ge=(Xo,Yo,0)
g(— &)tk Lgl+20D) H=w;n,+wn,+g(a’+a)(b™+b), (17
(k=D +k-1)! wheren,=a'a,n,=b'b. This system belongs to a class of
k 2l +k so-called linear systems, in the sense that the Hamiltonian
X .C. ) )
[X3 Y= 0w(Xo, Yo) + HCl, (14 can be recast as a linear function on generators of the su(2)
where and su(1,1) algebras. After making identifications
Ay=kw;—(21+K) w,, (15) Yo=Np, Y.=b', Y_=b, Xe=n,, X,=a,
e=0/(w1— wy)<<1, X_=a,

and the functionsP(Xy,Y,2),0(Xp,Yo) are defined in  so that ¢,(Xg)=Xg,$2(Yo)=Yo, we obtain ®4(n,,ny)
Egs.(6)—(8). The third(diagona) term in the above expres- =1 and the coefficients of higher resonance terms as ex-
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pected are equal to zer®,,(n,,n,)=0, k>1]>0. The
effective Hamiltonian acquires the form

Hetr~(w1—0ge)Na+ (02— ge)ny+g(1+2ge?)
x (a'b+ab").

This confirms a well-known resulsee, e.g., Ref.30]) that
the antirotating terms in linear systerfis7) result only in

frequency shifts and renormalization of the interaction con
stant. The corresponding integral of motion takes the forn!

(in the exact resonant case; = w,) (13)
N=n,+n,+2e(a’b’+ab)+2¢?

X (na+n,—a?—b?—a?—b?).

B. Harmonic-oscillator-spin interaction

The Hamiltonian governing the evolution of a sgin-
teracting with a harmonic oscillator has the form

H=w;S,+w,n+9g(S,+S_)(a’+a), (18

where n=a'a and S, are generators of the

(25+1)-dimensional representation of the su(2) algebra angvherel

we suppose thab;=w,.
The following identifications:

Xo=S,, X.=S., Yo=n, Y,=a', Y_=a,

S0 that ¢1(Xg)=Cpr—X5+Xo,02(Yo)=Y,, lead to
0 (S,,n)=0k=3 and the effective Hamiltonian takes the
form

Heff~ 01S,+ wpa’a+ge[S2+(2a’a+1)S,— C,]
+9[S,a{l1-¢?a’a+4S,+2)}+H.c]

+g>,

—28g)
2 %[az'“s#H.c.]

o

—ge X,

m=1

(45¢)%™
(2m)!

[a*™S? +H.c], (19

whereC,=(S+1)S. In particular, the effective Hamiltonian
describing the evolution in the first resonance casgs w,
+ A1, has the forn{31,37 (see also Ref.33])

Hetr~=A10S,+ 0[S+ (2a'a+1)S,~ C,]
+g[S,a{1—¢?(a’a+4S,+2)}+H.c],

in which we have taken into account the second-order cor-

rections(12). The integral of motion corresponding to this
resonance is

ND=s,+a’a+28(S,a'+S_a)—26%S,+2a'a+1)S,
+28%(2S[a+a?]—-[S2 +S2])+0O(53).

PHYSICAL REVIEW A 68, 063811 (2003

Herr=A1S,+0[(e+€)S,(2a’a+ 1)+ (e—&)(Co—S2)]
—2gde(at®s_+a’s,),

where A,; is defined in Eq.(15). Because the Stark shift
contains a term~S?, the amplitude of the third-order tran-
sitions would be small for the spin systems w8k 1. Nev-
ertheless, in the case 8= 1/2 and the harmonic oscillator
initially prepared in highly excited coherent state, the diago-
al term can be approximately compensated by the detuning
11-

It is worth noting that the conditio®(S,,n)=0k=3
does not mean that there are no fractioidl) resonances,
but only that the terms describing the fractional resonances
are suppressed to the orde¢s® *1*3k=1) for the given
indicesk andl.

The integrals of motion for the series of odd and even
(exac) resonances arg.6)

NKD=(21+k)S,+ka'a+2ks(S, +S_)(a'+a)
k?6°

NTLG +k)S,(2a’a+1)—kS]+0(8),
=2m+1 in N® m=0,1,2,3..., andk=1,2 for
even and odd resonances correspondingly.

Let us recall that the higher resonances appear in the ef-
fective Hamiltonian(19) only under the conditionw;= w,.
In the opposite casay;=<w,, only the principal resonance
survives and in the approximatidgd) the whole effect of the
counterrotating terms reduces to the dynamical Stark shift,
which has the same forifsee(6)] as in the above case. It
happens becauseP;(Xog=n)=—1 and thus, only
0,0(n,S,) #0 (note that forw;<w, we identify theX op-
erators with the oscillator and operators with the spin sys-
tem). This does not imply that there are no higher reso-
nances, but rather that those are essentially suppressed
(similar to the fractional resonances in the cages w,).

Note that the Hamiltoniafil8) also describe interaction of
a single mode of quantized field with a collection Af
=2S two-level atoms initially prepared in a symmetric su-
perposition(the so-called Dicke modglin this case the op-
eratorsS, .. are defined as the collective atomic operators

1 A A
S5 2 o), S.=2 o0,
2 =1 =1

where o)), are the Pauli matrices describifth two-level
atom.

C. Spin-spin interaction

The Hamiltonian describing spin-spidipole-dipolg in-
teraction has the following generic form

H=0;S,+ 025, +9(S1+ + 5, )(S4 +S,),

where S;, . and S,, . are generators of &+1)- and

The Hamiltonian describing the third-order resonance has th€2S,+ 1)-dimensional representations of the(Zualgebra

form

correspondingly. The following identifications:
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RESONANCE EXPANSION VERSUS THE ROTATING . . PHYSICAL REVIEW A 68, 063811 (2003

Xo=S1z, Xi=Si1+, Y=, Y+=S., o

S0 that ¢;(Xo)=C5’—X5+Xo,¢a(Yo) =C¥) = Y5+ Yo,
lead to®(S,;,S,,) =0k=4 and the effective Hamiltonian
takes the form

015

H=w1S),+ 0,S5,+ 29[ S1,(CH—S5) +Sp,(CE-SE )1 4
+g[sl+szf{1+sz<8811822—3812+ 3S,,+S5,+S3, :
—26 |

—CH—C@)}+H. C]+92 Q

0.05[

S,/2 2m
X[S;, 82 14+ H. c]+2gsZ (42s) , JL

. .
(2m)! 5 10 15 20 25 30 35
2

S— ( 58)|+2 . . . L. .
X[S2, S4m +2m +Hcl+ FIG. 1. The third-order resonance in the spin-spin interaction
: 1+$ (S22 Sa) 1*ge 21 (|+2)' w,=30g=1. The temporal average transition probability

X[S1: S5 °03(Sa,S0) +H.cl, (20 =(12(=3,32(1,3U(1)[0,14]0,3|%): againstw,.
NKD = (k+21)S;,+kSy,+2K8(Sy+ +S1-)(Sp1 +S,-)

4(k&)” 8)? @

where

O31(Sy1,Sp,) =8- 6955, +4(1 + 1)(1+2)S5 +12(1 +1)

(2)_g?
X $;185,— 6(1+2)Sy,+18S,,-9CH], X(C3"=S))],

where k=1,2,3 and when k=1]1=1,2,3...:k=2|
C{M9=(S, ,+1)S, , are the corresponding Casimir opera- =1,3,5...:k=3/1=1,2,4,5,7,8. ..
tors andl# 3N, N=1,2, ... in thelast sum in Eq(20). As
well as in the Dicke model case, not all of the resonarces IV. CONCLUSIONS
survive in this model. Nevertheless, in addition to the ¢@d
and even(10) resonances the first series of fractional reso- We have found an effective Hamiltonian describing inter-
nances (11) appears with w;=(21/3+1)w,,|#3N, N action between two subsystems beyond the standard RWA.

=12,.... We have shown that this effective Hamiltonian has the form
In particular, the effective Hamiltonian describing the of a series of resonances. We have found and classified all
third-order transitions has the form the possible resonance transitions which can take place in a

system described by the Hamiltoniéh.
If the system parameterghare subsystem frequencies
_ @ _ 2 _ , 1€ . u
Hetr~A1151,+ 29[ (e + €)S1,(C57 = S + (6 =€) Sy, satisfy a resonant condition, E), with some specific val-
x(CW_-s2)1—208s(S +s, 2. (21 ues of k,l), only the corresponding resonant term in the
(C3 12)] = 2908 l+§ 1-520). (2D effective Hamiltonian(4) survives. It means that in the
) N . course of evolution some specific finite-dimensional sub-
This transitions can be easily observed, for exampleSior - spaces in the Hilbert space of the whole system are approxi-
=1, S,=3 and taking the initial stat¢m;=0S,=1)|m;  mately preserved. For each of these invariant subspaces there
=0,S,=3), see Fig. 1. Note that the diagonal term is zero inexists a corresponding integral of motion. The structure of
the subspace generated by the application of the Hamiltoniaghe effective Hamiltoniar{4) essentially depends on the al-

(21) to the statg0,1),]0,3),. gebraic structure of interacting subsysteflynomials
The integral of motion corresponding to the first and high-¢, (X,), ¢,(Y,)]. In particular, it is reflected in types of
est(exac) resonances are obtained from Eg0): resonances which are essential for a given system. In the
case of linear systems, whet,(Yy)~Yy and ¢41(Xg)
ND=S,,+S,,+28(5,.S,, +S5,-S,.) ~Xg, No higher resonances appear and the entire effect of
counterrotating terms reduces to a renormalization of fre-
—487[S,(CY)—S5,)+ Sy,(CE—ST))] quencies and interaction constants. Nevertheless, for the sim-

plest nonlinear system witkh,(Yy)~Y, and ¢>1(x0)~ax§
+bX,, two (entire series of higher-order resonances appear.
In a more complicated case, when b@h(Yy) and ¢1(Xq)
and are the second-order polynomials of its arguments, apart

+48%[(S2, +ST)Sy,+ (S5, +S5)S;,]+0(8%),

063811-5
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from the series of the entire resonances, a series of fractional U=exd n(X,.—X_)]. (A3)
resonances appears, although the higher-order resonances are
suppressed. Applying the transformatiofA3) to the Hamiltonian(Al)

On the other hand, if our system is far from any reso-according to the standard expansion
nance, e=g/(w,1— w,)<<1, the effective Hamiltonian be-
comes diagonal,

g e”Be "= 2 ad;(B)
Hetr~ 01Xo+ @02Yo+geP(Xq,Yo)
teaVe X Yo+ 1)1, where ag is the adjoint operator defined as ,éB)
€9V x,,—v [ #1(Xo) p2(Yo+1)] —[A.B]. we obtain

where® (X,,Y,) is defined in Eq(6) and the last term in the %

above expression results from the elimination of term de- H . —yUH. . UT=AX.+ — _adyx.+Xx_

scribing the principal transition~X,Y_+H.c. (note that eff = = Hin ° 92 " (k+1)! dhx. !

both diagonal terms can be of the same order of magnitude if (Ad)

we are far from the principal resonancés expected, the .

dynamics in this case consists in phase shifts and does n ereT=X, —X_ and we have taken into account that, due

lead to high amplitude transitions. In the examples consid-2 Ea.(A2),

ered in Sec. lll, these “intensity-dependent” shifts have the adr(Xo) =[T,Xo]=— (X4 + X_).

following forms: ~ any+ Bn, for linear systemgSec. 11 A);

a(2n+1)S,+ BS; for spin-oscillator interactionSec. IllB);  The effective Hamiltonian acquires the following form:

aS,;(CP—S2,) + BS,,(CSY—S2)) for spin-spin interaction

(Sec. IO, wherea~g(e+¢€),B~9(e—¢€). ,
The resonance expansiéf) also could be useful to ex- Her=A X0+9’7k§=‘40 ﬁk[xl«ifk(xoﬂ?)ﬂLH-C-],

plain the origin of chaos in the classical counterparts of sys-

tems describe by the Hamiltonidf). In particular, it might  where f,(X,,7) is a function of the diagonal operatdt,

be expected that overlapping of different resonances, whichnd can be represented as a series;on

takes place with growing ratig/ , leads to appearance of

unstable and chaotic behavior in the classical rediee, 2(k+1)

e.g., Refs[5,11] and for recent discussion see REF4]). (X, )= (k+2)!

oo

VK1 (Xo)+O(7),

APPENDIX A and ¢(Xg)=X, X_ is a structural function, V ¢(X,)
= (Xg) — ¢(Xo+ 1)=P(Xy); the prime in the above sum
In this appendix we briefly describe the method of themeans that the term witk=0 is taken with the coefficient

Lie-type transformationgwhich we call small rotations 1/2.
The method of small rotatior{28,29 provides aregular By keeping terms up to ordey we get
procedure for obtaining approximate Hamiltonians describ-
ing effective dynamics of nonlinear quantum systems. The Her= A Xo+ 79V ¢(Xo), (A5)

idea of this method is based on the observation that several _ _ _ _ _ _
quantum-optical Hamiltonians can be written in terms ofand in the first approximation the resulting effective Hamil-

polynomially deformed algebras,s(2,R) [18-27, tonian is diagonal on the basis of eigenstateXgf
The higher-order contributions always have the form
Hine= A Xo+g(X; +X), (A1) XX (Xo)+H.c+g(Xo). This makes the procedure of re-

movmg the off-diagonal terms somehow trivial at each step,
where the operatorX. and X, are generators of the de- in the sense that it is always obvious which transformation
formed algebra and satisfy the following commutation rela-should be applied. For example, to eliminate the terms of the
tions: form

[Xo. X:]=%X., [Xi ,X_]=P(Xo), (A2) 7'IXE F(Xo) + Fir(Xo) XK T,

whereP(X,) is a polynomial function of the diagonal opera- it suffices to apply the transformation
tor X, with coefficients that may depend on some integrals of

motion N;. If P(Xp) is a linear function ofXy, the usual 7't
sl(2R) or su?2) algebras are restored. If for some physical ex k
reason(depending on the particular model under consider-

ation) »=g/A<1 is a small parameter, the Hamiltonian with T = xK fk(XO)—fk(XO)X,, since the first commutator
(Al) is almostdiagonal in the basis of the eigenstatesgf ~ of A X, with T, cancels the corresponding term in the
and can be approximately diagonalized by applying in a perHamiltonian.

turbative manner the following unitary transformatida Because the transformed Hamiltonian has a form of an
small nonlinear rotatiopx expansion in the small parametgy it is clear that its eigen-

Ty, (AB)
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values coincide with those obtained using the standard per- *

turbation theory. The advantage of this method lies in obtain- H;=wXg+ w,Yg+ ng "e"[(XL Y 1)"Fr(Xo,Yg,8)

ing effective Hamiltoniang an operator form, which avoids n=0

the necessity of calculating cumbersome series of matrix el- %

ements. +H.c]+g 2 e"XLY_{(X: Y )"Hy(Xo,Yo,2)
This technique also provides corrections to the eigenstates n=0

of the Hamiltonian(Al). Indeed, it is easy to see that the

n
eigenstates of the interaction Hamiltonié&l) can be ap- +(X-Y-)"Gn(Xo,Yo.8)} +H.Cl,

prOXImated as Wheran(X01Y018)y Hn(x01Y018)1 Gn(xO:YO:S) are dlag_
W)= UT|m> onal operators which can be represented as a series in a small
m ' parametet:
where|m) is an eigenstate of the diagonal operatgrandU 2(n+1)
is the corresponding small rotation. Since the rotation opera-  F(Xq,Yq,8)= TN ?(O,Yoq)(xo,Yo)JrO((?)a
tors and|m) are time independent, the operatdrcan be (n+2)!
applied to|m_) in the form of an expar213|on ig. For ex- (X, Yo)=b1(Xo) balYo) — ba Yo+ 1) dy(Xo+ 1)
ample, the eigenstatd’ ) up to orders® takes the form
) +0(e),
—Im)— _ M2 2
|V ) =[m)— 7(X; —X_)|m)+ 2 {(XL+X2) ( ) 1 VQOQ”Z(YO) o
Hn(Xo,Y0,8)= — ———+0(g),
~[$(Xo) + (Xo+ 1) T} m). Tl aYotn)

This representation is especially advantageous if we con- Gn(Xo,Yo,e)=i V;O¢1(Xo—n+1) +0(e), (B3)

struct the space of states of the model as a representation
space of the deformed &) algebra using the raising opera-
tor X, [18-23: [m)eXT|0), where|0) is the lowest weight and Vy v ®(Xo,Yo)=P(Xo,Yo) = P(Xo+1,Yo+1); the

n'  ¢(Xg—n+1)

vector fulfilling the standard conditio_|0)=0. prime in the first sum in Eq(B2) means that the term with
n=0 is taken with the coefficient 1/2.
APPENDIX B The Hamiltonian(B2) still has quite complicated structure

) ) and can be simplified under certain resonance conditions. It
In this appendix we show how the method of small rota-jg easy to observe that all the terms of the form

tions can be applied to the systems which describe virtual

processegwhere the total number of excitations does not an[(X1Y4)"Fr(Xo,Yo,e)+H.c] (B4)

conserve o . . .
The method of small rotations is useful when the interacS@n be eliminatedin a leading order ore) by applying

tion Hamiltonian contains some “big” parameters and just atransformations

small rotation is needed to transform it into the form which a,

explicitly reveals the existence of an approximate integral of Uj;= ex;{ﬁ[(X+Y+)”Fn(XO,YO,s)— H.c]|, n=1,

motion. Since generic Hamiltonians describing interactions (B5)

without the RWA naturally contain a big parameténe re-

lation between proper transition frequencies of the systemyherea,~¢"*1. In a similar way, the terms

and the Rabi frequengythe method of small rotations can

be directly applied to this kind of systems leading to essen- X+ Y -[(X.Y)"Hn(Xo,Y0,8) +(X-Y_)"Gy(Xo,Yo,¢)]

tial simplifications in their description. According to this YHce

method and taking into account the commutation relations o

(2) we can eliminate the counterrotating ter®.Y,  can e removed from E4B2). The elimination of the above
+X_Y_ from the Hamiltonian(1) by applying the transfor-  ormg leads to the appearance of new elements in the trans-
mation formed Hamiltonian. The new terms can be divided into
_ _ three groups: The first group contains terms that can always
Ur=exe(X, Y, =X-Y)], be eliminated under the conditiom,,w;>g by applying
where some suitable transformations. The second group consists of
terms that cannot be removed if certain relations betwegn
g andw, hold, since the rotation which eliminates a given term
<1 (B1) from the Hamiltonian becomes singular. This group contains
certain nondiagonal terms which describe transitions be-
is a small parameter. The resulting Hamiltonian acquires théween energy levels of the whole system. For example, the
following form: term X, Y_+H.c. cannot be eliminated from the Hamil-
tonian if w;— w,, because the corresponding transformation,
H;=U;HU], (B2)  having the form exfg(X.Y_—H.c._)/(w;— w,)], becomes

8:
(,Ul+ wo
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singular. The third group includes the diagonal teiffosic-  [which is applied to eliminate terms
tions only ofXq,Y). We will keep in the Hamiltonian only X, Y_(X_Y_)"G,(Xy,Yo,e)+H.c.]. The leading-order
diagonal terms and those that cannot be eliminated by nongerms come from transformatior(®6) with n=1 and by

ingular transformationgresonant terms Besides, we con- taking only leading terms in the expansioi@3):
serve only the leading-order coefficients in these terms. The

resonant terms appear as a consequence of transformation of
the termsX, Y _ (X, Y )*H(Xo,Yo,&) +H.c. with

Upn= ge”
2n_eX _(n_l)wl+(n+1)ﬂ)2

Upi=exd — 8 (Y2 Vy ¢1(Xo)—H.c)l,

where5=g/2w,. As a result, we obtain the following effec-
X[XLY_(X_Y_)"G,(Xo,Yg,e)—H.c]|. (B6) tive Hamiltonian(4).
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